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A B S T R A C T   

The identification of zones within an agricultural field that respond differently to environmental factors and 
agronomic management is a key requirement for the adoption of more precise and sustainable agricultural 
practices. Several approaches based on spatial clustering methods applied to different data sources, e.g. yield 
maps, proximal sensors and soil surveys, have been proposed in the last decades. The current availability of a 
huge amount of free remote sensing data allows to apply these approaches to agricultural areas where ground or 
proximal data are not available. However, in order to provide useful agronomic management information, it is 
essential that the zoning obtained by clustering is linked to the underlying spatial variability of soil properties. In 
this work we explore the hypothesis that the response of crop vigor to temporal climate variability, assessed by 
remote sensing data time series, selected to correspond to specific growth phases and seasonal climate patterns, 
provides indications on the variability of soil properties within agricultural fields, for both herbaceous and tree 
crops. NDVI time-series for 38 years (1984–2021) were obtained for fourteen non-irrigated herbaceous and tree 
crop fields in Central Italy, from multispectral satellites data (Landsat 5/7/8, Sentinel 2). The Standardized 
Precipitation-Evapotranspiration Index (SPEI) was used to classify time series into three climatic classes (dry/ 
normal/wet) for five different periods of the growth season, covering the main phenological phases. K-means 
clustering was used to identify patterns of crop growth from climatically classified image sets, as well as for all 
the bulked images for comparison (bulk clustering). Clustering results were compared with soil maps obtained 
from spatialized ground data, for soil texture (clay, silt and sand), soil organic matter and available soil water 
(ASW). The agreement between the different clustering results and soil maps was assessed by the Adjusted Rand 
Index. Agreement with soil maps varied depending on the field, the phenological phase considered and the soil 
property considered. Climate driven clustering from long, late growth season periods best matched soil prop
erties, both for herbaceous and tree crops, despite being based on a limited number of images. The clustering 
from images spanning a longer growth period for dry years systematically outpaced the bulk clustering for silt, 
sand and ASW, while the clustering for normal climatic conditions was the best for organic matter. The per
formance of the matching between clustering and soil maps increased with soil variability significantly more (P 
< 0.05) than in the bulk clustering (mean slopes respectively 0.468 ± 0.167; 0.113 ± 0.270). The integration of 
the SPEI climatic index into the clustering procedure systematically improved the identification of zones with 
homogeneous soil properties, highlighting that a greater attention should be posed to the climate-crop-field 
interactions when using remotely sensed images.   

1. Introduction 

The ability to quantify the patterns of soil spatial variability within 
agricultural fields accurately, rapidly and at low cost is a key 

requirement for the implementation of advanced farm management 
practices to optimize the use of limited resources such as agricultural 
inputs (water, energy, and fertilizer), while maximizing yield 
(Castrignanò et al., 2018; Maestrini and Basso, 2018). 
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In the context of precision agriculture, partitioning agricultural fields 
into relatively uniform management zones (MZs) is a common approach 
for addressing spatial variability, that allows to apply agricultural inputs 
depending on site-specific soil and crop conditions (Mulla, 2013; Zhang 
et al., 2002). MZs are sub-units of a field, expected to maximize ho
mogeneity in crop response to environmental and agronomic factors 
within the sub-unit, while maximizing heterogeneity among them. Ho
mogeneous applications of agricultural inputs to each MZ have been 
shown to suit crop requirements more efficiently than when applying a 
uniform dose to the whole field (Ge et al., 2011). Precision management 
through MZs has been shown to increase crop yield (Breunig et al., 
2020), reducing at the same time the environmental impact associated, 
for example, to fertilizer or herbicide applications (Gavioli et al., 2019), 
as compared to conventional uniform field management. Several ap
proaches have been proposed to characterize soil spatial pattern, as well 
as agronomic and yield-limiting factors (Nawar et al., 2017), most of 
which are based on the exploitation of dense and multivariate infor
mation layers (Dhawale et al., 2014; Saifuzzaman et al., 2019). Clus
tering methods have been proposed to include information layers 
regarding the soil (Ortega and Santibáñez, 2007), topographic maps 
(Johnson et al., 2003), yield maps, data from several seasons (Diker 
et al., 2004) or a combination of these methods (Franzen and Nanna, 
2002). 

The determination of MZs through clustering approaches based on 
remote sensing (RS) data has become increasingly popular (Albornoz 
et al., 2018; Castrignanò et al., 2017; Dhawale et al., 2014; Saifuzzaman 
et al., 2019), thanks to the ease of access of a large amount of up-to-date 
spatial RS information regarding agricultural fields. RS of vegetation 
alone, or in combination with other information layers, such as proximal 
sensing data, has been widely used as stand-alone information to define 
MZs. Breunig et al. (2020) defined MZs starting from aboveground 
biomass (AGB) estimated via remote sensing. Maestrini and Basso 
(2018) suggested combining RS-based crop information (red-band 
spectral reflectance, NDVI and plant surface temperature) with the use 
of historical yield maps from multiple years. Their results showed that 
the best predictor of within-field spatial variability is the historical yield 
map for areas with stable productivity (high, medium, low) over time, 
while spatial variability of areas with unstable productivity was better 
predicted by within-season RS images, thus creating an operational basis 
for the definition of MZs. Fontanet et al. (2020) delineated MZs based on 
crop (remotely sensed NDVI time-series) and soil (soil moisture sensor 
measurements) information to support management decisions that 
considered the interactions between crop production, environment, and 
agronomic operations. Ohana-Levi et al. (2019) and Saifuzzaman et al. 
(2019) combined topographic data, soil information (electrical con
ductivity and bare soil indices) and crop information (satellite vegeta
tion indices) to determine MZs. 

