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Hippocampal shape analysis in Alzheimer’s
disease using Functional Data Analysis

Irene Epifanio®*, Noelia Ventura-Campo$

The hippocampus is one of the first affected regions in Alzheier’s disease. Left hippocampi of controls, mild
cognitive impairment and Alzheimer’s disease patients areepresented by spherical harmonics. Functional data
analysis is used in the hippocampal shape analysis. Functial principal component analysis and funcional
independent component analysis are defined for multivariag functions with two arguments. A functional linear

discriminant function is also defined. Comparisons with otler approaches are carried out. Our functional approach
gives promising results, especially in shape classificatioCopyright (© 0000 John Wiley & Sons, Ltd.

Keywords: Functional data analysis; Shape analysis; Alzheimerisadis; Principal component analysis;
Independent component analysis; Discriminant analysis

1. Introduction

The early diagnosis of Alzheimer’s disease (AD) is a cruigsilie in our society, because the administration of meelcin
to individuals who are subtly impaired may render the tremtts more effective. Mild cognitive impairment (MCI) is
considered as a diagnostic entity within the continuum @hnitive decline towards AD in old agd,[2]. Longitudinal
studies show a direct relation between the hippocampalnvelulecrease and cognitive decling §]. However,
volumetric measurements are simplistic features andtstraicchanges at specific locations cannot be reflected im.the
If morphological changes could be established, then thasiishenable researchers to gain an increased understaofding
the condition. This is the reason why nowadays shape asayysf a great importance in neuroimagiiag [

Several shape modeling approaches have been consideteel mewroimaging literature. One of them is the medial
representation, where the binary object is representet) @wsset of atoms and links that connect the atoms together to
form a skeletal representation of the object. Styner et6hlapplied this scheme to hippocampi and other human brain
structures. The distance map approach has been applieassifging a collection of hippocampi in Golland et &].[In
a distance map, the distance from each point in the imageetbdhndary of the object is computed. Other approaches
include deformation fields obtained by warping individuabstructures to a template, such as the paper of Joshi 8t al. [
applied to the hippocampus, or the landmark approach ugedwppocampi by Park et al9] or Shen et al. 10]. Instead
of the previous non-parametric models, a parametric agproghich has been successfully applied to model various
subcortical structures, is the spherical harmonic reptasien (SPHARM) 11, 12, 13, 14, 15, 16, 17]. Each individual
surface is parameterized by a set of coefficients weightiegoasis functions: the spherical harmonics or its weighted
version (the weighted spherical harmonic representatitgher et al. 5] compared the sampled boundary implied by the
SPHARM description with the medial shape description, vlitg good concordance between both descriptions. Other
works propose global features which discriminate the dood[18]. It is quite common to use some of these approaches
with a principal component analysis for shape classificediod group comparison.

The spherical harmonic representation is a particular cdsepresenting functional data as smooth functions. The
whole surface is modeled from a set of points belonging tcsthvéace. Functional data are observed discretely although
a continuous function lies behind these data. In order to@aithe discrete observations into a true functional farath
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function is approximated (smoothed) by a weighted sum @alitombination) of known basis functions. Functional data
analysis (FDA) provides statistical procedures for fumadl observations (a whole function is a datum). The goa#

are basically the same as those of any other branch of statiRamsay and Silvermatq] give an excellent overview.
Ferraty and Vieu2(Q] provide a complementary and very interesting view on noapetric methods for functional data.
A mixture of practical and theoretical aspects is found irr&tg and Romaing1]. The field of FDA is quite new and there

is still a lot of work to be done, but in recent years severaliaptions have been developed in different fields, esfigcia
in human healthg2, 23, 24].

In Epifanio and Ventura-Campog9] two-dimensional (2D) shapes were analyzed from the thi@atmf views
considered by Stoyan and Stoya&6][ for describing shapes: firstly, set descriptors; secqnatyng landmarks (point
description); and thirdly, employing a function descripithe contours. The results were compared with these three
approaches (the set theory approach, the landmark basedaappand the functional approach) in two of the main
problems in form statistics: the study of the main sourcegaoiaition among the shapes (principal component analysis,
PCA), and classification among different classes (discrémi analysis). The analysis of contour functions by FDAegav
more meaningful results in both problems.

In this work, the hippocampus surface is described by rmaritite (three) functions with two arguments. In Secfon
the methodology is introduced together with our data. Wewdis the extension of the PCA to deal with trivariate furr@io
data with two arguments. A discriminant function based alependent component analysis (ICA) is defined for indigatin
where the differences between groups are and what theldgdiscrimination is. In Sectio, the methodology is applied
to the analysis of structural magnetic resonance imagM&(sscans for studying the hippocampal differences ambeg t
subjects of three groups: cognitively normal (CN) subjegpégients with mild cognitive impairment (MCI), and patien
with early Alzheimer’s disease (AD). Comparison with otlerks is carried out. Finally, conclusions and some open
problems are discussed in Sectian

2. Materials and methods

2.1. Brain sMRI scans processing

A total of 28 individuals (12 CN, 6 MCI and 10 AD subjects) amabyzed in this study, whose description is in Table
1. All the individuals were recruited from the Neurology Seevat La Magdalena Hospital (Castelld, Spain) and the
Neuropsychology Service at the Universitat Jaume |. Allegkpental procedures complied with the guidelines of the
ethical research committee at the Universitat Jaume I.t#riinformed consent was obtained from every subject or
their appropriate proxy prior to participation. Selectfonthe participant group was made after careful neuroklgod
neuropsychological assessment. The neuropsychologisabattery involved Digit Span, Similarities, Vocabulaamd
Block Design of the WAIS-III; Luria’s Watches test, and Pefrputers Overlapping Figure test. SMRI were acquired on a
1.5T scanner (General Electric). A whole brain high resofu 1-weighted anatomical reference scan was acquired (TE
4.2 ms, TR 11.3 ms, FOV 24 cm; matrix = 26B56x 124, 1.4 mm-thick coronal images).

Hippocampi were traced manually on contiguous coronagsl{or sections) following the guidelines of Watson et al.
[27], and Hasboun et al2B]. The hippocampus segmentation was done by an expert trégitelMRicro software, blinded
to the clinical data of the study subjects. The segmentaifaach hippocampus lasted approximately 40 minutes. An
example of the left and right hippocampal contour (drawn hite) in a coronal view is shown in Figutke(a), while
a sagittal view of one of the hippocampus can be seen in Figby. Images were visually reoriented. The anterior
commissure—posterior commissure (ACPC) line was idedtdied the images were then reoriented parallel to it. The
slices were put together using the isosurface function itldddawhich gives the vertices and faces of the triangle mesh

2.2. Surface parametrization

In 2D, the contour is a closed planar curve that consistssoéments of the figure boundary. The contour parametizati
by its arc length can be applied to any contour (note thatratbetour functions have limitations, see Kindratenk8][
for a review of various contour functions).

