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Abstract. The expression of a gene is characterised by the upstream
transcription factors and the biochemical reactions at the DNA pro-
cessing them. Transient profile of gene expression then depends on the
amount of involved transcription factors, and the scale of kinetic rates of
regulatory reactions at the DNA. Due to the combinatorial explosion of
the number of possible DNA configurations and uncertainty about the
rates, a detailed mechanistic model is often difficult to analyse and even
to write down. For this reason, modelling practice often abstracts away
details such as the relative speed of rates of different reactions at the
DNA, and how these reactions connect to one another. In this paper, we
investigate how the transient gene expression depends on the topology
and scale of the rates of reactions involving the DNA. We consider a
generic example where a single protein is regulated through a number
of arbitrarily connected DNA configurations, without feedback. In our
first result, we analytically show that, if all switching rates are uniformly
speeded up, then, as expected, the protein transient is faster and the
noise is smaller. Our second result finds that, counter-intuitively, if all
rates are fast but some more than others (two orders of magnitude vs.
one order of magnitude), the opposite effect may emerge: time to equili-
bration is slower and protein noise increases. In particular, focusing on
the case of a mechanism with four DNA states, we first illustrate the phe-
nomenon numerically over concrete parameter instances. Then, we use
singular perturbation analysis to systematically show that, in general,
the fast chain with some rates even faster, reduces to a slow-switching
chain. Our analysis has wide implications for quantitative modelling of
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gene regulation: it emphasises the importance of accounting for the net-
work topology of regulation among DNA states, and the importance of
accounting for different magnitudes of respective reaction rates. We con-
clude the paper by discussing the results in context of modelling general
collective behaviour.

1 Introduction

Gene regulation is one of the most fundamental processes in living systems. The
experimental systems of lac operon in bacteria E. coli and the genetic switch of
bacteriophage lambda virus allowed to unravel the basic molecular mechanisms
of how a gene is turned on and off. These were followed by a molecular-level
explanation of stochastic switching between lysis and lysogeny of phage [22],
all the way to more complex logic gate formalisms that attempt to abstract
more complex biological behaviour [6,12,21]. To date, synthetic biology has
demonstrated remarkable success in engineering simple genetic circuits that are
encoded in DNA and perform their function in vivo. However, significant concep-
tual challenges remain, related to the still unsatisfactory quantitative but also
qualitative understanding of the underlying processes [19,30]. Partly, this is due
to the unknown or unspecified interactions in experiments in vivo (crosstalk,
host-circuit interactions, loading effect). Another major challenge towards ratio-
nal and rigorous design of synthetic circuits is computational modelling: gene
regulation has a combinatorial number of functional entities, it is inherently
stochastic, exhibits multiple time-scales, and experimentally measuring kinetic
parameters/rates is often difficult, imprecise or impossible. In such context, pre-
dicting the transient profile - how gene expression in a population of cells evolves
over time - becomes a computationally expensive task. However, predicting how
the transient phenotype emerges from the mechanistic, molecular interactions,
is crucial both for engineering purposes of synthetic biology (e.g. when com-
posing synthetic systems), as well as for addressing fundamental biological and
evolutionary questions (e.g. for understanding whether the cell aims to create
variability by modulating timing).