Understanding the drivers of the spatial distribution of yield within 
the field is essential to define uniform management zones (Schepers 
et al., 2004). However, in-season measurements are not sufficient to 
fully understand the complex interaction of soil characteristics, weather 
and landscape position that concur in determining crop yield, especially 
in unstable areas (Maestrini and Basso, 2018). Particularly, the weather 
pattern plays an important role in determining yield (Chen et al., 2004). 
Temperature and precipitation patterns during the growing season are 
capable of explaining a great deal of crop yield variability (Moore and 
Lobell, 2014; Osborne and Wheeler, 2013; Powell and Reinhard, 2015; 
Ray et al., 2015). Relationships between weather and yield depend on 
the interactions between local biophysical conditions and crop man
agement practices (Delerce et al., 2016). For example, Basso et al. 
(2011) insisted that spatial variability per se, estimated during a single 
season, is not sufficient to plan fertilization, if weather interactions are 
not considered. In proposing an optimized strategy for wheat fertiliza
tion in Southern Italy (Mediterranean climate), the authors demon
strated that high yielding zones exposed to low precipitation rates may 
face a reduction in grain yield in case of high nitrogen fertilization. This 

is due to the fact that high nitrogen doses in very vigorous crops may 
cause the use of relatively high water volumes before flowering stage, 
thus potentially limiting water availability in following phenological 
phases, with consequent premature crops senescence and low grain 
yield. 

Information relevant for delineating sub-units of a field is easy to 
obtain at the required spatial resolution, from free access remote sensing 
data, e.g. Sentinel-2 and Landsat-8, in terms of normalized difference 
vegetation index (NDVI). NDVI is related to green biomass and thus to 
chlorophyll content and leaf area index (LAI). Therefore, unexpectedly 
low values occurring within part or the whole field may result from 
nitrogen deficiency, but also from other plant stresses, such as water 
deficit (Wang et al., 2016). Despite being easier to obtain than ground 
data, the limitations of using crop vigor indices such as NDVI, to identify 
stable MZs within cropped fields, also persist when multi-temporal and 
multi-annual time series are considered, and integration with ground 
data is still advised (Marino and Alvino, 2018). 

Climatic indices like the Standardized Precipitation Index (SPI) 
(Mckee et al., 1993) and the Standardized 
Precipitation-Evapotranspiration index (SPEI) (Vicente-Serrano and 
Beguería, 2018) can be used to classify a cropping season into climate 
classes. Both indices provide a functional definition of drought. SPI and 
SPEI use long-term weather data (at least 30–40 years) of a pre-specified 
period of the year to quantify, for each year, how the selected period is 
far from the normalized long-term climate average of that same period 
over multiple years, in terms of wetness or dryness. Therefore, they may 
prove useful to categorize NDVI datasets depending on the meteoro
logical conditions affecting crop growth, at the time the original mul
tispectral images were acquired. 

In this paper we propose to classify the different parts of each 
growing season occurring for an agricultural field based on a climatic 
index (SPEI). These are used to discriminate years with similar weather 
pattern (dry, normal, wet) and aggregate the corresponding imagery on 
which to perform multi-temporal clustering of RS-derived NDVI maps, 
as per climate category. This climate-driven clustering is proposed to 
delineate MZs that should be representative of crop vigor, accounting for 
the variation brought in by meteorological conditions. Since crop vigor 
for a given climatic condition depends largely on soil properties, it can 
be used to map field-scale soil heterogeneity. We compared clustering 
results to ground-truth maps of soil texture and available soil water 
content. The agreement between the NDVI clustering of climatically 
classified images and soil maps is quantified and compared to the 
agreement achieved by a more classical multi-temporal NDVI bulk 
clustering, that does not differentiate growth seasons in terms of 
weather pattern. The objective was thus to investigate if the proposed 
climate-driven clustering could be used to delineate field zones based on 
the actual spatial variability of soil properties of agronomic relevance. 

2. Materials and methods 

For this study, 14 agricultural fields were used, 12 with herbaceous 
crop rotations and 2 with trees crops, distributed across two Central 
Italian regions: Umbria and Lazio (Fig. 1). Of the fields 5 were in hilly 
areas and were sloping or gently sloping whereas the others were in flat 
terrain (Table 1). Multi-temporal datasets of images acquired by 
Sentinel-2 and Landsat satellites acquired during 37 years (1984–2021) 
were gathered and used to compute the Normalized Difference Vege
tation Index (NDVI) time series for these fields (details are provided in 
Section 2.1) (Fig. 2). The NDVI time series were pre-processed to 
improve consistency and remove potential outliers (see Section 2.1). 
Images were filtered to cover the growing season only of non-irrigated 
herbaceous and tree crops (see Section 2.1.1), in order to exclude the 
influence of irrigation on temporal and spatial patterns of crop vigor. 
Meteorological data acquired nearby the monitored fields were 
collected and gap filled (see Section 2.1.2). They were then used to 
compute the Standardize Precipitation Evapotranspiration Index (SPEI) 
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(Vicente-Serrano and Beguería, 2018) for periods of different duration, i. 
e., three and five consecutive months, in order to classify growing sea
sons into three climatic classes: dry, normal and wet. Satellite images 
covering specific phenological phases of the crops were thus classified 

based on the SPEI (see Section 2.1.2). Within-field patterns of crop 
growth were identified by applying a k-means clustering to images of the 
same climatic class. These patterns were compared to those detected by 
a conventional bulk clustering, without considering any climatic 

Fig. 1. The study areas containing the fields in the Umbria and Lazio regions. For details of the locations and characteristics of the fields see Table 1.  

Table 1 
List of agricultural fields used in the present study. Environmental covariates employed to produce soil maps for each field are indicated by x. The spatialization 
mapping procedure is also reported: BK: Block Kriging, MLR: Multiple Linear Regression, RK: Regression Kriging.  