This method has been extended to represent analogouslyrfaees of closed 3D objects. In this case, instead of two
parametric functions with one parameter, three functioitis two angular parameters are needed, ¢), y(0, ¢), z(6, ¢)
(see L. Shen and McPeekH for a detailed explanation). Specifically, a surface is pgponto a unit sphere under a
bijective mapping. However, unlike the 2D case, some pratproblems prevent this mapping from being completely
straightforward. In fact, this one-to-one mapping can btioled from various surface flattening techniques such as
conformal mapping12], semi-isometric mapping30], area preserving mappind.3, 31] and the deformable surface
algorithm B2]. Since the conformal mapping tends to introduce huge atartion, area preserving mapping is widely
used. However, these flattening methods are computatyonédinsive and not trivial to implement. Here, we use a new
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alternative proposed recently in Chung et alZ][for objects that are close to either star-shape or conve&.mapping
is based on the equilibrium state of heat diffusion. The ide@acing the geodesic path of heat equilibrium state from
a heat source (hippocampus in this case) to a heat sink gpkes solving an isotropic heat equation in a 3D image
volume is computationally trivial, this flattening techagis numerically simpler than any other available methods a
does not require optimizing a cost function. Details abbistinethod can be found in Chung et d7], and how it works
can be seen dtttp://www.stat.wisc.edw/mchung/research/amygdal@his step although necessary is auxiliar, and any
other method can be used without changing the followingyasigl However, the method from Chung et al7][has been
effective with hippocampi, and we will use it.

Once the surface is mapped onto the sphere, the angles sewerdinates for representing hippocampus surfaces using
basis functions. Figur2 shows an illustration of the surface flattening process fertippocampus with that method, and
the surface parameterization using the angles); The pointd = 0 corresponds to the north pole of a unit sphere.

2.3. Representing functions by basis functions

The first step in FDA is the conversion from discrete data tacfions by smoothing. Linear combinations of basis
functions are used for representing functions. We haveearhas basis the spherical harmonics, because they have been
already used in similar structures with excellent resé@lishermore its orthogonality has computational advaesa@ther
possible basis could be the weighted Fourier sefidl $§pherical splines33, 34] or spherical wavelets3p, 36], although
spherical harmonics is the most used basis in this field.

Although complex-valued spherical harmonics could be asdd Gerig et al.11] or Shen et al.13], we have preferred
to used real spherical harmonics as in Chung etld,. 17], considering that most applications of spherical harrosni
require only real-valued spherical functions, and for @mgnce in setting up a real-valued stochastic model.

A real basis of spherical harmonics is given bis(the degree anah is the order):

V2N mycos(me) P (cosf)  if m >0
Yim (97 (P) = N(ly())PlO (0089) ifm=0 (1)
\/ﬁN(l7|,,,LDsin(|m|<p)Pl‘m|(0059) if m<0
whereN(; ,,) = QZ;I 8#23: and P is the associated Legendre polynomial of orgedefined over the range-1, 1]
Py(x) = G (1 — a?)/2 i (a2 — 1)1

Let S2 be the unit sphere iR3, andf andg € L?(S?). The inner product is defined by

T 27
< fog>= / / F6.0)90.0)d2 = [ f(6.0)9(0.0)d2 = [ fga0 2
0=0 S2 S2

whered2 = sin(6)dypdf. With respect to the inner product, the spherical harmositsfy the orthonormal condition:
fsz Yim Yirm dQY = 6100y, Whered;; is the Kroneker's delta.

The three functions are independently expressed in termsthef spherical harmonic asz(6,p) =
ZIL:() mezfl o Yim (0, 0), y(0, ) = ZIL:() Zinzfl Cln Yim (0, ) and z Zz 0 mefz i Yim(0,¢). L is the
maximal degree of the representation, which determinegdbece to WhICh data are smoothed. As we know the values of
each function in a sample of poinf&;, ¢;)}* ,, the coefficients can be estimated by least squares. In feeata(d, )
(analogously for the other two functions), tet= {z(0;, ¢;)}7_, be the vector of observations? the vector containing
the coefficients:],, andY = {Yi,,(6;, v;)}1, the matrix of baS|s function values at the observation oititenc” =
(YY)~ 1Y’x. If the size of the linear equatlon is extremely large, thefiicients can be also estimated in a least squares
fashion by the iterative residual fitting (IRF) algorithrb4]. Finally, a vector-valued function can be buift(d, ¢) =
(Z(Gv @)a y(@, 50)7 Z(9a 50))/ = ZIL:() Zinzfl Clm}/lm (9, 50)7 Whereclm = (cfmﬂ C?m’ Cfm>/'

As in other works that used SPHARM for simple surfaces, a kimatsults in an acceptable degree of smoothing for
this kind of subcortical structures. For more complex dtres, such as cortical surfaces, a higher degree (for deamp
52) is necessary for a good representatibf).[After inspecting the representations for different wdwfL, L = 15 was
visually chosen for our hippocampi. Figu2eshows the spherical harmonic representations of a hipppeasurface for
different L. Note that if L is too small, we miss important aspects of the surface, bilt laige L we not only fit data but
also noise. Hence there was an inevitable trade-off betwesse two factors in choosing= 15. In order to check if the
analysis is robust to the choice of different valued.othe classification results for different valuesiofre shown in the
supplementary material.

Sometimes, a registration or alignment is then carriedtéoivever, in this case it is not necessary as the location was
removed previously by translating each hippocampus todheegoint in such a way that its centroid coincides with that
point ((25,25,25) in our case). Note that the centre of theespfor the surface parametrization is on each hippocampal
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centroid, as in Chung et all7]. Furthermore, all the hippocampi have the same orientago no rotation is needed.
As size information (hippocampal volume is a usual disanewdry feature) is important, no scaling correction isiealrr
out. So we analyze the form, which combines the shape andzbeéndormation, otherwise scale can be removed by
dividing through the centroid’s size at the beginning, aBpifanio and Ventura-Campo23]. Here, no further alignment

is necessary, as in Chung et dl7], since the coordinate$t ¢)) on two surfaces are corresponding pairs, and therefore
the coefficients match each other. For other kind of the sarfsarametrization, an alignment could be necessary as
explained in L. Shen and McPeekq], where landmarks are used for registration.

In this paper the arguments are angles, but when the argusiemie, functions usually exhibit two kind of variation:
amplitude and phase variation. The fist one accounts folizee$the shape features in the functions, whereas the decon
one refers to the location of the features. In case that wephade variation, the algorithm combining registratiorhwit
principal components analysis in Kneip and Ram&¥ ¢ould be used, where decomposition of functional variaiigo
amplitude and phase partitions is defined.

