
A Simulator to Assess Energy Saving Strategies and
Policies in HPC Workloads

Manuel F. Dolz Juan C. Fernández Sergio Iserte Rafael Mayo
Enrique S. Quintana-Ortí

Dpto. de Ingeniería y Ciencia de los Computadores,
Universitat Jaume I, 12.071–Castellón, Spain

{dolzm,jfernand,siserte,mayo,quintana}@uji.es

ABSTRACT
In recent years power consumption of high performance com-
puting (HPC) clusters has become a growing problem due,
e.g., to the economic cost of electricity, the emission of car-
bon dioxide (with negative impact on the environment), and
the generation of heat (which reduces hardware reliability).
In past work, we developed EnergySaving cluster, a soft-
ware package that regulates the number of active nodes in
an HPC facility to match the users’ demands. In this paper,
we extend this work by presenting a simulator for this tool
that allows the evaluation and analysis of the benefits of ap-
plying different energy-saving strategies and policies, under
realistic workloads, to different cluster configurations.

1. INTRODUCTION
HPC clusters have been widely adopted by companies and
research institutions for their data processing and scientific
computing centers because of their parallel performance,
high scalability, and low acquisition cost. However, fur-
ther deployment of HPC clusters is limited due to their
considerable economic costs in terms of energy consump-
tion, required both by the computing hardware and the
cooling backup. Furthermore, the electricity cost is not
the only problem; in general, energy consumption results
in carbon dioxide emission, a hazard for the environment
and public health, and heat, which reduces reliability of
hardware components [11]. The situation will become worse
in the future: a look to the Green500 list from June 2011
[1] indicates that, as-of-today, the most power-efficient su-
percomputer (NNSA/SC Blue Gene/Q Prototype 2) deliv-
ers 2,097.19 MFLOPS/W. A simple calculation thus reveals
that attaining the EXAFLOPS arithmetic rate (1018 floating-
point arithmetic operations, or flops, per second) with the
current technology would require 476.83 MW. That amounts
roughly for 50% of the electrical production capacity of a
modern nuclear reactor! Although the EXAFLOPS chal-
lenge will undoubtedly render groundbreaking scientific dis-

Copyright is held by the author(s)
This work is based on an earlier work: A flexible simulator to evaluate a
power saving system for HPC clusters, in Proceedings of the 2nd Interna-
tional Workshop on Green Computing Middleware, c© ACM, 2011.
http://doi.acm.org/10.1145/2088996.2088998

coveries, it is also certain that it asks for greener hardware
technology as well as more efficient system software, mid-
dleware, and application algorithms from the energy view-
point [4].

During the last decade an increasing number of efforts have
been conducted in order to conserve energy on distributed
systems. Here we concentrate on energy-aware computing
and review the state-of-the-art on energy conservation poli-
cies and algorithms. The work done on energy-aware com-
puting can be divided into two levels: node and cluster.
At the node-level, some algorithms leverage DVS (Dynamic
Voltage Scaling) technology in the context of mobile devices,
commercial web servers and scientific HPC systems. Other
node-level mechanisms include Intel Turbo Boost [2], Core
on/off and Request Batching [15]. However, although node-
level approaches (either in hardware or in software) have
been shown to preserve a significant fraction of the total
energy consumption, power consumption of an idle server is
still relatively high (e.g., 190W for an IBM eServer 325 [18]).
Thus, in order to increase the energy savings, existing node-
level approaches can be enhanced with a higher level energy-
aware management layer (cluster-level). Such approaches
can address the problem of high idle power consumption ei-
ther by consolidating individual tasks or virtual machines
on a subset of nodes while switching off unused resources.

In the cluster-level context a well-known energy manage-
ment technique is DVFS (Dynamic Voltage and Frequency
Scaling). This mechanism entails reducing the system en-
ergy consumption by simultaneously decreasing the CPU
supply voltage and the clock frequency (CPU speed). DVFS
has been leveraged by a large number of works with the pur-
pose of reducing energy consumption [12, 7, 5]. The authors
in [8] present an energy-aware method that partitions the
workload and reduces energy consumption in multiprocessor
systems with support for DVS. Freeh et al. [16] analyze the
energy-time trade-off of a wide range of applications running
on HPC clusters. In [10], the authors use economic criteria
to dispatch jobs to a small set of active servers, while other
servers are transitioned to a low energy state.