Field name Region Location and geographic 
coordinates 

Area 
(ha) 

Topography Crop type Covariates Mapping 
procedure 

Soil sampling 
points 

Apparent soil 
resistivity 

DEM BSI 

B030 Lazio Maccarese (lat. 41.895◦ N, lon. 
12.208◦ E)  

17.53 flat herbaceous  100 - - x BK 

B041 Maccarese (lat. 41.891◦ N, lon. 
12.217◦ E)  

26.76 flat herbaceous  97 - - x BK 

B064 Maccarese (lat. 41.879◦ N, lon. 
12.230◦ E)  

12.17 flat herbaceous  97 - - x BK 

B071 Maccarese (lat. 41.087◦ N, lon. 
12.234◦ E)  

26.59 flat herbaceous  93 - - x BK 

Biavati Umbria Paciano (lat. 43.034◦ N, lon. 
12.049◦ E)  

5.72 sloping herbaceous  4 x x x MLR 

Rio 
Grande 

Pieve Pagliaccia (lat. 43.137◦ N, 
lon. 12.488◦ E)  

6.45 sloping herbaceous  5 x x x MLR 

Tamburini Montecastrilli (lat. 43.654◦ N, lon. 
12.472◦ E)  

3.33 sloping herbaceous  5 x x x MLR 

Appoloni Campello sul Clitunno (lat. 
42.809◦ N, lon. 12.772◦ E)  

2.80 gently 
sloping 

herbaceous  5 x - x MLR 

Bachetoni Campello sul Clitunno (lat. 
42.814◦ N, lon. 12.812◦ E)  

7.51 gently 
sloping 

herbaceous  5 x - x MLR 

Bennicelli Solfagnano (lat. 43.214◦ N, lon. 
12.427◦ E)  

5.07 sloping vineyard  18 x x - RK 

Bertoldo Città della Pieve (lat. 42.957◦ N, 
lon. 12.062◦ E)  

6.66 sloping herbaceous  24 x x x RK 

Ciri Cannara (lat. 43.000◦ N, lon. 
12.607◦ E)  

9.95 flat herbaceous  25 x - x RK 

Del Rio Campello sul Clitunno (lat. 
42.795◦ N, lon. 12.767◦ E)  

9.38 flat herbaceous  5 x - x MLR 

Zuccari Cortaccione (lat. 42.760◦ N, lon. 
12.759◦ E)  

2.95 flat olives  5 x - x MLR  
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classification of the images (see Section 2.1.3). Soil texture, soil organic 
matter and available water content maps were obtained from a field 
survey, followed by spatial analysis and application of pedotransfer 
functions (see Section 2.2). The agreement between spatial patterns of 
plant growth and soil properties was assessed by means of a spatial index 
(see Section 2.2.1). 

2.1. Satellite and meteorological data processing 

In order to depict crop responses for the same fields under different 
weather conditions occurring during the crop growth season, we used 
long term, free access imagery, acquired by Landsat 5, 7 and 8 (30 m 
spatial resolution) and Sentinel-2 (10 m resolution) satellites. Polygon 
vector files of the agricultural fields borders, extended by a 60 m buffer 
were used, within the Google Earth Engine platform (GEE) (Gorelick 
et al., 2017), to identify images available for the areas of interest. Here, 
all clear sky images covering the fields and acquired by the satellites 
during the period January 1984 - June 2021 were considered (Table 2). 
The NDVI was computed for each image on the area covering the field. 
Bands 8 (red) and 12 (NIR) were used for Sentinel-2 (S2); bands 3 and 4 
for Landsat-5 (L5) and for Landsat-7 (L7); bands 4 and 5 for Landsat-8 
(L8). The resulting field-specific NDVI time-series were downloaded 
from the GEE platform. All following processing was performed in the R 
statistical environment (R Core Team, 2020). 

When multiple images were available for the same field and date 

only the image with the highest spatial resolution and acquired with the 
most recent satellite was kept. 

The signal from pixels lying along the edges of agricultural fields is 
likely affected by elements other than the crop (such as roads, buildings, 
dikes, or other vegetation types). To avoid their inclusion in the clus
tering algorithm, images were inspected to exclude potential outliers 
near the borders of the fields. For any image, pixels were split in two 
groups: border pixels lying near the field border (less or equal to 30 m 
for Landsat; less or equal to 10 m for S2), and inner pixels. Border pixels 
whose values exceeded 1.5 times the Inter Quartile Range (IQR) of NDVI 
values of the inner field pixels, were considered outliers and were 
assigned the NA value. A moving window (3 ×3 pixels) was then used to 
iteratively fill the NAs values with the median NDVI value of non-NA 
pixels in the window. This improved the correspondence between 
clustering and soil maps (Section 2.2.1) as compared to clustering in the 
absence of this pre-processing step. 

To ensure co-registration, images were then resampled (bilinear 
method) to a 5 m resolution (Pascucci et al., 2018), reprojected to the 
coordinate reference system of the corresponding soil map, and finally 
cropped to its extent. 

2.1.1. Assembly of NDVI time-series 
To consider the influence of climate on crop response, while reducing 

the influence of management practices such as irrigation, the images 
were only selected from non-irrigated fields. Considering herbaceous 
crops, reliable data on irrigation practices for long time periods were not 
available. For this reason, we decided to use only images from winter 
crops, as these are usually not irrigated in Central Italy. For any growth 
season, images acquired between the previous November 1st and 
September 31st were selected. The median NDVI value for the field was 
calculated for each day. A LOESS function was fit to the yearly time- 
series of median NDVI values computed from each image. Local max
ima and minima of the fitted function were extracted. To select winter 
crops, only data with NDVI maxima occurring between December 1st 
and May 30th were kept. The local minima immediately preceding and 
following the selected maxima were considered as the earliest and latest 
images representing the winter crop for the current year. Other images 
of the same year were excluded from further processing. 

Fig. 2. Overall data processing workflow.  

Table 2 
Details on satellite imagery used in this study.  

