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Abstract. In this paper we present a rigorous proof for the stability of a class of finite difference
schemes applied to nonlinear complex diffusion equations. Complex diffusion is a common and
broadly used denoising procedure in image processing. To illustrate the theoretical results we present
some numerical examples based on an explicit scheme applied to a nonlinear equation in context of
image denoising.

1. Introduction. The main result of this paper is the proof of a stability con-
dition for a class of finite difference schemes for nonlinear complex diffusion. The
stability condition for the linear case is very well known and widely documented in
literature [12, 13]. In [3] the authors derive, under suitable conditions, a stability
result for the linear complex case. Our result, on top of being a non-trivial general-
ization of the stability condition for the nonlinear case, also requires less regularity in
the diffusion coefficient than [3].

Diffusion processes are commonly used in image processing, as for example in
inpainting [8], stereo vision [16] or optical flow [2]. Another important application of
diffusion processes in image processing is noise removal [1, 11, 10, 14, 15]. The main
idea is that if one pixel is affected by noise, than the noise should be diffused among
the neighboring pixels in order to smooth the region. In this way proper diffusion
partial differential equations have been considered to achieve this end. Taking the
nonlinear diffusion equation

∂u(x, t)

∂t
= div (D(x, t, u)∇u(x, t)) (1.1)

where u(x, t) represents the denoised image at time t with the initial noisy im-
age u(x, 0), the choice of the diffusion parameter D plays a very important role for
the purpose of denoising. Here ∇ and div denote the gradient and the divergence
operators, respectively. Roughly speaking, one wants D to allow diffusion on ho-
mogeneous areas affected only by noise and to forbid diffusion on edges to preserve
features of the original denoised image. In this way, several expressions for D have
been suggested. The first approaches indicated that D should depend on the gradient
of u with an inverse proportion [10, 14, 15]. However, this kind of approach has some
handicaps. For instance, within a ramp edge the diffusion coefficient is similar along
all the edge delaying the diffusion process, not distinguishing between the end points
and interior points of the ramp edge where diffusion should differ. Therefore, the use
of the Laplacian in the definition of D was suggested as being more appropriate since
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it has a higher amplitude near the end points and lower magnitude elsewhere, namely
by considering

D =
1

1 + |∆u|2
. (1.2)

The drawback is that the computation of a higher order derivative is needed leading
to higher ill-posedness of the finite difference scheme in the first steps while the image
is strongly affected by noise. To overcome this problem, Gilboa et al. [7] suggested to
use complex diffusion. The use of a complex diffusion coefficient turns the partial dif-
ferential equation into some sort of combination between the heat and the Schrödinger
equation [4, 5]. Having the goal of preserving image features in view, Gilboa et al. [7]
suggested

D =
eiϑ

1 +
(

Im(u)
κϑ

)2 , (1.3)

with ϑ ≈ 0 and κ > 0 a normalization constant, involving an approximation to the
Laplacian of the image, namely by using the identity

lim
ϑ→0

Im(u(., t))

tϑ
= G ∗∆u(., 0) (1.4)

where G is a Gaussian and therefore the convolution with G represents a low pass
filter. We note that the right hand side is a low-pass filter of the structure of edges
of the initial image u(., 0) given by its Laplacian, and therefore the choice of D as
in (1.3) penalizes diffusion across edges.

Complex diffusion proved to be much better conditioned numerically and success-
fully applied in medical imaging despeckling and denoising [6, 11]. More recently an
improvement of D by making κ adaptive was also strongly suggested [1]. Having in
mind that explicit finite difference schemes for the discretization of the equation are
usually considered in order to obtain fast computational methods, it is important to
look for a stability condition for those schemes. It is known that for a real positive
diffusion parameter D in the one-dimensional case, the classical explicit first order in
time and second order in space method is stable if

∆t ≤ h2

2 maxD
, (1.5)

where ∆t and h are, respectively, the temporal and spatial discretization steps. This
upper bound has generally been used by engineers when implementing complex diffu-
sion, though no rigorous proof of stability condition was presented in this case. For the
case whereD is complex, not dependent on u and sufficiently smooth (D(·, t) ∈ C3(Ω)),
Tony Chan and Longjun Shen, in [3], prove that if