Mechanistically, the transcription of a single gene is initiated whenever a sub-
unit of RNA polymerase binds to that gene’s promoter region at the DNA [35].
While such binding can occur spontaneously, it is typically promoted or inhibited
through other species involved in regulation, such as proteins and transcription
factors (TFs). Consequently, the number of possible molecular configurations of
the DNA grows combinatorially with the number of operator sites regulating the
gene in question. For instance, one hypothesised mechanism in lambda-phage,
containing only three left and three right operators, leads to 1200 different DNA
configurations [31]. The combinatorial explosion of the number of possible con-
figurations makes the model tedious to even write down, let alone execute and
make predictions about it. The induced stochastic process enumerates states
which couple the configuration of the DNA, with the copy number of the pro-
tein, and possibly other species involved in regulation, such as mRNA and tran-
scription factors. In order to faithfully predict the stochastic evolution of the
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gene product (protein) over time, the modelled system can be solved numeri-
cally, by integrating the Master equation of the stochastic process. This is often
prohibitive in practice, due to large dimensionality and a combinatorial num-
ber of reachable states. For this reason, modelling practice often abstracts away
details and adds assumptions. One popular approach is simulating the system
by Gillespie simulation [7] and statistically inferring the protein expression pro-
file, hence trading off accuracy and precision. Other approaches are based on
mean-field approximations (e.g. deterministic limit [17] and linear-noise approx-
imation [5]), significantly reducing the computational effort. However, mean-field
models do not capture the inherent stochasticity, which is especially prominent
in gene regulation. Further model reduction ideas exploit multi-scaleness of the
system: fast subsystems are identified (possibly dynamically), and assumed to be
reaching an equilibrium fast, relative to the observable dynamics [2,13,29,34].
A special class of reductions based on steady-state assumption is the experi-
mentalists’ favourite approach of statistical thermodynamics limit. This widely
and successfully used method (e.g. [3,24,33]) estimates the probability of being
in any of the possible DNA binding configurations from their relative binding
energies (Boltzmann weights) and the protein concentrations, both of which can
often be experimentally accessed. The statistical thermodynamics limit model
is rooted in the argument that, when the switching rates among DNA config-
urations are fast, the probability distribution over the configurations is rapidly
arriving at its stationary distribution. While this model takes into account the
stochasticity inherent to the DNA binding configurations, it neglects the tran-
sient probabilities in the DNA switching, before the equilibrium is reached. It
abstracts away the relative speed of rates of different reactions at the DNA, and
how they connect to one another. The question arises: how does the transient
gene expression - its shape and duration - depend on the topology and scale of the
rates of reactions involving the DNA? Is it justifiable, in this context, to consider
sufficiently fast propensities as an argument for applying a (quasi-)steady-state
assumption?

In this paper, we investigate how the transient gene expression depends on
the topology and scale of the rates of reactions involving the DNA. In Sect. 2,
we introduce reaction networks, a stochastic process assigned to it, and the
equations for the transient dynamics. In Sect. 3, we describe a generic example
where a single protein is regulated through a number of arbitrarily connected
DNA configurations, without feedback. This means that any transition between
two states of the network is possible. In our first result, we analytically show that,
if all switching rates are uniformly speeded up, then, as expected, the protein
transient is faster and the noise is smaller. In Sect. 3.1, we introduce concrete
parameter instances to illustrate the phenomenon numerically. Then, in Sect. 4,
we present our main result: counter-intuitively, if all rates are fast but some more
than others (two orders of magnitude vs. one order of magnitude), the opposite
effect may emerge: time to equilibration is slower and protein noise increases.
We use singular perturbation analysis to systematically show that, in general,
the fast chain with some rates even faster, exactly reduces to a slow-switching
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chain. We conclude the paper by discussing the implications of our results in
Sect. 5.

1.1 Related Works

Timing aspects of gene regulation are gaining increasing attention, such as explic-
itly modelling delays in gene expression [28], showcasing dramatic phenotypic
consequences of small delays in the arrival of different TFs [11], resolving the
temporal dynamics of gene regulatory networks from time-series data [10], as
well as the study of transient hysteresis and inherent stochasticity in gene regu-
latory networks [27]. Following the early works on examining the relation between
topology and relaxation to steady states of reaction networks [9], stochastic gene
expression from a promoter model has been studied for multiple states [14]. Sin-
gular perturbation analysis has been used for lumping states of Markov chains
arising in biological applications [4,34]. To the best of our knowledge, none of
these works showcases the phenomenon of obtaining slower dynamics through
faster rates, or, more specifically, slowing down gene expression by speeding up
the reactions at the DNA.

2 Preliminaries

The default rate of gene expression, also referred to as the basal rate, can be
modified by the presence of transcriptional activators and repressors. Activators
are transcription factors (TFs) that bind to specific locations on the DNA, or
to other TFs, and enhance the expression of a gene by promoting the binding
of RNAP. Repressors reduce the expression of gene g, by directly blocking the
binding of RNAP, or indirectly, by inhibiting the activators, or promoting direct
repressors. The mechanism of how and at which rates the molecular species are
interacting is transparently written in a list of reactions. Reactions are equipped
with the stochastic semantics which is valid under mild assumptions [7]. In the
following, we will model gene regulatory mechanisms with the standard Chemical
Reaction Network formalism (CRN).

