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Abstract 
 

The major domains of psychological variation are intrinsically multivariate, and can be 
mapped at various levels of resolution—from broad-band descriptions involving a small number 
of abstract traits to fine-grained representations based on many narrow traits. As the number of 
traits increases, the corresponding space becomes increasingly high-dimensional, and intuitions 
based on low-dimensional representations become inaccurate and misleading. The consequences 
for individual and group differences are profound, but have gone largely unrecognized in the 
psychological literature. Moreover, alternative distance metrics show distinctive behaviors with 
increasing dimensionality. In this paper, I offer a systematic yet accessible treatment of 
individual and group differences in multivariate domains, with a focus on high-dimensional 
phenomena and their theoretical implications. I begin by introducing four alternative metrics (the 
Euclidean, Mahalanobis, city-block, and shape distance) and reviewing their geometric 
properties. I also examine their potential psychological significance, because different metrics 
imply different cognitive models of how people process information about similarity and 
dissimilarity. I then discuss how these metrics behave as the number of traits increases. After 
considering the effects of measurement error and common methods of error correction, I 
conclude with an empirical example based on a large dataset of self-reported personality. 

 
Keywords: distance metrics; high-dimensional statistics; individual differences; 

multivariate domains. 
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Introduction 
 

The major domains of psychological variation are intrinsically multivariate. Personality, 
cognitive ability, interests, and values can all be represented as multidimensional trait spaces and 
mapped at various levels of resolution—from broad-band descriptions involving one or a few 
abstract traits to fine-grained representations based on many narrow, specific traits. For example, 
standard psychometric models of intelligence include a general factor (g), about 8-16 broad 
ability factors, and dozens of narrow abilities (see McGrew, 2009). In the field of personality, the 
canonical “Big Five”—Extraversion, Agreeableness, Conscientiousness, Neuroticism/Emotional 
Stability, and Openness—show a higher-order structure that can be summarized by two 
metatraits (Stability and Plasticity; DeYoung et al., 2002; Saucier, 2009), or even a single 
“general factor of personality” (though the substantive meaning of this factor is disputed; see 
Just, 2011; Davies et al., 2015; van der Linden et al., 2017). Descending in the hierarchy, the Big 
Five (known as “domains” in the terminology of the five-factor model) can be parsed into ten 
narrower “aspects”, and further subdivided into 30-45 facets (DeYoung et al., 2007). Cattell’s 
16PF model describes five global factors and 16 primary factors (15 personality traits plus 
reasoning/intelligence; Cattell & Schuerger, 2003); while the six factors of the HEXACO model 
can be refined into 24 facets (Lee & Ashton, 2004). In recent years, some researchers have 
argued that single personality items—which range from dozens to hundreds in typical 
questionnaires—may describe trait-like patterns of behavior below the level of facets (e.g., 
Mõttus et al., 2019; Revelle et al., 2021). 

 
The Strange World of High-Dimensional Spaces 
 

When a psychological domain is represented geometrically as a multidimensional space, 
an individual’s combination of traits or profile is described by a point in that space. Likewise, the 
location of a group of individuals can be summarized by its multivariate mean or centroid, which 
corresponds to the average profile for that group. As the number of traits used to map a given 
domain increases, the corresponding space becomes increasingly high-dimensional. The 
consequences for individual and group differences are profound—and yet, they have gone 
largely unrecognized in the psychological literature. Our geometric intuitions are inevitably 
based on two- and three-dimensional representations. Lacking direct visualization of higher-
dimensional spaces, it is natural to assume that distributions in 10, 20, or 100 dimensions will 
behave in key respects like their low-dimensional counterparts. But this is a mistake. High-
dimensional spaces are not just large: they are vast and sparse in ways that stretch imagination, 
giving rise to a host of important but counterintuitive phenomena. These phenomena are usually 
discussed as part of the so-called “curse of dimensionality” (or its mirror image, the “blessing of 
dimensionality;” see Altman & Krzywinski, 2018; Gorban et al., 2020).  

 
Consider a normal distribution, which is a reasonable approximation for many 

psychometric traits. In the familiar uni- and bivariate cases, the mass of the distribution clusters 
around the mean (or centroid), and only a small proportion of points are located in the tails. But 
as dimensionality increases, a larger proportion of the probability mass becomes concentrated in 
the tail region, where the probability density is low. Stated otherwise, the majority of the points 
move far away from the centroid, along a progressively thinner “shell” that envelopes a mostly 
empty interior (Giraud, 2015; van Tilburg, 2019). As the points disperse further in space, the 
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distribution of distances gets narrower relative to their size (distance concentration), with the 
result that all the points in the distribution tend to become approximately equally distant from 
one another, as well as from the centroid (see Aggarwal et al., 2001; Altman & Krzywinski, 
2018; Giraud, 2015). Meanwhile, if the points belong to two or more distributions with different 
centroids, small differences across multiple dimensions tend to cumulate, sharpening the overall 
separation between the distributions even if they overlap substantially on any individual variable. 
This often allows one to classify individual points into different groups or clusters with 
increasing accuracy as dimensionality increases (Bennett et al., 1999; Zimek et al., 2012; see also 
Gorban et al., 2020).  

 
Implications for Individual and Group Differences 
 

For an example of how these statistical phenomena can have important consequences in 
the real world, consider my and my colleagues’ work on multivariate sex differences in 
personality. Until recently, the consensus in the literature was that overall sex differences in 
personality and behavior are small, because male and female distributions largely overlap on 
most psychological variables (Hyde, 2005, 2014; Zell et al., 2015). But this is only true if 
variables are considered one by one. When differences across the traits that make up a domain 
are aggregated into a multivariate effect size, the separation between the sexes can increase 
dramatically (Del Giudice, 2009; Del Giudice et al., 2012). Predictably, the effect is stronger 
when the domain is mapped with many narrow traits (e.g., the 30 facets of the Big Five) 
compared with a few broad traits (e.g., the Big Five). When personality is measured at the level 
of facets, the overall difference between the average male and female profiles in English-
speaking countries is consistently larger than two standard deviations, corresponding to an 
overlap of less than 30% (Del Giudice, 2022; Del Giudice et al., 2012; Kaiser, 2019; Kaiser et 
al., 2020). For comparison, a detailed study of facial anatomy in males and females found an 
overall sex difference of approximately three standard deviations, corresponding to an overlap of 
about 10% between the distributions of male and female faces (Hennessy et al., 2005). 

 
Another notable application of these concepts can be found in a recent paper by van 

Tilburg (2019), brilliantly titled “It’s not unusual to be unusual.” The author noted that, as the 
number of traits used to describe personality increases, the frequency of “average” personality 
profiles (i.e., those close to the distribution centroid) can be expected to decrease very quickly. 
By including more than a handful of traits, one ends up in a paradoxical situation in which 
almost every individual in the population is highly “unusual” when compared with the average—
in other words, the average personality profile ceases to be typical in any meaningful sense. The 
same phenomenon has been recognized for some time in the field of face perception, where it is 
known as the “typicality paradox” (Burton & Vokey, 1998). Individual faces can be represented 
as profiles of morphological features, and thus located in a multivariate face space that spans 
dozens if not hundreds of dimensions (Valentine et al., 2016; more on this below). Owing to the 
high-dimensional nature of this space, “average” faces turn out to be surprisingly rare, and 
observers rate the majority of people’s faces as distinctive rather than typical (Burton & Vokey, 
1998; Lewis et al., 2014; Valentine et al., 2016).  

 
From these brief examples, it is clear that high-dimensional phenomena have important 

implications for our understanding of psychological variation. However, they have yet to be 
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explored in a systematic fashion. An especially important issue that awaits investigation is the 
impact of using alternative distance metrics. For example, van Tilburg (2019) employed the 
familiar Euclidean distance to measure differences between individual and average profiles. In 
contrast, research on multivariate sex differences relies on the Mahalanobis distance, which is 
the multivariate equivalent of Cohen’s d (see Del Giudice, 2022). These metrics have different 
properties, and respond in different ways to patterns of correlations among traits (more on this 
below). This is important because, in most psychological domains, narrow traits are not just 
more numerous than their broad-band counterparts, but also more strongly correlated to one 
another. Besides the Euclidean and Mahalanobis distances, several other indices can be used to 
measure profile (dis)similarity (e.g., Carroll & Field, 1974; Cronback & Gleser, 1953; Skinner, 
1978); not only do different metrics have different psychological implications, they also show 
distinctive behaviors in high-dimensional scenarios. Researchers dealing with multivariate 
domains should be fully aware of how the choice of a metric can affect the results and 
interpretation of their studies.  

 
Overview of the Paper 
 

In this paper, I offer a systematic yet accessible treatment of individual and group 
differences in multivariate domains, with a focus on high-dimensional phenomena and their 
theoretical implications. I begin by introducing four alternative distance metrics, reviewing their 
geometric properties, and examining the significance of those properties from a cognitive 
standpoint. I then discuss how these metrics behave as the number of traits increases, and their 
potential uses in describing individual and group variation. After considering the effects of 
measurement error and common methods of error correction, I conclude with an empirical 
example based on a large dataset of self-reported personality. Throughout the paper, I illustrate 
the concepts I present with examples from the study of faces and face perception (Bruce & 
Young, 2012). Human faces are familiar, psychologically salient, highly multidimensional, and 
show significant patterns of group differences (e.g., between males and females). For these 
reasons, they are a great source of analogies, and can be used to build reliable intuitions on a 
topic that is far from intuitive. 

