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a b s t r a c t

This paper deals with the estimation of the quadrature error of a Gaussian formula for
weight functions involving powers, exponentials and Bessel functions of the first kind.
For this purpose, in this work the averaged and generalized averaged Gaussian rules are
employed, together with a tentative a priori approximation of the error. The numerical
examples confirm the reliability of these approaches.

1. Introduction

In this work we consider the approximation of integrals of the type

Iν,α,c(f ) =

∫
∞

0
f (x)xαe−cxJν(x)dx, (1)

where

Jν(x) =

∞∑
m=0

(−1)m

m!Γ (m + ν + 1)

( x
2

)2m+ν

is the Bessel function of the first kind of order ν ≥ 0 (see [1] for a background), α > −1, c > 0 and f is a smooth
function. We point out that integrals of type (1) are strongly related to Hankel transforms, which commonly appear in
problems of mathematical physics and applied mathematics having axial symmetry. An example of application arises in
geophysical electromagnetic survey. In particular, electromagnetic fields over a layered earth due to magnetic dipoles
above the surface can be expressed in integral form as in (1) (see [2]).

Since |Jν(x)| ≤ 1, for ν ≥ 0, x ∈ R (see [3, p. 362]), a Gaussian quadrature rule for the computation of integrals of type
(1) was constructed in [4] by rewriting (1) as

I Jν,α,c(f ) − ILα,c(f ),

with

I Jν,α,c(f ) :=

∫
∞

0
f (x)xαe−cx

[Jν(x) + 1]dx, (2)
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and

ILα,c(f ) :=

∫
∞

0
f (x)xαe−cxdx. (3)

In this setting, the authors considered the approximations

I Jν,α,c(f ) ≈ I Jn(f ) and ILα,c(f ) ≈ ILn(f ),

where

I Jn(f ) =

n∑
i=1

w
(n)
i f

(
x(n)i

)
(4)

is the Gaussian rule relative to the weight function

wν,α,c(x) := xαe−cx
[Jν(x) + 1] on [0, +∞), (5)

and

ILn(f ) =

n∑
i=1

λ
(n)
i f

(
ξ
(n)
i

)
(6)

is a slight modification of the Gauss–Laguerre quadrature rule, i.e., relative to the weight function

wα,c(x) = xαe−cx on [0, +∞). (7)

Clearly, it is possible to consider a change of variable in (3) in order to work with the standard Laguerre rule, but our
choice allows to treat in the same way integrals (2) and (3).

Denoting by In(f ) the n-point Gaussian rule for the integral

I(f ) =

∫
+∞

0
f (x)w(x)dx,

in which w is a generic weight function, it is not easy, in general, to derive an accurate estimate of the error

En(f ) = I(f ) − In(f ). (8)

A classical approach is to consider the (2n+1)-point Gauss–Kronrod quadrature rule associated with the n-point Gaussian
formula In(f ) (see [5–7]). However, in [8] the nonexistence of Gauss–Kronrod rules, for n > 2, with real nodes and positive
weights for the Gauss–Laguerre formula was proved. As consequence, this approach is not suitable for our case.

An alternative approach was proposed by Laurie [9], who introduced the so-called anti-Gaussian quadrature rule An+1,
corresponding to In. It is a (n + 1)-point formula of degree 2n − 1 which integrates polynomial of degree up to 2n + 1
with an error equal in magnitude but of opposite sign to one of the n-point Gaussian formula. Then the idea is to estimate
error (8) as

En(f ) ≈ Ã2n+1(f ) − In(f ),

here the (2n + 1)-point formula

Ã2n+1(f ) =
1
2

(An+1(f ) + In(f ))

s commonly named averaged Gaussian formula. The anti-Gaussian rule always exists, it is guaranteed to have real nodes
nd positive weights, and at most one of the nodes may be outside the integration interval (see [9]).
A more general formula, given by

H2n+1(f ) =
1

2 + γ
((1 + γ )In(f ) + An+1(f )) , γ > 0, (9)

was considered by Enrich in [10]. In particular, he constructed (9), for the Laguerre and Hermite weight functions, with the
parameter γ chosen to reach the highest degree of exactness, that is, 2n + 1. We refer to this formula as the generalized
averaged Gaussian rule.