2.4. Functional discriminant analysis

Linear discriminant analysis can be used with functions,rbgularization is necessary to give meaningful res@g [
ch. 8]. Recent advances in functional data classificatioe leeen reported by various authors. Many of them involve
a type of preprocessing (sometimes implicit) of the funwtiodata (see3g] for a comparison of different methods for
univariate functions, andp] for multivariate functions with one argument). One poksitegularization approach is to
concentrate on the first few principal components a2l ¢h. 8], or some other finite-dimensional representation of
the data, as ICA, which has given better results than PCA #mat alternatives in previous literatur2g]. So, once the
hippocampi are represented in a basis (SPHARM), we can oatihe functional data analysis, beginning with exploring
the hippocampal variability by PCA and ICA, and using themtf@ discriminant analysis.

2.5. Functional PCA (FPCA)

For studying the main sources of variation among the hippgiaprincipal component analysis is used. In order to see
how PCA works in the functional context, let us recall PCAKaultivariate Data Analysis (MDA). Shortly, summations
change into integrations. In MDA, principal components@vtained by solving the eigenequation

VE = pé, @)

whereV is the sample variance-covariance matix= (N — 1)~'X’X, X is the centered data matriX, is the number
of subjects observed, aiXl’ indicates the transpose Bt Moreover,p and¢ are an eigenvalue and an eigenvectoY of
respectively.

In the functional version of PCA, PCs are replaced by fumgidBefore analyzing our multivariate functional data
with multiple arguments, let us introduce the functionallvariate case. Lefz (t), ..., xn(t)} be the set of univariate
observed functions with one scalar argumenthe mean function is defined as the average of the functioimg-prise
across replicationsz(t) = N1 ZiNﬂ x;(t)). If data have been centered (the mean function has beerasteut), the
covariance functiow(s,t)is defined analogously by(s,t) = (N — 1)1 Zf\il x;(s)x;(t). As explained in Ramsay and
Silverman [L9, Chapter 8], the functional counterpart of equatis the following functional eigenequation

/ o(s, D)t = pE(s), )

wherep is still an eigenvalue, but whergs) is an eigenfunction of the variance-covariance functiather than an
eigenvector. Now, the principal component score corregipgnto £(s) is computed by using the inner product for
functions:s; = [ z;(s)¢(s)ds. Note that for multivariate data, the indsis not continuous, but a discrete indeveplaces
it: S; = Z . xij€j~

For sol\;ing the eigenequatidinthe original functions could be discretized. However, wikwork with the coefficients
of the functions expressed as a linear combination of knaagistfunctions. If the basis is orthonormal, FPCA reduces
to the standard multivariate PCA of the coefficient arrayexdained in Ramsay and Silvermal] Sec. 8.4.2], where
computational methods for FPCA are reviewed. This redudzesitnount of information generated.

With regard to the number of PCs that can be computed, let testhat in the functional context, “variables” now
correspond to values of and there is no limit to these. Therefore, a maximunNoef 1 components can be computed.
However, if the number of basis functioNkrepresenting the functions is less théyM would be the maximum.

2.5.1. FPCA with multiple functions and multiple argumentket {F;(0,¢)}Y, be the set of observed
functions. Each F; consists of three functional data with two arguments reprisg one hippocampus
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((:(0,0),y:(0, ), z:(0,¢)). Three mean functions z(4,»),5(0,¢),z(0,¢)) and three covariance functions
(vxx((0,9), (¥, 90)),vyy (0, 9), (¥,0)),vzz((0,¢), (¥, ¢))) can be computed pointwisely as before for each kind
of functlon respectively. We can calculate the cross-damae function of the centered data by (analogously for the
combinationX Z andY 2) vxy (9, ¢), (0,¢)) = (N — 1)V 32N 2,(9, ¢)yi (6, ).
An inner product on the space of vector-valued functionefinéd by summing the inner products of the components
(defined in2) as
< F1,Fy >=<z1,090 >+ < Y1,Y2 > + < 21,22 > . (5)

A typical PC is defined by a three-vector(£x, &y, £z) of weight functions. Now, the PC score for thénh function
is computed by; =< Fj, & >= [, 2ilxdQ + [ i€y dQ + [4, 2:€2d2. PCs are solutions of the eigenequation system
V¢ = p&, which in this case can be written as

Js2 vxx((9,6), (0,9))6x (0, 9)dQ + [52 vxy (9, ), (0. 9))Ey (8, 9)dQ + [52 vxz((9,¢), (0,9))Ez(0, 0)dQ = péx (U, $)
Js2 vy x (9, 9), (8,9))€x (0, 0)d2+ [g2 vyy (9, 0), (8, 9)Ex (8, 9)dQ + [g2 vy z (9, 8), (0, 9))E2(0,¢)dQ = pEy (9, $) 6
Js2 vzx ((9,8),(0,9)Ex (0, 0)dQ + [g2 vz2y (9, ¢), (0,9))&y (0, 9)dQ + [g2 vz2((V, ), (0,9))62(0, 9)d2 = pEz (D, ¢).

To solve the eigenequation system, each function in thewd#aenction F; is replaced by a vector of basis coefficients,
and a single vector is built by joining them together. Thée! = ({c%,,}, {¢%,.}, {¢Z,,}) is that vector of coefficients for
F;,with1 =0, ...,L andm = —[ to [, a matrixC with N rows (one per individual) can be built stacking those vextés
spherical harmonics are orthonormal, we only need to coethetPCA ofC. When PCs have been computed, we separate
the parts belonging to each coordinate, as explained in Bamrsd Silvermanl9, Sec. 8.5.1] for bivariate FPCA with
one argument. Note that the computation is reduced when wlewith the coefficients instead of using a lot of variables
obtained by discretizing the original functions in a finedghiVith L = 15 we have 256 coefficients per coordinate, a total
of 756 coefficients (variables). However, for a grid of 25@2tices on the sphere, the number of variables rises to 7686.

Each eigenvalug divided by the sum of all eigenvalues gives the proportionvafiance explained by each
eigenfunction, as in the multivariate case. Furthermaretffe j-th principal componerﬁﬂ = (&%, gy, &%), the variation
accounted for each coordinate can be computeet l&KQ §X >, < gy,gy > and< 5Z,gz > respectively, because their
sum is one by definition.

