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Abstract
Cocoa hybridisation generates new varieties which are resistant to several plant diseases,
but has individual chemical characteristics that affect chocolate production. Image analy-
sis is a useful method for visual discrimination of cocoa beans, while deep learning (DL)
has emerged as the de facto technique for image processing . However, these algorithms
require a large amount of data and careful tuning of hyperparameters. Since it is necessary
to acquire a large number of images to encompass the wide range of agricultural products,
in this paper, we compare a Deep Computer Vision System (DCVS) and a traditional Com-
puter Vision System (CVS) to classify cocoa beans into different varieties. For DCVS, we
used a Resnet18 and Resnet50 as backbone, while for CVS, we experimented traditional
machine learning algorithms, Support Vector Machine (SVM), and Random Forest (RF).
All the algorithms were selected since they provide good classification performance and
their potential application for food classification A dataset with 1,239 samples was used
to evaluate both systems. The best accuracy was 96.82% for DCVS (ResNet 18), com-
pared to 85.71% obtained by the CVS using SVM. The essential handcrafted features were
reported and discussed regarding their influence on cocoa bean classification. Class Activa-
tion Maps was applied to DCVS’s predictions, providing a meaningful visualisation of the
most important regions of the images in the model.

Keywords Machine learning · Deep learning · Computer vision · Food quality

1 Introduction

Fermented and dried cocoa (Theobroma cacao) beans are among the most important
agricultural products in the world. “Witches’ broom disease”, caused by the fungus Monil-
iophthora perniciosa, caused severe economic losses to cocoa production. Hybridisation
(genetic breeding) generates varieties that are resistant to this fungus [39], with different
chemical compositions. Motamayor et al. [42] proposed a new grouping for the cocoa vari-
eties of South and Central America, including Marañon, Curaray, Criollo, Iquitos, Nanay,
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Contamana, Amelonado, Purús, Nacional and Guiana. However, locally, these varieties can
be much more diverse. Each of these varieties of cocoa beans has a unique chemical profile,
which, after fermentation and drying, yields cocoa beans with specific flavour, determining
its quality for the chocolate industry.

Different varieties of cocoa beans are grown and harvested together, making it difficult
to identify and separate beans from different varieties, thus affecting the quality of the final
product (chocolate). In the last decades, several methods have been proposed to identify
cocoa varieties. Morphological properties are prominent quality descriptors, which can help
this identification [12, 16].

Traditionally, cocoa beans are visually inspected by specialists, being a subjective
method for quality identification. The visual perception does not encourage reliable results
and standardisation of the raw material [28]. The industry requires precise and fast methods
to distinguish cocoa varieties for quality control. Several works aimed to develop quick and
accurate techniques to assess cocoa beans’ chemical composition and quality features from
different varieties.

Computational tools have emerged to aid the agricultural and food industries as a cost-
effective alternative to expedite product characterisation and classification. Computer vision
systems (CVS) have been a useful technique to improve food quality assessment and control
[13]. CVS is considered a suitable approach through digital imaging processing based on
the combination of hardware and software for applications on automatic classification [11].
It is a non-destructive, rapid and low-cost method, with high accuracy and precision [49].

Computer vision solutions achieved significant results in the detection of image patterns.
The predictive potential of computer vision and machine learning (ML) carry promising
solutions to different agricultural products [6, 46, 47].

Pattern recognition is a challenge considering the structural description of image sam-
ples. Commonly, image analysis by ML involves robust techniques due to the complexity of
the characteristics in distinguishing the different levels [40]. Deep learning (DL) extends the
predictive potential of ML, extracting meaningful features directly from the data in a multi-
level abstraction scheme [10, 23]. DL is considered a revolution to the computer vision
community, and has become a dominant approach for image recognition. As explored in
[24], DL has been widely applied in computer vision tasks. Although DL demands a large
amount of data, it is possible to fine-tune a pre-trained model using little data from the
desired problem using transfer learning [29, 31, 60, 70].

The approach introduced in this study is based on DL embedded in a CVS, composing
a deep computer vision system (DCVS), to improve the predictive performance compared
to traditional classification methods when distinguishing fermented cocoa beans. The pro-
posed approach was designed to provide insights by using visual assessment of problem
solutions based on Gradient-weighted Class Activation Mapping (Grad-CAM). A total of
1,239 cocoa bean samples from five different varieties were investigated. CVS was imple-
mented using 92 image features to compare two different machine learning classifiers
(Random Forest and Support Vector Machine). DCVS was built using a Convolutional Neu-
ral Network (CNN), exploring two different transfer learning strategies (fine-tuning the
whole network or training a linear classifier on top of it) on two Residual Networks, ResNet
18 and ResNet 50.