More recently, Spalević [11] derived a parameter free method for constructing generalized averaged Gauss rules for
any weight function for which all moments exist. We denote these quadrature formulas by Â2n+1. They have degree of
exactness at least 2n + 1 and are guaranteed to have real nodes and positive weights. Then the error is estimated as

En(f ) ≈ Â2n+1(f ) − In(f ). (10)

In this paper the averaged Gauss rules ÃJ
2n+1, Ã

L
2n+1 and generalized averaged Gauss rules ÂJ

2n+1, Â
L
2n+1, corresponding

to I Jn and ILn, respectively, are constructed and used to estimate the error

E (f ) = E J (f ) − EL (f ), (11)
n,ν,α,c n,ν,α,c n,α,c

2
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where

E J
n,ν,α,c(f ) = I Jν,α,c(f ) − I Jn(f ) and EL

n,α,c(f ) = ILα,c(f ) − ILn(f ). (12)

nfortunately, the use of the heavy notation E(·)
n,ν,α,c is necessary to avoid confusion with some general results reported

n the paper.
The averaged and generalized averaged Gaussian rules are easy to construct and, moreover, typically lead to quite

ccurate estimates of (10) (see [12]). However, sometimes it can be useful to have at disposal an a priori estimate of
he error to have an idea of the number of points necessary to reach a prescribed accuracy. In this view, here we also
resent a tentative a priori approximation of the quadrature error. In particular, by interpreting wν,α,c as a perturbation
f the weight function of the Gauss–Laguerre rule, the idea is to employ a result due to Barrett [13] and relative to the
symptotic behavior of the error of the Gauss–Laguerre formula, to estimate EL

n,α,c and E J
n,ν,α,c . Moreover, similarly to the

Gauss–Laguerre rule, it can be verified that the weights of I Jn decay exponentially. Hence, having at disposal a reliable
error estimate, a truncated approach can also be introduced, but not considered in the present paper.

Throughout this work we use the symbol ≈ to indicate a generic approximation. The symbol ∼ is used to express the
asymptotic equality.

This paper is organized as follows. Sections 2 and 3 deals with the representation of averaged and generalized averaged
Gaussian rules. Moreover, some theoretical and experimental properties of the quadrature formulas are described. In
Section 4 a tentative error approximation, which allows to have an a priori estimate of the error behavior, is presented.
Section 5 deals with the discussion of some numerical examples, which show the performances of the error estimates.
Concluding remarks can be found in Section 6.

2. Construction of averaged Gaussian rules

Let w be a generic weight function on [0, +∞) and consider the corresponding Gaussian quadrature formula

In(f ) =

n∑
i=1

σ
(n)
i f

(
τ
(n)
i

)
, (13)

of degree 2n − 1, for the integral

I(f ) =

∫
+∞

0
f (x)w(x)dx.

Denoting by αk ∈ R, βk > 0 the recursion coefficients for the sequences of monic orthogonal polynomials
{
πj
}
j≥0 relative

to the weight function w, the Gaussian rule (13) can be associated with the symmetric tridiagonal matrix

Jn =

⎡⎢⎢⎢⎢⎢⎢⎣
α0

√
β1 0

√
β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

√
βn−1

0
√

βn−1 αn−1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ Rn×n. (14)

t is well known that the eigendecomposition of the above matrix provides the nodes τ
(n)
i and the weights σ

(n)
i ,

= 1, . . . , n, of the Gaussian rule In (see e.g. [14] and the references therein). Now, the corresponding (n + 1)-point
nti-Gaussian quadrature formula

An+1(f ) :=

n+1∑
i=1

σ̃
(n+1)
i f

(
τ̃
(n+1)
i

)
, (15)

s such that

I(p) − An+1(p) = − (I(p) − In(p)) , ∀p ∈ P2n+1, (16)

here P2n+1 denotes the space of polynomials of degree at most 2n+1. Laurie [9] showed that formula (15) is associated
ith the symmetric tridiagonal matrix J̃n+1 ∈ R(n+1)×(n+1) defined by

J̃n+1 =

[
Jn en

√
2βn

eTn
√
2βn αn

]
, (17)

here en = (0, . . . , 0, 1)T ∈ Rn. Therefore, having at disposal the recurrence coefficients αk and βk, it is trivial to compute
the nodes τ̃