2.6. Functional ICA (FICA)

ICA was successfully used for the classification of univaritunctions in Epifanio 38|, where was compared with
classical and the most recent advances in univariate fumadtidata classification giving results better than or simil
to those obtained using the previous techniques in thréerelift problems. Concretely, the proposed descriptore wer
compared with the methodology introduced in Hastie et38], in Ferraty and Vieu40] including the multivariate partial
least-squares regression (MPLSR) method in its semi-on@td PCA, in Rossi and Conan-Gudd]| in Ferré and Villa
[42], in Rossi and Villa 3], and as Li and Yu44] use the same example, we can also compare the results anipif
[38] with those of Li and Yu 4] (see Epifanio B8] for details). That methodology was extended to the muliita case
with one argument in Epifanio and Ventura-Camp2§,[where the best discriminant results were obtained wigh @A
coefficients compared with FPCA and other alternatives figrealized discriminant analysis proposed by Hastie et al.
[39] and the nonparametric curve discrimination method withgeami-metric based on FPCA and MPLSR introduced by
Ferraty and Vieu4Q]) in the functional approach, and the set and landmark ambraHere we extend the methodology
for multivariate functions with two (or more) argumentsjfd€A has been useful with the classification of functionstwi
one argument, the same can happen with more general fuaction

Let us recall ICA for MDA. Assume that the data matXis a linear combination of non-Gaussian (independent)
components i.eX = SA where columns 08 contain the independent components ang a linear mixing matrix. ICA
attempts to “un-mix” the data by estimating an un-mixing mxatv with XW = S. Under this generative model, the
measured “signals” irX will tend to be “more Gaussian” than the source componentS)idue to the Central Limit
Theorem. Thus, in order to extract the independent compsrmrsources, we search for an un-mixing matVx that
maximizes the non-gaussianity of the sources.

For univariate functions, assume that we obse¥vénear mixturese; (), ..., zx(t) of K independent components

si(t): i(t) = Z;il a;;s;(t), for all . Each pairs;(t) ands(t), at each time instartt are statistically independent. In

practice, we have discretized functioss € {z;(tx); k = 1, ..., p}), therefore we can consider thex N data matrixX =
{zi(tr)}.

However, unlike our previous works with one argument, iadtef discretizing the functions we will work with the
coefficients in a functional basis for reducing the compatet! burden. Suppose that each function has basis expansio
xi(t) = Zm 1 bim G, (t). If we definez a vector-valued function with components, ..., 2, andG the vector-valued
function with component&,, ..., G, we can express the simultaneous expansion df dlinctions asz = BG, where
B is the coefficient matrix, with siz&v x M. If we perform ICA onB’, we obtainB’ =S, Ay, SO we can consider
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=BG = A} S, G, i.e. the observed dataare generated by a process of mixing thiecomponentd = S G (rows of
S, contain the independent components). The expansion ofuargtibn z(¢) not included in the originat in terms of

these ICA components will be of the form(t) = Zle a;I;(t), with I;(t) the j-th component of . If we estimatel
andG in p points {tx; k=1, ...,p}), we can build the x K matrix I and thep x M matrix G, and hencd = GSy.
The K-vectora containing the coefficient®; can be easily obtained by least squares fittit@:[a = (I'T)"'I'x, where

x = {&(ty)},_,. This yieldsa = (S{)G’Gsb)_IS{DG’i. Analogously, for the& basis,z(t) = Zf\le bm G (t), and the

M-vectorb containing the coefficients,, can be computed ab = (G’G)’lG’i. When the basig; is orthonormal,
meaning thaG’G is the identity matrix :

a=(S,G'GSp) 'S, G'% = (S},Sp) 'S} b. @)

If the functions have more than one argument, the discussimientical. When having multivariate functional data, we
can concatenate the coefficients for each function intogleslong vector, as done in Sét5.1for computing multivariate
FPCA. In our casep would be(c?)'.

Before the application of the ICA algorithm, it is useful ®duce the dimension of the data previously by PCA (for
details, see Hyvarinen et alt%, Section 5]), thus reducing noise and preventing overlegid6, Section 13.2]. Therefore
we compute the PCA first, retaining a certain number of corepts) and then estimate the same number of independent
components as the PCA reduced dimension.

2.6.1. Functional linear discriminanEunctional linear discriminant can be used if the objecigvalso to discriminate
between different groups and to understand the way in whieset groups differ. The coefficiens for ICA components
will constitute the feature vector used for the classifmatstep, as made in Epifani8§] for univariate functions and
Epifanio and Ventura-Campo2%] for multivariate functions with one argument. The scomsftinctional PCs can also
be used, although in Epifanio and Ventura-Cam&i {he results were not so good as for ICA. The use of PCA is quite
common before the classifier is applied, such as in Beg et8lof Shen et al. 13] (although they did not applied PCA
on the coefficients but on the landmarks: points estimateti@surfaces). ‘ ,

We propose to compute a linear discriminant vector funcitid, ) = (X (6, ), M (6, ), A, (6, ¢)) based on FICA
as done in Ramsay and Silverm&2[Chapter 8] with FPCA. This functioW (6, ¢) would be the functional counterpart
of the linear discriminant or canonical variat¥] Chapter 3], thereforel] = < Fi, N >= [, 2\ dQ + [q, 1:X3,dQ +
fsz zi)\jZdQ would return the score or discriminant valuefgf If we express both functions in the spherical harmonics

base, due to the orthonormality, is just the inner product of two vectord, = (\)(c?)’, where) is the vector with the
coefficients of\’ (6, ) in that base. In this way, the problem is reduced to find theséicients in the spherical harmonic
expansion.

Assume that there ar@ groups, each of them with siz#; (ZinlNi = N) and we apply the standard linear
discriminant analysis (LDA) to th& x N matrix A with the coefficients of thé ICA components. This yields& x r
matrix L (r = min{ K, Q — 1} is the number of discriminant functions) giving thex N matrix D of discriminant values
(D =L'A). By equatiorv, A = (S{)Sb)’IS{DC’, whereSy, is the3M x K matrix containing the independent components
of C’, the N x 3M matrix with the coefficients in the spherical harmonics bagk L = 15 (henceV/ = 256). As we had
D = AC’ whereA is ther x 3M matrix with the coefficients of the functions\ (6, ¢) (j = 1, ...,7) in the spherical
harmonic baseX is the;j-th row), thenA = L/ (S}, Sy,) 'S},

As the problem has been reduced to a MDA problem (althouglbdsés choice plays a key role), we can consider
significance tests under the assumption of multivariatenadity of the coefficients imA [48, Sec. 8.6] (ICA looks for
non-gaussianity if$ notin A).