The main contribution of our paper can be split into two different branches: food quality
evaluation and computer vision. Determination of quality control is widely used in agricul-
ture through image processing techniques. By introducing automated, comprehensive, and
highly accurate solutions, we pave the way for a new wide range of applications. In our
work, we proposed a DL classification solution able to fulfil the gap of comprehensiveness
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(i.e., DL provides a black-box model) of morphological features that lead to an automated
decision. Regarding computer vision, DL solutions have been taking over the machine learn-
ing scenario, challenging the traditional CVS. However, we evaluated CVS and DVCS from
the same problem perspective. Thus, using the classification of fermented cocoa beans as a
case, we create a fair comparison using recent techniques of both approaches. We delivered
a parallel comparison considering the advantages and disadvantages, which both achieved
a high predictive rate and brought important insights on the requirements and achievements
when selecting one of them.

The remainder of this work is organised as follows: Section 2 describes the DCVS used
in this work. In Section 3, we present the material and methods; results and discussions are
in Section 4, and Section 5 presents the main conclusions.

2 Deep computer vision system

Computer vision techniques are applied in the automation process considering the effective-
ness obtained as high-quality control [3, 18]. For example, the agricultural sector increased
the interest in improved food manufacturing methods [37, 46, 48, 63].

CVS is based on image processing from acquisition to data analysis. CVS is a reli-
able method that uses a computing solution to simulate the human visual and instrumental
inspection [59]. As part of image processing, features are extracted to train ML models for
classification based on handcrafted descriptors [62], Fig. 1.

Alternatively, DL provides powerful features that incorporate raw data into high-
dimensional representations [14]. Only recently applied in agriculture, this technique has
advanced in other domains, reinforcing its vast potential [29]. In particular, there are some
hybrid systems, i.e., combining CVS and DCVS, which improve the sample descriptive
capacity by applying image processing methods, boosting the decision performance of
DL models. These methods can emphasise the visual information using a more descrip-
tive colour space, frequency domain, or applying image enhancement methods before DL
application [17, 36].

2.1 Convolutional neural networks

Convolutional Neural Networks (CNNs) are particular kinds of neural networks (NN)
designed for data where spatial information is essential, e.g., images, where pixels spatially
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close are highly correlated [20, 35]. Whereas older CNNs are usually composed of convo-
lution layers, pooling layers and fully connected layers [25, 33, 61], newer architectures are
usually convolution only, with a linear classifier at the end [25].

The convolutional layer corresponds to a set of learnable filters with height and width.
These filters are slid through this layer’s input and, at each position, an element-wise multi-
plication is performed between the filter and the values in that spatial location of the input,
and the results are summed. This multiplication usually occurs in the full depth of the input.
For example, given an input of depth 3, a filter with spatial size 2 by 2 will have a depth of
3. Therefore, at each position that the filter is placed, the 12 values (2*2*3) are multiplied
with their respective input values and added together to correspond to a single output. These
learnable filters can also be seen as neurons in the biological analogy of neural networks.
Note that the depth of the output will be given by the number of filters, whereas the spatial
dimension is given by Wout = (Win − w + 2p)/s + 1 and Hout = (Hin − h + 2p)/s + 1,
where Wout and Hout is the spatial size of the input, w and h the spatial size of the filter,
p is the size of a zero-padding added around the input to keep the spatial size of the out-
put and s is the stride that determines how much a filter moves when being slid through the
input. A convolutional layer can also be viewed as a locally connected layer [35]. Each filter
in a convolutional layer is trained to detect some characteristics in the image, e.g., corners,
shape, or the presence of colour [20, 35] The deepest tthe convolutionallayer is located in
the network, the more abstract are the characteristics that each filter is searching. For exam-
ple, in the first few layers, filters may be searching for edges, while in deeper layers, filters
may be looking for whole objects.