∆t ≤ h2

2 max |D|
2

DR

. (1.6)

where DR 6= 0 is the real part of D, the classical explicit first order in time and second
order in space method is stable. However, to the best of our knowledge there is no
rigorous proof to the stability condition for the complex nonlinear case.
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The paper is organized as follows. In Section 2 the complex diffusion equation
is presented and the details on the considered class of numerical schemes are also
given. Next, the stability condition is proven. We only present in detail the proof
for the unidimensional case and Neumann boundary conditions. Remark 1 is devoted
to the generalization of the proof for the easier Dirichlet case. We present numerical
examples in Section 3 to illustrate the stability condition derived in Section 2. We
end the paper with a section dedicated to conclusions and possible future work.

2. Complex diffusion equation and stability of the numerical scheme.
Let Ω ⊂ Rd, d ≥ 1, be is the cartesian product of open intervals in R, with boundary
Γ = ∂Ω,

Ω =

d∏
j=1

]aj , bj [, (2.1)

with aj , bj ∈ R. Let Q = Ω×]0, T ], with T > 0, and u : Q̄ = Ω̄× [0, T ] −→ C. We con-
sider a nonlinear diffusion process with a non-constant complex coefficient D(x, t, u) =
DR(x, t, u)+ iDI(x, t, u), where DR(x, t, u) and DI(x, t, u) are real functions. We also
need to assume that

DR(x, t, u) ≥ 0, (x, t) ∈ Q̄, (2.2)

and that there exists a constant L > 0 such that

0 < |D(x, t, u)| ≤ L, (x, t) ∈ Q̄. (2.3)

We define the initial boundary value problem for the unknown function u

∂u

∂t
(x, t) = div(D(x, t, u)∇u(x, t)), (x, t) ∈ Q

u(x, 0) = u0(x), x ∈ Ω,

αu(x, t) + β
∂u

∂ν
(x, t) = 0, x ∈ Γ, t ∈ [0, T ],

(2.4)

where
∂u

∂ν
denotes the derivative in the direction of the exterior normal ν to Γ. More

details, namely with D defined by (1.3), can be found in [7].
For the boundary conditions we consider that

αβ = 0 and α+ β 6= 0. (2.5)

Let us construct a mesh on Q. For the temporal interval we consider the mesh

0 = t0 < t1 < · · · < tM−1 < tM = T, (2.6)

where M ≥ 1 is an integer and tm+1 − tm = ∆tm, m = 0, . . . ,M − 1. Let hk denote
the mesh-size in the kth spatial coordinate direction, such that hk = (bk − ak)/Nk,
for k = 1, . . . , d, and Nk ≥ 2 an integer. Let h = maxhk and ∆t = max ∆tm. The set
of the points

xj = (a1 + j1h1, . . . , ad + jdhd), 0 ≤ jk ≤ Nk, k = 1, ..., d (2.7)
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defines a space grid that we denote by Ωh. We associate the point (xj , t
m) with the

coordinate (j,m) = (j1, . . . , jd,m).

We define a mesh in Q, which we denote by Q
∆t

h , by the cartesian product of

the space grid Ωh and a grid in the temporal domain. Let Q∆t
h = Q

∆t

h ∩ Q and

Γ∆t
h = Q

∆t

h ∩ Γ× [0, T ].

We denote by V mj the value of a mesh function V , defined on Q
∆t

h , at the point
(xj , t

m). We define the forward and backward finite differences with respect to (xj , t
m)

in the kth spatial direction by

δ+
k V

m
j =

V mj+ek − V
m
j

hk
, δ−k V

m
j =

V mj − V mj−ek
hk

, (2.8)

where ek denotes the kth element of the natural basis in Rd.
On Q

∆t

h we approximate (2.4) by the one-parameter family of finite difference
schemes 

Um+1
j − Umj

∆tm
=

d∑
k=1

δ+
k (Dm+θ

j−(1/2)ek
δ−k U

m+θ
j ) in Q̃∆t

h ,

U0
j = u0(xj) in Ωh,

αUmj +
β

2

d∑
k=1

(
δ+
k U

m
j + δ−k U

m
j

)
· νk = 0 in Γ∆t

h ,

(2.9)

where V m+θ
j = θV m+1

j + (1 − θ)V mj , θ ∈ [0, 1], Umj represents the approximation
of u(xj , t

m) and

Dm
j−(1/2)ek

=
D(xj , t

m, Umj ) +D(xj−ek , t
m, Umj−ek)

2
. (2.10)

We use the notation Q̃∆t
h for the set Q∆t

h or Q
∆t

h , respectively, in the case of Dirichlet
or Neumann boundary conditions, and νk represents the kth component of the normal
vector ν.