 
Alternative Distance Metrics and Their Meaning 

 
Geometrically, the difference between two multivariate profiles (of individuals and/or 

groups) corresponds to the distance between two points in the k-dimensional space defined by 
the k traits of interest. The question of how to best compare psychological profiles is not new; 
there is a venerable methodological literature on this topic going back to the 1930s, and more 
than a dozen (dis)similarity indices that have been proposed and tested over the years (Carroll & 
Field, 1974; Cronbach & Gleser, 1953; Furr, 2010; McCrae, 2008; Skinner, 1978; see also Jones 
& Furnas, 1987). In this paper I focus on four indices that satisfy the axioms of a metric1 
(meaning that they are proper distances from a geometric standpoint), are clearly interpretable, 
and—taken together—cover most of the useful ground:  the Euclidean distance (D2), the 
Mahalanobis distance (DM), the city-block distance (D1), and the shape distance (DS).  

 
1 The three axioms are: (1) the distance between x and y is zero if and only if x = y; (2) the distance between x and y 
is equal to the distance between y and x (symmetry); and (3) the distance between x and z is less than, or equal to, 
the sum of the distances between x and y and between y and z (triangle inequality). 
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All these metrics can be used to make objective comparisons between individual and/or 

group profiles, with different costs and benefits depending on the task at hand. From this 
perspective, distance metrics are quantification tools that researchers use to turn differences 
between profiles into numerical values, which can then be subjected to various kinds of analyses. 
But the same metrics can also be used as cognitive models of how people process information 
about differences and similarities. This raises some fascinating questions: when does it make 
sense to use a particular metric to represent distances in psychological space? And what are the 
implications for the way in which individual and/or group differences are perceived and 
evaluated? Needless to say, the overarching assumption is that psychological perceptions of 
similarity can be adequately represented by geometric distances. While this is a common and 
generally well-supported assumption, geometric models of similarity are not without challenges 
and limitations, especially when dealing with abstract, non-perceptual representations (e.g., 
similarities between countries). For an overview of potential problems and alternative 
approaches, see Goldstone and Son (2013).  

 
Euclidean Distance 
 

The ordinary Euclidean distance D2 is the length of the straight-line segment connecting 
two points: 

 
𝐷! = #∑ (𝑥"# − 𝑥!#)!$

#%" )"/! (1) 
 
where x1i and x2i are the two scores or group means on the ith dimension (trait).  
 
An important property of the Euclidean distance is that it is invariant under any rigid 

rotations of the axes. This means that the distance between any two points within a domain does 
not depend on the specific choice of the k dimensions used to describe that domain. 

 
If the traits are measured on arbitrary scales, or there are other reasons to weigh all of 

them equally, D2 can be computed from standardized scores: 
 

𝐷! = #∑ (𝑧"# − 𝑧!#)!$
#%" )"/! = +∑ ,'!"('#"

)"
-
!

$
#%" .

"/!
= (𝐝*𝐝)"/!	 (2) 

 
where Si is the standard deviation of the ith trait (pooled in the case of two groups), and d 

is a column vector of standardized univariate differences (i.e., values of Cohen’s d in the case of 
two groups). Note that, as a general rule, the standardized D2 lacks rotational invariance. This is 
because, after rotation, the rotated scores have to be re-standardized to their new standard 
deviations, which changes D2 unless the traits are orthogonal with equal variance.  

 
Cognitive Implications  

 
The Euclidean distance D2 is the default metric in many common models of 

psychological similarity, including those based on multidimensional scaling (MDS; see Arabie, 
1991; Borg et al., 2018). From an information-processing perspective, D2 is consistent with the 
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idea that the difference between two objects is evaluated holistically, so that multiple dimensions 
are integrated into a unitary representation. Dimensions that are processed in this way are usually 
described as integral; common examples are pitch and loudness for sounds and hue, brightness, 
and saturation for colors. In contrast, when differences on multiple dimensions are evaluated one 
by one and then combined to yield an overall judgment of similarity, the dimensions are called 
separable or analyzable. An example is that of geometric shapes that vary in their size and 
orientation (Attneave, 1950; Borg et al., 2018; Garner, 1974; Shepard, 1987; more on this 
below). According to some authors, genuine perceptions of similarity are always based on 
integral processing, whereas tasks that involve classification and judgment encourage analytic 
processing (Garner, 1974). Indeed, changing the task instructions can promote analytic 
processing even in domains that are spontaneously perceived as integral, such as colors or 
sounds (Kemler Nelson, 1993). In the field of face perception, the evidence indicates that the 
geometry of face space is approximately Euclidean (Meytlis, 2011; Tredoux, 2002; Wilson et al., 
2002).2  

 
The rotational invariance of D2 implies that the specific dimensions chosen to describe 

the domain may be arbitrary rather than essential; one could rotate them at will, and the 
perceived distance between any two objects would remain the same. This lack of privileged axes 
is one of the defining features of integral processing. However, even domains that are 
spontaneously processed in a holistic fashion—and thus are well described by the Euclidean 
metric—may be represented more naturally along certain particular combinations of dimensions, 
which then serve as “weakly privileged” axes for analysis (Kemler Nelson, 1993). For example, 
pitch and loudness seem to represent true psychological dimensions in the auditory domain: 
when two sounds differ in pitch or loudness, they are easier to discriminate and classify than 
sounds that differ along a rotated dimension that combines both features. More generally, 
integral dimensions imply a Euclidean psychological space, but the converse is not necessarily 
true: certain cognitive processes may employ Euclidean representations even if the relevant 
dimensions can be analyzed separately in other contexts. 

 
I am not aware of any research that directly investigated the geometry of psychological 

spaces for personality, cognitive ability, values, and similar domains. A series of studies on 
preferences for social and sexual partners has shown that desirable traits across domains (e.g., 
kindness, ambition, intelligence, physical attractiveness) are integrated in a way that is well 
approximated by a Euclidean algorithm—so that, for example, D2 can be used to accurately 
quantify the perceived distance between any individual candidate and one’s ideal partner 
(Conroy-Beam & Buss, 2017; Conroy-Beam et al., 2019a; Krems & Conroy-Beam, 2020). 
However, it is possible that the computational logic of partner choice is somewhat unique—after 
all, the goal is not simply to describe or classify people, but to maximize the desirability of one’s 
friends and mates (see Conroy-Beam & Buss, 2017; Krems & Conroy-Beam, 2020; more on this 
below). As noted earlier, Euclidean representations do not imply that the relevant dimensions are 
always or necessarily processed in an integral fashion. Desirable traits such as intelligence, 
kindness, and physical attractiveness are clearly not arbitrary and can be analyzed separately 
with relative ease. A possible reason why they are integrated with a Euclidean algorithm is that, 

 
2 Even if differences between faces are usually perceived in a way that is well described by D2, it is still possible to 
induce violations of Euclidean geometry by using strategically constructed stimuli (e.g., ambiguous faces; Laub et 
al., 2007). 
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compared with other metrics such as the city-block distance (see below), D2 is disproportionately 
influenced by the largest discrepancies. As a result, the algorithm tends to discard potential 
partners who are severely lacking in one or a few key areas, even if they rate highly in the 
remaining ones (Conroy-Beam & Buss, 2017). 

 
Another hint that domains of psychological variation may be represented in Euclidean 

form comes from the very existence of multiple models of personality and cognitive ability, 
derived from alternative rotations of a similar number of factors. Examples in the personality 
domain include the “Alternative Five” by Zuckerman et al. (1993), the five global factors of the 
16PF (Cattell & Schuerger, 2003), and the six factors of the HEXACO (Lee & Ashton, 2004). 
The fact that experts find it hard to agree on the “true” basic dimensions of personality suggests 
that this domain may lack privileged or essential axes, and thus exhibit rotational invariance. At 
the same time, two key dimensions of social perception—usually labeled dominance and 
nurturance, or agency and communion—tend to emerge rather consistently across domains (e.g., 
first impressions from faces, judgments of familiar others, group stereotypes; see Stolier et al., 
2020) and define a two-dimensional space called the “interpersonal circumplex”. The same two 
dimensions can be recovered from a rotation of the Big Five traits Extraversion and 
Agreeableness (see et al., 2013), and may capture the same information with more psychological 
immediacy. Similar to colors and sounds, perceptions of people may be processed holistically as 
a default, but also possess some weakly privileged dimensions of analysis that facilitate 
comparison and classification.  

 
Mahalanobis Distance 
 

The Mahalanobis distance DM is a generalization of the standardized Euclidean distance 
that takes correlations among variables into account (De Maesschalck et al., 2000; Huberty, 
2005). Specifically, DM corresponds to the length of the straight-line segment between two 
points, divided by the value of the standard deviation along the direction of that segment. The 
formula for DM is: 

 
𝐷+ = [(𝒙𝟏 − 𝒙𝟐)*𝐒("(𝒙𝟏 − 𝒙𝟐)]"/! = (𝐝*𝐑("𝐝)"/!	 (3) 
 
where x1 and x2 are column vectors of scores or means, d is a column vector of 

standardized univariate differences, and S and R are the covariance and correlation matrices, 
respectively (pooled in the case of two groups). The difference between DM and D2 is illustrated 
in Figure 1.  

