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Abstract: The continuous progress and advancement of innovation in technology and development
of digital tools makes modern structural engineers and technicians of the building and construction
sector increasingly able to solve a multitude of design issues. In most of cases, they can take advantage
of, and support from, low-cost and even portable sensors characterized by generally medium-high
accuracy and commercial availability. In this paper, the attention is focused on the analysis of recent
investigations which have been carried out within the scope of human-comfort-driven structural
analysis and design of building components. More precisely, the use of wearable and smartphone-
based sensors for the experimental derivation of mechanical parameters of utmost importance and
technical interest for the design of pedestrian systems is explored. On the one hand, as shown, the
elaborated setup makes it fast and easy to acquire body motion parameters for pedestrians moving
on different substructures. At the same time, relevant feedback could possibly be obtained from
customers on their corresponding comfort.

Keywords: wearable sensors; smartphone-based sensors; biometric parameters; structural design;
human reactions; human comfort; experiments

1. Introduction

Worldwide, it is generally recognized that human comfort in buildings and construc-
tions is a target for a multitude of reasons and in multidisciplinary aspects [1,2]. In the
same way, however, there is a clear view of uncertainties and complexities which are intrin-
sically involved in comfort analysis and optimization. In truth, the definition of human
comfort itself is rather wide [3–5], and thus necessitates specific design assumptions and
performance indicators, such as measures to optimize thermal, acoustic, lighting, and even
vibration serviceability aspects, among others.

Overall, a major advantage in the construction sector has been offered, especially in
recent years, by a multitude of sensors and devices which are commercially accessible, often
low-cost, and aimed at supporting specific activities and consequent decisions. Wearable
and smartphone-based sensors can be found in daily activities, and can be optimized
as health-monitoring tools but also to improve human well-being against potential risks.
Safety, in this sense, is a primary target for those operations in which humans can be
potentially subjected to danger and risk of injury (Figure 1a). Typical examples can take
the form of (i) smart watches (for health and activity monitoring, fall detection, and
safe communication); (ii) smart boots (able to detect pressure from shocks and falls, and
inclusive of location sensing); (iii) smart helmets (where sensors can be used to monitor
fatigue, prevent microsleeps, detect collisions); (iv) augmented reality glasses (for the
identification of hazardous materials and visualization of safety protocols); (v) smart body
wears (to track body core biometric parameters); etc. Similar devices can be also intended
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to be used as sophisticated sensors and instruments in support of engineering issues
and problem solving. In this manner, human and biometric parameters are tracked for
health monitoring and risk prevention scopes, but can be further exploited as key input
performance indicators for structural design, structural health monitoring, functionality
and safety maintenance, and structural optimization. As such, it was, for example, shown
in [6] that human behaviors on constructed facilities reflect both mechanical and structural
conditions and phenomena, but also nervous states and emotional reactions, which are
mutually affected by comfort and structural responses (Figure 1b).
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In this context, is it thus possible to use wearable and smartphone-based sensors for
coupled well-being optimization and structural design improvement, based on comfort-
driven considerations? The question is rather challenging and certainly necessitates wide
experimental validation. Moreover, the present research study tries to partly answer this
question by taking into account some experimental evidence and the assessment of the
typical structural issues of vibration serviceability. How is body motion affected and
modified by the built environment? Additionally, how can the structural features of a given
load-bearing system modify the behavior of customers?

2. Background and Goal
2.1. Sensors for Human-Comfort-Driven Structural Design

The current investigation starts from the basic consideration that there is a reciprocal and
mutual interference and interaction of human behaviors, and thus comfort levels, and the struc-
tural features of a given load-bearing system [7,8]. This interaction may result from multiple
reasons such as, for example, the aesthetic impact of a construction (and thus emotions [9–11]),
or the sensitivity to human motion (such as in terms of perceived vibrations [12,13]), and
the subjective reaction of humans to structural responses. This is particularly relevant when
“emotional architectures” are the context of human activities [9–11], and in those configura-
tions, glass material has a primary emotional effect on humans, for many reasons [12–15].
According to Figure 1, wearable sensors able to capture specific biometric parameters of
customers can thus play a key role in the quantitative measure of human reactions [14,15].

The open question is thus not only how to optimize the comfort of customers against
given external actions/conditions, but how we can take advantage of quantitative mea-
sure of nervous reactions, emotions, and body motion features to efficiently support the
design of those architectures and constructions, and thus integrate traditional and con-
solidated mathematical models (which are typical of structural/building design) with
human parameters.
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2.2. Present Elaboration

The overall experimental strategy is based on the assumption that human–structure in-
teraction (HSI) phenomena are intrinsically involved in the design of any kind of pedestrian
structure [16,17]. Furthermore, additional basic considerations summarized in Figure 2 are
taken into account, namely:

• flexible pedestrian systems involve magnified HSI phenomena on pedestrians [6], and
thus their body motion is reciprocally affected by the structural response but also by
possible emotional states (Figure 2a and [14,15]);

• wearable sensors can be efficiently integrated into classical instruments for structural
health monitoring purposes (Figure 2b and [6,18,19]);

• glass material in buildings and constructions is a critical component to design in terms
of structural vulnerability against mechanical loads [20], intrinsic transparency and its
emotional effects on customers [14,15], and its intrinsic flexibility and sensitivity to
vibrations [13,21,22].
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Figure 2. Comfort analysis for pedestrians, with (a) an example of a possible mechanical model and
(b) a scheme of pilot protocol for human-comfort-driven design (figures reproduced with permission
from [6] under the terms and conditions of the CC-BY license agreement).