Satellite Starting 
date 

Ending 
date 

Filter applied to exclude non-clear sky 
images 

Sentinel- 
2 

3/28/ 
2017 

6/30/ 
2021 

Image is excluded if any pixel is classified 
as cloud or cirrus in band QA60 

Landsat- 
8 

4/11/ 
2013 

6/30/ 
2021 

Image is excluded if any pixel is classified 
as cloud or shadows in band pixel_qa 

Landsat- 
7 

1/1/1999 6/30/ 
2021 

Landsat- 
5 

1/1/1984 5/5/ 
2012  

F. Reyes et al.                                                                                                                                                                                                                                    



European Journal of Agronomy 150 (2023) 126930

5

Regarding tree crops, changes in crop type are likely to occur over 
several decades, related to tree aging and replanting. In this study, crop 
type changes occurred in both the considered fields during the last 20 
years. In addition, one of the fields was equipped with an irrigation 
system in recent years (farmer’s communication), time from which 
images do not comply any more with the assumptions of the study. This 
implied that the NDVI time series portraying tree fields were reduced 
from 40 years each, to just nine and 12 years. The images considered 
were those acquired between April 1st and September 30th or October 
30th, respectively for grapevine and olive, as approximately corre
sponding to their vegetative periods. 

Finally, independent of the crop type, only images containing more 
than 70% of pixels with NDVI equal or higher than 0.7 were considered 
as representing fields covered by the crop and thus kept for further 
analysis (Pascucci et al., 2018). 

2.1.2. Meteorological data processing and SPEI calculation 
Weather data were collected from the historical dataset of the hy

drographic service of Umbria Region and the Regional Agency for 
Development and Innovation in Agriculture of the Lazio Region (ARSIAL 
- L′Agenzia Regionale per lo Sviluppo e l′Innovazione dell’Agricoltura 
del Lazio). Daily rainfall, minimum and maximum temperatures were 
collected from one or two of the closest weather stations to each field, 
within a maximum range of 5 km, depending on data availability. Some 
stations were equipped with only a rain gauge. Since meteorological 
monitoring was discontinuous, the Joint Research Center (JRC) dataset 
Agri4Cast Gridded Agro-Meteorological Data in Europe version 3.0 
(https://agri4cast.jrc.ec.europa.eu/DataPortal/) was used to fill missing 
values. This dataset provides daily meteorological data spatialized from 
weather stations observations on a 25 × 25 km grid between 1979 and 
2020. Observed (stations) and predicted (JRC) meteorological variables 
were well correlated, respectively with a R2 of 0.64 and 0.61 for 
3-months and 5-months cumulative rainfall, and with a R2 of 0.97 and 
0.90 for daily minimum and maximum temperature. This provided a 
satisfactory fit for the purpose of gap filling, considering how these 
variables and timeframes were used for calculating a climatic index, as 
detailed in Section 2.1.2. This permitted us to obtain a weather dataset 
of at least 41 years (1979 – 2021) for each field. 

Daily reference evapotranspiration (ETo) was then calculated from 
minimum and maximum temperature and extraterrestrial radiation 
obtained from the station latitude, using the Hargreaves – Samani 
equation (Danlu et al., 2020). 

The climate characterizing each field was synthesized by means of 
the SPEI climatic index (Vicente-Serrano and Beguería, 2018), for pe
riods of 3 and 5 months covering specific phenological phases, as 
detailed hereafter. The SPEI index (Standardized Precipitation Evapo
transpiration Index) is calculated from rainfall and reference evapo
transpiration of the considered period, comparing them to their 
long-term (> 30 years) values, resulting in a functional definition of 
drought. Calculations were performed using the “SPEI” R package 
(Beguería and Vicente-Serrano, 2018), obtaining a 3-months and a 
5-months SPEI time-series for each field. 

To climatically characterize different phases of crop development in 
a field, we considered SPEI values for 3 shorter and 2 longer crop growth 
periods, using the 3-months and 5-months SPEI time-series respectively. 

For herbaceous crops, the short periods roughly correspond to the 
following developmental phases: a) the period around crop emergence, 
i.e. from November to January included (coded as SW1h, i.e. for short- 
winter-herbaceous); b) the maximum LAI development period, i.e. from 
January to March (SW2h); and c) the period around flowering and grain 
filling, i.e. from March to May (SSh, short-spring). The longer periods 
correspond to longer parts of the crop growth season: the five months 
from November to March (LW, long-winter) and from January to May 
(LSh, long-spring-herbaceous). 

For tree crops, the short periods correspond to: a) budburst from 
January to March (SWt); b) early leaf development, i.e. from March to 

May (SSt); and c) the warmest summer period during yield formation, 
from June to August (SSmt, short-summer). Long periods for tree crops 
were: a) from release of dormancy to leaf development, i.e. from 
January to May (LSt1) and b) most of the vegetative period, i.e. from 
April to August (LSt2). 

SPEI time-series values for the above periods were then classified as 
corresponding to: dry periods with SPEI less than − 1; normal periods 
with SPEI comprised between − 1 and 1; wet periods with SPEI higher 
than 1. Such a classification was preferred to the usual eight classes 
employed for SPEI (Mckee et al., 1993), as it provided a higher number 
of images per field to each class, while reducing the number of classes 
and thus simplifying data analysis. 

Subsequently, the images acquired during each one of the periods, 
were classified accordingly, as occurring during dry, normal or wet 
weather conditions. The classification resulted in fifteen, partly over
lapping, climatic periods for each field, given by the combination of five 
(three shorter and two longer) periods of the year and three SPEI classes. 

2.1.3. Spatial clustering of agricultural fields 
Prior to calculating clustering, temporal comparability of NDVI data 

from the same field was enhanced by applying a Z-score spatial 
normalization. This returned images with the same standard deviation 
and zero mean (Pascucci et al., 2018). 

To identify spatial patterns of plants vigor, we applied a k-means 
(k = 3) clustering to each time series of images obtained after climatic 
classification, hereafter called climate-based clustering. As a comparison, 
we also applied the k-means to the whole set of images available for each 
field, without climatic distinction, hereafter called bulk clustering. This 
produced up to sixteen clustering results for each field, depending on the 
availability of images for each combination period and climatic class. 
Clustering results were represented as maps of the fields, split into three 
classes. For visualization reasons, an order was given to the classes, so 
that zones with a high/intermediate/low median NDVI would be rep
resented by the same color in all maps resulting from clustering. 