Pooling is a weightless layer which, operating independently at each layer (depth dimen-
sion) of the input, slides a filter of height and width in the input data and performs a mean
or max operation on the values inside that filter [20, 53]. It is generally used to reduce the
spatial size of its input, reducing the number of parameters in the network and controlling
the output’s sensitivity to shifts and distortions [35]. However, note that the input’s depth
is preserved since the mean or max operations are performed considering each layer sepa-
rately. Recent architectures, such as Residual Networks [25] do not employ pooling layers
in the hidden parts of the network, relying on increasing the stride of a convolutional layer
to reduce the spatial size of the output. Only average pooling is applied at the end of the
network to produce feature representations without spatial information.

The fully connected layer is used only as the last layer of modern CNNs, acting as a
linear classifier using the image features extracted from previous convolutional layers [25,
35, 53].

CNNs are trained using back-propagation (backprop) to compute the gradients of a loss
function, L, given its parameters [20, 35, 53] and using an update algorithm, such as stochas-
tic gradient descent or adaptive moment estimation (Adam) [32], that uses those gradients
to update the parameters of the network. Start by propagating the inputs to each layer (l)
in the forward direction by calculating the outputs z(l) = a(W(l)x(l) + b(l)), where W is a
weight matrix, x(l) is the input to this layer, b a bias term and a is a non-linearity.

The error gradients for the last layer n are computed as in (1), given a desired output y.

δn = ∂L(z(n), y)

∂z(n)
(1)

Backprop is a technique where the error gradients of each weight in the network are
computed iteratively from the end of the network to its beginning using partial derivatives.
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To backpropagate the error to lower layers l = nl−1, nl−2, . . . , it is used the (2), where W(l)

is the weight matrix for the layer l.

δl = δl+1 · ∂z(l)

∂x(l)
(2)

Likewise, to compute the gradients that are used to update the parameters W and b, we
follow (3) and (4).

ΔW(l) = δ(l+1) · ∂z(l)

∂W(l)
(3)

Δb(l) = δ(l+1) · ∂z(l)

∂
b(l) (4)

Finally, we compute the new parameter values of the network using ΔW and Δb and an
update algorithm such as Adam [32].

2.2 Residual network

Deep CNNs are hard to train due to several problems, e.g., computational resources and
vanishing gradients [19, 25, 61].

Vanishing gradients occur when the gradients get subsequently smaller when being back-
propagated. , caused by the multiplication of loss by the weights, which generally have an
absolute value of less than 1. Additionally, in theory, deeper networks should perform bet-
ter or at least the same as shallower networks by being able to set unnecessary layers to
the identity, i.e., a layer that outputs its input. However, in practice, this is not always triv-
ial. The Residual Network (ResNet) [25], a type of CNN, was proposed to tackle both of
these problems. To address them, it performs identity mapping to skip connections. Iden-
tity mapping consists of adding the output of multiple layers with weights (convolutional
layers) to the input of the first weight layer in the block. In Fig. 2 a basic ResNet building
block is depicted, where the output of the function F(x) is added with x. Note that F(x)

can be any function such as z(l) = a(W(l)x(l) + b(l)). This acts as a path for the gradient to
flow and allows the network to ignore the entire layer when necessary, instead of learning
to perform an identity map. Furthermore, it also makes the network reuse useful abstract
representations.

More details about the exact structure of the different versions of ResNet can be found
in [25].

Fig. 2 ResNet building block.
(Adapted from [25])

weight layer

weight layer

+
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The ideas behind the ResNet have been vastly used [51] and extended [26, 27, 65, 68, 69]
in multiple works and in many different domains, since most models benefit from having
skip connections.

We applied a transfer learning strategy to address the limited availability of labelled
images for training a network from scratch. This strategy is based on adapting a pretrained
ResNet to the ImageNet dataset and expanding the cocoa bean training dataset through
augmentation procedures, as described in Section 3.1.

Transfer learning consists of adapting a model trained on a dataset with millions of
labelled images to a target domain (the domain of interest in this work, cocoa bean classifi-
cation) [55]. The idea is that the pretrained network learns many useful and generic feature
extractors that can later be used for different tasks.

2.3 Visualising what CNNs are looking for

Many techniques have been proposed to visualise what deep CNNs are looking for when
performing classification. Class Activation Mapping (CAM) [71] creates a heatmap on top
of the input images relating them to their given predicted classes. Thus, it is possible to iden-
tify which regions of the image are more important to classify a sample into a given class.
CAM obtains active regions by performing a global average pooling (GAP) and visualising
the weighted combination based on feature maps of pre-softmax (penultimate layer).