2.7. Visualization of the results

In order to display the effect of each functional PC, FICA gament or discriminant function, a small set of suitable

multiples (positive or negative) of the function in queastie added to the the mean function (mean hippocampus), which

can be displayed for each multiple separately. This progebuusual in shape and FDA literatu2?]. Furthermore, a

vector map can be plotted: vectors can be drawn from the niegpedo the surface formed by the mean plus the multiple

of the function in question. We can also color the mean hippgaus using the magnitude (norm) of those vectors.
Coefficients in FICA or in FPCA base (scores) and the diseramt values could be also plotted.
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3. Results

The main code (mostly in Matlab) and data are availablenhts://www3.uji.esi-epifanio/RESEARCH/alzfda.rar
Two valuable packages are: the SurfStat packalyp:(/www.math.mcgill.ca/keith/surfsjatand its extension
(http://www.stat.wisc.edw/mchung/research/amygdaldl7] and the FastICA packagel9]. The FastlCA algorithm
(which includes the PCA computation) is used for obatain®g. Although we have not considered other algorithms
for obtaining ICA, there is no restriction for using any atlggorithm, but FastICA is an efficient and popular algarith

It is based on a fixed-point iteration scheme maximizing @@ussianity as a measure of statistical independence. We
have used the default parameters of FastICA for obtainig Be independent components are estimated one-by-one
(not in parallel), the nonlinearity used in the fixed-poilgaithm is a Gaussian function, and the default paraméters
controlling the convergence (see the softwag for details).

We have only considered the left hippocampi as in Beg et 18] for illustrating and assessing the proposed
methodology. The database is quite small for obtainingdvadedical conclusions, although the methodology could be
used without modification with a larger database for thedatft right hippocampi. The left hippocampal volume has been
shown to be better at discriminating MCI stat@f][ The volume can be estimated as the sum of the slice areas, i.
the number of pixels belonging to each segmented hippodastipa. Nevertheless, the numerical results for the right
hippocampi are shown in the supplementary material.

3.1. Functional approach: FPCA and FICA

FPCA is carried out to describe the variability. The firstedhrprincipal components explain 49.48% of the whole
variance, made up of 24.73%, 14.15% and 10.60% respect®el®7% of the variability is explained by the first sixteen
components. Figur8 presents visual representations of the shape variatiotgalee first three principal components.
Figures in the supplementary material can help to interfw&in. The first component correspond to a size component,
mostly concentrated on the head and the tail, but also indldg.[#5.25% of the variation in this component is due to the
z-coordinates (27.17% and 27.58% due togrendz-coordinates). Component 2 is focused on a part of the tathik
component, 20.37% of variability comes from theoordinates, and the rest is divided betweenitlaed z-coordinates.
Finally, the third component is concentrated almost elytiom the whole tail. The proportion of the variability in ¢hi
component is 41.81% for thecoordinates (23.51% and 34.67% due tothtendz-coordinates).

It is interesting to distinguish between patients with ADCMand elderly CN subjects, however in the literature it
is quite common to consider the pair-wise comparisons antlbaghree groups. The important CN-MCI subproblem
is analyzed here, together with the numerical results fertkinee group problem. For a detailed analysis of the other
problems, see the supplementary material.

In order to test the ability to classify the subjects intoitle®rrect group, cross-validation is performed using éeav
one-out trials. In each trial, one subject is set aside ardA~B performed on the remaining subjects (the training. set)
On the one hand, the LDA classifier is trained with the fifsPC scores of the training set. On the other hand, we
compute (and record) the leave-one-out (LOU) predictioordor that training set. The test subject is projected ahéo
same principal components obtained from training set alane classified with the trained LDA. This predicted class is
preserved to produce the LOU estimate of the correct cleatiin percentage fof components, since this process is
repeated in turn for each of the subjects. Note that as FPCénigputed with different data, PCs from different iteration
are not comparable, especially those with low variance. e lthe estimated accuracy for various values of the number
J of principal components. In order to select the appropmieieber of components, we do not choose the best result,
as the accuracy would be too optimistic, but a double or destess-validation is done. We consider the recorded LOU
prediction errors for each training set, and build a matithwhem. The number of rows is the number of subjects whereas
the number of columns is the total number of valuesonsidered. We compute the mean for each column, and thelmode
(value.J) selected is that one which gives the smallest mean (in da#s we select that with less components, the most
parsimonious). Hence, the estimated classification acgusahe estimated accuracy by LOU for the model selected by
the nested LOU. Tabl2 shows the results for FPCA together with the rest of methodge CN vs MCI problem. In the
supplementary material a table with the mean and stand&idtibs for each column of the matrix can be seen, and also
a table with the external LOU accuracies for differéntalues.

The same cross-validation strategy considered for FPCéllewed with FICA, whose results are displayed in Table
2. Furthermore, we have computed the functional linear drgnant using all the subjects in the set for the number of
components selected € 6 in this subproblem). In Figurgit is visualized as explained in S&t7. It suggests a small loss
in the CA1 and a part of the subiculum in the body of the hippgmas. The discriminant function significantly separates
the groups (Wilks’A = 0.197, p-value = 0.002).
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3.2. Comparative performance

We reproduce the methodology in Chung et &) [with our data. We perform multivariate linear modelirigl] on our
spherical harmonic representation, testing the effectrofijg variable in the model. There is no statistically sigpaifit
shape difference at=0.05 when we test for group differences at each vertex ohippocampal surface (see Figuse
displaying the F-statistic value on the mean hippocampltf)ough testing of group mean difference and discriminant
analysis are different problems (note that the coefficiémtghe discriminant function in MDA are derived so as to
maximize the differences between the group means), we hbedied this result for highlighting the utility of the
proposed discriminant function since significance mapsrofig differences usually appear in neuroimaging liteeatur
together with classification resultsq].

The methodology in Gerardin et alL§] is applied to our data: the SPHARM coefficients are clag$ifieh a support
vector machine (SVM). Studentistests were used for determining which coefficients besarsap the groups, with a
bagging strategy (we use the same strategy but with the wbsehlue of the statistic for really keeping only those
coefficients which are always significantly different siiide a two tailed test). The result obtained with LOU is in Tab
2. The number of coefficients is selected by nested LOU. A flitkeanel is considered, since better results are obtained
than with radial basis functions with different scalingtfas.

Recently, Clemmensen et ab7) have proposed a sparse discriminant analysis (SDA) fohidie-dimensional setting
(the number of variables is large relative to the number bfexis). This method performs linear discriminant analysi
with a sparseness criterion imposed such that classificatiol feature selection are performed simultaneously. SDA i
applied to our SPHARM coefficients. We use the sparseLDA pgekwith default parameters (except for the desired
number of coefficients to be selected), which is availalenthttp://www2.imm.dtu.dktIhc/. The result obtained with
LOU is in Table2. The number of coefficients is chosen by nested LOU.