Alternative strategies to limit power consumption and the
associated cooling of HPC clusters are based on switching
on/shutting down nodes according to the demands from the
users’ applications. An algorithm that aims at balancing
the workload depending on both the total load imposed on

2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/61420616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the cluster and the power and performance implications of
turning nodes off is described in [19]. Several policies to com-
bine DVFS and turning on/off nodes to reduce the aggregate
power consumption of a server cluster during periods of re-
duced workload are presented in [14]. We have developed a
tool, EnergySaving Cluster (ESC) [13], that employs a num-
ber of rules to activate/deactivate nodes for a full adaption
of the system behavior to the computational power require-
ments. This tool has been designed and implemented as a
module (Roll) for Rocks R© [17] and employs the Sun R© Grid
Engine (SGE) [20].

In this paper we present the ESC Simulator (ESCS) based
in our ESC tool. This simulator reproduces the activity of
this tool under realistic workloads and for various platform
configurations. The simulator applies the desired activa-
tion/deactivation policies to a given input workload, and
can be easily configured to accommodate different platform
configurations. Among other statistics, the simulator re-
ports the percentage of the time that each node in the clus-
ter is turned on/off and, therefore, offers an estimation of
the energy consumption. Therefore, the main benefit of this
simulator is that it can serve as a demonstrator/testing tool
of the energy savings that a particular power-aware policy
can deliver compared with a conventional cluster in which
all nodes are permanently active.

The rest of the paper is organized as follows: Section 2 de-
scribes the ESCS. In Section 3, we offer results from several
simulations with different workloads that show the benefits
of the tool. Finally, Section 4 summarizes the conclusions.

2. DESCRIPTION OF THE SIMULATOR
In this section, we first introduce a model for the energy
consumption of a node and then describe the ESCS.

2.1 Model of the node energy consumption

Figure 1: Model for the power states of a cluster
node.

In order to obtain the energy consumption of a cluster we
need a model of the energy consumption of the system nodes.
In the current version of the simulator, we use a simple
model consisting in 5 states, shown in Figure 1. Each vertex
in the figure corresponds to a different state in the model:

• Standby. The node is off but still consumes a residual
amount of energy due to the hardware that remains
active waiting for a switch on command. The only
parameter that characterizes this state is the power
consumption.

• Powering on. Once a node has been selected to be
powered on, a signal is sent to it. From this moment

until the node is ready to execute a job there is a cer-
tain consumption of energy. The model in this state
includes both the energy consumption and the time,
from the instant the switch on signal is received to the
moment in which the node is able to execute its first
job.

• Powering off. Powering down a node requires a cer-
tain period from the moment the node receives the
request till it reaches the standby state. The model
needs the energy consumption and the time required
to evolve to the standby state.

• Idle. In this state, the node is powered on but has
no job assigned. The model only considers the power
consumption of the idle state.

• Loaded. In this state, the node is powered on and
executing a job. In the current version of the simulator,
we assume that a job running in a node always employs
its full computational power.

The simulator includes 7 major modules, illustrated in Fig-
ure 2: workload file loader, system configuration, queue-
ing scheduler, energy saving scheduler, simulation, statistics,
and website interface.

We have applied a modular design using Python to accom-
modate flexibility in the main functions of the simulator
(control of the queueing system, statistics gathering, and
application of node activation/deactivation policies). The
tool uses a B-Tree to perform simulations based on tempo-
ral scheduling of events. It recognizes eleven events, which
will be described later.

2.2 Workload file loader module
This module receives a workload file in standard workload
format [9] as input. This file has two parts:

• The first four lines define the global aspects of the
workload file: the total number of jobs of this file, the
log start date, the log finish date, the number of nodes
in the cluster, the number of processors in the cluster,
and the number of queues in the system.

