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Abstract. In a recent paper Laurengot and van Roessel (2010) studied the scaling
behaviour of solutions to a two-species coagulation-annihilation system with total
annihilation and equal strength coagulation, and identified cases where self-similar
behaviour occur, and others where it does not. In this paper we proceed with the
study of this kind of systems by assuming that the coagulation rates of the two
different species need not be equal. By applying Laplace transform techniques the
problem is transformed into a two dimensional ordinary differential system that can
be transformed into a Lotka-Volterra competition model. The long-time behaviour of
solutions to this Lotka-Volterra system helps explain the different cases of existence
and nonexistence of similarity behaviour, as well as why, in some cases, the behaviour
is nonuniversal, in the sense of being dependent of initial conditions.
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1. The coagulation-annihilation system

The two-species coagulation-annihilation system describes the time evolution of the
concentration of clusters of two different particle species (A and B, say) in which the
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A-particle clusters [resp., B-particle clusters] undergo coagulation between themselves,
symbolically

Aﬂ -+ A)\ — Aqu)\ [resp., B,u —+ B)\ — Bth)\]’ (1)

but when an A-particle cluster and a B-particle cluster come together, they annihilate
each other, and in the simplest such model the annihilation is complete, i.e., for all u

and A,
AM + BA — . (2)

These processes, as well as similar ones, have been approached in the literature
through a variety of techniques, including Monte Carlo simulations in lattice systems
(see, e.g., Hoyuelos and Martin (1996), Privman et al. (1995), and Sokolov and Blumen
(1994)), renormalization group theory (see, e.g., Lee and Cardy (1995)), or mean field
rate equations (see references below).

In a mean field description of this process, denoting by a(t, 1) the concentration
of A-clusters of size p at time ¢, the differential equation for the rate of change of this
concentration due to coagulation equation (1) is

%(t, ,u) = _Ka(,uv )‘)a(t’ ,u)a(t, )\)’

and analogously for the rate of change of the B-clusters concentration, with rate
coefficientes Kj(p, A). The annihilation process (2) contributes with a rate of change,
for either a(t, 1), or b(t, \), given by

%(t, 1) = %(t, N) = —L(, Na(t, )bt \).

When considering the different ways a given cluster of a certain type and size can be
created and destroyed these contributions must be taken together and the resulting
mathematical model is either a system for a countable number of ordinary differential
equations, if the cluster sizes are discrete, yu, A € NT, or a system of integro-differential
equations, for continuous cluster sizes, u, A € R (see below).

These models were considered by Ben-Naim and Krapivsky (1995) for discrete
cluster sizes and for reaction rates independent of the cluster sizes and all with the same
value, K,(u, A) = Kp(u, A) = L(p, ) = 2. In that work, the authors investigated the
time evolution of the system and the existence, or nonexistence, of a universal similarity
behaviour of the solutions. More recently, Laurencot and van Roessel (2010) considered
these same issues in the case of continuous cluster sizes with reaction rates also
independent of the cluster sizes but with the coagulation rates K,(u, \) = Ky(u, \) = k
possibly different from the annihilation kernel L(u, A) = L, a case that had already been
considered by Krapivsky (1993) for the discrete case with k = 2.

In this paper we extend the analysis of Laurencot and van Roessel (2010) by
considering the possibility of the coagulation rates of A-clusters and of B-clusters to
be different from each other, i.e., we consider K,(u,\) = K,, Ky(u,\) = K, and
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L(pu,\) = L, where K,, Kj, L are positive constants, otherwise unrestricted. Using
the Laplace transform approach of Laurencot and van Roessel (2010) we obtain a
two dimensional system of ordinary differential equations that governs the scaling
dynamics of the coagulation-annihilation model. In contradistinction to what was
done for the corresponding ordinary differential system in Ben-Naim and Krapivsky
(1995) and Laurengot and van Roessel (2010), we study the behaviour of solutions
to the ordinary differential system by transforming it into a Lotka-Volterra competition
system. The analysis of the equilibria of this competition system and their stability allow
us to draw conclusions about the existence, or nonexitence, of scaling behaviour in the
coagulation-annihilation model, as well as providing a dynamical systems explanation for
the nonuniversality of the scaling behaviour already identified in the above mentioned
papers for some parameter regions. The final result of this analysis in presented in
Table 4.