(n+1)
i and the weights σ̃

(n+1)
i , i = 1, . . . , n + 1, of the anti-Gaussian rule. Moreover, quadrature formula (15)

has the following properties (see [9, Theorem 1]):
3
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1. σ̃
(n+1)
i > 0, i = 1, . . . , n + 1;

2. the nodes τ̃
(n+1)
i , i = 1, . . . , n + 1, are all real and are interlaced by those of the Gaussian formula In, that is,

τ̃
(n+1)
1 < τ

(n)
1 < τ̃

(n+1)
2 < · · · < τ (n)

n < τ̃
(n+1)
n+1 ;

3. τ̃
(n+1)
i ∈ [0,+∞), for i ≥ 2;

4. τ̃
(n+1)
1 ∈ [0,+∞) if and only if

πn+1(0)
πn−1(0)

≥ βn, n ≥ 1. (18)

t this point, the averaged quadrature formula Ã2n+1 is defined as

Ã2n+1(f ) :=
1
2

(In(f ) + An+1(f )) .

From property (16) it follows that the degree of exactness of Ã2n+1 is 2n + 1, and the quadrature error can be estimated
by

En(f ) ≈ Ã2n+1(f ) − In(f ) =
1
2

(An+1(f ) − In(f )) .

Going back to our case, we denote by α
J
k, β

J
k and αL

k , β
L
k the recursion coefficients for the sequences of monic orthogonal

olynomials relative to wν,α,c and wα,c (see (5)–(7)), respectively, and by J̃ Jn+1, J̃
L
n+1 the associated tridiagonal matrices of

ype (17). In particular, we have that αL
k , βL

k are strongly related to the recurrence coefficients ak, bk of the standard
eneralized Gauss–Laguerre rule. Indeed, it can be easily verified that

αL
k =

ak
c

and βL
k =

bk
c2

. (19)

oreover, the monic polynomials
{
L(α,c)
k

}
k≥0

defined by

L(α,c)
k (x) =

1
ck

L(α)k (cx), (20)

here L(α)k (t) is the monic generalized Laguerre polynomial of degree k, are orthogonal with respect to the weight function
α,c . At this point, we denote by

AJ
n+1(f ) =

n+1∑
i=1

w̃
(n+1)
i f

(
x̃(n+1)
i

)
(21)

nd

AL
n+1(f ) =

n+1∑
i=1

λ̃
(n+1)
i f

(
ξ̃
(n+1)
i

)
(22)

he anti-Gaussian quadrature rules (cf. (15)) relative to I Jn and ILn (see (4) and (6)), respectively. Then, the corresponding
veraged Gauss rules are

ÃJ
2n+1(f ) =

1
2

(
I Jn(f ) + AJ

n+1(f )
)

and

ÃL
2n+1(f ) =

1
2

(
ILn(f ) + AL

n+1(f )
)
.

inally, the error of the Gaussian quadrature formula (see (11)) is estimated as

En,ν,α,c(f ) ≈ Ẽn,ν,α,c(f ) := Ẽ J
n,ν,α,c(f ) − ẼL

n,α,c(f ), (23)

here

Ẽ J
n,ν,α,c(f ) = ÃJ

2n+1(f ) − I Jn(f ) and ẼL
n,α,c(f ) = ÃL

2n+1(f ) − ILn(f ).

For the generalized Gauss–Laguerre rule the recurrence coefficients and the values of the orthogonal polynomials are
explicitly known, and condition (18) holds (see [9, Theorem 4]). Moreover, by using relations (19) and (20) it is not difficult
to prove the same result also for the Gaussian rule ILn. Therefore, we have that the anti-Gaussian formula AL

n+1 is internal,
i.e., ξ̃ (n+1)

∈ [0,+∞).
1

4
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For what concerns the anti-Gaussian rule AJ
n+1, we do not have at disposal the recurrence coefficients and the

expressions of the corresponding orthogonal polynomials (see [4]). Hence, condition (18) can only be verified numerically.
In our numerical experiments, independently of ν, c and working with n = 100, we have observed negative values of
x̃(n+1)
1 for −1 < α < α̃, where α̃ ∈ (−0.8, −0.7).

