
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Numerical experiments on scalar transport and
mixing in turbulent boundary layers
To cite this article: Gabriele Boga et al 2024 J. Phys.: Conf. Ser. 2753 012003

 

View the article online for updates and enhancements.

You may also like
From counterportation to local wormholes
Hatim Salih

-

Cycles on Abelian varieties and
exceptional numbers
Sergei G Tankeev

-

Strength and Deformation of Unsaturated
Compacted Clay under Wetting-Drying
Cycles
Zhi Hu, Kai Peng, Zheng Lu et al.

-

This content was downloaded from IP address 155.185.75.245 on 05/06/2024 at 08:30

https://doi.org/10.1088/1742-6596/2753/1/012003
/article/10.1088/2058-9565/ac8ecd
/article/10.1070/IM1996v060n02ABEH000075
/article/10.1070/IM1996v060n02ABEH000075
/article/10.1088/1755-1315/189/3/032054
/article/10.1088/1755-1315/189/3/032054
/article/10.1088/1755-1315/189/3/032054
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjst9Wf_lJ3hasTg_oWlpCxzrSVo30b--WdFGDWtT-N2rVOT2rQMhmh2a4izRVXQecn4O3Y3egbjtsAanS24xq6I4DXYcHBoO8WHJWrqim55HISLy7zsC0-dT9SWzVH13kFRCgCWVa4rWakofii_17pSH9Jjh2m-G_1DCzAUysBb_kUhf72KzA4yjDfKBwlSLoTj42vMlHeoGNTjqCgMlkKR1OU31iOqrDGYyBLzVYk-qoOdPXiCp1o9hlBSGfs1lXmMQl8bzp8mWoKXU4T3gLyByGOBNCQUqbqWgzlmDzrHXoT79XfYM0V2ORGuSw5Au6cJ-jiCslvxY_4co5nxTOWR9luZPOtlV&sig=Cg0ArKJSzCkw0ppnimO_&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

5th Madrid Turbulence Workshop
Journal of Physics: Conference Series 2753 (2024) 012003

IOP Publishing
doi:10.1088/1742-6596/2753/1/012003

1

Numerical experiments on scalar transport and

mixing in turbulent boundary layers

Gabriele Boga, Alfonso Giancola and Andrea Cimarelli

Dipartimento di Ingegneria Enzo Ferrari, Università di Modena e Reggio Emilia, 41125
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Abstract. In this work, we present numerical experiments aimed at dynamically establishing
the separate role of the inner and outer cycles on the scalar transport in the configuration of a
temporally evolving boundary layer. The experiments are based on the study of the evolution of
passive scalars driven by velocity fields where inner and outer cycles are alternately suppressed.
Two different approaches are implemented. In the first, the discrimination between inner and
outer cycle activities is based on the scale dimension of the involved motions. The second
instead, discriminates on the basis of the distance from the wall of the turbulent motions.
The two approaches depict the same scenario. Both the inner and outer cycles appear to be
autonomous and, in a sense, independent, since their dynamics remain qualitatively unaltered
despite facing two different conditions. The outer cycle faces a free boundary at the top and
simply rescales according to what is supplied by the inner cycle. The inner cycle, on the other
hand, resides between the wall and the outer region. As a result, the reduction of the scalar
fluxes in the outer region due to the suppression of the outer cycle causes a damping in the
near-wall region activities.