Beg et al. L8] proposed four shape features for discriminating CN vs M@hweft hippocampi. They reported the
following accuracies for each set of features: 68.1% for 3@nmant invariants features, 75% for 3D tensor invariant
features, 77.3% for 3D Laplacian invariant features, an@®6for 3D geodesic shape invariants features. Note that in
their database there are 26 CN and 18 MCI (a proportion sitdlaur database). Although results should be compared
with caution since the databases are different, FPCA and el@tain better accuracies.

Other approaches, such as that in Shen el3], gvaluate the spherical representation in a serie of patexrfocations,
obtaining the coordinates on the surface, and work withghteasdmarks (SPHARM-PDM from Point Distribution Model)
for classification. We do not consider this approach sinsavitell-known that some regularization is necessary in orae
obtain meaningful resultd p, Ch. 11], P2, Ch. 8]. In fact, in Figuré, where each spatial location is considered separately,
there are a lot of small spots. However, in Figdrhe discriminative zones are larger and more homogeneous.

Table3 shows the confusion matrices for each method when the thoegg are considered jointly, except for SVM in
Gerardin et al.16], whose methodology is only for problems with two groupssBa equal accuracies are achieved with
the functional approach. The CN group is correctly iderdifig FPCA, FICA and SDA, and SDA classifies correctly the
AD group (there is only one misclassification is this grouptfee rest of methods, which classified an AD individual as
MCI). The main errors are in the MCI group: with volumen onlyeandividual is correctly identified in this group (two
individuals are misclassified as CN and three as AD); with $®é individuals are misclassified as CN and other two as
AD, while the less number of errors are achieved with FPCARIGA, where two individuals are misclassified as CN
and one as AD. The two MCI individuals misclassified as CN laeessame for all the methods, as well as the misclassified
MCI individual as AD for FPCA and FICA.

4. Conclusions

Our novel contribution is to model the 3D hippocampal swetawith a FDA approach, as hippocampi are in fact functions
defined over two spherical angles. This approach allows iy cait the same analysis as any other branch of statistics
[19]. As there are few studies with functional data with morentibae argument, we have extended the functional data
methodology for functions with two arguments (angles i ttase), introducing FICA for the first time. FPCA and FICA
with two arguments have been used for shape descriptionlassification. A functional linear discriminant with FICA
has been also defined. To the best of our knowledge it has lseehfar the first time in localizing the differences among
groups instead of the significance maps, and meaningfultseste obtained with it. The functional linear discriminan
with FICA has given more details and coherence than that RREA (see the supplementary material). Classification
results are better with FPCA and FICA (both with identicaulés), than the other alternatives considered, showiag th
feature extraction is a powerful methdd3] Sec. 5.3.]. The same conclusions are reached with the stigroblem
considered in supplementary material. The good resultkigimportant problem are other of our main contributions:
in Table 2 higher accuracy, sensitivity and specificity is achievethwhe FDA approach (FPCA and FICA) than with
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other alternatives, even with a fewer number of featuresgixfor volume which is univariate). We have focused on
the analysis of left hippocampi, as they seem to discrireifed condition better than the right hippocampi (see the
supplementary material). As future work, it would be ingtireg to analyze the hippocampal asymmetry between left and
right hippocampus in AD (as made for example with schizopiarén [54]), using FDA and exploiting the potential of
this perspective.

Our sample size is small and we use LOU (with nested LOU farcsielg the number of features) for assessing the
method. With a larger database could be possible to spliti#éie into a training, validation and test set, and instead of
selecting the number of features, the features could betsel@8, Sec. 8.9.], and classification results could be improved.

The FDA approach is not restricted to hippocampi, it couldé&d with other structures. Furthermore, our methodology
could be extended to deal with functional data combined witlitivariate random variables. Ramsay and Silverman
[19, Ch. 10] defined FPCA of hybrid data (univariate functionstmane argument together with a vector). Maybe it is
interesting to consider the age, the education years onttecranial volume, etc.

Finally, other interesting future topic includes using Ei2A approach in other problems (such as Functional ANOVA
or detection of outliers) with 3D shapes, for example foreasig the evolution along time in the same subjects in a
longitudinal study.
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5. Figures and Tables

Table 1.Description of the database. The number inside the paressdtie the standard deviation.

CN,N1=12 MC',N2=6 AD,N3=10

Sex (Male/Female) 517 2/4 1/9
Mean age 70.17 (3.43) 75.50(3.33) 71.5(4.35)
Mean CDR (Clinical Dementia Rating) 0(0) 0.5 (0) 0.95 (0.15)

(@) (b)

Figure 1. Hippocampal outlines in a coronal (a) and sagittal (b) slice

Figure 2. For one hippocampus: (A) the surface flattening process fr@original one in the top left of the figure to the bottom tighhe same level sets as ih7] are used
(1.0,0.6,0.2,-0.2, -0.6, -1.0). (B) The spherical angleggeted onto the hippocampus surface @and¢ respectively), together with a unit sphere showing theemd[C) The
spherical harmonic representations of the hippocampiacsufor L = 1, 2, 8, 15, 30 (from left to right).
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Figure 3. The effect of the first PC (first row), the second PC (second eovd the third PC (third row) on the mean shape: from -2 (keft} (right) in intervals of 1 standard
deviations for each component.

Table 2. Performance for the CN vs MCI for the different methods, ctizhg with double leave-one-out the features and
using these features with leave-one-out for obtaining toeliacy.

Method Volume FPCA FICA SVMI6 SDA
Accuracy (%) 83.33 88.89 88.89 77.78 72.22
No. features 1 5 6 12 11
Sensitivity (%) 66.67 66.67 66.67 50 33.33
Specificity (%) 91.67 100 100 91.67 91.67

Figure 4. Functional linear discriminant with FICA for CN vs MCI (frofeft to right): vector map with the magnitude and directilityaand magnitude for two views. The arrows
show the direction in which the discriminant score increasest rapidly. The color shows the norm of those arrows.
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Figure 5. Two views of the F-statistic map of shape difference betw@Nrand MCI (the random field based thresholding correspanidiav=0.05 level is 69.11, forx=0.1 level
is 59.17, while the maximum F-statistic value is 49.02)idtistic does not achieve to make clear the differenceseaBitfure4.

Table 3.Confusion matrices (in absolute counts) for the CN, MCI arizi far the different methods (Volume/ FPCA /

FICA / SDA), selecting with double leave-one-out the featuand using these features with leave-one-out for obtainin

the entries. The accuracies for each method are (in parsgliee No. features): Volume 75.00% (1), FPCA 85.71% (8),
FICA 85.71% (9), SDA 85.71% (13).