3. Construction of generalized averaged Gauss rules

In this section we describe the generalized averaged Gauss rule Â2n+1, introduced in [11], associated with a generic
Gauss formula In. It is a (2n + 1)-point formula which can be represented by a single symmetric tridiagonal matrix
Ĵ2n+1 ∈ R(2n+1)×(2n+1), that is,

Ĵ2n+1 =

⎡⎣ Jn
√

βnen 0
√

βneTn αn
√

βn+1eT1
0

√
βn+1e1 J ′n

⎤⎦ ,

here e1 = (1, 0, . . . , 0)T ∈ Rn, Jn is as in (14) and J ′n is obtained by reversing the order of the rows and column of Jn,
hat is,

J ′n =

⎡⎢⎢⎢⎢⎣
αn−1

√
βn−1 0

√
βn−1 αn−2

√
βn−2

. . .
. . .

. . .
√

β2 α1
√

β1
0

√
β1 α0

⎤⎥⎥⎥⎥⎦ ∈ Rn×n.

The generalized averaged Gauss formula can also be described in a more compact form. Indeed, Â2n+1 can be written as

Â2n+1(f ) =
βn+1

βn + βn+1
In(f ) +

βn

βn + βn+1
Ān+1(f ), (24)

here the quadrature formula

Ān+1(f ) =

n+1∑
i=1

σ̄
(n+1)
i f

(
τ̄
(n+1)
i

)
(25)

s determined by the symmetric tridiagonal matrix J̄n+1 ∈ R(n+1)×(n+1), defined as

J̄n+1 =

[
Jn en

√
βn + βn+1

eTn
√

βn + βn+1 αn

]
, (26)

see [15]). By construction, the (n+1)-point quadrature rule (25) has essentially the same properties of the anti-Gaussian
ule An+1, but in this case the nodes are internal, i.e., τ̄ (n+1)

1 ∈ [0,+∞), if and only if

πn+1(0)
πn−1(0)

≥ βn+1, n ≥ 1, (27)

see [11]).
At this point, we denote the generalized averaged Gaussian rules corresponding to I Jn and ILn by

ÂJ
2n+1(f ) =

β
J
n+1

β
J
n + β

J
n+1

I Jn(f ) +
β

J
n

β
J
n + β

J
n+1

ĀJ
n+1(f )

and

ÂL
2n+1(f ) =

βL
n+1

βL
n + βL

n+1
ILn(f ) +

βL
n

βL
n + βL

n+1
ĀL
n+1(f ),

here the formulas

ĀJ
n+1(f ) =

n+1∑
i=1

w̄
(n+1)
i f

(
x̄(n+1)
i

)
and ĀL

n+1(f ) =
1

cα+1

n+1∑
i=1

λ̄
(n+1)
i f

(
ξ̄
(n+1)
i

)
re associated with the tridiagonal matrices J̄ Jn+1 and J̄Ln+1, obtained by considering in (26) the recursion coefficients α

J
k,

J
k and αL

k , β
L
k , respectively. Finally, the error of the Gaussian quadrature (see (11)) is estimated as

E (f ) ≈ Ê (f ) := Ê J (f ) − ÊL (f ), (28)
n,ν,α,c n,ν,α,c n,ν,α,c n,α,c

5
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Ê J
n,ν,α,c(f ) = ÂJ

2n+1(f ) − I Jn(f ) and ÊL
n,α,c(f ) = ÂL

2n+1(f ) − ILn(f ).

From (27) and by using again relations (19) and (20), it is trivial to prove that for the generalized averaged Gauss rule
ĀL
n+1 the condition for the internality is α ≥ 1. This means that for −1 < α < 1 the smallest node of ĀL

n+1 is negative. As
before, the behavior of the rule ĀJ

n+1 can only be verified numerically. In particular, independently of ν, c and working
with n = 100, we have found negative values of x̄(n+1)

1 for −1 < α < ᾱ, with ᾱ ∈ (1, 1.1).