If θ = 0 then (2.9) is an explicit method. For θ > 0 the method is implicit
involving a nonlinear system of equations. For computational purposes an efficient
strategy to deal with the nonlinearity has to be considered.

Assuming enough regularity for the solution of (2.4), we may easily prove that
the method is consistent with the differential problem of order (h2,∆t) if θ 6= 1

2 , and
(h2, (∆t)2) if θ = 1

2 . Note that, in this last case, the time discretization corresponds
to the Crank-Nicolson method.

We will now investigate the stability of the finite difference scheme (2.9). The
approach we use here has some analogies with strategies more commonly used in the
context of the finite element method but it has already been used in the context of
the finite difference method (see e.g. [12]).

Theorem 2.1. Let (2.2) and (2.3) hold. If θ ∈ [ 1
2 , 1] then the method (2.9) is

unconditionally stable. If θ ∈ [0, 1
2 [ then the method (2.9) is stable under the condition

∆tm ≤ (min{h1, . . . , hd})2

2d(1− 2θ) max
xj∈Ω̄h

|Dm+θ
j |2

Dm+θ
Rj

, m = 1, . . . ,M − 1, (2.11)
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provided that there exists some ξ such that

0 < ξ ≤ Dm+θ
Rj ∀j,m. (2.12)

To prove this result we will consider the unidimensional case and Neumann bound-
ary conditions (α = 0). For d ≥ 2 or Dirichlet boundary conditions the proof follows
the same steps.

We rewrite (2.9) as a system by separating the real and imaginary parts, UR and
UI , respectively, of the main variable U = (U0, . . . , UN ). We shall then study the
stability of the family of finite difference schemes: find Umj ≈ u(xj , t

m), j = 0, . . . , N ,
m = 0, . . . ,M , such that



Um+1
Rj − UmRj

∆tm
= δ+

x (Dm+θ
Rj− δ

−
x U

m+θ
Rj )− δ+

x (Dm+θ
Ij− δ−x U

m+θ
Ij ),

j = 0, . . . , N,
m = 0, . . . ,M − 1,

Um+1
Ij − UmIj

∆tm
= δ+

x (Dm+θ
Ij− δ−x U

m+θ
Rj ) + δ+

x (Dm+θ
Rj− δ

−
x U

m+θ
Ij ),

j = 0, . . . , N,
m = 0, . . . ,M − 1,

U0
Rj = u0

R(xj), U
0
Ij = u0

I(xj), j = 0, . . . , N,

δ+
x U

m
R0 + δ−x U

m
R0 = 0, δ+

x U
m
RN + δ−x U

m
RN = 0, m = 0, . . . ,M,

δ+
x U

m
I0 + δ−x U

m
I0 = 0, δ+

x U
m
IN + δ−x U

m
IN = 0, m = 0, . . . ,M,

(2.13)
where

Dm
j− =

D(xj−1, t
m, Umj−1) +D(xj , t

m, Umj )

2
, j = 1, . . . , N, m = 0, . . . ,M. (2.14)

In (2.13) we need the extra points x−1 = x0 − h and xN+1 = xN + h and we defi-
ne Dm

0− = Dm
1− , Dm

(N+1)− = Dm
N− .