Selvaraju et al. [56] propose a visualising technique based on the class-specific gradient infor-
mation and the final convolutional layer of a CNN to discriminate regions in the image generat-
ing a local activation map. Gradient-weighted Class Activation Mapping (Grad-CAM) is
considered a generalisation of CAM, which visualises a linear combination of the final
convolutional layer of a CNN and class-specific weights to produce visual explanations.

3 Material andmethods

In the experiments, we compared the performances of a CVS and DCVS based on CNN,
as shown in Fig. 3. CVS was explored using five handcrafted image features, a total of
92 features, comparing Random Forest (RF) and Support Vector Machine (SVM). The RF
Importance gives further information about each feature for the classification.

On the other hand, DCVS performances were compared among four classifiers based
on ResNet 18 and ResNet 50 with two different transfer learning strategies over the full
network or only the last layer. We selected those ResNet models since they strike a good
balance between performance and the number of parameters. Moreover, these architectures
have been successfully applied for classifying food quality. Here, we applied two transfer
learning strategies: freezing the network and just training a linear classifier on top of it,
or fine-tuning the whole network. In the first strategy, we froze the weights of the NN
and replaced the classification layer (last layer) with a randomly initialised layer which is
responsible for predicting the cocoa bean classification and later trained this layer using
labelled data from cocoa bean images. In the second strategy, the classification layer is also
replaced, but the whole network is fine-tuned (i.e., the weights are modified) to better adapt
the network to our problem.

Additionally, the DCVS classifier produces a Grad-CAM visualisation to provide
insights on the importance of specific image regions for the classification task. The tech-
niques were applied to classify cocoa beans in five different varieties, as detailed in
Section 3.1. Using Grad-CAM visualisation, an additional layer shows a heatmap on top
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Fig. 3 Overview of experimental evaluation

of the original input images. The heatmap colours emphasise (from blue to red) the most
critical regions to classify a given sample to the predicted class

3.1 Image collection and augmentation

A total of 1,239 cocoa beans were used in the current study. The samples were from five
different cocoa varieties: PH16 (14 fruits); BN34 (16 fruits); SR162 (16 fruits); CEPC-2002
(16 fruits); Pará-Parazinho (PP) (18 fruits). Cocoa beans were removed from the fruits after
harvest. The beans were fermented for five days and sun-dried for seven days until the mois-
ture content reached between 6-10%. Unpeeled cocoa bean samples were packed and stored
in an appropriate place at -18o

¯ C, protected from illumination, until the day of analyses.
Each image was acquired using a CCD camera (f/1.2/ 1X optical zoom) with image

resolution of 12.6 megapixels (4096 x 3072, 10,485 pixels/cm) using an image acquisition
system (L-PIX EX, Loccus, Brazil). After, each image was segmented to identify the region
of interest (ROI), isolating the cocoa beans from the background and other components that
can interfere in the image analysis. Beans were isolated from the background as the region
of interest (ROI) by thresholding performed over the H channel of HSV (Hue, Saturation
and Value) colour space and removal of small regions from the image mask.
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Deep learning requires a significant amount and variety of training data to induce its
structure and to achieve good classification performance. It is difficult and expensive to
obtain a large amount of data, which requires intensive labour from specialists and domain
expertise. Accordingly, most datasets are usually insufficient to train a CNN without overfit-
ting [67]. To deal with this challenge, the strategy called data augmentation can increase the
dataset by introducing slight distortions to the images [57]. In our work, we only employed
image rotation as an augmentation strategy, since the cocoa beans’ shape and colour are
important for its classification. A total of 3,468 images composed our final training dataset
with rotations from the cardinal 0◦, 90◦, 180◦, and 270◦.

3.2 Computer Vision System

A CVS is built based on specific requirements, conditions, goals, and resources to provide
a suitable tool for a particular domain. Here, we spot the cocoa bean discrimination by fol-
lowing the industrial constraints. Thus, the following sections provide the steps an instance
capable of tackling our particular domain. Considering the CVS applied in the experiments,
the traditional CVS can be split into two steps: Feature Extraction and Classification.

3.2.1 Feature Extraction

The description step was built by extracting relevant features from each image, which pro-
duces a vector of numerical values through an extract function [2, 8, 22]. In detail, for a given
image, 92 image features were extracted from ROI selection. These 92 image features are
based on four groups: colour [15], intensity [34], border [9, 58] and texture [21] (Table 1).