• The remaining lines describe the jobs running in the
cluster. For each job, the file stores its identifier, the
submission time, the user responsible of the job, the
queue to which it belongs, the number of processors
used, and the duration of the job.

From this workload file, this module builds a B-Tree con-
taining all jobs in chronological order. The result of the
execution of this module is a B-Tree consisting of events of
type a new job is submitted to the system (one of the eleven
types of events).

2.3 System configuration module
This module receives as input a configuration file, in cfg
format, with the following information:

• Users of the system, the groups that they belong to,
and the configuration of the queues for each user group.

3



��������
	��
��

������������
����

���������
����

��
���

���	

�����
��
��

���������
����

�����

�		

���
�����

����

������
�����
���
���

���������


��������

�
��
 ���


��
���

��������

Figure 2: Modules of the ESCS.

• Nodes in the cluster and parameters of each group of
nodes in the cluster.

• General operations of the simulator: parameters defin-
ing the policies applied to job executions, energy saving
policies, and the duration of the various events occur-
ring during the simulation.

From this configuration file, this module builds different
Python structures. The most important one is the Python
dictionary, which will be used by all other simulator modules
except the workload file loader. In particular, the following
Python dictionaries are created: nodes, queues, users, idle
nodes, jobs, and groups of users.

2.4 Queueing system scheduler
The simulator employs a scheduler similar to the Sun Grid
Engine (SGE) queue system to handle the execution of jobs.
For each existing queue, the FIFO policy determines the
schedule of the queued jobs. This module uses nodes and
queues Python dictionaries. Due to the modular structure of
the simulator, adding new policies to it, like those provided
by SGE, is extremely easy.

2.5 Energy saving scheduler
This module is shared with that of the ESC, but employs
the interfaces provided by the queuing system scheduler
module to check and query the status of jobs, as well as
activate/deactivate nodes. This module uses the following
Python dictionaries: nodes, queues, idle nodes, users, and
groups of users.

The module simulates the activation/deactivation of nodes
according to the needs of the queue system’s user. It com-
pares the threshold parameters set by the system configu-
ration module and the current values of these parameters
from the queueing system scheduler to check if any of the
activation/deactivation conditions is satisfied.

The threshold conditions are not necessarily equal for all
users as it is possible to create multiple user groups with
different values for the threshold parameters.

2.5.1 Node activation conditions
Nodes can be turned on if any of the following conditions
holds:

• There are not enough appropriate active resources to
run a job. That is, as soon as the system detects that
a job does not have enough resources because all the
nodes that contain the appropriate type of resource
are powered down, nodes are turned on to serve the
request.

• The average waiting time of an enqueued job exceeds
a given threshold. The system configuration module
defines an upper bound on the average waiting time in
queue for the jobs of each group. When the average
waiting time of an enqueued job exceeds the threshold
assigned to the corresponding user’s group, the system
turns on nodes which contain resources of the same
type as those usually requested by the same user.

• The number of enqueued jobs for a user exceeds the
maximum value for its group. In this case, this mod-
ule selects and switches on nodes which feature the
properties required by most of the enqueued jobs.

In the ESC package there are several options to select the
(candidate) nodes that will be activated. Currently, the sim-
ulator only implements an ordered policy where the list of
candidate nodes is sorted in alphabetical order using the
name of the node (hostname).

2.5.2 Node deactivation conditions
The following parameters define the conditions to turn off a
node:

4



• The time that a node has been idle. exceeds an a
threshold set by the system configuration module.

• The average time waiting for users’ jobs is less than a
threshold set by the administrator. The system con-
figuration module defines a lower bound for the queue
waiting time of the jobs of each group of users. In case
the average waiting time of a user’s job is lower than
the threshold assigned to its group, this module turns
off a node (choosing one based on a least-recently-used
policy).

2.6 Simulation module
The simulation module looks up the B-Tree for the next
event in time, analyzes it, and adopts the necessary actions
to process this event, repeating this loop for all jobs of the
workload. This module continually inserts events in the B-
Tree like for example:

• Queue scheduler and energy saving scheduler are peri-
odically launched. The simulator records the starting
events associated with these two schedulers.