We consider the discrete L2 inner products

(U, V )h =
h

2
U0V 0 +

N−1∑
j=1

hUjV j +
h

2
UNV N (2.15)

and

(U, V )h∗ =

N∑
j=1

hUjV j , (2.16)

and their corresponding norms

‖U‖h = (U,U)
1/2
h and ‖U‖h∗ = (U,U)

1/2
h∗ . (2.17)

Multiplying both members of the first and second equations of (2.13) by, respectively,
Um+θ
R and Um+θ

I , according to the discrete inner product (·, ·)h and using summation
by parts we obtain(

Um+1
R − UmR

∆tm
, Um+θ

R

)
h

+ ‖(Dm+θ
R− )1/2δ−x U

m+θ
R ‖2h∗ =

(
Dm+θ
I− δ−x U

m+θ
I , δ−x U

m+θ
R

)
h∗

(2.18)
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and(
Um+1
I − UmI

∆tm
, Um+θ

I

)
h

+‖(Dm+θ
R− )1/2δ−x U

m+θ
I ‖2h∗ = −

(
Dm+θ
I− δ−x U

m+θ
R , δ−x U

m+θ
I

)
h∗ .

(2.19)
Then (

Um+1 − Um

∆tm
, Um+θ

)
h

+ ‖(Dm+θ
R− )1/2δ−x U

m+θ‖2h∗ = 0. (2.20)

Since we can write

Um+θ = ∆tm
(
θ − 1

2

)
Um+1 − Um

∆tm
+
Um+1 + Um

2
, (2.21)

we obtain

∆tm
(
θ − 1

2

)∥∥∥∥Um+1 − Um

∆tm

∥∥∥∥2

h

+
‖Um+1‖2h − ‖Um‖2h

2∆tm
+ ‖(Dm+θ

Rj− )1/2δ−x U
m+θ‖2h∗ = 0.

(2.22)
Let us now consider two different cases. First, we suppose that θ ∈ [ 1

2 , 1]. In this
case θ − 1

2 ≥ 0 and from (2.22) we immediately obtain that

‖Um+1‖h ≤ ‖Um‖h, m = 0, . . . ,M − 1, (2.23)

which proves that the scheme is stable without any limitation in the time step.
Now, let us consider that θ ∈ [0, 1

2 [. In this case,

‖Um+1‖2h − ‖Um‖2h
2∆tm

+ ‖(Dm+θ
R− )1/2δ−x U

m+θ‖2h∗ = ∆tm
(

1

2
− θ
)∥∥∥∥Um+1 − Um

∆tm

∥∥∥∥2

h

.

(2.24)
We recall that∥∥∥∥Um+1 − Um

∆tm

∥∥∥∥2

h

=

∥∥∥∥Um+1
R − UmR

∆tm

∥∥∥∥2

h

+

∥∥∥∥Um+1
I − UmI

∆tm

∥∥∥∥2

h

. (2.25)

From the first equation of (2.13) we get

Um+1
Rj − UmRj

∆tm
=

1

h
(Dm+θ

Rj+1−δ
−
x U

m+θ
Rj+1 −D

m+θ
Rj+1−δ

−
x U

m+θ
Rj+1)

− 1

h
(Dm+θ

Ij+1−δ
−
x U

m+θ
Ij+1 −D

m+θ
Ij+1−δ

−
x U

m+θ
Ij+1). (2.26)

We now consider the norm ‖.‖h of both members of (2.26). Using the boundary
conditions in (2.13) and applying the inequality (a− b)2 ≤ 2a2 + 2b2, we obtain∥∥∥∥Um+1

R − UmR
∆tm

∥∥∥∥2

h

≤ 4

h2
‖Dm+θ

R− δ−x U
m+θ
R −Dm+θ

I− δ−x U
m+θ
I ‖2h∗

=
4

h2

(
‖Dm+θ

R− δ−x U
m+θ
R ‖2h∗ + ‖Dm+θ

I− δ−x U
m+θ
I ‖2h∗

)
− 8

h

N∑
j=1

Dm+θ
Rj− δ

−
x U

m+θ
Rj Dm+θ

Ij− δ−x U
m+θ
Ij . (2.27)
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Likewise, from the second equation of (2.13) we get

Um+1
Ij − UmIj

∆tm
=

1

h
(Dm+θ

Ij+1−δ
−
x U

m+θ
Rj+1 −D

m+θ
Ij+1−δ

−
x U

m+θ
Rj+1)