Concerning colour descriptors, to deal with the brightness information presented in
colour channels from RGB (Red, Green and Blue), we considered HSV colour space to
isolate the brightness by transforming the input images from RGB to HSV. Thus, 33 differ-
ent features were extracted from RGB and HSV colour spaces, from where the statistical
moments were obtained, such as mean and standard deviation. We also extracted correla-
tions among channels to improve the properties’ descriptive capacity of each image. Those
two statistical moments were used to describe the intensity information considering the
Monochromatic channel, which corresponds to the average of RGB values. Additionally,
the entropy value was calculated as in [30]. Standard deviation, kurtosis, and skewness were
calculated from each channel’s histogram (grey level), comprising 21 features.

Sobel [58] and Canny [9] operators are widely used for extracting border information.
Thus, 4 features were considered based on the number of white pixels and Hu moments to
address the image’s properties.

Texture descriptors are also considered essential features that help identify patterns in
an image [21]. We applied different approaches to texture analysis to have general appli-
cability: Local Binary Patterns (LBP), which describes local image texture features based
on binary vector encoded by comparing grey-scale pixels and neighbours; Gray Level Co-
occurrence Matrix (GLCM) [21], that provides mapping patterns of the image; and Fast
Fourier Transform (FFT) [44], which uncovers frequency domain characteristics.

3.2.2 Classification

The classification step is related to make an automatic decision when inputted with the
extracted features using a classification model. The classification model is built using a
labelled dataset of samples and the respective feature vector. There are several different
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Table 1 List of all image features explored for cocoa beans classification

No. Type Name Description

1 Colour cor RG Correlation between Red and Green channel

2 Colour cor RB Correlation between Red and Blue channel

3 Colour cor RH Correlation between Red and Hue channel

4 Colour cor RS Correlation between Red and Saturation channel

5 Colour cor RV Correlation between Red and Value channel

6 Colour cor RI Correlation between Red and Intensity channel

7 Colour cor GB Correlation between Green and Blue channel

8 Colour cor GH Correlation between Green and Hue channel

9 Colour cor GS Correlation between Green and Saturation channel

10 Colour cor GV Correlation between Green and Value channel

11 Colour cor GI Correlation between Green and Intensity channel

12 Colour cor BH Correlation between Blue and Hue channel

13 Colour cor BS Correlation between Blue and Saturation channel

14 Colour cor BV Correlation between Blue and Value channel

15 Colour cor BI Correlation between Blue and Intensity channel

16 Colour cor HS Correlation between Hue and Saturation channel

17 Colour cor HV Correlation between Hue and Value channel

18 Colour cor HI Correlation between Hue and Intensity channel

19 Colour cor SV Correlation between Saturation and Value channel

20 Colour cor SI Correlation between Saturation and Intensity channel

21 Colour cor VI Correlation between Value and Intensity channel

22 Colour mean H Mean of Hue channel

23 Colour std H Standard Deviation of Hue channel

24 Colour mean S Mean of Saturation channel

25 Colour std S Standard Deviation of Saturation channel

26 Colour mean V Mean of Value channel

27 Colour std V Standard Deviation of Value channel

28 Colour mean R Mean of Red channel

29 Colour std R Standard Deviation of Red channel

30 Colour mean G Mean of Green channel

31 Colour std G Standard Deviation of Green channel

32 Colour mean B Mean of Blue channel

33 Colour std B Standard Deviation of Blue channel

34 Intensity mean I Mean of Intensity channel

35 Intensity std I Standard Deviation of Intensity channel

36 Intensity entropy I Entropy of Intensity channel

37 Histogram std hist H Standard Deviation of Histogram of Hue channel

38 Histogram kurt hist H Kurtosis of Histogram of Hue channel

39 Histogram skew hist H Skewness of Histogram of Hue channel

40 Histogram std hist S Standard Deviation of Histogram of Saturation channel

41 Histogram kurt hist S Kurtosis of Histogram of Saturation channel
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Table 1 (continued)