Definition 1. A reaction system is a pair (S,R), such that S = {S1, . . . ,Ss}
is a finite set of species, and R = {r1, . . . , rr} is a finite set of reactions. The
state of a system can be represented as a multi-set of species, denoted by x =
(x1, ...,xs) ∈ N

s. Each reaction is a triple rj ≡ (aj ,νj , cj) ∈ N
s × N

s × R≥0,
written down in the following form:

a1jS1, . . . , asjSs
cj→ a′

1jS1, . . . , a′
sjSs, such that ∀i.a′

ij = aij + νij .

The vectors aj and a′
j are often called respectively the consumption and pro-

duction vectors due to jth reaction, and cj is the respective kinetic rate. If the
jth reaction occurs, after being in state x, the next state will be x′ = x + νj .
This will be possible only if xi ≥ aij for i = 1, . . . , s.
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Stochastic Semantics. The species’ multiplicities follow a continuous-time
Markov chain (CTMC) {X(t)}t≥0, defined over the state space S = {x | x
is reachable from x0 by a finite sequence of reactions from {r1, . . . , rr}}. In other
words, the probability of moving to the state x + νj from x after time Δ is

P(X(t + Δ) = x + νj | X(t) = x) = λj(x)Δ + o(Δ),

with λj the propensity of jth reaction, assumed to follow the principle of mass-
action: λj(x) = cj

∏s
i=1

(
xi

aij

)
. The binomial coefficient

(
xi

aij

)
reflects the proba-

bility of choosing aij molecules of species Si out of xi available ones.

Computing the Transient. Using the vector notation X(t) ∈ N
n for the

marginal of process {X(t)}t≥0 at time t, we can compute this transient dis-
tribution by integrating the chemical master equation (CME). Denoting by
px(t) := P(X(t) = x), the CME for state x ∈ N

s reads

d
dt

px(t) =
r∑

j=1,x−ν j∈S

λj(x − νj)p(x−ν j)(t) −
r∑

j=1

λj(x)px(t). (1)

The solution may be obtained by solving the system of differential equations,
but, due to its high (possibly infinite) dimensionality, it is often statistically
estimated by simulating the traces of {Xt}, known as the stochastic simulation
algorithm (SSA) in chemical literature [7]. As the statistical estimation often
remains computationally expensive for desired accuracy, for the case when the
deterministic model is unsatisfactory due to the low multiplicities of many molec-
ular species [18], different further approximation methods have been proposed,
major challenge to which remains the quantification of approximation accuracy
(see [32] and references therein for a thorough review on the subject).

3 Moment Calculations

We consider a generic example with m different DNA states regulating a sin-
gle protein, without feedback. The configurations of the DNA are indexed by
1, 2 . . . m, and we denote the transition rates between them (reaction propensi-
ties) by qij (we additionally define qii = −∑m

j=1 qij). We assume that the gene
chain is irreducible, justified by the reversibility of all reactions at the DNA. The
dynamics of the protein copy number is modelled as usually by a birth–death
process (with gene-state-dependent birth rate ki and linear death rate δ per
protein). The respective reaction system is schemed in Table 1, left.

The underlying stochastic process {X(t)} takes values in the state space
S ⊆ N

m+1, such that the first m components represent the DNA states, and the
last one is the protein count.

In the following, we will use notation X1:m(t) ∈ {0, 1}m, to denote the pro-
jection of the marginal process at time t, to the DNA-regulatory elements, and,
for better readability, we introduce N(t) := Xm+1(t) to denote the protein count
at time t.
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In total, since there is exactly one copy of the DNA, any state in S can be seen
as a gene state coupled with the protein copy number, i.e. S ∼= {1, 2, . . . ,m}×N.
We introduce short-hand notation s(i,n) for state x = (0, . . . , 1

︸ ︷︷ ︸
i

, . . . , 0,n) ∈ S.

Allowable transitions and their rates are summarised in Table 1, right.

Table 1. Two equivalent formulations of a multi-state gene expression model. Left : a
reaction system with m + 1 reaction species S1, . . ., Sm (gene states) and Sm+1 = P
(protein) with copy numbers X1(t), . . ., Xm(t) and Xm+1(t) = N(t), whereby X1(t) +
. . .+Xm(t) = 1 holds initially (and throughout time). Right : a two-component Markov
chain in which the first component indexes the gene state and the second component
gives the protein copy number.