 
It is easy to verify from Eq. 6 that, if the traits are all orthogonal, the correlation matrix 

reduces to the identity matrix and DM reduces to the standardized Euclidean distance (Eq. 2). 
Importantly, the Mahalanobis DM is invariant to axis rotation, just like the unstandardized D2. 
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Figure 1. Illustration of the difference between the Euclidean distance D2 and the Mahalanobis 
distance DM. In the figure, X and Y are positively correlated. In the Euclidean plane, the circle 
(defined as the set of points at the same distance from a given point) has the familiar round shape. 
The Mahalanobis circle looks like an ellipse whose orientation depends on the correlation 
structure. Points b and c are equally distant from a according to D2, but c is closer to a according 
to DM. Conversely, points d and e are equally distant from a according to DM, but d is closer to a 
according to D2. 

 
 
 
When it is used to compare the average profiles of two groups, DM is the multivariate 

equivalent of Cohen’s d, and has the exact same interpretation in terms of distribution overlap, 
classification accuracy, and so forth (assuming multivariate normality and equality of covariance 
matrices between groups). For example, consider two univariate normal distributions with d = 
0.50 and two multivariate normal distributions with DM = 0.50. In both cases, the overlap 
between distributions is 80%; this implies an expected classification accuracy of 60% with linear 
discriminant analysis (LDA), which approximates the optimal classifier under multivariate 
normality (see Del Giudice, 2022; James et al., 2013).3 The formula for the overlapping 
coefficient OVL is: 

 
𝑂𝑉𝐿 = 	2Φ(−𝐷./2) (4) 

 
3 The Mahalanobis distance DM between two groups can be described equivalently as (a) the straight-line distance 
between the centroids, standardized by the value of the standard deviation in the direction of the line that connects 
the centroids; or (b) the standardized univariate difference between the two distributions, after they have been 
orthogonally projected on the discriminant axis (e.g., Thomas, 2003). This can be a source of confusion, because the 
line that connects the centroids does not coincide with the discriminant axis (except in special cases). The key is that 
description (a) refers to the standard deviation of the multivariate distribution in a particular direction (i.e., that of 
the line connecting the centroids), whereas description (b) refers to the standard deviation of a univariate 
distribution, obtained by orthogonally projecting the multivariate distribution onto the discriminant axis. If one 
orthogonally projects the multivariate distributions onto the line that connects the centroids, the distance between the 
resulting distributions is not equivalent to DM (see Thomas, 1999, 2003). However, if one projects the multivariate 
distributions onto the line connecting the centroids, not orthogonally but in the direction of the classification 
boundary, the resulting univariate distributions are equivalent to those on the discriminant axis, and their 
standardized distance is DM.  
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where F(×) is the standardized normal cumulative distribution function (CDF). OVL is the 

proportion of each distribution that overlaps with the other distribution, and ranges from 0 to 1. 
Similarly, the expected classification accuracy or probability of correct classification (PCC) for 
equal-sized groups is given by: 

 
𝑃𝐶𝐶 = 	Φ(𝐷./2). (5) 
 
If sample size is small relative to the number of traits (a simple rule of thumb is less than 

100 cases per trait), sampling error can inflate the estimated size of DM to a substantial degree. 
The upward bias in DM can be corrected with this formula: 

 

𝐷+/ = >𝑚𝑎𝑥 ,0, 0!10#($(2
0!10#(!

𝐷+! − 𝑘
0!10#
0!0#

-D
"/!
	 (6) 

 
where N1 and N2 are the sample sizes for the two groups and k is the number of traits (see 

Del Giudice, 2022). 
 
Cognitive Implications 
 

Because DM generalizes the Euclidean distance and shares the same basic properties 
(including rotational invariance), most of what I wrote about the cognitive implications of D2 
also applies to DM. Like D2, the DM distance implies integral processing, but with a twist: 
multiple dimensions are integrated into a unitary representation while taking their correlational 
structure into account (Figure 1). Experimental studies show that participants are good at 
detecting correlations between multiple features of the stimuli, whether the latter are abstract like 
geometric shapes or ecologically relevant like faces (e.g., Ashby & Perrin, 1988; Jones & 
Goldstone, 2013). A recent study by Stolier et al. (2020) showed that people possess detailed, 
realistic knowledge about the way in which different personality traits correlate with one another. 
In turn, this knowledge guides inferences and perceptions across multiple domains, from group 
stereotypes to impressions from face pictures (Stolier et al., 2020). 

 
Clearly, people are sensitive to correlational patterns and are able to integrate them in 

their judgments and decisions. The question is whether people do use information about 
correlations, particularly when dealing with differences and similarities between individuals. 
While this may seem an obvious strategy in presence of correlated traits, it can have some 
unexpected and potentially damaging consequences. In particular, DM as a measure of 
dissimilarity leads to violations of the dominance axiom, which holds that a pair of objects that 
differ on two dimensions must be more dissimilar than the corresponding pair of objects that 
differ on only one of the dimensions (see Perrin & Ashby, 1991). Imagine a pair of almost 
identical faces a and b that differ only because b has a larger nose than a. Now imagine another 
face c, which has a larger nose and larger ears. The Euclidean distance would indicate that a and 
c are more dissimilar than a and b. But if the size of the nose and that of the ear are positively 
correlated, the DM distance may judge c as more similar to a than b, thus violating the dominance 
axiom (see Figure 2).  
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Figure 2. The Mahalanobis distance DM violates the dominance axiom. Points a and b differ only 
on dimension X, while points a and c differ both on X (by the same amount) and on Y. To 
illustrate, a and b could be two faces that differ only in the size of the nose, while a and c differ in 
the size of the nose and that of the ears. The Euclidean distance would judge a and b as more 
similar than a and c; but since X and Y are correlated (e.g., larger noses tend to be associated with 
larger ears), a and c are more similar according to DM. 
 
 
To illustrate how dominance violations can have perverse effects under certain 

conditions, consider the integration of preferences in partner choice. In this context, using the 
Mahalanobis distance would be almost certainly suboptimal: since desirable traits tend to 
correlate positively with one another (Conroy-Beam et al., 2019b), a lower-value partner who 
rated poorly on two traits could be perceived as closer to the ideal—and hence more desirable—
than a higher-value partner who rated poorly on only one trait. Thus, a process of preference 
integration based on DM would systematically fail to maximize partner value, in contrast with the 
Euclidean criterion that people seem to follow (Conroy-Beam & Buss, 2017). I am not aware of 
any studies comparing D2 and DM as similarity criteria in psychological domains such as 
personality and cognitive ability. One way to do so would be to look for evidence of dominance 
violations, which are not expected if the relevant metric is Euclidean (see Perrin & Ashby, 1991).  

 
The caveats and complications of using DM as a measure of dissimilarity between 

individuals cease to apply when the task is to compare groups, or classify individuals as 
members of alternative groups. In group comparison and classification, the correlational 
structure of the traits provides critical information, and DM is clearly preferable to Euclidean 
distances that ignore correlations. If the assumptions of multivariate normality and equal 
covariance matrices hold, DM can be used to calculate the proportion of overlap between two 
distributions, in addition to several other indices of group difference (Del Giudice, 2022). Under 
the same assumptions, DM is the optimal criterion for classifying individuals into groups, and 
yields the same expected accuracy of LDA (see Ashby & Perrin, 1988; Del Giudice, 2022; 
Thomas, 1999, 2003). In sum, it is plausible to expect that people will take correlations into 
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account when dealing with group differences and classification; however, I do not know of any 
studies testing this prediction with respect to group differences in psychological traits. 

 
City-Block Distance 
 

The city-block distance D1 between two points is the sum of their absolute distances on 
each dimension: 

 
𝐷" = ∑ |𝑥"# − 𝑥!#|$

#%"  (7) 
 
or, in standardized form: 
 
𝐷" = ∑ |𝑧"# − 𝑧!#|$

#%" = ∑ F'!"('#"
)"

F$
#%" . (8) 

 
The name derives from the fact that, as it happens in cities with a North-South and West-

East street grid, the shortest path between two points is not the diagonal but rather a sum of 
perpendicular segments (D1 is also called the taxicab or Manhattan distance). The difference 
between D1 and D2 is illustrated in Figure 3. One notable point of comparison is that D1 is not 
invariant to axis rotation, so that changing the orientation of the axes will also alter the distances 
between points. 

 
 

 
 
Figure 3. Illustration of the difference between the Euclidean distance D2 and the city-block 
distance D1. The distance D1 between a and b is not the straight line from a to b (dashed line), but 
the sum of the distance on dimension X and that on dimension Y (i.e., a to c and c to b). The city-
block circle has the shape of a diamond; for example, d and e are equally distant from a according 
to D1. 
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Both the Euclidean and city-block distances are special cases of the generalized 
Minkowski distance: 

 
𝐷3 = #∑ |𝑥"# − 𝑥!#|3$

#%" )"/3. (9) 
 
The exponent p determines the order of the distance, and can range from 1 to infinity (the 

Minkowski distance is no longer a metric when p < 1). With p = 1 one obtains the city-block 
distance D1, whereas p = 2 returns the Euclidean distance D2. Note that D2 is the only Minkowski 
metric that exhibits rotational invariance. Also, as p increases above 1, the distance Dp becomes 
increasingly dominated by the traits showing the larger absolute differences (see Borg et al., 
2018).  
 
Cognitive Implications 
 

Modeling psychological similarity with the city-block distance implies that people form 
their judgment by first assessing the distance of two objects on each of the k dimensions of the 
domain, and then adding them to yield an overall rating of dissimilarity. Hence, D1 is the natural 
metric for fully analyzable dimensions, such as the height and width of rectangles or the size and 
orientation of geometric shapes (Borg et al., 2018; Garner, 1974; Shepard, 1987). When 
judgments reflect a mixture of integral and analytic processing, the most appropriate metric may 
be neither D1 nor D2, but a Minkowski distance with exponent p between 1 and 2 (for example 
D1.5 as in Gronau & Lee, 2020; see Shepard, 1991).  