2.2. Comparison of clustering spatial patterns to field soil maps 

To test whether the spatial patterns identified by the different clus
tering procedures corresponded to underlying soil properties, we 
derived soil property maps for silt, clay, soil organic matter (SOM) and 
available soil water (ASW) for each field. These were then classified into 
three classes and compared with the results of the clustering previously 
computed from the NDVI time-series images. 

SOM and soil texture maps (clay, sand and silt) were generated from 
soil sampling data, spatial covariates and spatial predictions. A total of 
5–24 soil samples were collected in each field in 2019, each being a 
composite of three or more samples collected within a 2 m radius of a 
georeferenced sampling point, using an Ejkelkamp auger in the 0–40 cm 
depth layer. Samples were analyzed in the laboratory to determine clay, 
silt and sand using the pipette method according to the USDA textural 
thresholds, and SOM content using the Walkley-Black method. 

Spatial covariates included apparent electrical resistivity maps, 
Digital Elevation Models (DEMs) and the Bare Soil Index (BSI) (Chen 
et al., 2004; Mzid et al., 2021), the latter obtained from Sentinel-2 sat
ellite images (Table 1). Resistivity maps were obtained for some of the 
fields by means of an Electro Magnetic Agro-Scanner (EMAS) system 
(SOING, Livorno, Italy) (McBratney et al., 2005). This is an electro
magnetic induction (EMI) sensor, that provided measurements of the 
apparent electrical resistivity for three soil depth layers. In the present 
work, the 0–50 cm layer was used. The DEMs (spatial resolution of 1 m) 
were obtained from LiDAR data and were downloaded from the geo
portal of the Italian Ministry of the Environment and Territory 
(http://www.pcn.minambiente.it/viewer/). The use of DEM as covari
ate was limited to non-flat fields. Additionally, the BSI was used as co
variate. We calculated the BSI from Sentinel-2 imagery, acquired after 
the harvest and before the following crop’s emergence on each field, so 

F. Reyes et al.                                                                                                                                                                                                                                    



European Journal of Agronomy 150 (2023) 126930

6

that only bare soil or crop residues were visible. The covariates used for 
each field are reported in Table 1. Soil prediction models were built to 
spatialize sand, silt, clay and organic matter sampling points to the 
whole fields, by exploiting the above-mentioned covariates. Either 
Multiple Linear Regression (MLR), Regression Kriging (RK) or Block 
Kriging (BK) (Malone et al., 2017) were used, depending on the avail
able covariates and the number of soil samples (Table 1). BK was used 
where an intensive soil sampling had been carried out (such as for the 
fields in the Maccarese area), using a block size resolution of 10 m. MLR 
and RK were employed for the fusion of remotely sensed and 
geo-physical data, the first when only a few soil samples were available 
(N = 5), while the second for fields with a higher number of samples. 
Model performances were evaluated by means of cross-validation, 
assessing the coefficient of determination (R2) and Root Mean Squared 
Error (RMSE). 

Soil water content at permanent wilting point and at field capacity 
were estimated from soil properties (silt, clay and organic matter) using 
pedotransfer functions (Saxton and Rawls, 2006). Their difference pro
vided an estimate of the maximum plant available soil water (ASW). 

2.2.1. Assessment of the matching of NDVI clusterings with soil maps 
Soil properties maps were first classified by means of k-means clus

tering (k = 3). The soil classes resulting from clustering soil maps were 
ordered to represent high/intermediate/low soil property values with 
the same colors, as for the zones identified by the NDVI clustering 
(Section 2.1.3). 

The agreement between the clustering on soil properties maps and on 
the normalized NDVI time series was evaluated by means of the Adjusted 
Rand Index (ARI) (Albatineh et al., 2006; Heil et al., 2019). ARI indicates 
the degree by which couples of pixels, either belonging to the same or to 
different classes in a map, do the same in the companion map. It takes a 
value near to zero for correspondence of random sets, and a value of one 
for full correspondence, with increasing values for increasing similarity 
between the maps. 

The clustering procedure is meant to identify soil property classes, 
especially when soil presents relatively large variability. In our case, 
clustering performance varied considerably both across and within 
clustering parameter sets. To elucidate whether clustering performances 
in matching soil property maps were affected by soil heterogeneity of 
the different soil properties, we assessed the linear relationships 

Fig. 3. Maps resulting from applying k-means clustering (k = 3) to the different NDVI time-series (bulk and classified according to the climate) for an arable crop 
field (Bertoldo). The Available Soil Water (ASW) map obtained from clustering of ground data is reported for comparison (A). Maps (B) to (F) were obtained by bulk 
clustering (all NDVI images); maps (G) to (J) from clustering only images from dry years; maps from (K) to (N) only from images from normal weather years; maps 
(O) to (R) from images from wet years. Rows indicate clustering time span: see text for code meaning. Below each map are reported the Adjusted Rand Index (ARI) 
and the number of images used for the clustering. 
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between heterogeneity (expressed by the coefficient of variation) in soil 
properties and the correspondence (in terms of ARI) between the NDVI 
series and each soil property map. A comparison of the slopes of linear 
relationships was then used to assess the different sensitivity (paired t- 
tests) to soil heterogeneity of the best performing climatic clustering in 
respect to the bulk clustering. 