No. Type Name Description

42 Histogram skew hist S Skewness of Histogram of Saturation channel

43 Histogram std hist V Standard Deviation of Histogram of Value channel

44 Histogram kurt hist V Kurtosis of Histogram of Value channel

45 Histogram skew hist V Skewness of Histogram of Value channel

46 Histogram std hist R Standard Deviation of Histogram of Red channel

47 Histogram kurt hist R Kurtosis of Histogram of Red channel

48 Histogram skew hist R Skewness of Histogram of Red channel

49 Histogram std hist G Standard Deviation of Histogram of Green channel

50 Histogram kurt hist G Kurtosis of Histogram of Green channel

51 Histogram skew hist G Skewness of Histogram of Green channel

52 Histogram std hist B Standard Deviation of Histogram of Blue channel

53 Histogram kurt hist B Kurtosis of Histogram of Blue channel

54 Histogram skew hist B Skewness of Histogram of Blue channel

55 Histogram std hist I Standard Deviation of Histogram of Intensity channel

56 Histogram kurt hist I Kurtosis of Histogram of Intensity channel

57 Histogram skew hist I Skewness of Histogram of Intensity channel

58 Border nump sobel Number of white pixels in Sobel image

59-65 Border hu sobel1 - hu sobel7 Hu Moments of Sobel image

66 Border nump canny Number of white pixels in Canny image

67-73 Border hu canny1 - hu canny7 Hu Moments of Canny image

74-83 Texture lbp 0 - lbp 9 LBP Vector

84 Texture com entropy Entropy of Co-occurence Matrix

85 Texture com inertia Inertia of Co-occurence Matrix

86 Texture com energy Energy of Co-occurence Matrix

87 Texture com correlation Correlation of Co-occurence Matrix

88 Texture com homogeneity Homogeneity of Co-occurence Matrix

89 Texture FFT energy Energy of FFT

90 Texture FFT entropy Entropy of FFT

91 Texture FFT inertia Inertia of FFT

92 Texture FFT homogeneity Homogeneity of FFT

machine learning algorithms able to build high accurate classification models. Focusing on
the food industry, it is possible to observe a diversity of algorithms, from the simplest ones
(e.g., the k-nearest neighbour in [11]) to more sophisticated deep learning classifiers as in
[17]

Considering the particularities of the problem and algorithm robustness, we have chosen
Support Vector Machine (SVM) and Random Forest (RF), as applied in [4, 38, 48]. In our
experiments, we applied algorithms with the R environment to induce models for classifica-
tion. Briefly, the algorithm description and the corresponding packages used to implement
each ML algorithm are described in Table 2.
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Table 2 Machine learning algorithms used in the experiments and the corresponding R packages (continued)

Algorithm Description R package Hyperparameters

Random Forest
(RF)

Combination of decision
tree models that provides
more accurate prediction
[7, 54]

. RandomForest ntree=100; mtry=7

Support Vector
Machine (SVM)

A statistical learning algo-
rithm [64], has achieved
significant results in food
quality solutions [66].

e1071 kernel=polynomial;
γ = 0.02; degree=3

Additionally, it is possible to interpret the achieved results and image features using the
Random Forest importance from the RF model [41]. RF importance estimates the signif-
icance of the extracted features through their prediction error inside the induced Random
Forest.

3.3 Performance comparison

The same test set supported the performance comparison of the different approaches inves-
tigated. Test set (127 samples) was obtained using Kennard-Stone algorithm as in [5]. For
DCVS, the training set was randomly divided into the validation set (247 samples) and the
training set (3,468 samples). In detail, the validation set was built by samples from the train-
ing set without the augmentation process. The next step was augmenting training samples
as described in Section 3.1. Thus the training set was used to induce the final model and the
validation set to find the best configuration. CVS used the same training set augmented.

We compared CVS and DCVS based on predictive performance using a Confusion
Matrix. Confusion Matrix (CM) consists of a matrix able to support several performance
metrics computations. One of them was the Total Accuracy method (Accuracy Matrix) [1]
which is defined by Equation (5). Total Accuracy metric is based on summarising the results
of a classification model and comparing those approaches. The Total Accuracy is obtained
from the sum of the elements in the main diagonal, True Positive (TP) and True Negative
(TN), divided by the sum of the whole samples (n) of the matrix. Therefore, Total Accuracy
allows estimating the performance of the method used to predict the image samples. Addi-
tionally, Precision (6), Recall (7) and F-Measure (8) were used to provide a more realistic
comparison since the dataset is unbalanced. Those metrics are based on False Positives (FP)
and False Negatives (FN).