+
1

h
(Dm+θ

Rj+1−δ
−
x U

m+θ
Ij+1 −D

m+θ
Rj+1−δ

−
x U

m+θ
Ij+1) (2.28)

and then,∥∥∥∥Um+1
I − UmI

∆tm

∥∥∥∥2

h

≤ 4

h2
‖Dm+θ

I− δ−x U
m+θ
R +Dm+θ

R− δ−x U
m+θ
I ‖2h∗

=
4

h2

(
‖Dm+θ

I− δ−x U
m+θ
R ‖2h∗ + ‖Dm+θ

R− δ−x U
m+θ
I ‖2h∗

)
+

8

h

N∑
j=1

Dm+θ
Rj− δ

−
x U

m+θ
Rj Dm+θ

Ij− δ−x U
m+θ
Ij . (2.29)

From (2.25), (2.27) and (2.29),∥∥∥∥Um+1 − Um

∆tm

∥∥∥∥2

h

≤ 4

h2

(
‖Dm+θ

R− δ−x U
m+θ‖2h∗ + ‖Dm+θ

I− δ−x U
m+θ‖2h∗

)
=

4

h2

((
(Dm+θ

R− )2 + (Dm+θ
I− )2

)
δ−x U

m+θ, δ−x U
m+θ

)
h∗ . (2.30)

Using assumption (2.12), we obtain∥∥∥∥Um+1 − Um

∆tm

∥∥∥∥2

h

≤ 4

h2
max
xj∈Ω̄h

|Dm+θ
j |2

Dm+θ
Rj

‖(Dm+θ
R− )1/2δ−x U

m+θ‖2h∗ . (2.31)

Then, (2.24) implies that

‖Um+1‖2h − ‖Um‖2h
2∆tm

+

1−
2∆tm(1− 2θ) max

xj∈Ω̄h

|Dm+θ
j |2

Dm+θ
Rj

h2

 ‖(Dm+θ
R− )1/2δ−x U

m+θ‖2h∗ ≤ 0.

(2.32)

If we assume that (2.11) holds then

‖Um+1‖2h ≤ ‖Um‖2h, m = 0, . . . ,M − 1. (2.33)

We conclude that, in the case θ ∈ [0, 1
2 [, the scheme (2.13) is stable provided that the

condition (2.11) holds. �

Remark 1. In the case of Dirichlet boundary conditions (β = 0), we obtain a
similar stability result defining the following discrete L2 inner product

(U, V )h =

N−1∑
j=1

hUjV j . (2.34)
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Remark 2. If one considers the complex diffusion D as in (1.3) with fixed κ,
then the stability condition (2.11) is equivalent to

∆tm ≤ (min{h1, . . . , hd})2 cosϑ

2d(1− 2θ)

1 +

min
xj∈Ω̄h

(UmIj )
2

κ2ϑ2

 , m = 1, . . . ,M − 1, (2.35)

which is less restrictive than the conjecture for stability condition by Gilboa et al. [7]
where the multiplicative term on the right was minored by 1. Moreover, in (2.35)
the most restrictive condition for the time step is obtained in the first iteration (since
Im(U0

j ) = 0), therefore suggesting an adaptive approach of recomputing the step in
time in every iteration (see [1]).

3. Numerical results. Having in mind the application in image filtering for
the presented nonlinear complex diffusion method, we will focus on the numerical
illustration of stability in this section. One wants to illustrate under which conditions
is the noise is eliminated or amplified.

We have implemented the explicit (θ = 0) scheme (2.9) in 1D and 2D to illustrate
the stability condition in Theorem 2.1, considering homogeneous Dirichlet boundary
conditions. We considered ϑ = π/180, κ = 10 for the complex diffusion filter (1.3),
which is commonly used to remove noise while preserving edges in image processing [1,
11].

We point out that the function defined by (1.3) satisfies both assumptions (2.3)
and (2.12) necessary in the above study of stability.

3.1. Example in 1D. We considered a profile with jump and ramp edges,
namely considering a initial condition of

U(x, 0) =


255, 10 ≤ x ≤ 15
125, 15 < x ≤ 20 ∧ 30 ≤ x ≤ 40
255(30− x) + 125(x− 20)

10
, 20 < x < 30

0, otherwise,

(3.1)

and discretization points xj = j, j = 1, 2, . . . , 51, again with h = 1. We considered the
profile affected by additive noise has presented in figures 3.1 and 3.2. The stability
condition is satisfied if ∆t ≤ 0.49992, being this value determined by the first iteration
as mentioned in remark 2.