 
Some researchers have argued that the city-block distance is often more cognitively 

plausible than its Euclidean counterpart, a notion that is not without empirical support (see 
Arabie, 1991; Kemler Nelson, 1993). For example, the studies of mate choice I discussed earlier 
generally favor a Euclidean model of preference integration, but also suggest that D1 may better 
predict attraction to short-term sexual partners under some conditions (Conroy-Beam & Buss, 
2017). Unfortunately, determining whether D1 provides the best fit to similarity data is often 
technically challenging, and can be an intractable problem for certain statistical methods (Arabie, 
1991; Gronau & Lee, 2020). Moreover, small deviations from a Euclidean space toward a city-
block metric can be easily drowned out by measurement noise (Carroll & Wish, 1974).  

 
Shape Distance 
 

All the distance metrics reviewed until now seek to quantify the overall dissimilarity 
between two multivariate profiles. However, in some cases it can be useful to focus on the 
specific features that make two profiles more or less similar. To this end, overall similarity can 
be partitioned into three components: elevation, scatter, and shape (Cronbach & Gleser, 1953; 
Furr, 2010; Skinner, 1978). Elevation can be operationalized as the mean score across all the 
traits; scatter as the variance of scores around the mean; and shape as the pattern of “peaks and 
valleys” in the profile (Figure 4). When plotted in parallel coordinates as in Figure 4A, two 
profiles with the same shape and scatter but different elevations will appear as parallel lines; 
whereas two profiles with the same shape but different levels of scatter will look like the 
“amplified” and “muted” versions of each other. In general, shape captures the relations among 
traits within the profile. For example, people who score higher in verbal tasks compared with 
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visuospatial tasks may share some common psychological features, regardless of their overall 
intelligence level (that is, their profile elevation). 

 
 

 
 
Figure 4. The (dis)similarity between two multivariate profiles can be decomposed into elevation, scatter, 

and shape. Panel (A) shows three four-dimensional profiles, plotted in parallel coordinates. Profile b has the same 
scatter and shape as a, but higher elevation; profile c has the same elevation and shape as a, but larger scatter. Panel 
(B) shows four two-dimensional profiles as points on a plane: b differs from a in elevation, c in scatter, and d in 
shape. Note that, in a two-dimensional space, all the points on the same side of the Y = X line have the same shape. 
Hence, all the points in the shaded area have the same shape as a, though they may differ in scatter and/or elevation. 

 
 
A simple and straightforward way to quantify shape similarity is to calculate the Pearson 

correlation between two profiles (r12). Because the correlation is unaffected by elevation and 
scatter, it is a “pure” index of shape similarity, and performs well even in comparison with more 
complex indices (Furr, 2010; McCrae, 2008). The value of r12 is +1 for maximum similarity, and 
reaches -1 (maximum dissimilarity) when the two profiles have opposite shapes (high when the 
other is low, and vice versa). The quantity (1 - r12) is known as correlation distance and ranges 
from 0 to 2.  

 
Although the correlation distance is not a proper metric, it can be turned into one with a 

simple transformation, yielding 
 
𝐷4 = [2(1 − 𝑟"!)]"/!. (10) 
 
The distance metric in Eq. 10 is used quite often in the literature (for example in 

applications of multidimensional scaling and clustering; see e.g., Borg, 2018; Revelle, 2018), but 
does not have a standard label.4 For convenience, in this paper refer to it as shape distance or DS.  
Like the distance correlation, DS ranges from 0 (maximum similarity) to 2 (maximum 

 
4 In their classic paper, Cronbach & Gleser (1953) used D² to denote the shape distance and distinguish it from the 
alternative metric D¢ (which combines information about shape and scatter). However, this notation is opaque and 
has not been followed in the more recent literature. 



  
 

Individual and Group Differences in Multivariate Domains 15 

dissimilarity). DS is equivalent to the Euclidean distance between two profiles, after each profile 
has been standardized with respect to its own mean and standard deviation (Cronbach & Gleser, 
1953). Because of the square root transformation, DS is especially sensitive to deviations from 
perfect similarity. To illustrate, the distance is DS = 0.45 when r12 = .90, reaches the midpoint of 
the scale (DS = 1.00) when r12 = .50, and goes up to DS = √2 » 1.41 when r12 = 0.  

 
Cognitive Implications 
 

While DS and other correlation-based indices are commonly used in research on profile 
similarity (e.g., Furr, 2010; McCrae, 2008), their cognitive implications remain obscure. I 
surmise that focusing on shape information to the exclusion of elevation and scatter does not 
work as a general-purpose strategy, but can become extremely useful in the context of certain 
well-defined problems. For example, as people get older, their facial features tend to become 
more pronounced (or “caricatured”). In the geometry of face space, this corresponds to a 
movement away from the centroid—that is, a joint change in the elevation and scatter of the 
profile (see Deffenbacher et al., 1998). By filtering out these effects, the shape distance would 
make it easier to recognize the same person, despite the physical changes of aging. Hence, 
indices of shape (dis)similarity such as DS may play a useful role in tracking the identity of 
specific individuals over time, even if the overall geometry of face space is best described as 
Euclidean (Meytlis, 2011; Wilson et al., 2002). 

 
Are there aspects of social perception that would similarly benefit from a narrow focus on 

profile shape? One can certainly speculate. Consider the pervasive dimensions of dominance and 
nurturance that I introduced earlier, and assume that they can be treated as non-arbitrary 
psychological axes. The shape distance DS cleaves this interpersonal space into two regions—
one in which dominance exceeds nurturance (marked by descriptors such as “dominant”, 
“arrogant”, and “cold-hearted”), and one in which nurturance prevails (“warm”, “unassuming”, 
“submissive”; see DeYoung et al., 2013). This distinction is intuitively salient, and is naturally 
captured by indices of profile shape such as DS.  

 
 

Distances in Multivariate Domains 
 

When the number of traits in a domain increases, the space of individual differences 
expands, and distances between profiles grow in predictable ways. In this section I examine how 
various distance metrics behave in high dimensions. I begin with patterns of individual 
differences (i.e., distances within a single distribution), then move on to consider group 
differences (i.e., distances between two distributions). The simulations I present are based on the 
standardized multivariate normal distribution (which approximates the distribution of many 
psychometric traits), but the same qualitative patterns apply more broadly, as long as 
distributions are reasonably symmetric without fat tails. The R code of the simulations is 
available at https://doi.org/10.6084/m9.figshare.13070576.  
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Patterns of Individual Differences  
 
Orthogonal Traits 
 

To begin, consider the case in which the k traits of interest are all orthogonal (Figures 5a-
5d). With Euclidean and Mahalanobis metrics, the average distances between pairs of 
individuals, and between individuals and the centroid, increase as √𝑘 (Figures 5A and 5B; 
Altman & Krzywinski, 2018; Giraud, 2015). Average city-block distances scale up as k, which is 
considerably faster (Figure 5C); at the same time, the distance concentration effect (relative to 
the average) occurs at a somewhat slower pace (Aggarwal et al. 2001), though in this particular 
case the difference is negligible (Figure 6A). As dimensionality increases, correlations among 
pairs of profiles tend to cluster more tightly around zero; as a result, the distribution of pairwise 
shape distances becomes more narrowly concentrated around DS = √2 » 1.41 (Figure 5D; 
Altman & Krzywinski, 2018). In contrast, the distribution of DS between individuals and the 
centroid does not follow a predictable pattern, as it depends on the particular coordinates of the 
centroid (for this reason, it is not shown in the figure). Note that this distance can only be 
calculated from unstandardized scores, and is only interpretable when those scores can be 
meaningfully compared across traits (i.e., not measured on arbitrary scales). 
 
Correlated Traits 
 

When traits are not orthogonal but correlated, they become partly redundant, so that the 
domain contains less independent variation than implied by the number of observed traits (k). 
The effective dimensionality (ED) of a distribution or dataset is the equivalent number of 
orthogonal dimensions (with equal variance) that would produce the same overall pattern of 
covariation (Del Giudice, 2020). If the traits are perfectly correlated with one another, they can 
be represented by just one dimension of variation and their ED is 1; if the traits are orthogonal 
with equal variance, the ED equals k. 
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Figure 5. Simulated distances between pairs of points and from the centroid, measured with four 
alternative metrics. Plots are based on a standardized multivariate normal distribution (10,000 
points) with k = 1 to 100 traits. Solid lines are average distances; shaded areas represent 90% of 
the distance distribution (5th to 95th percentile). In the left column, all traits are orthogonal. In the 
center and right columns, traits are uniformly correlated at r = .30 and .60; the top horizontal axis 
show the approximate effective dimensionality (ED) of the distribution, calculated with index n1. 
D2 = standardized Euclidean distance; DM = Mahalanobis distance; D1 = standardized city-block 
distance; DS = shape distance (from standardized scores). 
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Figure 6. Distance concentration with D1 and D2. Plots are based on a multivariate normal 
distribution (10,000 simulated points) with k = 1 to 100 traits. Shaded areas show the 5th and 95th 
percentiles of the distance distribution (from the centroid), normalized by the average distance. 
The light shaded area represents D1; the dark shaded area represents D2. In panel (A), all traits are 
orthogonal. In panels (B) and (C), traits are uniformly correlated at r = .30 and .60; the top 
horizontal axis show the approximate effective dimensionality (ED) of the distribution, calculated 
with index n1. D1 = standardized city-block distance; D2 = standardized Euclidean distance. 
 