Reaction Rate Reset map

Si → Sj qijXi
Xi → Xi − 1

Xj → Xj + 1

Si → Si+ P kiXi N → N + 1

P → ∅ δN N → N − 1

Transition Rate

(i, n) → (j, n) qij

(i, n) → (i, n + 1) ki

(i, n) → (i, n − 1) δn

We arrange the probabilities pn,i(t) := P(X(t) = s(i,n)) of being in gene state
i and having n protein into a column vector

pn(t) = (pn,1(t), . . . , pn,m(t))T .

The probability vector satisfies a system of difference–differential equations

dpn

dt
= Apn + Λk(pn−1 − pn) + δ((n + 1)pn+1 − npn), (2)

where A = Qᵀ is the Markovian generator matrix and Λk is a diagonal square
matrix with the elements of the vector k = (k1, . . . , km)T placed on the main
diagonal. We study (2) subject to the initial condition

pn(0) = δn,n0ej0 (3)

in which n0 is the initial protein copy number, j0 is the initial gene state, δn,n0

represents the Kronecker delta, ej0 is the j0-th element of the standard basis in
the m-dimensional Euclidean space.
Let us introduce the variables

p(t) =
∞∑

n=0

pn(t), 〈N(t)〉 =
∞∑

n=0

n1T pn(t), (4)

f(t) =

( ∞∑

n=0

npn(t)

)

− 〈N(t)〉p(t), (5)

σ2(t) =

( ∞∑

n=0

n21T pn(t)

)

− 〈N(t)〉2. (6)
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Note that 1T pn(t) = pn,1(t) + . . . + pn,m(t), where 1ᵀ = (1, . . . , 1) is the m-
dimensional row vector of ones, gives the marginal protein probability mass func-
tion. It is instructive to interpret the variables p(t) and f(t) from the standpoint
of the reaction-network formulation of the model (Table 1, left). The elements of
the copy-number vector X1:m(t)ᵀ of gene states can be zero or one, with exactly
one of them being equal to one; the gene-state copy-number statistics can be
expressed in terms of (4)–(6) as

〈X1:m(t)〉 = p(t),
〈N(t)X1:m(t)〉 − 〈N(t)〉〈X1:m(t)〉 = f(t),

〈X1:m(t)X1:m (t)ᵀ〉 − 〈X1:m(t)〉〈X1:m(t)〉ᵀ = Σ(t) = Λp(t) − p(t)p(t)T .

The variables (4)–(6) thus fully describe the mean and covariance of the reaction
system in Tabl 1, right. In particular, f(t) is the covariance between the gene
state and protein copy number; Σ(t) is the covariance matrix of the gene state
(with itself).

The variables (4)–(6) satisfy a system of differential equations (see Appendix
B for derivation)

dp

dt
= Ap,

d〈N(t)〉
dt

= kT p − δ〈N(t)〉, (7)

df

dt
= Af − δf + Σk, where Σ = Λp − ppT , (8)

dσ2

dt
= 2kT f + kT p + δ〈N(t)〉 − 2δσ2 (9)

subject to initial conditions

p(0) = ej0 , 〈N(0)〉 = n0, f(0) = 0, σ2(0) = 0, (10)

where ej0 is the j0-th element of the standard basis in m-dimensional Euclidean
space.

Equating the derivatives in (7)–(9) to zero, we obtain steady state protein
mean and Fano factor in the form

〈N(t)〉 =
kT p̄

δ
,

σ2

〈N(t)〉 = 1 +
kT f̄

kT p̄
, (11)

where p̄ and f̄ satisfy algebraic equations

Ap̄ = 0, (A − δ)f̄ + Σk = 0. (12)

We note that the solution f̄ to (12) can be represented as

f̄ =
∫ ∞

0

e−δt
(
etA − p̄1T

)
dtΣk. (13)

Equation (13) connects the magnitude of f̄ to the equilibration timescale of the
gene-state Markov chain (note that p̄1ᵀ = limt→∞ etA ). Specifically, if A = Ã/ε,
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where ε � 1, i.e. the gene transition rates are O(1/ε) large, then substituting
t = εs into (13) implies that

f̄ = ε

∫ ∞

0

(
esÃ − p̄1T

)
dsΣk + O(ε2),

which is O(ε) small. Correspondingly, the (steady-state) protein Fano factor (11)
will differ from the Poissonian value of 1 by an O(ε) quantity. This concludes the
argument that, in agreement with intuition, if all rates are faster by an order of
magnitude (ε−1), then, as expected, the magnitude of equilibration time-scale
of the whole chain scales down with the same factor. The fast fluctuations of the
gene chain are thereby averaged out at the downstream level of the protein.