1. Introduction
Wall flows are among the most technologically relevant flows and despite numerous studies (see
[1] for a partial review) their dynamic is not yet fully understood. In this family of flows,
it is common to identify different regions based on their features. One of the categorisations
distinguishes a near-wall region, a bulk region and an overlap region in between. In the near-
wall region, the production of turbulent fluctuations exceeds their dissipation rate. The excess
is transported towards the wall and towards the bulk region, where is finally dissipated. The
overlap region lying between these two layers constitutes a region of local equilibrium between
production and dissipation. The near-wall layer is certainly crucial to the dynamics of attached
shear flows: it is dominated by intense interacting structures ([2] and [3]) and it is the seat of the
highest rate of turbulent energy production and of the maximum turbulent intensities. In this
region, turbulence is sustained by a self-sustaining and autonomous cycle [4] which we will refer
to as the near-wall cycle. However, for high Reynolds numbers, also the outer overlap layer is
thought to become relevant being the site of self-sustaining mechanisms of large flow structures
following mixed inner/outer scaling [5]. It is then of overwhelming importance to assess the
combined role played by inner and outer turbulence self-sustaining mechanisms in determining
the overall momentum and heat transfer in wall turbulence at relatively high Reynolds numbers.
In order to identify the separate role of these two layers on mixing and transport that is otherwise
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concealed by the non-linearity of the flow evolution, we perform numerical experiments where
scalar fields dynamically evolve under the separate action of the sole near-wall cycle and of the
sole outer cycle. The choice of addressing the scalar field evolution is crucial to decouple the
effect of the two layers. More specifically, we analyse the evolution of passive scalars in the
configuration of a temporally evolving boundary layer ([6], [7] and [8]). The flow configuration
of the boundary layer is chosen as it represents a canonical flow for the study of wall turbulence
and additionally exhibits the presence of a Turbulent/Non-Turbulent Interface (TNTI). For
this reason, the boundary layer is also a case study for the turbulent entrainment process ([9]
and [10]) that has already been studied with a similar approach in the flow configuration of a
temporally evolving planar jet in [11]. The Schmidt number for the scalars is set to Sc = 1
in order to rely on the Reynolds analogy linking the scalar and momentum transports. Hence,
these experiments aim at dynamically establishing the separate role played by the inner and
outer layers in determining the overall transport mechanisms in wall turbulence. The paper is
organized as follows. The methodology is covered in section 2, the results are presented and
discussed in section 3 and the paper concludes with final remarks in section 4.

2. Simulations and experimental set-up
In the following section we present the methodology used to carry out the experiments, starting
with the presentation of the chosen flow configuration, the description of the experimental set-up
and a final brief section regarding the filtering operation used in the experiments.

2.1. Temporal boundary layer
The flow selected for the numerical experiments is a temporal boundary layer. This flow
has already been investigated through direct numerical simulations and presents all the main
phenomena observed in the classical turbulent boundary layer [7]. This type of flow consists in
a moving wall at constant speed Uw and scalar concentration Θw at the bottom of an initially
quiescent fluid. The initial velocity and scalar profiles are designed to mimic the wake of a
wall-mounted trip wire with diameter D,

u∗(x∗, y∗, z∗, t∗ = 0) =
(
1 + c′

) Uw

2

[
1 + tanh

(
D − z∗

2h

)]
(1)

θ∗(x∗, y∗, z∗, t∗ = 0) =
Θw

2

[
1 + tanh

(
D − z∗

2hθ

)]
(2)

where h = 54ν/Uw and hθ = 54α/Θw can be understood as the shear-layer thickness of the
wall-mounted trip wire and c′(x∗, y∗, z∗) ∈ [−0.05, 0.05] is a superimposed white noise used
to speed up transition. Here, ν is the kinematic viscosity and α is the scalar diffusivity. The
Reynolds number based on the tripping thickness is set to ReD = UwD/ν = 500 and the Schmidt
number is set to Sc = ν/α = 1. In the above initial conditions, the asterisk is used to denote
dimensional quantities. In the rest of the paper, equations and quantities, unless otherwise
specified, are expressed in dimensionless form by using D, Uw and Θw.

The boundary layer develops in time rather than in space (figure 1), preserving statistical
homogeneity in the streamwise (x) as well as in the spanwise (y) direction. The advantages
of this type of flow over a spatially developing boundary layer are the additional direction of
statistical homogeneity and the possibility of using domains of reduced streamwise extension.