3. Results 

The number of NDVI images selected according to the criteria 
defined above and thus available for the following clustering procedure, 
strongly depended on the occurrence of rather specific weather condi
tions (Supplementary Table 1). Especially for the short-early season (e.g. 
SPEI SW1h) sometimes no images were available, because particularly 
dry and wet years according to the SPEI classification did not occur, and 
thus clustering could not be performed. This occurred for example for 
the Bertoldo field (Fig. 3) for which no results were available for SW1h. 
This is likely due to the cloudy sky and low vegetation vigor in winter, 
since when field images had less than 70% of pixels with NDVI higher 
than 0.7 they were discarded, in addition to fewer years with particu
larly dry or wet seasons in respect to normal ones. From Fig. 3 it appears 
clearly that bulk clustering (Figs. 3b to 3f) and many of the climate- 
based clustering results did not match what was observed from ground 
soil mapping data (Fig. 3a), i.e. identified a reversed pattern in terms of 
high or medium soil AWC. However, the clustering carried out 

considering only NDVI images occurring during dry seasons, covering 
the period from January to May (LSh), was able to identify the correct 
AWC pattern (Fig. 3j) and had an ARI value of 0.128, the highest among 
all clustering results. 

In general, the Adjusted Rand Index (ARI), used for comparing 
clustering results to soil maps, showed a remarkable variability across 
agricultural fields for all soil properties. A higher median ARI value was 
often associated with a larger variability (Fig. 4). The mean ARI for 
arable fields covered by herbaceous species, varied depending on the 
soil property considered, with the highest ARI values for sand (min =
0.027, max = 0.165, mean = 0.093), then clay (0.024, 0.116, 0.087), 
ASW (0.022, 0.120, 0.080), organic matter (0.036, 0.112, 0.076) and silt 
(0.030, 0.128, 0.071) (Fig. 4, Table 3). For clay, bulk clustering obtained 
better results than climate-based clustering, for all phenological phases. 
However, for all other soil properties, climate-based clustering was 
consistently better than bulk clustering, when performed over long 
spring periods (LSh). Bulk clustering obtained higher ARI values than 
most climate-based early season clustering (SW1h, SW2h and LW). The 
clustering obtained over the short spring period (SSh), i.e. from March to 
May, had ARI values similar or lower than the bulk clustering for dry 
seasons, and generally similar or even higher for wet seasons, except for 
ASW. The clustering that best matched soil maps, both for sand, silt and 
ASW, was based on images acquired during the long spings (LSh) in dry 
years (Table 3). Considering the match with clay maps, the wet LW 
clustering gave a slightly better score than the LSh (0.117 vs 0.112), but 

Fig. 4. Boxplots of the Adjusted Rand Index (ARI) obtained from the comparison among clustering results and ground truth maps of soil properties. Clustering: 
“bulk” includes all images, independent of the climate; “dry” / “normal” / “wet” includes only images from years classified accordingly, based on the SPEI index. 
Individual dots are values beyond 1.5 * IQR (interquartile range). The time periods over which images were extracted are: November to January (SW1h), January to 
March (SW2h), March to May (SSh), November to March (LW) and January to May (LSh). 
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with much larger variability (respectively CV = 139% vs 80%) (Table 3). 
Considering organic matter, its best mean score was obtained once again 
by a long spring clustering (LSh), but under normal climatic conditions 
rather than dry ones. 

The performance in matching soil maps seemed to be at least partly 
field dependent, with some fields obtaining a relatively short range of 
ARI values (e.g. Biavati), no matter the clustering parameter set, while 
others (e.g. Tamburini) achieving a wider distribution. The variability 
across fields is shown in Fig. 5 for ASW. Climate-based clustering results 
obtained higher ARI values, i.e. matched better the ground truth ASW 
maps, than bulk clustering for all fields. Despite the highest mean values 
presented by the LSh dry clustering, other late season climate clusterings 

often obtained the best matches with soil maps in individual fields 
(Fig. 5). The number of images available for each clustering spanned 
across two orders of magnitude, depending on the clustering parameters 
set. Nonetheless, clustering parameter sets with the highest number of 
images never obtained the best match, which was generally obtained by 
clusterings based on 25 images ore less (Fig. 5). 

Concerning tree crop fields, clustering results matched soil proper
ties with ARI values similar to herbaceous fields, but with highest mean 
values obtained for clay (min = 0.087, max = 0.361, mean = 0.204), 
then for ASW (0.039, 0.410, 0.190), silt (0.030, 0.210, 0.135), sand 
(0.024, 0.156, 0.067) and finally organic matter (0.008, 0.125, 0.056) 
(Fig. 6). 

The limited number of years for which NDVI time-series were 
available for tree crops made it impossible to obtain most of the dry 
climate clusterings (only except the SSt), and limited the variety of wet 
climate clusterings. However, except for organic matter for the olive 
field (Zuccari), climate-based clustering always provided better corre
spondence with soil maps than the bulk clustering. In particular, the 
period from April to August (LSt2), for wet years, gave the best results 
for the vineyard (Bennicelli) for all soil properties except for silt. The 
same type of climate-based clustering was not available for the olive 
field (Zuccari), for which the shorter summer period, i.e. June to August 
(SSmt), for normal years provided the best correspondence, except for 
organic matter. Similarly to what observed for fields covered by arable 
crops, also in this case the highest scores were more related to the spe
cific soil parameter than to a higher number of images. 

Considering all the fields, both covered by arable and tree crops, in 
general the climate-based clustering that best matched soil maps was the 
one based on the weather pattern occurring in late season, for longer 
periods (LSh and LSt2). In the case of herbaceous species, the relatively 
higher number of available fields allows to investigate whether the mean 
best match, obtained by the LSh clustering in dry years, is due to some 
particularly high scoring field, or to a more general good agreement with 
soil maps. For this reason, results of the dry years LSh climate-based 
clustering are presented field-wise, in comparison to the bulk 

Table 3 
Adjusted Rand Index (ARI) for the agreement between clustering applied to the 
NDVI time-series and each soil property map for arable crops. The three clus
tering parameter sets with highest mean ARI are reported, with associated 
standard deviation and coefficient of variation (CV).  