T otal Accuracy = T P + T N

n
(5)

Precision = T P

T P + FP
(6)

Recall = T P

T P + FN
(7)

F − measure = 2.
Precision.Recall

P recision + Reacall
(8)
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Table 3 Performance metrics comparison between CVS and DCVS (continued)

DCVS CVS

Method ResNet18 ResNet18 ResNet50 ResNet50 RF SVM

(Last Layer) (Full) (Last Layer)

Accuracy 0.8492 0.9682 0.7540 0.9444 0.8254 0.8571

Precision 0.8508 0.9685 0.7470 0.9449 0.8370 0.8537

Recall 0.8404 0.9709 0.7353 0.9446 0.8112 0.8498

4 Results and discussion

The results show that different DCVS approaches achieved distinct performance values
depending on the transfer learning strategy. In some cases, the outcomes were inferior
to CVS. Table 3 summarises the obtained results, where the best performances were
highlighted (bold).

Variability in cocoa genotypes, both wild and domesticated, can turn the cocoa trace-
ability into a challenge for researchers and producers. In this work, the classifiers’ best
results ranged between 75.40% and 96.82% of accuracy, a precision value between 74.70%
and 96.85% and recall 73.53% and 97.09%. The best performance has been obtained with

Table 4 Performance metrics between CVS and DCVS observing different cocoa bean varieties (continued)

Method G1 G2 G3 G4 G5

Precision 0.8125 0.9130 0.8214 0.7812 0.9259

ResNet18 (Last Layer) Recall 0.6500 0.7778 0.9200 0.9615 0.8929

F-Measure 0.7222 0.8400 0.8679 0.8621 0.9091

DCVS Precision 0.9524 1.0000 0.9615 0.9286 1.0000

ResNet18 (Full) Recall 1.0000 0.9259 1.0000 1.0000 0.9286

F-Measure 0.9756 0.9615 0.9804 0.9630 0.9630

Precision 0.6667 0.6970 0.6296 0.8571 0.8846

ResNet50 (Last Layer) Recall 0.4000 0.8518 0.6800 0.9231 0.8214

F-Measure 0.5000 0.7667 0.6538 0.8889 0.8518

Precision 0.9500 0.8889 0.9583 0.9630 0.9643

ResNet50 (Full) Recall 0.9500 0.8889 0.9200 1.0000 0.9643

F-Measure 0.9500 0.8889 0.9388 0.9811 0.9643

Precision 0.5500 0.7778 0.9200 1.0000 0.8214

CVS RF Recall 0.9167 0.7778 0.7931 0.8125 0.8846

F-Measure 0.6452 0.7924 0.8364 0.8814 0.8519

Precision 0.7778 0.9167 0.8148 0.8333 0.9259

SVM Recall 0.7000 0.8148 0.8800 0.9615 0.8928

F-Measure 0.7368 0.8627 0.8461 0.8929 0.9091
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ResNet18 (Full). The worst result was in the ResNet50 (Last Layer), which reached 22.12%
the smallest value of accuracy and, consequently, low precision and recall values. Concern-
ing CVS, RF and SVM performances were 82.54% and 85.71% of accuracy, respectively.
These values were slightly similar to Resnet18 (Last Layer), which was 84.92%. It is rele-
vant to mention that SVM reached competitive results with ResNet18 retrained in the last
layer. Both fully retrained CNNs obtained superior results. Previously, [43] reported an error
between 15 − 44% in the classification of cocoa germplasm from South America and Cen-
tral America using morphological and agronomic characteristics. On the other hand, [52]
used microsatellite markers to identify cocoa germplasm with a 30% error. Therefore, in
addition to presenting a lower error rate, our results are very encouraging to show some
advantages: (1) the image analysis does not destroy the sample and allows a bean to bean
analysis, (2) the results are subjected to human error when trying to recognise patterns in
cocoa varieties, and (3) the texture and colour characteristics of each hybrid are the result
of the fermentation and drying process, which in turn is associated with the unique com-
position of cocoa beans, so, those characteristics must be kept constant and can be used to
identify cocoa beans.

Table 4 shows the Precision, Recall, and F-Measure obtained with the best F-Measures
highlighted in bold. When observing each different variety, it is possible to detect some
peculiarities. G1, G2, and G3 were better classified by ResNet18 (full), while G4 and G5
obtained superior F-Measure results with ResNet50 (full).