Periodic boundary conditions are applied in the streamwise and spanwise directions, while a
Dirichlet no-slip boundary condition and a free-slip impermeable boundary condition are applied
on the bottom and the top of the domain respectively. The domain extension in the streamwise,
spanwise and wall-normal directions is respectively (Lx,Ly, Lz) = (600, 300, 150) discretised in
(Nx,Ny,Nz) = (512, 512, 384) points. It is important to note that the domain dimensions are
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(a)

(b)

(c)

Figure 1. Sections of the scalar field at different time instants corresponding respectively to (a)

Reτ = 500, (b) Reτ = 750 and (c) Reτ = 1000. The scalar concentration increases from light to dark

colors.

chosen to guarantee that at the final friction Reynolds number the boundary layer thickness is
δ < Lz/3 in order to have reasonably small confinement effects from the top boundary. Here,
the boundary layer thickness δ is defined such that ⟨u⟩ (δ) = 0.01Uw. The domain dimensions in
terms of boundary layer thickness and the grid resolution in terms of friction units are reported in
table 1. The final friction Reynolds number reached by the simulations is Reτ = uτδ/ν = 1000,
where uτ =

√
τw/ρ is the friction velocity and τw and ρ are respectively the wall shear stress

and the density.
The set of equations is solved using the massively-parallel open-source code CaNS [12], which

uses a pressure-projection method with a second-order finite-difference scheme for the spatial
discretization on a staggered grid. A mixed time integration is used to avoid the very small
time-step required by the highly stretched grid. For the diffusion terms in the vertical direction
z an implicit time integration is used, employing the Crank-Nicholson scheme. Conversely,
all the other terms are integrated explicitly in time with a three-step Runge–Kutta method
with a CFL = 0.7. In this preliminary work, we opted for low resolution simulations to test the

Table 1. Domain extension in terms of boundary layer thickness and grid resolution in friction
units for three different time instants corresponding to three different friction Reynolds numbers.
The subscript ·|w and ·|δ indicates a quantity measured respectively at the wall (z = 0) and at
z = δ.

Reτ (Lx,Ly, Lz) /δ ∆x+ ∆y+ ∆z+|w ∆z+|δ

500 (26.73, 13.36, 6.68) 26.06 13.03 0.14 7.86
750 (16.95, 8.47, 4.24) 24.78 12.39 0.13 10.46
1000 (12.37, 6.18, 3.09) 23.83 11.91 0.13 12.47
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potential of the method used. We verified that the classical statistics obtained with these settings
are reliable when compared to those obtained from higher resolution simulations presented in
[8].

2.2. Numerical experiments
As mentioned above, the inner and outer cycles interact with each other and their combined
role governs the exchange of momentum and scalar concentration. Understanding the role
played by these two cycles is therefore of great interest, both from a flow control and modelling
perspective. In this regard, the present work aims to dynamically establish the role played by
these two mechanisms by analysing the evolution of two additional passive scalars transported
by two modified velocity fields where the near-wall and outer cycles are alternatively suppressed.
The two modified velocity fields are obtained through a filtering operation performed at runtime.
It is important to note that the filtering operation is not directly applied to the scalar fields,
but it is only used to obtain the two modified velocity fields transporting the two alternative
scalars. These velocity fields are not integrated over time but are obtained at each time-step
from the total velocity. The resulting set of equations is:

∂ui
∂xi

= 0

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

∂θ

∂t
+

∂θuj
∂xj

=
1

ReSc

∂2θ

∂xj∂xj

∂θ

∂t
+

∂θuj
∂xj

=
1

ReSc

∂2θ

∂xj∂xj

∂θout
∂t

+
∂θoutu

out
j

∂xj
=

1

ReSc

∂2θout
∂xj∂xj

∂θinn
∂t

+
∂θinnu

inn
j

∂xj
=

1

ReSc

∂2θinn
∂xj∂xj

(3)

where θ is the passive scalar transported by the complete velocity field ui, θout is the scalar
transported by velocity field retaining the sole outer cycle uouti and θinn is the scalar field
transported by the velocity field retaining the sole inner cycle uinni . The initial condition for the
two scalar fields θout and θinn is taken from the reference case θ at a time instant corresponding
to Reτ = 500.