• Every time that an event for a job startup, a node turn
on, or a node turn occurs, the correspondent ending
events are recorded.

There are 11 events that may appear during the execution
of the simulation:

• Node turn-on starts: It changes the state of a node to
“powering on”.

• Node turn-on ends: It changes the state of a node to
“idle”, and updates the Python dictionary of idle nodes
with the instant of time when this event happened.

• Node turn-off starts: It changes the state of a node to
“powering off”.

• Node turn-off ends: It changes the state of a node to
“standby”.

• New job is submitted to the system: The job is added to
the corresponding job queue and the time of the event
is annotated in the Python dictionary of the job.

• Job execution starts: It changes the state of a node to
”loaded”, and saves the waiting time from the submit
time to the start time of the execution of this job in
the Python dictionary of the user. This waiting time is
updated periodically as it is used by the energy saving
scheduler.

• Job execution ends: This event produces the following
actions:

– It increases the counter of finished jobs.

– The job is deleted from the queue to which it
belonged.

– For each node involved in the execution of this
job, it calculates its new state taking into account
the number of free cores in this node; the state of
the node is updated with this information.

– Finally, the total execution time is computed and
saved.

• Energy saving scheduler starts: This event is added
according to the energy saving scheduling periodical
time. Also the event of energy saving scheduler ends is
added in the B-Tree, taking into account the duration
of the event.

• Energy saving scheduler ends: The action to perform
depends on the decision taken by the energy saving
scheduler. There are two possibilities: Turn on or turn
off nodes. The appropriate events of node turn-on/off
starts are recored in the B-Tree. It also records events
associated with node turn-on/off ends.

• Queue system scheduler starts: This event is added
according to the queue scheduling periodical time. The
event of queue system scheduler ends is also added to
the B-Tree.

• Queue system scheduler ends: The queueing scheduler
decides which is the job to run. For each node involved
in the decision of the queueing scheduler, the event of
job execution starts is added in the B-Tree. It also
attaches events of job execution ends.

The simulation module produces a trace file for each simu-
lation. For each event processed, this module saves a line in
this file containing several data: the time when each event
occurs, elements involved, and decisions to take. The trace
file is therefore the result of any decisions taken during the
execution of the simulation. This file is needed to compile
statistics on the simulation.

2.7 Statistics module
When the simulation finishes, all the submit, start and fin-
ish times of jobs and activation/deactivation transitions of
nodes, with their specific times, are stored in the database.
This application gathers several statistics, such as total ac-
tive/inactive time per node, job latency, and so on; and pre-
pares tables, graphs and statistics to evaluate energy con-
sumption. In particular, it calculates the following data:
maximum number of active nodes, number of shutdowns
during the simulation period, average queue waiting time,
average queue execution time, average user waiting time,
average user execution time, average node execution time,
active time, idle time, and total time of the simulation. From
these values, it is possible to elaborate graphs illustrating,
e.g., the number of active nodes at any moment in time.

This module also stores for each core the changes of states
occurring during the simulation. The goal is to graphically
represent what happened in each core during the simulation
using Paraver [6], a flexible performance visualization and
analysis tool. For this purpose, this module generates a file,
in prv format, which contains the information that Paraver
needs to display the results of the simulation. There is also
a configuration file, in pcf format, to configure the states of
the cores and the colors employed in the Paraver graphical
representation.

2.8 Website interface
The website provides complete control over the simulator.
The contents of the website are divided into pages, with the
following structure:

5



Figure 3: Website page with the results of a simulation.

• Home: Welcome Page.

• Setting: To configure and launch executions.

• Simulations: View of the simulations (in progress or
completed).

• Documentation: Manuals or other documents for the
“ESCS.”

• About...: Information on the web site.

The operations that can be performed from the website of
the simulator include:

• Set the parameters of a simulation.

• Import configuration files to apply them to a simula-
tion.

• Import workload files for simulation.

• Perform concurrent simulations and check the progress
of their execution.

• Perform management operations on the simulations,
such as:

– Abort simulation.