Unsatisfactory results were achieved using the RF model for all varieties. However, it
is possible to discuss insights from RF models using the RF feature importance for an
in-depth analysis of how each cocoa variety can be classified. In Fig. 4, we grouped the
feature types (Border, Colour, Histogram, Intensity, and Texture) and sorted their impor-
tance. At first, it is possible to see a superior “importance” of colour features and structural
information. During the classification processes, the standard deviation of V, S (hue and
saturation of HSV colour space) and standard deviation of intensity (std I ) were the most
relevant features. This could be related to changes in the perception of cocoa bean colour
among different varieties. On the other hand, the information obtained by CVS is from the
cocoa bean shell, which contains high amounts of protein (116-181 g protein/g dried shell)
and carbohydrates (≈178 g carbohydrates/kg dried shell) [45]. Thus, browning produced
by the Maillard reaction during the drying of cocoa beans can have various colour tones
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Fig. 4 RF importance of image features (Border, Colour, Histogram, Intensity and Texture) explored in CVS
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in the cocoa bean shell. Therefore, the particularities in hue, saturation and intensity are
reliable parameters to identify cocoa beans. The dynamics of the drying process are con-
stant and always associated with each variety of cocoa. The bean structure was another
important point, described here by nump canny (border feature) and com correlation,
FFT entropy and com homogenety. The texture of the cocoa bean shell may be related
to (1) high fibre content (504 - 606 g fibre / kg dried shell) [45], or (2) the dynamics of
the drying process of cocoa beans. In the first case, the amount and distribution of fibre in
the cocoa bean shell can generate particularities for each hybrid, although this could change
with the tree’s age or agronomic factors. In the second case, [50] reported that cocoa hybrids
have various drying tolerances, which are associated with the presence of oligosaccharides
in the cocoa bean shell. Therefore, it is possible that this drying tolerance allowed to develop
some peculiarities in the texture of the cocoa bean shell of each variety during the evapora-
tion of water. Thus, it was possible to observe that CVS could take advantage of cocoa bean
characteristics close to human visual perception.

Addressing human perception, Grad-CAM method provides the identification of relevant
regions to classify the original image. These regions, highlighted in a heatmap, lead to a
comprehensive abstraction of how to assess a sample of a particular class. Figure 5 exposes
three random samples correctly classified with ResNet18 full retraining and their Grad-
CAM view. Varieties G1, G2, and G5 share some important patterns highlighted by their

Fig. 5 Three random samples per cocoa bean variety correctly classified with ResNet18 full retraining.
Grad-CAM view showing regions of beans that had higher contribution for classification (from blue to red
regarding low to high contribution)
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Grad-CAM view: borders and extremities are important features when classifying samples.
Mainly, G1 Grad-CAMs present multiple points of importance, focusing on serrated border
aspects. On the other hand, G2 takes advantage of information from an extended border
area. G5 is a mix of G1 and G2. Differently, G3 highlighted practically all sample regions.
This fact is strongly correlated with the dark aspect of this variety. Finally, G4 presents
importance in both extremities with important regions within the samples.

5 Conclusion

Concerning pattern recognition, it is considered a challenge due to many image characteris-
tics that have to be analysed to provide accurate performance. Moreover, this is in turn made
difficult by complex properties over different sample levels. In this paper, we compared the
traditional Computer Vision System and a Deep Computer Vision System for cocoa bean
classification. The Grad-CAM and the importance of extracted features were investigated
to provide insights by visualising essential image regions..

CVS used 92 handcrafted features for machine learning classification. SVM overcame
the RF model, reaching a competitive performance on a particular DCVS based on last
layer retraining. DCVS with full retraining obtained superior results in both deep NNs, with
ResNet18 and ResNet50 reaching (96.82%) and (94.44%) of accuracy, respectively. Observ-
ing the importance of handcrafted features, some important insights from colour, border, and
texture indicate differences among the varieties. These observed patterns were corroborated
using the Grad-CAM method, through which it was possible to identify specific regions
capable of discriminating each class in a human-friendly exhibition.

When comparing CVS and DCVS, both leverage to highly accurate predictive results.
DCVS was superior, as the current literature has been showing. However, it is worth
mentioning that CVS provided relevant results in the industrial scenario. In terms of com-
prehensiveness, DCVS map supports the investigation of morphological aspects that lead
to predicting a particular class. On the other hand, CVS can similarly present the feature
importance when classifying samples, in general.

In this way, this paper provides relevant information for future studies based on compre-
hensive machine learning (applied to food industry), which contributes to building solutions
by visualising techniques. Hence, this approach could be used as a rapid and objective
method for the identification of cocoa beans from different varieties in the food industry.
Furthermore, using visualization methods, the food industry can improve product tracking
in the supply chain.
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