 
It is usually the case that measurement error becomes more severe when traits become 

narrower (e.g., because traits are measured with fewer items); if uncorrected, measurement error 
deflates the apparent size of correlations and increases the ED of the dataset (more on this 
below). In this paper, I quantify the ED with the n1 index discussed in Del Giudice (2020).5 The 
same paper reviews the practical issues involved in the estimation of ED, including the impact of 
small sample size, deviations from normality, and other factors.  

 
Human faces offer an excellent illustration of the meaning of effective dimensionality. 

With principal component analysis (PCA), pictures of faces can be decomposed into orthogonal 
components (called eigenfaces) that encode different aspects of anatomy and appearance (see 
Meytlis & Sirovich, 2007; Sirovich & Meytlis, 2009a; Valentine et al., 2016). Eigenfaces can 
then be reassembled to yield a reconstructed version of the original pictures; using more 
components increases the dimensionality of the synthetic face space and yields more detailed 
reconstructions. The evidence indicates that about 70-100 components are sufficient to permit 
accurate face recognition (Burton et al., 2001; Meytlis & Sirovich, 2007; Sirovich & Meytlis, 
2009; see Section S1 of the Supplement). 

  
However, facial features do not vary independently but in a correlated fashion, as 

reflected in the unequal variance accounted for by the PCA components. This means that the ED 
of facial identity must be lower than 70-100 dimensions, perhaps substantially so. To get an 
initial estimate of the ED of this domain, I reanalyzed published data from Meytlis & Sirovich 
(2007) and Sirovich & Meytlis (2009b), which yielded a range of values from n1 = 27.8 to 43.4. 
(Note that these values are rough approximations; see Section S1 of the Supplement for details.) 

 
5 The n1 index is based on the Shannon entropy of the normalized eigenvalues of the correlation or covariance 
matrix. Other choices for entropy yield different indices of ED, but n1 can be recommended as a balanced, general-
purpose estimator (see Del Giudice, 2020). 
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These figures suggest that the facial traits involved in identity recognition span about 30-40 
effective dimensions, which is still a vast space for individual variation. From another 
perspective, these ED values are consistent with average trait correlations around .30-.35. In an 
intriguing study, Sheehan and Nachman (2014) found that facial traits are markedly less 
intercorrelated than body traits (less than .20 on average,6 compared with about .50 for body 
traits). Based on morphological and genetic data, the authors suggested that selection has acted to 
increase the variety and distinctiveness of human faces, as an adaptation to facilitate individual 
recognition (Sheehan & Nachman, 2014). 

 
As correlations among traits grow stronger (and the ED decreases), within-group 

Euclidean distances grow somewhat less steeply with the number of dimensions, and concentrate 
at a slower pace than in the orthogonal scenario (Figures 5E and 5I; see also Del Giudice, 2020; 
Durrant & Kabán, 2009). City-block distances also concentrate more slowly, although their 
average values increase at the same rate (Figures 5G and 5K). As can be seen in Figure 6, the 
difference in the distance concentration patterns of D1 and D2 becomes more clear-cut when 
traits are correlated (Figures 6B and 6C), compared with the orthogonal scenario (Figure 6A). In 
contrast with D1 and D2, the Mahalanobis distance DM automatically “corrects” for the 
correlational structure of the domain; accordingly, its within-group distribution is not affected by 
changes in trait correlations. Whereas Euclidean distances grow and concentrate more slowly 
when traits are more strongly correlated, the distribution of DM between individuals depends 
only on the number of traits in the domain (k) and not on their ED (Figures 5F and 5J). Similarly, 
the distribution of pairwise DS is insensitive to changes in correlations among traits, as illustrated 
in Figures 5H and 5L. 

 
Patterns of Group Differences 
 
Orthogonal Traits 
 

The first and most obvious measure of the difference between two groups is the distance 
between their respective centroids. Figure 7 illustrates the case of orthogonal traits, assuming 
that groups differ by the same amount on each individual trait (0.5 standard deviations in this 
example). Because traits are orthogonal, DM equals the standardized D2 (Figure 7A); and because 
univariate distances are constant across traits, these distances grow as √𝑘, whereas D1 scales up 
as k (Figure 7B). The Mahalanobis DM between two groups is the multivariate equivalent of 
Cohen’s d; as such, it can be used as an effect size, or converted into other effect sizes such as 
the overlapping coefficient (see Figure 7A). Since the shape distance between the centroids is 
insensitive to differences in elevation between groups, it does not follow any predictable pattern; 
whether DS increases, decreases, or remains constant as more traits are added depends entirely on 
the direction and (relative) size of each univariate difference. Again, the DS between centroids 
can only be calculated from mean unstandardized scores, and its interpretability depends on 
whether those scores can be meaningfully compared across traits. 

 
6 Note that Sheehan & Nachman (2014) measured only 18 facial traits (such as nose width and length), way too few 
to capture individual appearance at any level of detail. Had they measured more fine-grained traits, the additional 
measurements would have become increasingly redundant, and the average correlation would have increased 
accordingly. 
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Figure 7. Distance between the centroids of two groups, measured with three alternative metrics. 
Plots are based on two multivariate normal distributions with k = 1 to 100 orthogonal traits, and a 
univariate difference of 0.5 standard deviations on each trait. Panel (A) also shows the proportion 
of overlap between distributions, measured with the overlapping coefficient OVL (right vertical 
axis). D2 = standardized Euclidean distance; DM = Mahalanobis distance; D1 = standardized city-
block distance. 

 
 

Correlated Traits 
 

When traits are correlated, DM diverges from the standardized D2 under most scenarios, 
and can become either larger or smaller than its Euclidean counterpart. Whether DM is larger or 
smaller than D2 depends on the direction along which the centroids are separated, relative to the 
axes of variation in the data. Figure 8 illustrates his concept. Both the univariate differences and 
the standardized D2 are exactly the same in Figures 8A and 8B; the only difference is the 
correlation between the two traits. In Figure 8A, the connecting line is oriented along a major 
axis of variation, where the multivariate standard deviation is large. (Stated differently, the 
difference between the two groups goes “with the grain” of the correlational structure.) As a 
result, DM is smaller than D2. In Figure 8B, the connecting line is oriented along a minor axis of 
variation, where the standard deviation is small (i.e., the difference between the two groups goes 
“against the grain” of the correlational structure). The statistical separation between the 
distributions is sharper than in Figure 8A, and DM becomes larger than D2. 
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Figure 8. The Mahalanobis distance DM between two groups can be larger or smaller than the 
standardized Euclidean distance D2, depending on trait correlations. Dotted circles show the points 
at 1 standard deviation (SD) from the centroids, according to D2. Solid ellipses show the points at 
1 standard SD from the centroids according to DM. In panel (A), the line connecting the centroids 
is oriented along a major axis of variation, and DM is smaller than D2. In panel (B), the line 
connecting the centroids is oriented along a minor axis of variation, and DM is larger than D2, 
reflecting the sharper statistical separation between the two distributions. Note that the univariate 
standardized distances on the two traits (dX and dY) and the standardized D2 are the same in the 
two panels. 
 
 
A crucial implication of this principle is that increasing the number of traits in a domain 

will not necessarily lead to an increase in DM. As narrower traits become more redundant, each 
of them adds less unique information about the difference between the groups, and contributes 
less to the overall size of DM. In the limit, adding a trait that is just a linear combination of other 
traits (and hence completely redundant) has no effect whatsoever on DM. Of course, if sample 
size is small relative to the number of traits, the estimated DM may still be inflated by sampling 
error; the resulting bias can be corrected with the formula in Eq. 6.  

 
In the Introduction, I cited a study by Hennessy et al. (2005), which found an overall 

effect size of DM = 3.20 for sex differences in facial anatomy (bias-corrected estimate: DM = 
2.84).7 In a fascinating analysis, the authors calculated the effect size at varying levels of 
anatomical resolution, from a minimum of 24 three-dimensional landmarks per face (e.g., the tip 
of the nose) to a maximum of 5,453 landmarks. The size of sex differences was DM » 2.20 with 
24 landmarks, went up to about 3.00 when using 100 landmarks, and reached a plateau of 3.20 
with 200 landmarks. Increasing the anatomical resolution behind that point did not change the 
size of sex differences. Because DM was always computed from a reduced version of the data 
(the first 18 PCA components) and not from the original coordinates, this procedure is not fully 
equivalent to increasing the number of traits k; still, the analysis nicely illustrates the 
“diminishing returns” of mapping a domain at an increasingly fine scale. 

 
7 This and other effect sizes from the Hennessy et al. (2005) study were digitally measured from Figure 3 of the 
paper. Note that the authors reported the squared DM2 instead of DM. 
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Other Measures of Group Differences 
 

The distance between average profiles is an important index of group differences, but the 
picture it provides is only partial. For a more complete perspective, one can also consider the 
average distance between the individuals in a group and the centroid of the other group. A 
related measure is the average distance between two individuals belonging to different groups. 
Figure 9 illustrates these distances in the same scenario of Figure 7 (orthogonal traits with 
univariate d = 0.5 on each trait), and compares them with the corresponding distances within the 
same group. In the simple scenario of Figure 9, between-group and within-group distances (D1, 
D2, and DM) increase with constant ratios of about 1.06 (for pairs of individuals) and 1.12 (for 
individuals vs. centroids). These ratios are solely determined by the size of the univariate 
differences on each trait, which in this case are fixed to d = 0.5. If the shape distance DS is 
computed from unstandardized scores, it does not follow a predictable pattern, and may suffer 
from interpretive issues if scores are not comparable across traits (see above). While it is possible 
to calculate the between-group pairwise DS from standardized scores (Figure 9C), this measure 
converges to the same value as its within-group counterpart, making the comparison 
uninformative.  