4. A tentative a priori estimate

In the previous sections we have described how, having at disposal the recurrence coefficients of the corresponding
orthogonal polynomials, the averaged and generalized averaged Gaussian rules can be easily constructed and employed
to approximate the quadrature error En,ν,α,c(f ) (see (11)). In this section, by using the results of Barrett [13] regarding
the derivation of an asymptotic expression for the error of the Gauss–Laguerre formula, we present a tentative a priori
estimate of the error En,ν,α,c(f ). In particular, as remarked in the introduction, since |Jν(x)| ≤ 1, for ν ≥ 0, x ∈ R, we can
interpret the weight function wν,α,c as a perturbation of the weight of the Gauss–Laguerre rule. Therefore, the idea is to
employ the error estimate for the Gauss–Laguerre formula to approximate not only EL

n,α,c(f ), but also E J
n,ν,α,c(f ) (see (12)).

First, let consider the error of the Laguerre rule for the classical case of c = 1, that is, EL
n,α,1(f ). For any given R > 1, the

set ΓR =
{
z ∈ C | ℜ

√
−z = ln R

}
represents a parabola of the complex plane positively oriented, symmetric with respect

to the real axis and with vertex at − ln R. Barrett [13] showed that, if f (z) has no singularities on or within ΓR, except for
pair of simple poles z0 and its conjugate z̄0, then, for n → ∞,

EL
n,α,1(f ) ∼ 4πℜ

{
Res(f (z), z0)e−iαπ

[
exp

√
−z0

]−2
√
n̄
}

, (29)

here n̄ = 4n + α + 2 and the symbol Res(·, ·) denotes the residue. Formula (29) follows from the fact that EL
n,α.1(f ) can

be represented as the contour integral

EL
n,α,1(f ) =

1
2π i

∫
Γ

qLn(z)

L(α)n (z)
f (z)dz,

here L(α)n (z) is the generalized Laguerre polynomial, qLn(z) is the associated function defined by

qLn(z) =

∫
+∞

0

wα(x)L
(α)
n (x)

z − x
dx,

with wα(x) = xαe−x and Γ is a contour containing [0, +∞) and such that no singularity of f (z) lies on or within the
contour (see [16]). Then, by using the relation (see [17])

qLn(z)

L(α)n (z)
∼ −2e−iπαzαe−z

Kα

(√
n̄ze−iπ

)
Iα
(√

n̄ze−iπ
) , (30)

here Iα , Kα are the modified Bessel functions of order α of the first and second kind, respectively, and the asymptotic
formulas (see [3, p.377, 9.7.1–9.7.2])

Iα(t) ∼
et

√
2π t

, Kα(t) ∼ e−t

√
π

2t
,

valid for large |t|, | arg(t)| < π/2, we obtain

qLn(z)

L(α)n (z)
∼ −2πe−iαπ zαe−z [exp (√−z

)]−2
√
n̄

=: Φn(z), z /∈ [0,+∞). (31)

Finally, formula (29) can be derived by choosing Γ = ΓR∪C1∪C2, where C1, C2 are two arbitrary small circles surrounding
the two poles, and by using relation (31). After simple computations, it can be verified that, by replacing wα(x) with wα,c(x),
ne obtains

EL
n,α,c(f ) ∼

4π
cα−1 ℜ

{
Res(f (z), z0)e−iαπ

[
exp

√
−cz0

]−2
√
n̄
}

. (32)

Now, let consider the error E J
n,ν,α,c(f ). It can also be written as the contour integral

E J
n,ν,α,c(f ) =

1
∫

qJn(z) f (z)dz,

2π i Γ pn(z)

6
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Fig. 1. The ratios Ψ
J
n (z)

Φn(z)
(left) and Ψ L

n (z)
Φn(z)

(right) for z = reiθπ , with r = 4, θ ∈ (0, 2). In this case ν = 1, c = 0.5, α = 0.3.

here pn(z) is the orthogonal polynomial relative to the weight function wν,α,c and

qJn(z) =

∫
+∞

0

wν,α,c(x)pn(x)
z − x

dx.

owever, as remarked before, we do not have at disposal the analytic expression of pn(z) and, therefore, an asymptotic
ormula analogous to (31) cannot be derived. In order to justify the use of estimate (32) also for E J

n,ν,α,c(f ), we numerically
valuate the functions

Ψ J
n (z) :=

qJn(z)
pn(z)

and Ψ L
n (z) :=

qLn(z)

L(α)n (z)
(33)

nd check if the approximation Φn(z) (cf. (31)) can also be used for Ψ
J
n (z). In Figs. 1–2, for different values of n, ν, α, c ,

e plot the ratios

Ψ
J
n (z)

Φn(z)
and

Ψ L
n (z)

Φn(z)
,

in which z = reiθπ , with r = 4, θ ∈ (0, 2). We remark that Ψ L
n (z)

Φn(z)
∼ 1, for n → ∞, by (31). The results show that

approximation (31) works rather good also for Ψ
J
n (z), and the situation is analog for other values of the parameters.