Based on the above aspects, this experimental application aims thus at demonstrating
that there is a modification of human behaviors on glass floors, and different mechani-
cal reactions are transferred among them during motion, thus both human comfort and
structural design are both affected by each other.

3. Experiments on Glass Structures
3.1. Setup

Most of the experimental records during the tests were collected from the author
equipped with sensors while walking normally on structural glass pedestrian systems [6,18].
In this regard, it is worth noting that the herein presented experimental strategy also aims
to support the assessment of the possible use of low-cost, commercial, wearable sensors
in support of tests carried out on various building configurations [6]. Most importantly,
the overall analysis is based on the acquisition of body motion features, especially human-
induced reaction forces, for the mechanical analysis and quantification of the biodynamic
parameters of technical interest for structural design [18].

Among others, the vertical reaction force due to pedestrians is in fact certainly of
primary interest. At the same time, it is known that this is rather hard to calculate and can
involve the mutual interaction of pedestrians and substructures [23,24]. In the present study,
primary attention is hence placed on the experimental derivation, based on commercial
sensors, of the well-known Dynamic Load Factor (DLF) corresponding to human-induced
reaction forces, which represents a parameter of utmost interest for the structural analysis
of floor systems, as well as for comfort analysis and optimization of pedestrians. Most
importantly, for structural analysis, average trends of DLF for the examined walking
configurations are the primary input for deterministic approaches such as the Fourier series
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approach, where the DLF is needed to describe the mechanical load on a given structural
system. To this aim, three different slab systems as in Table 1 were taken into account (two
of them were characterized by transparency and high flexibility).

Table 1. Characteristics of examined floors for experimental measurements during normal walks.

SLAB Material Span Surface Thickness Mass Frequency

[m] [m2] [m] [kg] [Hz]

#1 Concrete 13 110.5 0.80 221,000 >80 1

#2 Glass + steel 2.65 4.37 0.04352 460 15.1 2

#3 Glass + steel 14.5 40.6 0.04352 4020 7.28 3

1 Vibration frequency estimated by linear modal analysis on an empty floor model; 2,3 experimental vibration
frequency values from [17,18].

3.2. Sensors and Records

The present analysis begins with the study concept reported in Figure 2b. In addition,
the use of triaxial, Wi-Fi accelerometer, and inclinometer Micro-Electro-Mechanical Systems
(MEMS) on the pedestrian’s feet is assessed, as it could further facilitate the analysis of
body motion during walks. A typical example can be seen in Figure 3, where the vertical
acceleration component measured at the author’s body center of mass (BCoM) is plotted as
a function of time during a walk on a rigid floor. Additionally, the corresponding rotation
of the left foot is presented in the Figure. It is worth noting that the rotation angle for
the foot is scaled to 1/10th to facilitate the readability of the graphical comparison. For
the analysis of DLF trends (amplitudes and sensitivity to floor configuration under the
motion of the same pedestrian), three different slabs, as in Table 1, were taken into account
during tests.
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Figure 3. Analysis of body vertical acceleration and foot rotation during normal walking, based on
wearable sensors.

4. Experimental Evidence

For the present study, based on experimental records such as those in Figure 3 and
others, a major advantage was gained from the use of Matlab® for curve fitting and
consequent extrapolation of DLF values. The same operations were repeated over the
number of available walking records for harmonics corresponding to vertical, longitudinal,
and lateral human-induced loads during motion. In Figure 4, it is thus possible to see
the trend of the first five harmonics for the author walking normally on three different
substructures, two of them transparent and flexible. The experimentally derived curves are
grouped in terms of reaction component. It is important to note that the present evidence is
proposed for a fixed walking frequency of fp = 1.5 Hz for all the examined substructures.
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grouped for (a) vertical, (b) longitudinal, and (c) lateral components of human-induced force.

The average DLF amplitudes reported in Figure 4 and experimentally derived for
the transparent/flexible/lightweight SLAB#2 and SLAB#3 systems are relatively small
compared to the rigid concrete system noted as SLAB#1. Furthermore, in Figure 4a it can
be noted that the second harmonic of vertical force for SLAB#3 is associated with a higher
average DLF compared to the corresponding experimental evidence for the first harmonic.
This finding is also in line with several studies in the literature (such as [25–27]), where it
has been confirmed that flexible floors with high sensitivity to human-induced effects are
characterized by a typically pronounced second harmonic and associated DLF.

The presently elaborated DLF values—based on wearable sensors—are compared
with a number of studies in the literature, as can be observed in Figure 5.
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the literature (Rainer and Pernica [25], Kerr and Bishop [26]) or analytical models (Young [27]).

5. Summary and Future Developments

With a focus on the first harmonic of vertical reaction force, it is worth noting that
the DLF values elaborated in the present study are in close correlation with the literature,
especially for the reinforced concrete SLAB#1. At the same time, it can be seen in Figure 5
that DLF experimental evidence for transparent/flexible substructures (SLAB#2 and #3) is
clearly lower than the concrete system, with an average DLF quantified in ≈0.11–0.12 for
both, and associated with ≈ −37% DLF scatter towards the rigid/opaque system (#1).

Such a kind of output suggests, on the one hand, that the use of body sensors for inte-
grating structural design performance indicators is particularly efficient (as demonstrated,
for example, by a comparison of the literature and the present results on SLAB#1). At the
same time, all basic assumptions motivating the present experimental investigation are
confirmed in Figure 5, where it can be seen that transparent/flexible systems #2 and #3
involve a marked modification in human behaviors and body motion. Future studies will
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be thus extended to confirm the present evidence and support the development of a robust
methodology in terms of human-comfort-driven structural design optimization.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.
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