2.3. Filtering
Two different filtering approaches have been tested. For the sake of clarity, in the present section
we will describe only the first approach, the results of which are presented in section 3, while we
leave the description and the results of the second approach in Appendix A. In both approaches,
the filter used is a 2D Gaussian filter applied in the homogeneous directions x and y,

ui (x, y, z, t) =

∫ +∞

−∞

∫ +∞

−∞
ui (x+ rx, y + ry, z, t)G (rx, ry) drxdry, (4)

G (rx, ry) =
1

2π∆x∆y
e
− 1

2

(
r2x
∆2
x
+

r2y

∆2
y

)
(5)
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where ui is the resulting filtered velocity and ∆x and ∆y are the characteristic lengths of the
filter in the streamwise and spanwise directions. In the first approach, the above filtering
operation is applied to the whole domain. The velocity field retaining the sole outer cycle
is defined as uouti = ui and, hence, it contains only the large-scale motions, which are those
mainly contributing to the outer cycle dynamics. On the other hand, the velocity field retaining
the sole inner cycle uinni is defined as uinni = ui − ui + ⟨ui⟩, and hence, it contains only the
small-scale motions that are dominant in the near-wall cycle, being large-scale motions merely
an imprinting from the outer flow. The action of the average velocity ⟨ui⟩(z, t) (being ⟨·⟩ the
average operator in the homogeneous directions x and y) is added explicitly, since ⟨ui−ui⟩ = 0.
The filter lengths are chosen on the basis of the premultiplied spectra shown in figure 2 and
are respectively set to ∆+

x = 600 and ∆+
y = 100. The portions of the spectra filtered out in

the spanwise direction to obtain uinni and uouti are shown in shaded grey in figure 2(a) and (b),
respectively measured in the buffer layer and in the outer region. Note that the shaded grey
areas shown in figure 2 are merely indicative since the Gaussian filter does not prescribe a sharp
cut-off scale in spectral space.

(a) (b)

Figure 2. Premultiplied spectra of the turbulent kinetic energy Ek in the spanwise wavenumber ky
respectively (a) in the buffer layer at z+ = 20 and (b) in the outer region at z = 0.3δ. The shaded areas

are indicative of the filtered regions of the spectra (a) in uinn and (b) in uout, being k+cy = 2π/∆+
y the

wavenumber corresponding to the spanwise filter length in inner units.

3. Results
Let us start analysing the scalar field topology at the final friction Reynolds number Reτ = 1000
reached during the experiments. In figure 3 the instantaneous scalar contours are shown on a
wall-normal (x, z) section. The trace of the large engulfing scales is clearly visible in θout and,
at first glance, the thickness of the boundary layer seems comparable to that of the reference
case θ. Concurrently, the effect of the lack of the small scales can be seen in the presence of
large unmixed regions. On the contrary, the field θinn appears to be more mixed and exhibits a
slower growth rate, which can be attributed to the lack of large-scale engulfment events.

We now proceed to analyse the data from a statistical point of view, starting with the temporal
evolution of two integral quantities reported in figure 4, the Stanton number

St = − 1

ReSc

∂⟨θ⟩
∂z

∣∣∣∣
w

(6)

and the boundary layer thickness based on the scalar concentration δθ, defined such that
⟨θ⟩(δθ) = 0.01Θw. In order to better understand the reason behind the observations, we report
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(a)

(b)

(c)

Figure 3. Sections of the scalar fields of the three experiments at the same time instant, corresponding

to Reτ = 1000. Respectively (a) θ, (b) θout and (c) θinn. The reference case (a) is duplicated here in

order to simplify comparisons.

(a) (b)

Figure 4. (a) Temporal evolution of the Stanton number and its theoretical law St = 0.0125Re
−1/4
θ

in loosely dotted line (· · · · · ·) and (b) temporal evolution of the boundary layer thickness based on the

scalar concentration δθ.

the probability density function of the scalar fields at some locations of interest for the observed
quantities (i.e. in the viscous sub-layer for St and at the mean scalar interface for δθ) in figure
5. A reduction in St can be noticed in both the experiments. The reduction observed in θout
(dashed line in figure 4(a)) can be interpreted as the effect of the direct suppression of the main
turbulent motions involved in the near-wall cycle, leading to an almost immediate decrease. This
hypothesis is supported by the lower anisotropy observed in the near-wall region fluctuations
that can be visualized as the limited extension of the left tail of the θout pdf reported in figure
5(a). On the other hand, the field θinn (dotted line) preserves the scales directly contributing to
the wall scalar transfer. In this case, the reduction in St can be attributed to the increase in the
mean scalar concentration resulting from the suppression of the outer cycle, thus justifying the
more gradual decrease with respect to θout. Support for this can be found in the fact that θinn
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(a) (b)

Figure 5. Probability density function of θ (a) at z+ = 5 and (b) at z = δθ at the final Reτ = 1000.