Soil 
property 

Clustering 
time span 

Clustering 
climate 

ARI 

mean standard 
deviation 

coefficient 
of variation 

Sand LSh dry  0.165  0.133  0.80 
SSh normal  0.117  0.068  0.58 
LSh wet  0.116  0.104  0.89 

Silt LSh dry  0.128  0.111  0.86 
SSh wet  0.090  0.065  0.72 
LSh wet  0.090  0.07  0.78 

ASW LSh dry  0.120  0.089  0.74 
SW2h wet  0.119  0.169  1.42 
LW wet  0.113  0.154  1.36 

Clay LW wet  0.117  0.162  1.39 
LSh dry  0.112  0.09  0.8 
SSh wet  0.112  0.09  0.8 

Soil 
Organic 
Matter 

LSh normal  0.112  0.098  0.87 
LW dry  0.092  0.102  1.11 
SSh normal  0.091  0.081  0.89  

Fig. 5. Boxplots of Adjusted Rand Index (ARI) for available soil water (ASW) in bulk and climate-based clustering, for each field covered by herbaceous crops. Dots 
indicate individual ARI values, symbols indicate the clustering time span, while their size is proportional to the number of images that contributed to the indi
vidual clustering. 
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clustering in Fig. 7. ARI of the dry LSh clustering was systematically 
higher in respect to the bulk clustering for almost all fields for silt, sand 
and ASW, whereas it provided results similar or alternately better and 
worse, depending on the field, for clay and organic matter (Fig. 7). As 
mentioned above, the best results for soil organic matter were obtained 
by the long spring clustering (LSh), based on normal climate years, 
which outpaced the bulk clustering on nine fields out of twelve (Fig. 8). 

As the correspondence between clusterings and soil maps varied 
greatly, depending on the field, even for the best scoring seasonal 
clustering, we questioned whether some characteristics of the fields may 
be related to better or worse results. Inspection of the correlation be
tween the clustering scores (ARI) obtained for the different soil prop
erties and some soil properties statistics (mean, skewness and coefficient 
of variation), indicated that the coefficient of variation (CV) was the 
metric with the highest correlation values with ARI. In particular, ARI 
values obtained by the LSh clustering for dry years presented a higher 
number of significant correlations (n = 5) than the bulk clustering 
(n = 3). 

Besides any specific significant threshold, the slopes of the re
lationships between the variability in soil properties and ARI (Fig. 9), 
were significantly higher (P < 0.05) for the LSh clustering in dry years 
(0.468 ± 0.167) than for the bulk clustering (0.113 ± 0.270), indicating 
a higher sensitivity of the climate-based clustering in matching soil 
properties, when these are highly variable. In greater detail, while re
lationships with similar slopes were obtained for clay and ASW, a higher 
sensitivity was present for silt, sand and organic matter. 

Finally, considering the processing time after image download, the 
time required by a laptop computer (Asus N552VX, CPU: Intel Core i7 
6700HQ, RAM: 8 Gb DDR4, HD: SSD) to process images for a relatively 
large field (B030: 750 ×270 m) consisted on 3646 s for image pre- 
processing, 172 s for climatic image classification and 409 s for per
forming all clusterings (bulk and climate-based), and saving outputs. 

4. Discussion 

The need to improve the efficiency of agricultural management, by 

adoption of site-specific agronomic practices, has been constrained by 
the lack of information on the actual soil properties patterns occurring 
within agricultural fields. A very widespread precision agriculture 
approach is that of subdividing fields into smaller sub-units, sometimes 
called uniform management zones (MZ), which are considered to have a 
rather more homogeneous response to environmental and agronomic 
factors, as compared to the whole field (Nawar et al., 2017). Naturally, 
this more homogeneous response of MZs depends largely on the ho
mogeneity of the underlying soil properties. Several methods based on 
the analysis of multi-temporal remote sensing imagery have been pro
posed for zoning agricultural fields and identifying the patterns of soil 
spatial variability. These include those based solely on remote sensing 
data (e.g. Blasch et al., 2015; Pascucci et al., 2018), as well as those 
including other co-variates such as topography, proximal sensing 
geophysical data, soil sampling and yield maps (e.g. Khosla et al., 2008; 
Miao et al., 2018; Scudiero et al., 2018), or plant structural properties in 
interaction with climate, such as LAI and evapotranspiration (Ohana-
Levi et al., 2021; Shuai and Basso, 2022). The results of different zoning 
procedures obtained for one field from different approaches tend to 
differ, depending not only on the data source, but also on the clustering 
method used (Pascucci et al., 2018). From the perspective of the user, it 
is important to know how the different sub-areas of the field, or MZs, 
will respond in different years characterized by contrasting weather 
patterns. Maestrini and Basso (2018) observed that temporally stable or 
unstable yielding zones of agricultural fields, across years, are charac
terized by different topographic wetness indices. Areas characterized by 
a low topographic wetness index (proxy for areas with probability of 
lower water content) always perform poorly (low and stable yield), 
whereas mid-high wetness index areas have high and stable yield. Un
stable areas are those with a very high wetness index, corresponding to 
depression areas, waterlogged and poorly yielding in wet years, but high 
yielding in dry years. These authors emphasize the need for a different 
management approach, respectively strategic or tactical, for stable and 
unstable yielding areas of a field. 

To our knowledge, the present study is the first attempt of exploiting 
the use of climatic indices, together with multi-spectral indices of crop 

Fig. 6. Boxplots of Adjusted Rand Index (ARI) for the fields covered by tree crops, for bulk and climate-based clustering. Dots indicate individual ARI values, symbols 
indicate the clustering time span, while their size is proportional to the number of images that contributed to the individual clustering. 
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Fig. 7. ARI obtained by the long spring (LSh) clustering in dry years and bulk clusterings for each field and soil properties maps, for fields covered by herbaceous 
species. Appolloni field was removed as a LSh clustering in dry years was not available for it. 