Hence, the idea is to use the approximation (32) also for E J
n,ν,α,c(f ). Finally, since En,ν,α,c(f ) = E J

n,ν,α,c(f ) − EL
n,α,c(f ), we

consider the estimate⏐⏐En,ν,α,c(f )
⏐⏐ ≈ 2En,α,c(f ), (34)

with

En,α,c(f ) :=
4π
cα−1

⏐⏐⏐Res(f (z), z0) [exp√
−cz0

]−2
√
n̄
⏐⏐⏐ , (35)

cf. (32)).

. Numerical examples

In this section we present some numerical experiments which confirm the reliability of the error estimates (23), (28)
and (34). We remark that all the computations reported in this work are carried out in Matlab by using high-precision
arithmetic, specifically with 120 significant decimal digits. The main reason for this choice is that we do not know explicitly
the recurrence coefficients α

J
k, β

J
k and hence we are forced to employ a numerical scheme to derive them. However, it

is well known (see e.g. [18]) that this computation can be inaccurate for growing k, because the problem is severely ill
conditioned. Therefore, even if in [4] an alternative more stable approach is presented, the use of high-precision arithmetic
7
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Fig. 2. The ratios Ψ
J
n (z)

Φn(z)
(left) and Ψ L

n (z)
Φn(z)

(right) for z = reiθπ , with r = 4, θ ∈ (0, 2). In this case ν = 0, c = 1, α = −0.5.

llows to considerably increase the number of quadrature points and to obtain an absolute error in the approximations of
he order of the machine precision. The Matlab routine for the computation of the recurrence coefficients α

J
k, β

J
k is taken

rom [19], while the code for the implementation of the Gauss–Laguerre quadrature rule from [20].
Before going on, we observe that, by using the change of variable t = cx in (1), which leads to

Iν,α,c(f ) =

∫
∞

0
F
(
t
c

)
tαe−tdt, F (t) =

1
cα+1 f

(
t
c

)
Jν

(
t
c

)
,

and by considering as weight function

wα(t) = tαe−t , (36)

ntegral (1) can be computed by employing the n-point generalized Gauss–Laguerre formula, that is,

Iν,α,c(f ) ≈

n∑
i=1

F
(
t (n)i

)
η
(n)
i . (37)

n Fig. 3, by considering a reference solution, we compare the results of the Gaussian rule constructed in [4] with the
nes of the generalized Gauss–Laguerre formula (37). We remark that the former requires a double set of points, i.e., a
ouble number of function evaluations, and the employment of a numerical scheme for the computation of the recurrence
oefficients α

J
k, β

J
k. Nevertheless, since the oscillating term, i.e., the Bessel function, is not part of the weight function

36), the approach developed in [4] typically provides better results with respect to the generalized Gauss–Laguerre rule,
specially for small values of the parameter c , which handles the frequency of the oscillations (see Fig. 3a). Anyway,
or large c , the Laguerre formula appears to be reliable (see Fig. 3b). The same behavior has been observed in other
xperiments not reported.

xample 1. Consider the integral

Iν,α,c(f ) =

∫
∞

0
f (x)xαe−cxJν(x)dx,

ith

f (x) =
1

1 + e−x .

n order to use error estimate (34), we start by studying the poles of f . A simple analysis shows that they are given by
the set

z = −i(π + 2kπ ), k ∈ Z,
k

8
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(

a

I

Fig. 3. Comparison between the absolute error obtained by using the Gaussian approach developed in [4] (black) and the Gauss–Laguerre formula
(37) (red) for α = 1.1, c = 0.1, ν = 0 (left) and α = 0.5, c = 0.4, ν = 1 (right). In both cases f (t) =

1
1+e−t .