 
The pattern of between- and within-group distances illustrated in Figure 9 has some 

surprising implications. In this particular example, when the domain is measured with 100 traits 
the Mahalanobis distance is DM = 5.00. The centroids are five standard deviations apart, 
corresponding to a distribution overlap of about 1.2% and an expected classification accuracy of 
more than 99%. But even if the two groups are sharply separated in multivariate space, a ratio of 
1.06 means that the average distance between two individuals belonging to different groups (e.g., 
a random male and a random female) is only 6% larger than the average distance between two 
individuals in the same group (e.g., two random males).8 Moreover, the average Mahalanobis 
distance between individuals is close to fifteen standard deviations. The bottom line is that, in 
high-dimensional domains, even large differences between groups will often coexist with much 
larger differences among individuals. However, within-group differences extend amorphously in 
all directions, whereas group differences exist on a specific axis; hence, the between-group 
signal can remain strong and clear on the background of massive individual variation. For 
example, human faces are strikingly variable and individually unique—and yet, the distance 
between the male and female distributions makes it easy to recognize people’s sex from their 
faces with more than 95% accuracy (Bruce et al., 1993; Ng et al., 2015; O’Toole et al., 1998). 

 
 
 
 
 
 
 

 

 
8 Note that, when dimensionality becomes very high (e.g., thousands of dimensions), even a small between/within 
group ratio can yield clearly separated distributions of distances (see e.g., Murtagh, 2009). However, most 
psychological domains have a smaller number of traits, even when mapped at a fine scale. 
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Figure 9. Simulated distances within and between two groups, measured with four alternative 
metrics. Plots are based on two standardized multivariate normal distributions (10,000 simulated 
points each) with k = 1 to 100 orthogonal traits, and a univariate difference of 0.5 standard 
deviations on each trait (same as in Figure 7). Solid lines are average distances; dotted lines show 
between/within group ratios (B/W) for the same distances (right vertical axis). P-B = pairwise 
distance between groups; P-W = pairwise distance within group; C-B = centroid distance between 
groups; C-W = centroid distance within group. D2 = standardized Euclidean distance; DM = 
Mahalanobis distance; D1 = standardized city-block distance; DS = shape distance (pairwise, from 
standardized scores). 

 
 
The Effects of Measurement Error 
 

Before ending this section, it is useful to briefly discuss how distances in multivariate 
domains are affected by measurement error. This is especially critical for psychological 
constructs, which are often measured with substantial uncertainty. In the language of classical 
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test theory, an individual’s observed score on a trait is a sum of the underlying true score plus a 
certain amount of error. The reliability of a measure is the proportion of true score variance on 
the total variance; for instance, if a trait is measured with .80 reliability, it means that 80% of the 
variance in the scores is shared with the underlying construct, while the remaining 20% is 
accounted for by error (see Revelle, 2018). Here I make the usual simplifying assumptions that 
measurement error is unsystematic (i.e., its expected value is zero), does not depend on the value 
of the true score, and is uncorrelated across traits.9  
 

To begin, consider the multivariate distribution of true scores for a single group. Adding 
measurement error inflates the variance of the scores without changing their means. And since 
error terms are uncorrelated across traits, trait correlations become attenuated, bringing the 
distribution closer to the orthogonal case and increasing the effective dimensionality of the data 
(see Del Giudice, 2020). As a result, both D1 and D2 concentrate faster with increasing k, unless 
the true scores are already orthogonal (Figures 5 and 6).  

 
What happens to within-group distances (between pairs and from the centroid) partly 

depends on the shape of the distribution before and after the introduction of error. The simplest 
scenario is one in which true scores are multivariate normal and the errors are normally 
distributed, so that observed scores are also multivariate normal. The effects of error in this 
scenario are straightforward. Specifically, the average unstandardized D1 and D2 increase, owing 
to the variance inflation produced by measurement error. In contrast, the standardized D1 
remains unchanged, because standardization rescales all the variances to 1. The standardized D2 
is also unaffected if the traits are all orthogonal; but if traits are correlated, it increases slightly as 
correlations become attenuated (see Figures 5A, 5E, 5I). The within-group distributions of DM 
and DS are insensitive to changes in trait variances and correlations (Figure 5), and hence are not 
affected by the presence of measurement error. 

 
Turning to group differences, the main index to consider is the distance between the 

centroids of two distributions. Now, all distances computed from unstandardized scores remain 
unaffected: this includes the unstandardized D1 and D2, as well as the DS between centroids. 
Because trait variance is inflated by measurement error, univariate standardized differences 
become attenuated, and the standardized D1 and D2 decrease accordingly. The story is a bit more 
complicated for DM. On the one hand, the attenuation of standardized differences tends to 
decrease DM just like D1 and D2. On the other hand, trait correlations also become attenuated, 
and this may either decrease or increase DM, depending on whether the overall group difference 
goes “with” or “against the grain” of the correlational structure (Figure 8). Since these two 
effects can end up pulling in opposite directions, DM may ultimately increase, decrease, or 
remain unchanged.  
 
 
 
 

 
9 If these assumptions are true in the population, they can be expected to hold to a reasonable approximation when 
sample size is sufficiently large. In small samples, however, fluctuations due to sampling may introduce systematic 
biases and sizable “nuisance correlations” among traits as a consequence of measurement error (see e.g., Stanley & 
Spence, 2014). 
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Correcting for Measurement Error 
 

To get a more accurate picture of group differences at the level of the underlying 
constructs, researchers can employ two main error correction methods. The first and simpler 
approach is to obtain a data-based estimate of the reliability of the observed scores, and use it to 
disattenuate the univariate differences and correlations. To disattenuate the standardized 
difference between two groups on a given trait (Cohen’s d), it is sufficient to divide it by the 
square root of the reliability of the observed score. Likewise, the correlations between two traits 
can be disattenuated by dividing it by the square root of the product of the two reliabilities. 
Naturally, a disattenuated correlation matrix yields lower ED estimates, reflecting the stronger 
degree of overlap among traits at the level of true scores (see Del Giudice, 2020). 

 
The most common index of reliability in psychological research is Cronbach’s alpha (a), 

which is based on the intercorrelations of the items that make up a scale (internal consistency). 
Despite its popularity, a suffers from important limitations. When applied to unidimensional 
scales, a tends to yield deflated estimates of reliability (Dunn et al., 2014; McNeish, 2018). 
More often, however, psychological scales are not fully unidimensional, and tap additional 
factors besides the trait they are supposed to measure. In these cases, a can be substantially 
inflated, and hence underestimate the amount of error in the data (Cortina, 1993; Crutzen & 
Peters, 2017). A better alternative to a is McDonald’s omega-hierarchical (wh), which isolates 
the true score variance associated with the general factor of a scale (Dunn et al., 2014; McNeish, 
2018; Revelle, 2018; Zinbarg et al., 2005). However, the method for calculating wh relies on 
factor analysis, and works poorly when traits are measured with a small number of items.  

 
The second and more sophisticated approach is to use latent variable methods—most 

commonly structural equation modeling (SEM)—to explicitly model the factor structure of the 
measures, and estimate group differences based on true instead of observed scores (Brown, 2015; 
Kline, 2016). To illustrate, my colleagues and I examined the effect of different correction 
methods on sex differences in personality from the same dataset (15 primary factors of the 16PF 
model in a large United States sample). The Mahalanobis distance between average profiles 
(male and female centroids) was DM = 1.49 without error correction, went up to 1.72 after 
disattenuation with a, and reached 2.71 when estimated via multigroup covariance and mean 
structure analysis (MG-CMSA), a variant of SEM specialized for group comparisons (Del 
Giudice et al., 2012). Another United States dataset based on an equivalent version of the 16PF 
yielded DM = 1.18 without correction, 1.68 after disattenuation with a, and 2.06 when estimated 
via MG-CMSA (Kaiser et al., 2020). For more details on these methods and additional 
references, see Del Giudice (2022).10 

 
An Empirical Example: Three Levels of Personality 

 
In the previous section, I discussed the behavior of within- and between-group distances 

using results and simulations based on idealized distributions. I now demonstrate the same 
 

10 This section takes the standard perspective on reliability, according to which a trait lies at the “intersection” of 
lower-level components such as facets or single items (i.e., is the source of the common variance among all the 
facets/items). For an alternative perspective that conceptualizes traits as the “union” of their lower-level 
components, see McCrae (2015) and McCrae & Mõttus (2019). 



  
 

Individual and Group Differences in Multivariate Domains 26 

concepts by reanalyzing an empirical dataset, a large sample of personality self-reports based on 
the Big Five model (Kaiser, 2019; original data by Johnson, 2015; retrieved from 
https://osf.io/9kpc5). To eschew the methodological complications of cross-cultural 
comparisons, I focus on the United States subsample, which comprises N = 617,180 online 
respondents (379,323 females; for details see Kaiser, 2019). The large size of this sample also 
obviates the need for small-sample corrections to indices such as DM and n1. All analyses were 
performed in R 3.6 (R Core Team, 2019); the code is available at 
https://doi.org/10.6084/m9.figshare.13070576.  