In figure 3.1, we present the results for three different time steps and computed
the approximating at two different times T = 1 and T = 2. In figure 3.2 and 3.3
we present the first and second iterations, respectively, with time steps close to the
stability condition. It is clear in the close up in figure 3.2 that the instability arises
in areas with jump edges whenever the stability condition is not fulfilled, while the
scheme is stable if the condition is satisfied. Moreover, the second iteration presented
in figure 3.3 is much smoother than the first one. This is due to the fact that the
most restrictive stability condition is obtained for the first iteration, as mentioned in
remark 2.

3.2. Examples in 2D. We considered two examples. The first one consists of
a synthetic image as presented in figure 3.4, affected by additive noise. Reconstruc-
tions using the explicit finite difference scheme are presented in figures 3.4 and 3.5,
illustrating the stability condition ∆t ≤ 0.24996 given by Theorem 2.1 for this case.
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Fig. 3.1. Numerical solution for the explicit method with different time step and diffusion times
of T = 1 (left) and T = 2 (right).

Fig. 3.2. First iteration (left) and close up in a edge (right) for the explicit method with time
steps close to the cut-off value for stability ∆t = 0.4992.

Fig. 3.3. Second iteration for the explicit method with time steps close to the cut-off value for
stability ∆t = 0.4992.
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Fig. 3.4. Original and denoised images with the explicit method (top) and their histograms of
intensities (bottom) with different time steps for a diffusion time of T = 1.

Fig. 3.5. Original and first iteration for the explicit method (top) and histograms of intensities
(bottom) with time steps close to the cut-off value for stability ∆t = 0.24996.
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Fig. 3.6. Original and denoised images with the explicit method (top) and their histograms of
intensities(bottom) with different time steps for a diffusion time of T = 1.

The figures illustrate the stability condition. In fact, if the time step is greater
than the cut-off (e.g. ∆t ≥ 0.3) the image presents intensities outside the image
range [0,255]. Moreover, in this cases the noise is not eliminated but on the other
hand seems to be amplified. For time steps slightly over to the stability condition (e.g.
∆t = 0.25) the method seems to be stable, however the denoising effect seems to be
less effective as for ∆t = 0.2.

We also considered a digital image example: Lena’s image, commonly used in the
image processing community. Figures 3.6 and 3.7 show the results in similar conditions
to the previous example. The conclusions are also quite similar. The intensity values
fall of the image range [0,255] for ∆t ≥ 0.3 at the first iteration (see figure 3.7) and for
a fixed diffusion time of T = 1 it visually seems that the denoised image for ∆t = 0.25
(which is slightly over the stability condition) is not as smooth as for a smaller time
step further away from the stability cut-off (see figure 3.6). This is clear in the hat’s
feather region of the image in figure 3.6).

4. Conclusion and Future work. In this paper we present a stability result
for nonlinear complex diffusion. The stability condition concerns a class of finite
difference schemes, that range from explicit (θ = 0) to implicit (θ = 1) through the
well known Crank-Nicolson scheme (θ = 1/2). Moreover, we illustrate the theoretical
result with numerical examples both in 1D and 2D. The 2D case is more relevant
since nonlinear complex diffusion is commonly used for image denoising.

Two more remarks should be made in what concerns the numerical application of
this scheme to image denoising. The first is that the time step used should not be close
to the cut-off value for stability, since the denoising effect is not so effective as shown by
the examples. The second remark is that it seems also profitable to use an adaptative
time step along iterations, as already implicitly mentioned in Remark 2. The cut-off
value for stability is smaller at early iterations and may allow the numerical scheme
to take higher steps in time as iterations go by. In this way, the time step should be
computed at each iteration having in mind the stability condition in Theorem 2.1, in
the spirit of [1].

Future work might include the proof of convergence for finite difference schemes
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Fig. 3.7. Original and first iteration for the explicit method (top) and histograms of intensities
(bottom) with time steps close to the cut-off value for stability ∆t = 0.24996.

for nonlinear complex diffusion. Lax equivalence theorem [9] for stability and con-
vergence of consistent methods only holds in the linear case, therefore a different
approach must be taken into account.
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