Fig. 4. The quadrature error and its approximations |Ẽn,ν,α,c (f )|, |Ên,ν,α,c (f )| and (38) for ν = 1, c = 0.5, α = 1.7 (left) and ν = 0.5, c = 0.8, α = 1.5
right).

nd the closest to the real axis are z0 and its conjugate z−1, that is, ±iπ . As for the residue (cf, (32)), we obtain

Res (f (z), z0) = 1.

Therefore, by using (34) and (35), we have that

|En,ν,α,c(f )| ≈ 8πc1−αe−
√
2cπ n̄. (38)

n Fig. 4 we compare, for different values of ν, α, c , the quadrature error |En,ν,α,c(f )|, obtained by considering a reference
solution, with the approximations |Ẽn,ν,α,c(f )|, |Ên,ν,α,c(f )| (cf. (23)–(28)) and estimate (38). We can see the very good
agreement between the error and the approximations given by the averaged and generalized averaged Gaussian rules.
Moreover, the examples reveal that the a priori estimate (38) is rather accurate.
9
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Fig. 5. The quadrature error and its approximations |Ẽn,ν,α,c (f )|, |Ên,ν,α,c (f )| and (39) for ν = 1, c = 1.5, α = 1 (left) and ν = 0, c = 1, α = 1.5
right).

xample 2. Consider now the case of

f (x) =
1

1 + x2
.

This function has only two poles ±i. As for the residue (cf. (32)), we obtain

Res (f (z), i) = −
i
2
.

herefore, by using (34) and (35), we have that

|En,ν,α,c(f )| ≈ 4πc1−αe−
√
2cπ n̄. (39)

n Fig. 5 we compare, for different values of ν, α, c , the quadrature error |En,ν,α,c(f )|, obtained by considering a reference
solution, with the approximations |Ẽn,ν,α,c(f )|, |Ên,ν,α,c(f )| (cf. (23)–(28)) and estimate (39).

Example 3. Consider the integral

Iν,0,c(f ) =

∫
∞

0
f (x)e−cxJν(x)dx, (40)

with

f (x) =
sin (ωx)

x
, ω > 0.

or ν = 0, 1, we have that the exact solution of (40) is given by (see [21, p. 763, 6.752, n. 1-2])

I0,0,c(f ) = arcsin

(
2ω√

c2 + (ω + 1)2 +

√
c2 + (ω − 1)2

)
,

I1,0,c(f ) = ω(1 − r),

here r is such that

ω2
=

1
1 − r2

−
c2

r2
.

n this case, since the function f has no poles, we can only consider the a posteriori approximations based on the
averaged and generalized averaged Gaussian rules. In this setting, in Fig. 6 we compare, for different values of c and
ω, the quadrature error |En,ν,0,c(f )| with the approximations |Ẽn,ν,0,c(f )|, |Ên,ν,0,c(f )| (cf. (23)–(28)). We observe that the
rror estimated by the averaged Gauss rule almost overlaps the quadrature error.
10
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Fig. 6. The quadrature error and its approximations |Ẽn,ν,α,c (f )|, |Ên,ν,α,c (f )| for ν = 0, c = 1.5, ω = 5 (left), and ν = 1, c = 1.8, ω = 3 (right).

Fig. 7. The weights w
(n)
i , ξ

(n)
i , i = 1, . . . , n (cf. (4)–(6)) for ν = 1, α = 0.7, c = 0.5 (left) and ν = 0, α = −0.5, c = 0.8 (right). In both cases n = 30.

. Conclusions

In this work the error estimates of the Gaussian quadrature formula introduced in [4] are considered. In particular, a
osteriori error approximations given by the averaged and generalized averaged Gaussian rules have been constructed
nd showed to be very accurate. Moreover, starting from numerical experiments regarding the ratio qJn/pn (see (33)), an
euristic but quite effective a priori error estimate has been introduced. We remark that, having at disposal an a-priori
stimate of the error and by noting that, similar to the Gauss–Laguerre rule, the weights w

(n)
i , i = 1, . . . , n, (cf. (4)) decay

xponentially (see Fig. 7), a truncated approach can also be introduced, to reduce the number of function evaluations
see [22]).
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