CN MCI AD
CN 11/12/12/12 1/0/0/0 0/0/0/0
MCI 2121212 1/3/3/2 3/1/1/2
AD 0/0/0/0 1/1/1/0 9/9/9/10
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Supplementary material to “Hippocampal shape
analysis in Alzheimer’s disease using Functional
Data Analysis”

Irene Epifanio®*, Noelia Ventura-Campo$

1. Introduction

This Supplementary Material contains the analysis of thepabents versus CN and versus MCI and the analysis for the
three groups: CN, MCI and patients with early AD.

2. Results

Figurel shows the magnitude of the first three principal componeet the mean hippocampus for the whole database.
The viewpoints have been selected in order to visually apgte better the effect. As code and data are available at
http://lwww3.uji.esiepifanio/RESEARCH/alzfda.raigures can be reproduced and the view can be interactiotdyed.
Head, body and tail are the three parts that make up a hipgmeaf. A schematic representation of the hippocampal
subfields is shown in Figur2, which can help in the interpretation. Analogously, FigBrehows the magnitude of the
first nine independent components over the mean hippocafoptise whole database. The effect for the first and third
components is distributed along the whole hippocampugxxibe more extreme zones of the tail and head; while the rest
of components are concentrated in different parts of theddampus: tail (second, seventh, eighth and ninth), slibicu
(fifth and sixth), and head (fourth).

Table1 gives the accuracies for the CN vs MCI problem using diffexatues ofL for representing the hippocampi.
Note that the results are similar to those obtained Withl5, but whenZ increases (foi. bigger than the choseh =
15) the performances are a bit worse, maybe because we a®fittity noise. For small the performances are similar.
Curiously with L = 3 the numerical results are a bit better, but it would notd&sfble to appreciate where the differences
are with the functional linear discriminant, since with= 3 the degree of smoothing is very high (see Figure 2 in the
paper).

Table 2 gives the summary analysis of the accuracies for the nestdd (the recorded LOU prediction errors for
each training set) for different values @fin the CN vs MCI subproblem. The biggest mean accuracy fohn eaethod
corresponds with one of the smallest standard deviatiote Nt these accuracies are bigger than those reported in
Table 2 of the paper, since these accuracies are computbdadh training set, and therefore they are overestimated
sometimes substantiall2[ch. 7], while in Table 2 of the paper the external LOU resaitsreported (each test subject is
a completely new data not used in the analysis or the setfectithe model, for ascertaining the generalization capgbil
of the classifier). In Tabl8 the accuracies for the external LOU for different valued @fre shown (the selected ones by
the nested LOU, whose performances appear in Table 2 of {ier,pre in a frame box).
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Figures4, 5 and 6 display two views of the functional linear discriminant viEICA using all the subjects in each
subset for the number of components selected by nested LOkkidering all these figures jointly, together with Figure
3 in the paper, the evolution of the disease (where it begidsahere it ends) can be seen perfectly. As said in the paper,
it suggests a small loss in the CA1 and a part of the subicututhé body of the hippocampus for CN vs MCI. In MCI
vs AD, there is a larger difference in CA1, with a bigger vaiu¢he tail. Hence, the loss would begin from the head to
the tail. Furthermore, there are many differences alongvti@e subiculum, no so localized as in the CN vs MCl case. In
summary, it is clear that the disease would begin in the Cibrefrom the head to the tail, with a progressive loss in the
subiculum, although this loss is not so pronounced as in CAL.

Figure7 shows the functional linear discriminant with FPCA defingd 8, ch. 8] for the different subproblems. The
viewpoints have been selected in order to visually appredatter the effect. Note that the discriminating abiliby f
the discriminant functions in the MCI vs AD and CN vs AD subpieams is in doubt since their respective p-values are
higher thano = 0.05. When the three groups are considered jointly, weinlit@ results expected in the hippocampal
head (CAL1 subregion), and the tail of the hippocampus wiiim@e level of discrimination, and a loss in the subiculum
in the hippocampal body, although not so pronounced. Asrdsgéne subproblems CN vs MCI and CN vs AD, we
obtain the areas that were expected: the head the hipposaf@p subregion) and the tail of the hippocampus, with
greater discrimination in the CN vs MCI subproblem. Thisas coherent since the AD patients have a greater atrophy or
hippocampal volume loss, so it would be expected a highereval discrimination between CN vs AD. For the MCI vs
AD subproblem, the same configuration (discriminant regjidhat for FICA is obtained. However, the discriminant leve
is equal for the more discriminant zones (CA1 subregionéfitbnt of the head and the tail of the hippocampus), whereas
with FICA it can be observed not only a high discriminatiorilie CA1 subregion located in the front of the head, but
also along the body of the hippocampus and a bigger differeamthe tail of the hippocampus. The analysis with FPCA
shows a clear disadvantage with that done with FICA becaasedoon it we could determine the progress of the disease,
whereas with FPCA there is not a progressive change in tbidisly (color), i.e. it marks strongly where the differeace
are, but FICA gives greater detalils.

Tables4 and5 give the performance for the respective subproblem. Besigaral accuracies are achieved with the
functional approach. Note that 100% correct classificatimn CN vs AD are obtained by all methods except for SDA,
but SVM uses 20 features, when the total number of subjec¢tairsubproblem is 22.

It could be interesting to plot the scores of each subjectitberdnt components because these scatter plots can reveal
interesting features, such as the distribution of the sibjen those components, clusters of subjects, outliers[4t
Note that the complex information in the hippocampi, whiod structures in 3D, will be represented with simple scatter
plots. For the MCI vs AD subproblem, which is the most difficslibproblem according to the obtained accuracies,
we have computed the scores (the features used with LDApwinthe subjects in that subset (16) for the number of
components selected & 3 for FPCA andJ = 4 for FICA in this subproblem). In Figur@ those scores for FPCA and
FICA for the two components that visually best reflect theasafion between groups are represented. The scatter plot fo
FICA shows a slight greater separation than that for FPC# tio patients with different conditions nearly overlagpe

Instead of the scores used in the classification, in Fi§ure show the discriminant values for the two discriminant
functions for the three groups jointly, using all the sukgen that set (28) for the number of components selecied §
for FPCA andJ = 9 for FICA in this problem). Crosses, stars and circlesasgent the CN, MCI, and patients with early
AD, respectively. The plots for FPCA and FICA are nearly iilead. One of the MCI patient (the same in both plots) is
near the AD group.

Table 6 shows the accuracies for each subproblem when the righbbguppi are analyzed (the results for the left
hippocampi are also shown in order to make easier the coagues). As in previous work$[ 6, 7, 8,9, 10, 11, 12, 13,

14, 15, 16], it seems that the left hippocampi can discriminate békierAD condition than the right hippocampi.
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3. Figures and Tables

Table 1.Accuracies (%) for the CN vs MCI patients for the differentues of L (the number of features between
parentheses), selecting with double leave-one-out thtarfesaand using these features with leave-one-out for mibtai
the accuracy.