 
Personality was assessed with the 120-item version of the IPIP-NEO (Johnson, 2014; see 

http://personal.psu.edu/~j5j/IPIP/). The items (on a 1-5 scale from “very inaccurate” to “very 
accurate”) measure 30 narrow facets of the Big Five domains (Agreeableness, 
Conscientiousness, Extraversion, Neuroticism, and Openness), with six facets per domain (e.g., 
Extraversion comprises Friendliness, Gregariousness, Assertiveness, Activity level, Excitement 
seeking, and Cheerfulness). Facet scores were calculated as averages of the corresponding four 
items, and Big Five scores were calculated as averages of six facets each. Following DeYoung et 
al. (2007), I also used facets to derive scores for ten personality aspects: Compassion and 
Politeness (for Agreeableness), Industriousness and Orderliness (for Conscientiousness), 
Enthusiasm and Assertiveness (for Extraversion), Volatility and Withdrawal (for Neuroticism), 
and Intellect and Openness (for Openness). Each aspect score was calculated as the average of 
one to three facets (Section S2 of the Supplement). Since the original items were not selected to 
specifically measure the aspects described by DeYoung and colleagues, these scores should be 
regarded as approximations, imperfect but useful for the purpose of this demonstration. 

 
Correlation matrices were calculated separately for males and females. A pooled 

correlation matrix (weighted by sample size) was also calculated for between-group comparisons 
(see Del Giudice, 2009). In the pooled matrix, (not corrected for measurement error) the average 
absolute correlations were .23 among the Big Five, .20 among the 10 aspects, and .20 among the 
30 facets. The effective dimensionality of the dataset was estimated at n1 = 4.3 for the Big Five, 
7.7 for aspects, and 17.5 for facets. 

 
Individual Differences  
 

Figure 10 displays the average within- and between-sex distances for 5, 10, and 30 
personality traits. Since the 1-4 scale of raw scores is largely arbitrary and depends on the 
specific items chosen to measure each trait, all distances were calculated on standardized scores, 
and DS was only calculated for pairwise distances. As expected, D1 grows approximately linearly 
with increasing number of traits (Figure 10C), while D2 and DM increase at a decelerating pace 
(Figures 10A and 10B). Also, the average pairwise DS quickly converges on a value of about 
1.41, corresponding to a profile correlation of zero (Figure 10D). Figure 11 illustrates the full 
density distributions of the four metrics, in the case of within-sex pairwise distances. (The other 
distances displayed in Figure 10 follow qualitatively similar distributions.) A comparison of 
Figures 11A and 11B shows that DM is more concentrated around the mean than D2; however, 
the distributions look more similar than one may expect from the simulations in Figure 5, based 
on the size of trait correlations and corresponding ED values. This is explained by deviations 
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from normality in the raw scores, which are especially pronounced at the level of facets and 
some of the aspects, owing to the small number of items in each scale. 
 

The alternative metrics in Figure 10 have different strengths and weaknesses, and can be 
more or less useful depending on the specific research question at hand. If the question concerns 
the perceived similarity of personality profiles, there are reasons to believe that D2 or DM are 
going to be the appropriate metrics in most contexts (see above). As can be seen in Figure 10A, 
the average person lies two standard deviations away from the centroid in the 5-dimensional 
space of the Big Five, and more than five standard deviations away in the 30-dimensional space 
of personality facets. In line with the observation by van Tilburg (2019), average profiles are 
remarkably uncommon, and most people have “unusual” personalities according to this criterion. 
Even more strikingly, the expected distance between two people selected at random ranges from 
about three standard deviations for the Big Five to almost eight standard deviations for facets. 
(Note that all these figures are lower bound estimates, due to the presence of measurement error.) 
To be sure, the space of personality has ample room for individuality. Indeed, finding another 
person with a profile that closely matches one’s own is surprisingly hard, even at the 
comparatively low-resolution level of the Big Five. At the finer-grained level of facets, 
individual profiles become so unique that it becomes almost impossible to find another person 
within three standard deviations of oneself11 (Figures 11A and 11B).  

 
If one focuses exclusively on shape differences between profiles while ignoring elevation 

and scatter, distances center around DS  » 1.41, a value of equivalent to a correlation of zero 
(Figures 10D and 11D). In practical terms, this means that about half of the other people have a 
personality profile with peaks and valleys that broadly resembles one’s own (correlations > 0), 
while the other half show a discordant profile (correlations < 0). As one moves from Big Five to 
facets and the distribution of DS concentrates more narrowly around 1.41 (Figure 11D), the 
personalities of other people increasingly look “just different”—neither particularly similar nor 
particularly discordant. One implication is that DS and other correlation-based indices of 
(dis)similarity are most informative in low-dimensional domains, and tend to lose their resolving 
power as the number of traits increases. (The exception is when these indices are used to detect 
perfect or near-perfect shape concordance, as I suggested might be the case with face recognition 
of the same person at different ages. If so, their detection power increases with the number of 
traits, because the tail of the distribution becomes progressively thinner in the vicinity of r = +1 
or DS = 0.) To the extent that people are sensitive to differences and similarities in the shape of 
personality profiles, their sensitivity should be restricted to low-dimensional comparisons 
involving just a few traits, such as dominance and nurturance within the interpersonal circumplex 
(see above). 

 
 
 
 
 

 
11 Which may be flattering or depressing, depending on one’s disposition. 
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 Figure 10. Empirical distance patterns in a large personality dataset. Traits were measured at 
three levels of resolution (5 Big Five, 10 aspects, and 30 facets). Solid lines are average distances; 
dotted lines show between/within sex ratios (B/W) for the same distances (right vertical axis). P-B 
= pairwise distance between the sexes; P-W = pairwise distance within sex; C-B = centroid 
distance between the sexes; C-W = centroid distance within sex. D2 = standardized Euclidean 
distance; DM = Mahalanobis distance; D1 = standardized city-block distance; DS = shape distance 
(pairwise, from standardized scores). 
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Figure 11. Empirical distribution of pairwise distances in a large personality dataset (within sex). 
Traits were measured at three levels of resolution (5 Big Five, 10 aspects, and 30 facets). The 
bandwidth for density estimation was set at 1/50th of the range. D2 = standardized Euclidean 
distance; DM = Mahalanobis distance; D1 = standardized city-block distance; DS = shape distance 
(from standardized scores). 
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Sex Differences  
 

The average personality profiles of males and females in this sample are displayed in 
Figure 12 (raw score units). Consistent with the previous literature (see Del Giudice, 2015, 
2022), females scored higher in Agreeableness and Neuroticism, with smaller differences in the 
other domains (Figure 12A). Aspects and facets revealed a more nuanced picture—for example, 
within the Openness domain, males had higher scores in Intellect, while females scored higher in 
the more aesthetic- and imagination-oriented Openness and the corresponding facets (Figures 
12B and 12C; see Costa et al., 2001). Figure 12 shows that both males and females scored 
comparatively higher in Agreeableness and Conscientiousness and lower in Neuroticism, 
possibly due to self-evaluative biases and/or the specific mix of items included in different 
scales. Because it would be misleading to directly compare raw scores across traits, DS is not a 
meaningful metric and is not shown in the figure.  

 
Figure 13 shows the distance between the male and female centroids calculated with DM 

and the standardized D2 and D1. Uncorrected distances are depicted as solid lines. Without error 
correction, univariate differences in the Big Five ranged from d = - 0.57 (Extraversion) to - 0.07 
(Agreeableness; negative values indicate higher scores in females). The range was d = - 0.61 to 
0.22 for aspects, and d = - 0.62 to 0.22 for facets. As noted in the previous sections, the 
Mahalanobis DM is usually the most meaningful metric for comparing average profiles between 
groups. In this sample, the uncorrected DM was 0.90 for the Big Five, 1.02 for aspects, and 1.23 
for facets. The implied distribution overlap is about 65%, 61%, and 54%, respectively (Figure 
13A). Notably, the Euclidean D2 was smaller than DM for the Big Five (0.53), virtually equal for 
aspects (1.01), and considerably larger for facets (2.57; see Figure 13B). This illustrates the 
importance of keeping correlations into account, and the fact that doing so may either increase or 
decrease the size of group differences. 

 
Of course, uncorrected distances are deflated by measurement error—the more so for 

narrower traits, which are measured with fewer items. To partially compensate for this effect, I 
calculated the same distances after disattenuating univariate differences and correlations with 
Cronbach’s a (dotted lines in Figure 13). The average coefficient a was .88 for the Big Five, .82 
for aspects, and .77 for facets. After correction, univariate differences ranged from d = - 0.61 to 
0.08 for the Big Five, d = - 0.72 to 0.26 for aspects, and d = - 0.76 to 0.26 for facets. The 
estimated ED of the dataset showed a noticeable reduction, with n1 = 4.2 for the Big Five, 6.8 for 
aspects, and 12.2 for facets. In total, the error-corrected Mahalanobis distance increased to DM = 
1.05 for the Big Five, 1.16 for aspects, and 1.74 for facets (implied overlap: 61%, 56%, and 39%, 
respectively). However, these values are still likely to underestimate the true differences between 
the sexes, owing to the limitations of a as an index of reliability. A “gold standard” for 
comparison is offered by the MG-CMSA analysis performed by Kaiser (2019) on the same 
dataset, which estimated a latent DM = 2.16 from the 30 facets (corresponding to a distribution 
overlap of 28%; triangles in Figure 13A).  
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Figure 12. Mean personality profiles of males and females in a large dataset (raw scores). Traits 
were measured at three levels of resolution: 5 Big Five (panel A), 10 aspects (panel (B), and 30 
facets (panel C). A = Agreeableness; C = Conscientiousness; E = Extraversion; N = Neuroticism; 
O = Openness; Co = Compassion; Po = Politeness; In = Industriousness; Or = Orderliness; En = 
Enthusiasm; As = Assertiveness; Vo = Volatility; Wi = Withdrawal; Int = Intellect; Op = 
Openness. 