The vertical lines in (a) indicate the respective mean values of the scalars.

shows a similar pdf to that of θ, the difference being its shift towards higher values (figure 5(a)).
We now consider the temporal evolution of the boundary layer thickness δθ reported in figure
4(b). After an initial readjustment, the trend of δθout resumes a growth rate similar to that of
the reference δθ. This almost unchanged growth rate can be explained through the following
two considerations. The first is that large-scale anisotropic motions that mainly contribute to
the entrainment process ([11]) are preserved in uouti , whose trace can be seen in the right tail of
the θout pdf reported in figure 5(b). The second consideration regards the measured observable
δθ. In fact, the position of the mean interface is not sensitive to the threshold used. For this
reason, the reduction in the scalar concentration flux supplied by the inner region in θout has
little influence on the evolution of this observable. On the contrary, the suppression of the
large anisotropic motions in uinni directly acts on the entrainment process at the interface of the
boundary layer, resulting in the slower growth rate of δθinn

.

(a) (b)

Figure 6. (a) Mean scalar profiles, respectively ⟨θ⟩ in the main panel and 1 − ⟨θ⟩ in semi-logarithmic

axes in the inset panel and (b) variances at Reτ = 1000.

For a deeper understanding of the dynamics observed so far, we now move to examine the
mean profiles and the variances of the scalar fields reported in figure 6. Both profiles ⟨θout⟩
and ⟨θinn⟩ show a higher scalar concentration in the near-wall region, for z+ < 20. This is in
accordance with the reduction observed in the St for the two reasons explained above, namely:
the reduced scalar flux towards the outer region caused by the suppression of the inner cycle in
θout and the blockage effect caused by the suppression of the outer cycle in θinn (that will be
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shown in figure 7). Despite a different distribution of the scalar concentration ⟨θout⟩, a region
resembling a logarithmic behaviour can still be observed as shown in the inset of figure 6(a). The
lower scalar flux supplied by the near-wall region does not seem to influence the outer dynamics
of θout. On the other hand, θinn presents a qualitatively different profile. The suppression of
the outer cycle, with the associated reduction of the mean scalar flux, results in a high scalar
concentration region extending from the near-wall up to a good portion of the outer region.

(a) (b)

Figure 7. Mean fluxes of (a) θout and (b) θinn compared with θ at Reτ = 1000.

In order to quantify the reduction of the fluxes, we introduce the following equation:

St = ⟨θ′w′⟩ − 1

ReSc

∂⟨θ⟩
∂z

+ β with β =
d

dt

∫ z

0
⟨θ⟩dz (7)

obtained by integrating in the wall-normal direction the equation for the mean scalar
concentration. To note that, for z ≫ δθ the above equation simply reads St = β (z → ∞), where
β (z → ∞) is the rate of entrainment of scalar concentration. The terms of equation (7) of the
two experiments are shown and compared with the reference case in figure 7. At first glance, one
can see a macroscopic similarity in the shape of the fluxes with a global reduction in accordance
with the reduction observed in the St. Taking a closer look to the turbulent flux, it can be seen
that ⟨θ′outw′

out⟩ appears to be more active at a higher distance from the wall, while ⟨θ′innw′
inn⟩

appears to be more active closer to the wall, as expected. Since ⟨θ′w′⟩ and β must sum up to
St in the outer region (where −k∂θ/∂z is negligible), these different profiles of ⟨θ′w′⟩ determine
also the shape of β. The high activity of ⟨θ′outw′

out⟩ in the outer region results in a steep profile
of βout, meaning that the scalar flux is mainly sustained by the entrainment process occurring
away from the wall and near the interface. On the contrary, the lower activity of ⟨θ′innw′