– Clear results of a simulation.

– View errors during a simulation, if any.

– View simulation results, composed by a line graph
and a table with all the information obtained by
the simulator; see Figure 3.

3. EXPERIMENTAL RESULTS
We have used a pair of synthetic workloads from the Paral-
lelWorkloads Archive [3] to test our simulator: NASA Ames
iPSC/860, consisting of 42,264 jobs, and OSC Linux Cluster,
composed of 80,714 jobs.

Table 1: Information of the simulation of NASA and
OSC workloads.

Workload Time (d,h,m,s) MWh

NASA without ESC 92 d,0 h,3 m,43 s 52.93 MWh
NASA with ESC 92 d,0 h,12 m,59 s 38.73 MWh
OSC without ESC 677 d,2 h,55 m,51 s 168.60 MWh
OSC with ESC 997 d,9 h,9 m,56 s 117.65 MWh

To obtain the results from the application of our simulator
to these two benchmarks we have determined the following
parameters:

• Time for a shutdown: 480 s.

• Time for a power on: 555 s.

• Energy consumption in “powering off” state: 10.79
Wh.

• Energy consumption in“powering on”state: 13.71 Wh.

• Power dissipation in “standby” state: 2 W.

• Power dissipation in “idle” state: 150 W.

• Power dissipation in “loaded” state: 230 W.

The results for these two benchmarks are reported in Ta-
ble 1. The information there reveals that it is possible to at-
tain important energy savings using the simple power on/off
policy implemented in ESC. For the OSC workload, the en-
ergy consumption with ESC is 0.697× that obtained without
using it. However, the use of ESC increases the time needed
to process all the jobs by a factor of 1.47. On the other
hand, with the NASA workload, the time is increased only
by 1.000069, i.e. there is no penalty due to ESC, but the
energy consumption of this alternative is only 0.73× that of
the energy consumption without ESC.

6



Powering on Loaded Idle Powering off Standby

Figure 4: Full and detailed graphical representation for OSC workload using Paraver (top and bottom,
respectively).

7



Table 2: Detailed results for OSC workload with
ESC.

Measure Total Per node

Number of shutdowns 750 13,15
Maximum active nodes 32 of 57 -
Active time 24,010d, 19h,

27m, 52s
421d, 5h,
48m, 54s

Inactive time 32,782d, 22h,
58m, 20s

575d, 3h,
21m, 1s

Active time with average
of active intervals per node 34d, 14h,

20m, 42s
14h, 34m, 2s

Inactive time with average
of inactive intervals per
node

47d, 5h, 42m,
16s

19h, 53m, 22s

Table 2 reports more detailed results for the OSC workload
with ESCS. Specifically, the first row in the table shows the
number of node shutdowns during 997 days: 750 shutdowns
for a cluster with 57 nodes is a reduced number. This means
that, in average, a node was activated/deactivated slightly
more than 13 times in 997 days. The following rows show
the active/inactive average time for all nodes in the cluster.
To obtain these figures, we collected the active/inactive time
per node to calculate the total average. This metric illus-
trates the time that the nodes are powered on: basically 421
days of a total of 997 days, or 42% of the time. The last two
rows of results in the table display the total active/inactive
average time of nodes from the local averages of active and
inactive intervals per node, in this case the inactive time
with average of inactive intervals is 20 hours.

Figure 4 shows the changes of states during the simulation of
OSC workload with ESC using Paraver. The different colors
identify the possible states of nodes: powering on, loaded,
idle, powering off and standby. The top part of the figure
offers the complete trace for the OSC workload while the
bottom one zooms the activity of nodes 15 and 16 during a
period of 24 hours.

4. CONCLUDING REMARKS
We have developed a simulator to evaluate the impact of
energy saving policies in an HPC cluster. The tool is highly
efficient: Simulation of months of execution in a cluster are
reduced to minutes which accelerates the analysis of the
data. In addition, the simulator provides data that eases
the evaluation of the power performance of a system by test-
ing different solutions and approaches in a matter of a few
minutes. The modular design of the simulator enhances its
flexibility, so that adding new features to the simulator is
relatively easy.