However, as will be demonstrated in the next section with a specific example
of a four state chain, the largeness of transition rates does not guarantee, on its
own, fast equilibration, and the connectivity of the chain can play a crucial role.
Indeed, we will show that one can slow down equilibriation (and hence increase
protein noise) by increasing some of the transition rates.

Fig. 1. Dependence of 〈N(t)〉 ± σ(t) on t for a value of ε = 0.01, using two regimes. Left:
“fast” scaling regime where all transition rates are O(1/ε). Right: “slow by fast” scaling
regime, where the backward rates are speeded up to O(1/ε2). ODE results (dashed line)
are cross-validated by Gillespie simulations (solid line). The chain is initially at state
j0 = 2, and the amount of protein is set to n0 = 50. The transition matrix parameters

are set to ãg = b̃g = ãr = b̃r = ˜̃ab =
˜̃
bb = 1.
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3.1 Four-State Chain

We specifically focus on a case with four gene states, with transition matrix

A =

⎛

⎜
⎜
⎝

−ar ab 0 0
ar −ab − ag bg 0
0 ag −bg − bb br
0 0 bb −br

⎞

⎟
⎟
⎠ (14)

(recall that the matrix A is shown as a transpose of the graph of connections,
the respective graph is depicted in Fig. 2, left). We investigate two alternative,
different scaling regimes with respect to a small dimensionless parameter ε:

Fast. We assume that all transition rates are O(1/ε), i.e.

ag =
ãg

ε
, ab =

ãb

ε
, ar =

ãr

ε
, bg =

b̃g
ε

, bb =
b̃b
ε

, br =
b̃r
ε

,

where ãg, ãb, ãr, b̃g, b̃b, and b̃r are O(1).
Slow by fast. We speed up the backward rates by making them O(1/ε2),
i.e.

ag =
ãg

ε
, ab =

˜̃ab

ε2
, ar =

ãr

ε
, bg =

b̃g
ε

, bb =
˜̃bb
ε2

, br =
b̃r
ε

. (15)

where ãg, ˜̃ab, ãr, b̃g, ˜̃bb, and b̃r are O(1).
We first numerically analyse the transient protein dynamics for these two scaling
scenarios. In Fig. 1, we plot the average protein count and the standard deviation.
Increasing the speed of rates from states 2 (resp. 3) to state 1 (resp. 4) not
only does not increase the scale and decrease the protein noise, but significantly
slows down the protein dynamics and increases noise. In the next section, we
systematically derive that the case ‘slow by fast’ regime is approximated by a
slow-switching 2-state chain (shown in Fig. 2, right).

4 Singular-Perturbation Analysis of the Slow-by-fast
Regime

The probability dynamics generated by the transition matrix (14) in the slow-
by-fast scaling regime (15) is given by a system of four differential equations

ε2
dp1
dt

= ˜̃abp2 − εãrp1, (16)

ε2
dp2
dt

= εãrp1 − εãgp2 − ˜̃abp2 + εb̃gp3, (17)

ε2
dp3
dt

= εãgp2 − εb̃gp3 − ˜̃bbp3 + εb̃rp4, (18)

ε2
dp4
dt

= ˜̃bbp3 − εb̃rp4. (19)
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Equations such as (16)–(19) whose right-hand sides depend on a small parameter
ε are referred to as perturbation problems. Additionally, problems in which, like
in (16)–(19), the small parameter multiplies one or more derivatives on the left-
hand side, are classified as singularly perturbed [16,23]. We study solutions to
system (16)–(19) that satisfy an intial condition

pi(0) = piniti , i = 1, 2, 3, 4, (20)

where the right-hand side of (20) is a prescribed probability distribution. The
aim of what follows is to characterise the behaviour as ε → 0 of the solution to
(16)–(19) subject to (20).