inn⟩ in
the outer region results in a less steep profile of βinn, suggesting that the main scalar flux is
sustained by the homogenization in the core of the boundary layer, thus by the mixing effect of
the small quasi-isotropic scales. Despite the similarity between the mean profiles of θout and θ,
their variances, reported in figure 6(b), present different characteristics. In particular, ⟨θ′outθ′out⟩
exhibits a more pronounced peak located at a greater distance from the wall with respect to
⟨θ′θ′⟩. This difference can be attributed to the presence of large unmixed regions initiated by
the large-scale anisotropic motions and left unmixed by the absence of the small mixing scales.
Conversely, the profile of ⟨θ′innθ′inn⟩ resembles the reference profile, although it appears to be
damped, indicating a more uniform field. Both ⟨θ′outθ′out⟩ and ⟨θ′innθ′inn⟩ present lower values in
the near-wall region with respect to the reference case.

In order to take a closer look into the dynamics of the scalar fluctuations we introduce the
scalar variance budget equation:
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∂⟨θ′θ′⟩
∂t

+
∂

∂z
(Φu +Φα) = Π− ϵθ (8)

where the turbulent production Π and dissipation ϵθ terms are defined as:

Π = −2⟨θ′w′⟩∂⟨θ⟩
∂z

and ϵθ =
2

ReSc
⟨ ∂θ

′

∂xj

∂θ′

∂xj
⟩ (9)

and the turbulent Φu and diffusive Φα fluxes as:

Φu = ⟨θ′θ′w′⟩ and Φα =
−1

ReSc

∂⟨θ′θ′⟩
∂z

(10)

(a) (b)

Figure 8. Scalar variance (a) production Π, dissipation ϵθ and (b) turbulent and diffusive fluxes Φu

and Φα at Reτ = 1000.

The picture shown by the scalar variance budget in figure 8 can be interpreted as follows.
Both the scalar variance production and the turbulent flux towards the near-wall region are
strongly reduced in θout, thus justifying the lower scalar variance observed in the near-wall
region. In addition to this reduction, a shift to higher wall distances can also be observed,
reinforcing the idea that large-scale motions are not directly active in the near-wall region,
beside the imprinting they give on the flow and the modulation with which they act on the
small scales. The diffusive flux and the dissipation adapt themselves to this scenario. On the
other hand, the inner dynamics of θinn appear qualitatively similar to the reference case, even
if lower in intensity. This is in accordance with the idea that the inner cycle finds itself in a
condition bounded by the outer dynamics but remains qualitatively unaltered. In particular,
the suppression of the outer cycle limits the turbulent flux of fluctuations directed toward the
wall, and the increase of the mean scalar value limits the possibility of a large variance because
of the intrinsic limitation θ ≤ 1.

4. Conclusions
An attempt to decouple the dynamics of the inner and outer cycles in the flow configuration
of a temporally evolving boundary layer is carried out. The attempt is based on studying the
evolution of two additional passive scalars driven by two modified velocity fields. The use of
the two scalar fields is the key point that allows us to separate the two effects, as it permits
us to study a field on which no direct manipulation has been applied. The velocity fields used
to transport these two additional scalars are obtained at each timestep by manipulating the
total velocity ui in order to retain only features of the inner (uinni ) and outer (uouti ) cycles
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respectively. More specifically, the two velocity fields are obtained by suppressing scales that
are mostly contributing to the inner or outer cycle activities based on their dimension.

The outer cycle dynamics observed through θout show many similarities with the reference
case θ. In both the approaches tested, it seems possible to identify a logarithmic-like region in
the mean profile ⟨θout⟩. Furthermore, the growth rate of the scalar boundary layer thickness
δθout is unaltered, indicating that the entrainment process at the boundary layer interface is not
very sensitive to the near-wall region dynamics. At the same time, in the region directly affected
in this experiment (i.e. the inner region), the effect of inner cycle suppression can be observed.
In this region, both a reduction in the scalar transfer at the wall (caused by the damping
of the scalar fluctuations) and a reduction of turbulent production and transport mechanisms
occurs. In particular, the reduction of the mean scalar flux in the near-wall region also implies
a reduction in the whole domain due to the conservation law. Summarising, by suppressing the
small scales, the outer cycle appears to maintain its dynamics unaltered and simply rescales
the scalar flux according to what is supplied by the flux coming from the inner cycle. From
a modelling perspective, this conclusion may be relevant for reduced-order approaches such as
wall-modelled LES and RANS.