Fig. 8. ARI obtained by the comparison of climate-based and bulk clustering, for the time span from January to May (LSh), with the soil organic matter maps, for 
each field with herbaceous species. 
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vigor, to improve the identification of soil property zones. The main 
hypothesis of the proposed method is that a specific seasonal weather 
pattern may exacerbate the differences in suitability for crop growth, 
and thus plant response, resulting from the different soil conditions 
present within a field. The higher correspondence between multiple 
climate-based clusterings and soil maps, in respect to the bulk clustering, 
confirms the soundness of this hypothesis. 

The assessment of the climate-based clusterings obtained by different 
parameters sets showed that several of them outpaced the conventional 
bulk clustering (Table 3), in both herbaceous and tree crop fields 
(Figs. 4, 5, 6). In addition, the deeper analysis on the best scoring 
climate-based clustering on herbaceous fields (Figs. 7, 8) showed that 
this performed consistently better than the bulk clustering in almost all 
analyzed fields, especially for silt, sand and ASW. In short, our results 
demonstrate that climatic criteria are appropriate to improve filtering of 
RS imagery for the identification of MZ. 

We highlighted that the clustering parameter set had a far larger 
influence in matching soil properties, than the number of images 
contributing to the clustering (Figs. 5, 6). Improvements in matching soil 
properties cannot come mostly from increasing the size of the acquired 
RS dataset, but should be based on a greater attention to the climate- 
crop-field interactions, leading a thoughtful process of image selection. 

The aim of a clustering is to find the differences present in a field, 
especially where these are major. In this respect, it is important to stress 
that the climate-based LSh clustering for dry years seemed to be more 
sensitive to soil variability than the bulk clustering (Fig. 9), increasing in 
accuracy where most needed, namely in fields with more heterogeneous 
soil properties. This property is fundamental, as it implies a higher 
probability to correctly identify soil classes where higher heterogeneity 
is present, and therefore distinction is needed. 

The most effective climate for selecting appropriate imagery was the 
dry one for herbaceous species. In a dry climate, the evapotranspiration 
demand is high in respect to precipitation, likely determining water 
limiting conditions for the plants. Considering the increases in the 
evapotranspiration demand and relative imbalance with precipitations 
due to global warming (Lionello and Scarascia, 2018) it is likely that 
image selections driven by climate criteria may become increasingly 
effective in identifying homogeneous soil zones over time. 

As a second hypothesis, a crop was thought to immediately respond 
(as portrayed by instantaneous NDVI snapshots) to a given climate, thus 
permitting to split the images acquired during a single crop growth cycle 
into multiple groups, each one reflecting plant responses possibly to 
contrasting climates. As an example, a field characterized by sandy and 
clay soil zones may show high differences in plants growth across zones 
after a water deficient early season period, but may recover after a 
subsequent wet late season. Our results do not contradict the validity of 
this hypothesis but, by obtaining better results for longer climatic pe
riods, they suggest that the cumulative effects of climate on plant 
development over long periods are more effective for identifying 

subtending soil zones than shorter term effects of possibly more extreme 
climates. 

The effects of a given weather on plants may be somewhat delayed, 
especially for deep rooted plants such as perennials, and for drought 
tolerant species (such as grapevine and olive). An assessment of this 
delay would need to be made before introducing such a feature into the 
selection of imagery. 

The presented method classifies climate and images of the crop based 
on fixed periods: this implies cutting off images outside pre-defined 
dates. Considering that the dates of a plant growth cycle vary from 
year to year, and that clusterings based on long climatic periods per
formed best, we suggest that future development of a climate-based 
clustering should include image selection based on dynamic dates, 
following phenological development. This would allow to more closely 
follow the crop growth cycle, and the cumulative effects of weather on 
plant development. 

The limited number of available fields may have restricted the power 
of our analysis, indeed our tests were run for a total of 14 fields, 12 of 
which with herbaceous and two with tree crops. Despite the first results 
for the case of tree crops are promising, a larger number of sample fields 
occupied by the same tree species for a long time would likely allow to 
draw more solid conclusions on best clustering parameters sets for tree 
crops as well. In addition, any pixel from the considered satellites may 
contain signals from multiple rows and inter-rows, so that the proposed 
method cannot discriminate between adjacent plants. As such, it should 
be considered that, when applied to tree crops, this method assesses an 
average vegetation vigor, integrating both the target tree species and 
herbaceous species possibly present around the trees, both responding to 
the soil conditions. In addition, the derived NDVI values may underes
timate the differences between high and low vigor plants when images 
are acquired soon after mowing or tree summer pruning. Further, also in 
the case of herbaceous fields, soil maps based on a higher number of 
sampling points, would lower the effects of random errors, thus 
increasing the power of the analysis. 

5. Conclusions 

This is, to the authors knowledge, the first soil zoning study based on 
clustering remote sensing imagery, in which the identification of man
agement zones in agricultural fields is improved by integrating a cli
matic index among the image selection criteria. Our analysis on NDVI 
time-series revealed that, both the climatic conditions occurring in the 
field during image acquisition and the considered crop growth period 
play a major role in the ability of a clustering algorithm to identify soil 
property zones. In particular, using time-series from long, dry and wet, 
late growth season periods significantly increased the ability to identify 
homogeneous soil zones, in respect to the absence of climatic criteria, 
both in herbaceous and tree crop fields, and consistently across most of 
them. Further, the method showed to be significantly more sensitive to 

Fig. 9. Relationships between ARI and the coefficient of variation of soil properties for the bulk clustering and the climate-based clustering including images from 
January to May (LSh) in dry years. Values are expressed in logarithmic terms to obtain normal distributions. 
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soil heterogeneity, in respect to the reference bulk clustering, thus better 
identifying management zones in fields where a proper soil zoning is 
most needed. This study highlights that considering the climate-crop- 
field interactions is crucial to increase the accuracy in the identifica
tion of management zones in agricultural fields. The proposed method is 
likely to improve its performance over time, when applied to the 
increasingly water stressed crops undergoing the exacerbated climatic 
extremes imposed by global warming. 
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