We look for a solution to (16)–(19) in the form of a regular power series

pi(t; ε) = p
(0)
i (t) + εp

(1)
i (t) + O(ε2), i = 1, 2, 3, 4. (21)

Inserting (21) into (16) and (19) and collecting terms of same order yields

O(1) : p
(0)
2 = p

(0)
3 = 0, (22)

O(ε) : ˜̃abp
(1)
2 = ãrp

(0)
1 , (23)

˜̃bbp
(1)
3 = b̃rp

(0)
4 . (24)

Equations (22) imply that the probability of states 2 or 3 is O(ε)-small. Equa-
tion (23) means that, at the leading order, the probability of state 2 is propor-
tional to that of state 1; equation (24) establishes the analogous for states 3 and
4. Adding (16) to (17), and (18) to (19), yield

ε
d
dt

(p1 + p2) = −ãgp2 + b̃gp3, (25)

ε
d
dt

(p3 + p4) = ãgp2 − b̃gp3. (26)

Inserting (21) into (25)–(26) and collecting O(ε) terms gives

d
dt

(p(0)1 + p
(0)
2 ) = −ãgp

(1)
2 + b̃gp

(1)
3 , (27)

d
dt

(p(0)3 + p
(0)
4 ) = ãgp

(1)
2 − b̃gp

(1)
3 . (28)

Inserting (22)–(24) into (27)–(28) yields

dp
(0)
1

dt
= −ãgãr˜̃a

−1
b p

(0)
1 + b̃gb̃r

˜̃b
−1

b p
(0)
4 , (29)

dp
(0)
4

dt
= ãgãr˜̃a

−1
b p

(0)
1 − b̃gb̃r

˜̃b
−1

b p
(0)
4 . (30)

Equations (29)–(30) describe the probability dynamics of a two-state (or
random-telegraph) chain with states 1 and 4 and transition rates ãgãr/˜̃ab and
b̃gb̃r/

˜̃bb between them. Intriguingly, the emergent dynamics of (29)–(30) occurs
on the t = O(1) scale although the original system (16)–(19) featured only
O(1/ε) rates (or faster).
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4.1 Inner Solution and Matching

In singular-perturbation studies, the leading-order term of a regular solution (21)
is referred to as the outer solution [15,23]. As is typical in singularly perturbed
problems, the outer solution satisfies a system, here (29)–(30), that is lower-
dimensional than the original system (16)–(19); the remaining components of
the outer solution are trivially given by (22). Therefore, the initial condition (20)
cannot be immediately imposed on the outer solution. In order to formulate an
appropriate initial condition for (29)–(30), we need to study (16)–(19) on the
fast timescale, find the so-called inner solution, and use an asymptotic matching
principle [15,23] to connect the two asymptotic solutions together.

1 2 3 4

ãrε
−1 ãgε

−1 ˜̃bbε−2

b̃rε
−1b̃gε

−1˜̃abε
−2

... reduces to

1 4

ãgãr/˜̃ab

b̃g b̃r/˜̃bb

Fig. 2. (left) Four-state chain at the DNA: all rates are faster than O(1): some by
order or magnitude ε−1, and some even faster, by order of magnitude ε−2. (left) The
emergent dynamics is approximated by a two-state chain. Intriguingly, the emergent
dynamics of occurs on the t = O(1) scale although the original system featured only
O(1/ε) rates and faster.

In order to construct the inner solution, we focus on the fast dynamics of
system (16)–(19) by means of a transformation

t = ε2 T , pi(t) = Pi(T ). (31)

Inserting (31) into (16)–(19) yields a time-rescaled system

dP1

dT
= ˜̃abP2 − εãrP1, (32)

dP2

dT
= εãrP1 − εãgP2 − ˜̃abP2 + εb̃gP3, (33)

dP3

dT
= εãgP2 − εb̃gP3 − ˜̃bbP3 + εb̃rP4, (34)

dP4

dT
= ˜̃bbP3 − εb̃rP4. (35)

Note that in the time-rescaled system (32)–(35), the time derivative is no longer
multiplied by a small parameter.