The inner cycle, on the other hand, is confined on both sides, facing the wall at its lower
boundary and the outer cycle on the other side. The suppression of the outer cycle appears to
have the effect of a bottleneck for the inner cycle. This interpretation is supported by the fact
that the pdf of θinn in the near-wall region shows a similar distribution but with a shift towards
higher values (reason for the gradual reduction of the Stanton number). Other symptoms of an
almost unchanged dynamic can be found in the production and turbulent transport mechanisms
in the near-wall region. Despite appearing rescaled, these profiles show a very similar shape to
the reference case θ. In the outer region of θinn, the suppression of the large anisotropic scales
has the effect of reducing the rate of entrainment and the generation of a more homogeneous
scalar field.

In conclusion, both the inner and outer cycles appear to have quite independent dynamics,
with the difference being that, the outer cycle simply rescales to lower scalar values depending
on what is supplied from the inner cycle, facing a free region on its top bound. On the other
hand, the inner cycle dynamics is confined to operate in between the wall and the outer cycle,
the suppression of which can act as a bound, limiting the inner cycle to operate in a narrower
and narrower range of scalar values due to the intrinsic limitation θ ≤ 1.
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Appendix A. Effect of the filtering procedure
In order to show the robustness of the present results on the type of filtering procedure adopted,
we present here the results obtained through a different filtering approach. This second approach
tested uses the filtering operation only in sub-portions of the domain to obtain the two modified
velocity fields. The field uouti is obtained by lowpass filtering the near-wall region (z+ < 60 = z+c )
in order to suppress the inner cycle and leave the outer cycle motions unaltered. On the other
hand uinni is obtained by lowpass filtering the outer region (z+ > 60 = z+c ) and leaving the
velocity in the near-wall region unchanged. The filter lengths vary gradually among the two

regions through the use of a smoothing function ∆̃i = ∆i0.5(1± tanh(zc/(2h∆))(1− z/zc)) with
∆i being the reference Gaussian filter lengths used in the streamwise and spanwise directions.
In both experiments the width of the hyperbolic tangent is set to h∆ = 0.2. In the experiment
θout (where the inner cycle is suppressed) ∆i is expressed in inner units, while in the experiment
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(a) (b)

Figure A1. Premultiplied spectra of the turbulent kinetic energy Ek in the spanwise wavenumber ky
respectively (a) in the buffer layer at z+ = 20 and (b) in the outer region at z+ = 200. The shaded areas

indicate the filtered regions of the spectra (a) in uout and (b) in uinn, being k+cy = 2π/∆+
y the wavenumber

corresponding to the spanwise filter length in inner units. In (b), k+cy is reported at the initial Reτ = 500

and final Reτ = 1000.

θinn (where the outer cycle is suppressed), ∆i is expressed in outer units. The filter lengths are
chosen to remove most of the energy content in the region where they are applied. By looking at
the premultiplied spectra, they have been respectively set to ∆+

x = 600 and ∆+
y = 100 for uouti ,

and ∆x = 1.5δ and ∆y = 0.5δ for uinni . In order to ensure uinni and uouti to be divergence free,
the pressure projection method is applied to the two velocity fields after the filtering operation.
The portions of the spectra filtered out in the spanwise direction to obtain uinni and uouti are
shown in shaded grey in figure A1(a) and (b), respectively measured in the buffer layer and in
the outer region.