2. Scaling behaviour via Laplace transforms

The time evolution of a population of A-clusters and B-clusters, with continuous cluster
sizes, undergoing coagulation and annihilation according to the reactions (1) and (2),
and with reaction rates independent of the cluster sizes, can be described by the following
system of integro-differential equations (see Laurengot and van Roessel (2010))

%(t, A) = % /0 }(aa(t, A — wa(t, p)dp — a(t, \) ( /0 O;Qa@, p)dp + /0 OZb@, u)du) :

0b

A (3] (3]
a(t, A) = %/OKbb(t, A — u)b(t, p)dp — b(t, \) (/0 Kpb(t, p)dp + /0 La(t,u)du) :

As in Laurengot and van Roessel (2010), we can rescale this system so that a smaller
number of free parameters remain (two, in this case): let k := K,/ K,, J := 2L/K, and
rescale the time t — 2t/K,. Let

A(t) == /0 Ta A, B — /0 Tt N, (3)

Then, the coagulation-annihilation system becomes

da A
5 (LA = /0 a(t, A — pa(t, p)dp — a(t, A) (2A() + JB(t)) (4)
%(t, A) = /1/0 b(t, A — p)b(t, w)dp — b(t, \) (2kB(t) + JA(t)), (5)

with initial conditions a(0,\) = ag(A) = 0, b(0,\) =by(A) =0, X € R*. The study
of the case J > 0 and k = 1 was done in Laurengot and van Roessel (2010). Here we
will consider any positive value of J and k.

To study the scaling dynamics of (4)-(5) we will follow previous studies of this
system and other coagulation type equations and resort to Laplace transforms, a tool
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that is well adapted to the convolution structure of (4)-(5). Following Laurencot and
van Roessel (2010), define the Laplace transforms by

F(t,z) = L(a(t,-))(z) :== /000 e Ma(t, \)d\,

G(t,x) == L(b(t,"))(z) := /OOO e b(t, \)dA,

and use (4)-(5) to get the following system for the time evolution of F' and G

oF
ot
oG 5
with initial conditions F(0,2) = Fy(z) = L(ao(:))(x), and G(0,z) = Gp(x) :=
L(bo(-))(x). Observe that the system of differential equations for F' and G can be
written only in terms of ' and G themselves, since, from (3), we have A(t) = F(t,0)
and B(t) = G(t,0). Assuming we know the behaviour of A(t) and B(t), each of the

equations for F' and G can be easily solved independently of the other to give

I —P(t) G -Q(t)
F(t,z) = 0<5U)€t . G(t,z) = olz)e ¢ )
1 — Fy(z) [, e P®ds 1 — kGo(z) [, e )ds

(t,2) = F*(t,x) — (2A(t) + JB(t))F(t, ),

(6)
where
P(t) = /0 (2A(s) + JB(s))ds and Q(t) /O (26B(s) + JA(s))ds.  (7)

Observe that, apart from the factor k, these are exactly equal to the functions
occurring in Laurengot and van Roessel (2010), so, once the long-time dynamic
behaviour of the functions A(t) and B(t) is known, exactly the same computations
can be reproduced to get the behaviour of the Laplace transforms F' and G and, «a
posteriori, the dynamic scaling behaviour of the solutions of (4)-(5).

To get the needed information on the dynamics of the functions A(t) and B(t) first
observe that, by integrating equations (4)-(5) over (0,00), we easily conclude that A
and B must be the solutions to the system

A
a4 = —-A?’-JAB
dB
— = —kB?—-JAB
dt

with initial conditions A(0) = Ag := Fy(0) > 0 and B(0) = By := G(0) > 0.

What we need to know about the long-time behaviour of solutions to (8) in order to
pursue the above program are the rates of convergence to zero of the positive solutions
to this system (that positive solutions of (8) necessarily converge to zero is obvious by
inspection).

In Laurengot and van Roessel (2010) the particular (symmetric) version of (8) with
r = 1 was studied by applying a change of variables that allows one to solve for one of
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the variables in terms of the other, effectively decoupling the system. That change of
variables is also not dissimilar from the one used by Ben-Naim and Krapivsky (1995).

When k # 1 we could not find a change of variables akin to those, so we need to
consider a different approach. The one we use here is of a more geometrical nature: it is
based on a change of variables in (8) that transforms it into a Lotka-Volterra competition
system, the equilibrium points of which are related to the long-time asymptotic profiles
of the solutions to (8). This approach will not provide all the details concerning
the constants involved, but will give the correct rates of convergence relevant for the
coagulation studies downstream. The final result is presented in Table 1 at the end of
next section.

3. A Lotka-Volterra competition system

Let A(t) := (t4+1)A(t) and B(t) := (t+1)B(t). If (A, B) solves (8) with initial condition
A(0) =Ap >0, B(0) = By > 0, then (A, B) is a solution of the system

dA ey e
(t+1)— = A—-A?-JAB
“waoo (9)
(t+1>ﬁ = B-—kB? - JAB,
with the same initial conditions. Let us change the time scale ¢ — 7 := log(t + 1),

and define z(7) := A(t(7)), y(r) := kB(t(7)). Then, (z,y) solves the following Lotka-
Volterra competition system

{I = x(l—x—%y) (10)

gy = y(d—y—Ju),
where the dot represents the derivative with respect to 7, and the solution satisfies the
initial condition x(0) = Ap,y(0) = KBy. The analysis of the convergence to equilibria
of solutions to (10) provides information about the rates of convergence to zero of the
solutions to the original system (8).