Acknowledgments
This work was supported by project CICYT TIN2011-23283
of the MINECO and FEDER.

5. REFERENCES
[1] The Green500 list - june 2010.

http://www.green500.org/.

[2] Intel2008: Intel turbo boost technology in intel core
microarchitecture (Nehalem) based processors.
November 2008.

[3] Logs of real parallel workloads from production

systems. http://www.cs.huji.ac.il/labs/parallel/
workload/logs.html.

[4] S. Albers. Energy-efficient algorithms.
Communications of the ACM, 53:86–96, 2010.

[5] T. Bletsch, V. Freeh, D. Lownenthal, B. Rountree,
M. Schulz, and B. de Supinski. Adagio: making DVS
practical for complex HPC applications export.
Proceedings of the 23rd international conference on
Supercomputing (ICS ’09), pages 460–469, 2009.

[6] BSC. Paraver. http://www.bsc.es/
computer-sciences/performance-tools/paraver.

[7] K. W. Cameron, R. Ge, and X. Feng.
Performance-constrained distributed DVS scheduling
for scientific applications on power-aware clusters.
Conference on High Performance Networking and
Computing Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, page 34, 2005.

[8] X. Changjiu, L. Yung-Hsiang, and L. Zhiyuan.
Energy-aware scheduling for real-time multiprocessor
systems with uncertain task execution time. Proc.
44th Annual Conf. Design Automation, San Diego,
CA, USA, ACM, pages 664–669, June 2007.

[9] S. J. Chapin, W. Cirne, D. G. Feitelson, J. Jones,
S. Leutenegger, U. Schwiegelshohn, W. Smith, and
D. Talby. Benchmarks and standards for the
evaluation of parallel job schedulers. In Job Scheduling
Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (Eds.), Springer-Verlag, Lect. Notes
Comput. Sci., 1659:66–89, 1999.

[10] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and
R. Doyle. Managing energy and server resources in
hosting centres. Proc. 18th ACM Symp. Operating
System Principles, Banff, Canada, pages 103–116,
2001.

[11] W. chun Feng, X. Feng, and R. Ce. Green
supercomputing comes of age. IT Professional,
10:17–23, 2008.

[12] R. Dick, H. Yang, L. Shang, Y. Liuand, and H. Wang.
Thermal vs energy optimization for DVFS-enabled
processors in embedded systems. International 8th
Symposium on Quality Electronic Design (ISQED
’07), pages 204–209, March 2007.

[13] M. Dolz, J. C. Fernández, R. Mayo, and E. S.
Quintana-Ort́ı. Energysaving cluster roll: Power
saving system for clusters. Architecture of Computing
Systems - ARCS 2010, Lecture Notes in Computer
Science (LNCS), 5974:162–173, 2010.

[14] E. Elnozahy, M. Kistler, and R. Rajamony.
Energy-efficient server clusters. Workshop on Mobile
Computing Systems and Applications, February 2002.

[15] E. Elnozahy, M. Kistler, and R. Rajamony. Energy
conservation policies for web servers. Proc. of the 4th
USENIX Sympsium on Internet technologies, 2003.

[16] V. Freeh, F. Pan, D. Lowenthal, N. Kappiah,
R. Springer, B. Rountree, and M. Femal. Analyzing
the energy-time tradeoff in high-performance
computing applications. IEEE Transactions on
Parallel and Distributed Systems, 18(6):835–848, June
2007.

[17] U. of California. Rocks R© Clusters.
www.rocksclusters.org.

[18] A. Orgerie, L. Lefevre, and J. Gelas. Chasing gaps

8



between bursts: Towards energy efficient large scale
experimental grids. The 9th International Conference
on Parallel and Distributed Computing. Applications
and Technologies (PDCAT ’08), pages 381–389,
December 2008.

[19] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath.
Load balancing and unbalancing for power and
performance in cluster-based systems. Workshop on
Compilers and Operating Systems for Low Power,
September, 2001.

[20] I. Sun Microsystems. Sun R© Grid Engine.
http://gridengine.sunsource.net.

9