Pi(T ; ε) = P
(0)
i (T ) + εP

(1)
i (T ) + O(ε2), i = 1, 2, 3, 4. (36)

into (32)–(35) and collecting the O(1) terms yield

dP
(0)
1

dt
= −dP

(0)
2

dt
= ˜̃abP

(0)
2 ,

dP
(0)
3

dt
= −dP

(0)
4

dt
= −˜̃bbP

(0)
3 . (37)

11
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Since the reduced problem (37) retains the dimensionality of the original problem
(32)–(35), we can solve it subject to the same initial condition

P
(0)
i (0) = piniti , (38)

which yields

P
(0)
1 (T ) = pinit1 + pinit2 (1 − e−˜̃abT ), P

(0)
2 (T ) = pinit2 e−˜̃abT , (39)

P
(0)
3 (T ) = pinit3 e−˜̃bbT , P

(0)
4 (T ) = pinit4 + pinit3 (1 − e−˜̃bbT ). (40)

Thus, on the inner timescale, there occurs a fast transfer of probability mass
from the states 2 and 3 into the states 1 and 4, respectively.

Fig. 3. The inner, outer, and composite approximations (solid curves) to the first com-
ponent of the exact solution (dashed curve) to (16)–(20) (time is shown at logarithmic
scale). The timescale separation parameter is set to ε = 0.01. The chain is initially at
state 2, i.e. pinit

2 = 1, pinit
1 = pinit

3 = pinit
4 = 0. The transition matrix parameters are set

to ãg = b̃g = ãr = b̃r = ˜̃ab =
˜̃
bb = 1.

According to the asymptotic matching principle [15,23], the large-T behaviour
of the inner and the small-t behaviour of the outer solution overlap, i.e.

p
(0)
1 (0) = P

(0)
1 (∞) = pinit1 + pinit2 , (41)

p
(0)
4 (0) = P

(0)
4 (∞) = pinit3 + pinit4 . (42)

Equations (41)–(42) establish the relationship between the original initial condi-
tion (20) and the initial condition that needs to be imposed for the outer solution;
solving (29)–(30) subject to (41)–(42) yields

p
(0)
1 (t) =

b̃g b̃r
˜̃bb

ãgãr
˜̃ab

+ b̃g b̃r
˜̃bb

+

⎛

⎜
⎝pinit1 + pinit2 −

b̃g b̃r
˜̃bb

ãgãr
˜̃ab

+ b̃g b̃r
˜̃bb

⎞

⎟
⎠ e

−
(

ãgãr
˜
ãb

+
b̃g b̃r
˜
b̃b

)
t
, (43)

12
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p
(0)
4 (t) =

ãgãr
˜̃ab

ãgãr
˜̃ab

+ b̃g b̃r
˜̃bb

+

⎛

⎜
⎝pinit3 + pinit4 −

ãgãr
˜̃ab

ãgãr
˜̃ab

+ b̃g b̃r
˜̃bb

⎞

⎟
⎠ e

−
(

ãg ãr
˜
ãb

+
b̃g b̃r
˜
b̃b

)
t
. (44)

We note that the second and third components of the outer solution are trivially
given by p

(0)
2 (t) = p

(0)
3 (t) = 0 by (22). The outer solution (43)–(44) provides

a close approximation to the original solution for t = O(1) but fails to capture
the behaviour of the initial transient; the inner solution (39)–(40) provides a close
approximation for T = O(1), i.e. t = O(ε2), but disregards the outer dynamics.
A uniformly valid composite solution can be constructed by adding the inner and
outer solutions up, and subtracting the matched value, i.e.

pcomp
1 (t) = p

(0)
1 (t) − pinit2 e−˜̃abt/ε2

, pcomp
2 (t) = pinit2 e−˜̃abt/ε2

, (45)

pcomp
3 (t) = pinit3 e−˜̃bbt/ε2

, pcomp
4 (t) = p

(0)
4 (t) − pinit3 t−˜̃bbt/ε2

. (46)

Figure 3 shows the exact solution to (16)–(20), the inner solution (39)–(40), the
outer solution (43)–(44), and the composite solution (45)–(46).