  
 

Individual and Group Differences in Multivariate Domains 32 

 
 

Figure 13. Empirical sex differences in personality in a large dataset, measured as distances 
between the male and female centroids. Traits were measured at three levels of resolution (5 Big 
Five, 10 aspects, and 30 facets). Panel (A) also shows the estimated proportion of overlap between 
distributions, measured with the overlapping coefficient OVL (right vertical axis). Solid lines are 
uncorrected distances; dotted lines are distances disattenuated with Cronbach’s a; and triangles 
are latent differences estimated via multigroup covariance and mean structure analysis (MG-
CMSA). D2 = standardized Euclidean distance; DM = Mahalanobis distance; D1 = standardized 
city-block distance. 
 
 
In sum, the overall magnitude of sex differences in personality is substantial by 

psychological standards (Del Giudice, 2022). Simply using participants’ observed scores on this 
personality questionnaire, Eq. 5 estimates that one should be able to correctly classify them as 
male or female about 67% of the time with Big Five scores, about 70% of the time with aspect 
scores, and about 73% of the time with facet scores. This prediction was confirmed by LDA: 
with leave-one-out cross-validation and equal priors for males and females, the empirical 
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accuracy of the classifier was 68.2% with Big Five scores, 70.4% with aspect scores, and 73.8% 
with facet scores. Naturally, measurement error limits the accuracy that can be achieved from 
observed scores; if one could measure a person’s “true” personality profile at the level of facets 
(as modeled in the MG-CMSA analysis by Kaiser [2019]), the expected classification accuracy 
would increase to a remarkable 86%.  

 
Still, these sizable sex differences coexist with individual differences on an even larger 

scale, and an individual’s average distance from a random member of the opposite sex is only 
marginally larger than the average distance from a random member of the same sex (Figures 
10A-10C). As expected from simulations, between-sex distances were only slightly larger than 
their within-sex counterparts, with ratios consistently lower than 1.1. (Predictably, the 
standardized DS was virtually identical between and within sexes, as shown in Figure 10D; 
compare with Figure 9C). The overall picture, then, is similar to the one I described in relation to 
faces. People can learn to identify male-typical and female-typical personalities with 
considerable accuracy, but still perceive each individual’s personality as distinctive and unique, 
independently from their sex.  

 
These phenomena contribute to explain an interesting “non-finding” in personality 

research: when unsupervised clustering algorithms are applied to personality data, they do not 
spontaneously recover two clusters of males vs. females—instead, they identify “types” that cut 
across the sexes, such as resilient, overcontrolled, and undercontrolled (e.g., Asendorpf et al., 
2001; Donnellan & Robins, 2010; Gerlach et al., 2018).12 This can be puzzling if one considers 
that there are robust differences between the average male and female profiles, to the point that 
one can identify people’s sex with significant accuracy based on their personality scores. 
However, the fact that sex-based clusters fail to spontaneously emerge in unsupervised 
classification becomes less surprising when one considers the scale of within- and between-sex 
distances in the multivariate space of personality. Indeed, when the same algorithms are applied 
to human faces, the resulting clusters typically contain a mixture of males and females (Yang et 
al., 2013). In other words, it is very easy to distinguish male and female faces once the existence 
of two sexes is known, but it may be hard to discover the existence of two sexes from facial 
anatomy alone. This pattern can be expected to recur in a variety of multivariate domains, from 
personality and cognition to brain structure (e.g., Joel et al., 2018).13 

 
Conclusion 

 
Psychologists who study individual differences routinely deal with highly multivariate 

constructs, but the field has yet to fully appreciate the implications of variation in high-
dimensional spaces. In this paper, I tried to clarify those implications, and demonstrate the 
existence of predictable phenomena that are likely to recur across different research areas. As it 

 
12 For discussion of the methodological challenges in the identification of meaningful personality types, see Gerlach 
et al. (2018), Freudenstein et al. (2019); Katahira et al. (2020); and Rosenström & Jokela (2017). 
 
13 In the neuroimaging study by Joel et al. (2018), brain structure could be used to reliably identify a person’s sex 
(72-80% accuracy); however, unsupervised clustering failed to recover two clusters of male vs. female “brain 
types”. The authors saw this as a demonstration that sex “is not a major predictor of the variability of human brain 
structure” (p. 1). I suggest that their findings can be better understood as reflecting the geometry (and relative scale) 
of individual and group distances in multivariate spaces. 
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turns out, the deceptively simple question “what happens when the number of traits increase?” 
also helps shed light on the properties of alternative distance metrics, both from the statistical 
and the cognitive perspective. An integrated understanding of multivariate differences and how 
to best measure them is going to greatly benefit the field, not least by suggesting many new and 
exciting questions for future research. 
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S1. Estimating the Effective Dimensionality of Facial Features  
 
To obtain a rough estimate of the effective dimensionality (ED) of facial features, I 

reanalyzed published plots of the eigenvalues associated with “eigenfaces” (principal 
components of face pictures) from Meytlis & Sirovich (2007) and Sirovich & Meytlis (2009b). 
The assumptions that informed my analysis are:  

 
- The first 100 components are sufficient to permit accurate face recognition (Burton et 

al., 2001; Meytlis & Sirovich, 2007; Sirovich & Meytlis, 2009a). 
 

- The first three components usually capture broad differences in lighting and do not 
provide information about facial features; recognition improves after discarding them 
(Wilbraham et al., 2008). 

 
- More than 30% of the remaining eigenfaces are “odd” (i.e., asymmetric around the 

left-right axis), and seem to represent lighting artifacts rather than facial traits; 
recognition improves after discarding them. This suggests that face recognition may 
actually rely on < 70 of the first 100 components (Sirovich & Meytlis, 2009a). 

 
Based on these assumptions, I used published plots to estimate the first 100 (normalized) 

eigenvalues. I then estimated the ED after removing (a) the first 3 values, and (b) the first 3 
values plus 30 randomly selected ones (to represent ~30% odd eigenfaces). I re-normalized the 
eigenvalues to a sum of 1, and used the resulting pseudo-probabilities (P) to calculate the n1 
index (see Del Giudice, 2020): 

 
𝑛" = ∏𝑃#

(5"  (S1.1) 
 
For each study, I repeated the randomization 1,000 times and calculated the average n1 

across repetitions. The R code for the analysis is available at 
https://doi.org/10.6084/m9.figshare.13070576. 

 
Meytlis & Sirovich (2007) 

 
Figure 1 in Meytlis & Sirovich (2007) shows a log-log plot of eigenvalues normalized to 

pseudo-probabilities (P) vs. component number (henceforth k). The plot is approximately linear 
up to about the 200th component, with slope -1.43; the log-probability of the second component 
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(k = 2) is -1.73 (digitally measured from the plot). The log-probability of the first component 
was estimated at -1.30 by linear extrapolation. The equation of the line is: 

 
log"6(𝑃) = −1.30 − 1.43	log	"6(𝑘) (S1.2) 
 
which yields: 
 
𝑃 = 10(".26𝑘(".82. (S1.3) 

 
This equation was used to estimate the first 100 normalized eigenvalues. The average ED 

was n1 = 27.8 when excluding 30 randomly selected values in addition to the first 3, and n1 = 
39.4 when only excluding the first 3 values. 

 
Sirovich & Meytlis (2009b) 

 
The top panel of Figure 3 in Sirovich & Meytlis (2009b) shows a similar log-log plot for 

the full picture set, including both male and female faces. The slope is -1.35, and the log-
probability of the first component is -0.40. The equation of the line is: 

 
log"6(𝑃) = −0.40 − 1.35	log	"6(𝑘) (S1.4) 
 
which yields: 
 
𝑃 = 10(6.86𝑘(".29. (S1.5) 
 
This equation was used to estimate the first 100 normalized eigenvalues. The average ED 

was n1 = 30.5 when excluding 30 randomly selected values in addition to the first 3, and n1 = 
43.4 when only excluding the first 3 values. 
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S2. Aspect Scores in the IPIP-NEO-120 

 
To compute scores for the 10 aspects of the Big Five (DeYoung et al., 2007) from the 

facets of the IPIP-NEO-120 (Johnson, 2014), I inspected the content of each IPIP-NEO-120 facet 
for correspondence with the items of the Big Five Aspect Scales (BFAS), as listed in Table 4 of 
DeYoung et al. (2007). If at least one item of a facet closely matched one of those included in the 
BFAS, the facet was counted as a match for the corresponding aspect. To obtain aspect scores, 
the IPIP-NEO-120 facets that matched each of the aspects were averaged together, yielding a 
score on a 1-4 range. 

 
Agreeableness: 

 

- Altruism and Sympathy matched the content of Compassion  
- Modesty, Cooperation, and Morality matched the content of Politeness 

 
Conscientiousness: 
 

- Self-discipline matched the content of Industriousness 
- Orderliness matched the content of Orderliness 

 
Extraversion: 
 

- Friendliness and Cheerfulness matched the content of Enthusiasm 
- Assertiveness matched the content of Assertiveness 

 
Neuroticism: 
 

- Anger matched the content of Volatility 
- Anxiety, Depression, and Vulnerability matched the content of Withdrawal 

 
Openness: 
 

- Intellect matched the content of Intellect 
- Imagination and Artistic matched the content of Openness 
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