Method L=2 L=3 L=5 L[=7 L[=9 L[=11 L[=13 L[=15 L[=17 L[=19 L[=21
FPCA 88.89 (4) 94.44 (4) 88.89 (4) 88.89 (4) 88.89 (4) 83.3348.89 (5) 88.89 (5) 83.33(4) 77.78 (4) 77.78 (4)
FICA 88.89 (5) 94.44 (5) 88.89 (4) 83.33 (4) 83.33 (4) 88.8088.89 (6) 88.89 (6) 83.33 (5) 83.33 (5) 77.78 (4)
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Figure 1. The effect of the first PC, the second PC and the third PC (feftrid right) on the mean shape for 2 standard deviationsaf eamponent.

Anterior view Posterior view

Tail ——
Figure 2. Zones on the left hippocampal surface. CAl is in red, subiouh yellow, and CA2, CA3, CA4 and gyrus dentatus in blue.

Table 2. Mean accuracies and their respective standard deviateEtngekn parentheses of the nested LOU, for the CN vs
MCI patients, for different values of.

Method J=1 J=2 J=3 J=4 J=5 J=6 J=1 J=8 J=9 J=10 J=11 J=12 J=13
FPCA 72.88(5.93) 71.24 (4.34) 82.35 (6.50) 91.18 (4.9048723.83) 86.93 (5.39) 83.66 (5.39) 83.99 (4.72) 80.39 (3/R14 (5.71) 74.18 (7.11) 73.86 (10.04) 74.51 (6.20)
FICA 60.78 (8.08) 69.28 (4.62) 72.55 (3.40) 87.91 (8.87)5875.84) 88.56 (4.15) 85.95 (4.44) 80.07 (5.24) 78.76 (5&R53 (6.86) 67.65 (7.40) 66.01 (6.95) 66.34 (6.74)

SVM [17] 69.28 (8.45) 69.28 (8.67) 70.26 (9.09) 78.10 (6.74) 6918§4) 69.28 (9.71) 80.72 (6.73) 78.43 (8.77) 94.12 (3.4DLD(3.40) 93.46 (3.33) 95.10 (2.94) 94.12 (3.40)
SDA  84.97 (4.48) 86.60 (6.14) 89.22 (6.58) 92.48 (6.45) §5402) 98.04 (3.40) 99.35 (2.69) 99.35 (2.69) 99.35 (2¥MB7 (1.35) 100 (0) 100 (0) 100 (0)

Table 3. Accuracies of the external LOU, for the CN vs MCI patients,ddferent values of7.

Method J=1 J=2 j=3 J=4 J=5 J=6 J=7 J=8 J=9 J=10 J=11 J=12 J=13
FPCA 7222 66.67 72.22 83.3 83.33 83.33 88.89 83.33 88.89 88.89 83.33 83.33
FICA 61.11 66.67 72.22 77.78 83.3 83.33 83.33 83.33 83.33 88.89 88.89 77.78

SVM[17] 61.11 61.11 61.11 61.11 50 50 50 50 61.11 61.11 5 61.11
SDA 7222 7222 7222 7222 7222 7222 7222 72.22 72.2227 77.78 T77.78

Table 4.Performance for the MCI vs AD patients for the different nueth, selecting with double leave-one-out the
features and using these features with leave-one-out fairobg the accuracy.

Method Volume FPCA FICA SVMI7] SDA
Accuracy (%) 75.00 87.50 87.50 68.75 62.5

No. features 1 3 4 8 6
Sensitivity (%) 80.00 100 100 90.00 80.00
Specificity (%) 66.67 66.67 66.67 33.33  33.33
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Figure 3. The effect of the first nine independent components on thersleape.
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Figure 4. Functional linear discriminant with FICA for MCI vs ADJ(= 4 components). The discriminant function significantlpa®tes the groups (Wilkst = 0.320, p-value
=0.008).

Table 5.Performance for the CN vs AD for the different methods, delgowith double leave-one-out the features and
using these features with leave-one-out for obtaining toeliacy.

Method Volume FPCA FICA SVMI7] SDA
Accuracy (%) 100 100 100 100 90.91

No. features 1 1 2 20 6
Sensitivity (%) 100 100 100 100 90.00
Specificity (%) 100 100 100 100 91.67
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Figure 5. Functional linear discriminant with FICA for CN vs ADJ(= 2 components). The discriminant function significantipamtes the groups (Wilkst = 0.103, p-value =
0).
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Figure 6. First functional linear discriminant with FICA for CN, MCinal AD (J = 9 components). The two discriminant functions signifibaséparate the groups at= 0.05,
but only the first one, whose proportion of trace is 89.29%ljsplayed (first: Wilks’A = 0.046, p-value = 0; second: Wilk& = 0.474, p-value = 0.048).

Table 6.Accuracies (%) for the different subproblems for both higgropi (right /left), selecting with double leave-one-
out the features and using these features with leave-oniemabtaining the accuracy. The number of features is betwe
parentheses.

Method 3 groups CN vs MCI MCI vs AD CNvs AD
FPCA 75(1)/85.71(8) 72.22(3)/88.89(5) 81.25(5)/87.5(3)00 (1) /100 (1)
FICA 85.71(4)/85.71(9) 66.67 (4)/88.89 (6) 81.25(4)/8@p 95.45(2) /100 (2)
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Figure 7. Top left: First functional linear discriminant with FPCArf€N, MCI and AD (J = 8 components), whose proportion of trace is 92.9% and Wilkks 0.065, p-value
= 0 (note that for the second functional linear discrimirtéetp-value is higher than = 0.05, Wilks’ A = 0.609, p-value = 0.154); Top right: Functional linear distinant with
FPCA for CN vs MCI ¢J = 5 components, WilksA = 0.266, p-value = 0.003); Bottom left: Functional lineasaiminant with FPCA for MCI vs AD { = 3 components, Wilks’
A =0.612, p-value = 0.105, note that the p-value is higher than0.05); Bottom right: Functional linear discriminant wig#f?CA for CN vs AD (J = 1 component, WilksA =
0.959, p-value = 0.367, note that the p-value is higher than0.05).
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Figure 8. Scatter plot of scores for MCI vs AD. Component 1 vs 3 for FP@#) and component 2 vs 4 for FICA (right). Stars and ciraiggresent the MCI and patients with
early AD, respectively.
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Figure 9. Scatter plot of discriminant values for the two discrimibamctions of the three groups: FPCA (left) and FICA (rigl@yosses, stars and circles represent the CN, MCI,
and patients with early AD, respectively.
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