5 Discussion and FutureWork

The key ingredient of our analysis is the separation of temporal scales at the level
of the gene state chain. If all gene transition rates are of the same order, say O(1/ε),
then the chain equilibrates on a shortO(ε) timescale (theO(1) timescale is assumed
to be that of protein turnover). This situation has been widely considered in liter-
ature, e.g. [25,34]. In the example on which we focused in our analysis, however,
some transition rates are of a larger order, O(1/ε2). These faster rates generate
an O(ε2) short timescale in our model. Importantly (and counterintuitively), the
acceleration of these rates drives an emergent slow transitioning dynamics on the
slow O(1) timescale. This means, in particular, that the transient behaviour, as
well as stochastic noise, is not averaged out but retained at the downstream level
of protein dynamics. We expect that more general networks of gene states can gen-
erate more than two timescales (fast and slow). Results from other works can be
used to compute approximations for multiple timescales [9]. In particular, we note
that although our example retains some O(1/ε) transition rates, no distinguished
dynamics occurs on the corresponding O(ε) timescale. We expect, however, the
intermediate O(ε) timescale can play a distinguished role in more complex sys-
tems.

The possibility of realistic GRNs implementing slow gene expression dynamics
by accelerating reactions at the DNA, opens up fundamental biological questions
related to their regulatory and evolutionary roles. For modelling, the uncertainty
about even the magnitude of biochemical reaction rates pressures us to account for
the potentially emerging slow-by-fast phenomenon: approximations resting on the
argument that all rates are ‘sufficiently fast’, while not accounting for the topology

13
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of interactions at the DNA, can lead to wrong conclusions. The key feature of the
4-state example presented in this paper are very fast rates towards two different
states which are poorly connected and consequently hard to leave. This situation
will likely be seen in larger, realistic gene regulatory networks, because the rate of
forming larger functional complexes typically depends on the order of TF’s binding
at the DNA. For instance, in a biologically realisable gene regulatory circuit shown
in [11], a pair of activators and a pair of repressors compete to bind the DNA, so
to rapidly transition to highly stable conformational change at the DNA. One of
the interesting directions for future work is automatising the derivation of singular
perturbation reduction shown in Sect. 4. Such a procedure would allow us to sys-
tematically explore reductions for larger gene regulatory networks. Additionally,
we want to examine different topologies and sizes of networks to generalize our
results. This could reveal if the backward reactions are always the crucial factor in
causing the slow-by-fast phenomenon.

Slow-by-fast phenomena we show here, could appear in application domains
beyond gene regulation, i.e., wherever nodes over a weighted network regulate a
collective response over time. For instance, in network models used to predict the
spread of information or spread of disease, among coupled agents [26,36], or in
network-models for studying the role of communication in wisdom of the crowds
(known to be enhanced by interaction, but at the same time hindered by infor-
mation exchange [1,20]). Finally, networks of neurons are known to have different
intrinsic time-scales, in addition to the time-scales that arise from network connec-
tions [8].

Appendix A:Mechanism of GeneRegulation - Examples

Example 1 (basal gene expression). Basal gene expression with RNAP binding can
be modelled with four reactions, where the first reversible reaction models binding
between the promoter site at the DNA and the polymerase, and the second two
reactions model the protein production and degradation, respectively:

DNA,RNAP ↔ DNA.RNAP at rates k, k−

DNA.RNAP → DNA.RNAP + P at rate α

P → ∅ at rate β.

The state space of the underlying CTMC S ∼= {0, 1} × {0, 1, 2, . . .}, such that
s(1,x) ∈ S denotes an active configuration (where the RNAP is bound to the DNA)
with x ∈ N protein copy number.

Example 2 (adding repression).Repressor blocking the polymerase binding can be
modelled by adding a reaction

DNA,R ↔ DNA.R

In this case, there are three possible promoter configurations, that is, S ∼=
{DNA,DNA.RNAP,DNA.R} × {0, 1, 2, . . .} (states DNA and DNA.R} are inactive
promoter states).

14
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Appendix B: Derivation ofMoment Equations

Multiplying the master equation (2) by n(n − 1) . . . (n − j + 1) and summing over
all n ≥ 0 yields differential equations [37]

dνj

dt
= Aνj + j (Λkνj−1 − δνj) (B1)

for the factorial moments

νj(t) =
∞∑

n=0

n(n − 1) . . . (n − j + 1)pn(t). (B2)

The quantities (4)–(6) can be expressed in terms of the factorial moments as

p = ν0, 〈n〉 = 1ᵀν1, f = ν1 − (1ᵀν1) ν0, σ2 = 1ᵀν2 + 1ᵀν1 − (1ᵀν1)
2 .

(B3)
Differentiating (B3) with respect to t and using (B1), one recovers equations (7)–
(9).
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