(a)

(b)

(c)

Figure A2. Sections of the scalar fields of the three experiments at the same time instant, corresponding

to Reτ = 1000. Respectively (a) θ, (b) θout and (c) θinn. The reference case (a) is duplicated here in

order to simplify comparisons.
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We now proceed to present the results of these experiments. All the figures reported are
maintained as in section 3 in order to have a clear comparison between the data. In figure
3 the instantaneous scalar contours are shown on a wall-normal section. In figure A2, the
instantaneous scalar contours are shown on a wall-normal section. The scalar fields of the two
experiments θout and θinn show a very different topology if compared to those obtained with
the approach presented in section 3. In particular, θout looks macroscopically almost unaltered,
with a rescaling toward lower scalar values. Looking closer, in the near-wall region (which is
difficult to distinguish) it is possible to note substantial differences resulting from the absence
of small-scale motions. On the contrary, the field θinn appears completely different with respect
to the reference case due to the application of the filtering operation with large filter lengths
(∆x = 1.5δ and ∆y = 0.5δ). Despite this topological difference, we will see below that the
statistics of interest for this work and the main conclusions obtained in section 3 remain valid.

(a) (b)

Figure A3. (a) Temporal evolution of the Stanton number and its theoretical law St = 0.0125Re
−1/4
θ

in loosely dotted line (· · · · · ·) and (b) temporal evolution of the boundary layer thickness based on the

scalar concentration δθ.

As shown in figures A3(a) and 4(a), the Stanton number evolutions resulting from the two
approaches are qualitatively similar. Accordingly, also the pdf profiles measured in the viscous
sub-layer reported in figures A4(a) and 5(a) describe a similar scenario.

(a) (b)

Figure A4. Probability density function of θ (a) at z+ = 5 and (b) at z = δθ at the final Reτ = 1000.

The vertical lines in (a) indicate the respective mean values of the scalars.

A similarity can also be found in the temporal evolution of the boundary layer thickness as
shown in figures A3(b) and 4(b) and in the relative pdf profiles measured at the mean scalar
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interface (figures A4(b) and 5(b)). One notable difference is in the pdf distribution of θinn
(dotted line). The presence of an extended right tail in the pdf of θinn in figure A4(b) is caused
by the intersection between the plane located at the mean scalar interface position and the
protruding bulges generated by the large anisotropic fluctuations. These bulges contain a wide
range of scalar values and remain unmixed due to the absence of the small scales. The extension
of this tail is more extended with respect to the first approach because of the larger filter lengths
used. A minor change can also be observed in the evolution of δθinn

in figure A3(b) that is nearly
identical to that of the reference δθ in figure A3(b). In the present approach, in fact, the velocity
field in the outer region is not modified (uinni = ui) and the small difference between δθinn

and
δθ is only the result of the lower scalar concentration flux coming from the inner cycle. This
effect is comparable to a change of threshold in the definition of the mean interface position,
which is therefore a very small effect.

(a) (b)

Figure A5. (a) Mean scalar profiles and (b) variances at Reτ = 1000. The solid vertical line is located

at z+c = 60.

The mean profiles reported in figure A5 show a behaviour in accordance with the one observed
in figure 6, while the scalar variances describe a scenario opposite to the one observed in section
3 and in accordance with what is shown in figure A2. The highly unmixed outer region of θinn
causes a peak in ⟨θ′innθ′inn⟩ that have a great impact on the scalar variance fluxes, as we will see.

The mean fluxes reported in figure A6 are in good accordance with what is observed in figure
7.

(a) (b)

Figure A6. Mean fluxes of (a) θout and (b) θinn compared with θ at Reτ = 1000. The solid vertical

line is located at z+c = 60.
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Finally, the scalar variance budgets show some macroscopic differences due to the more
intrusive nature of the approach here presented. However, if we limit our analysis far enough
from the region affected by the filtering operation (i.e. z+ ≪ 60 for θinn and z+ ≫ 60 for θout)
we can note that the main conclusions drawn in section 3 find support in these graphs.

(a) (b)

Figure A7. Scalar variance (a) production Π, dissipation ϵθ and (b) turbulent and diffusive fluxes Φu

and Φα at Reτ = 1000. The solid vertical line is located at z+c = 60.

To conclude, despite the topological differences shown by the corresponding scalar fields
of the two presented approaches, the results obtained lead to the same conclusions in both
experiments. Confirmation of this can be found in the similarities between the evolution of
the integral quantities, in the mean profiles, in the turbulent fluxes of both the mean scalar
concentration and its variance and the production and dissipation of the fluctuations (if confined
in the regions of interest, namely the inner region for θinn and the outer region for θout).
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