It is clear that (10) has always three nonnegative equilibria, the points (0,0) which
is always unstable, and the points (1,0) and (0, 1) whose stability depends on the values
of the parameters J and k. Additionally to these equilibria, in some parameter regions
there is a single strictly positive equilibrium point, whose stability also depends on where
the parameters lie. Finally, in the single parameter point k = J = 1 system (10) has a
degenerate continuum of equilibria formed by all the points in the straight line segment
between (1,0) and (0, 1).

The study of what happens in all relevant parameter regions and of the global and
linearized stability properties (eigenvalues, invariant regions, etc.) of the equilibria in
each case is a standard exercise that can be checked in the literature (see, e.g., Murray
(2002, Section 3.4)) and so, we will start by stating those properties without proof, and
shall deal only with those geometric aspects needed for the application to (8) and not



Coagulation-annihilation models and competition systems 6

available in Murray (2002), such as the eigenvectors of (some) of the linearizations, or
the dynamics on the center manifold (in the final case).
There are a number of relevant parameter sets that need to be considered, namely

O ={(J,k) ER* : x> Jand J < 1},
Qo ={(J,k) ER* : k> Jand J > 1},
Qs ={(J,k) ER* : k< Jand J > 1},
Q={(J,k) ER* : k< Jand J < 1},

as well as the boundaries €;; := 0€; N 0€);, and the point Q, = (Q;; = {(1,1)}. All
these sets are ploted in Figure 1.

A

K k=J
Qo—T 2

0 - Qo
1

Q,— |

1 Lo

Q3
O

941/ Q= Q34

Figure 1. Parameter sets relevant to the study of (10). The dotted line (x = 1)
corresponds to the parameter case studied in Laurencot and van Roessel (2010).

3.1. Parameters in Q0 (k> J and J < 1)

In this case, (10) has a unique positive equilibrium (zo,yeo) = (£, “=75) that is
globally exponentially asymptotically stable in the interior of Rt x R*. Hence, the
equilibria lying on the coordinate axis, (1,0) and (0, 1), are linearly unstable. So, for all

initial conditions, we know that

(o) = (£ 52 ) (o), a7

which, reverting to the original variables, gives

A(l) = 3,1+ (D)

B(t) = 24,1+ o(1)

®|

as t — oo, (11)

|

where & = 1 — J and § = k — J. Note that, when x = 1 we have o/ = 1 and (11)
reduces to the equation (30) of Laurencot and van Roessel (2010).
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3.2. Parameters in Qg (k> J > 1)

In this case the point (1,0) is globally asymptotically stable in RT x RT. So, as in the
previous case, the behaviour of the function A(¢) can be immediately read off from that
of z(7):

Alt) = %(1 +o(1)) ast— oo

However, in order to have the rate of convergence of B(t), the information provided
by the convergence of y(7) is not yet sufficient: in fact, what y(7) — 0 implies is that
B(t) converges to zero faster than 1/¢t. Thus, when applied to the study of self-similar
behaviour of the coagulation-annihilation equations, this case is certain to lead us into
the kind of trouble already faced in Laurencot and van Roessel (2010) when one of the
functions was converging to zero at a faster rate than 1/¢.

Even if the result proves to be irrelevant for self-similar studies we will complete the
analysis by identifying the rate at which B(t) converge to zero. This requires information
about the rate of convergence of y(7) to zero. This is the kind of information provided by
the linearization, when applicable. Linearizing (10) about (1,0) we obtain the jacobian
matrix

-1 =<
J(1,0) = "
(1,0) 0 1—J 1|’
which, when J # 2, has the eigenpairs
J

A =—1, v = (1,0)7, N=1—J vg=(=J-2)".
K
Hence, we can write

[ z ] (1) = + o (oqe_T + apet=7 [ 7 % 5 ]) , (12)

where ® is the topological conjugacy provided by the Hartman-Grobman theorem.
Remember that ®(0) = 0 and D®(0) = id. So, when 7 — oo we can write

1
0

T 1 -7 1 1-J)r %
y (1) = 0 + aqe 0 + age 75 +h.o.t., (13)
and, in particular, we obtain
y(1) = as(J = 2)e" " £ hot.,, asT — oo. (14)

Note that ay depends on the initial data (Ag, By) in an unknown way, and also that
as(J —2) > 0. Now, remembering that 7 = log(t 4+ 1), and observing that

e(1—J) log(t+1) (t 4 1)1—J 1 1

(1+0(1)), as t — o0, (15)

tr1 i+l t+1)7 ¢
we conclude that

B(t) = CO:,St'u Fo(1)  ast— oo, (16)
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where “const.” is a positive constant depending on the initial data (Ag, By) in an
unspecified way.

When J = 2 we need to compute the generalized eigenpair of the jacobian matrix
J(1,0), which is

Ao =—1, vy = (1,0)".
Now, instead of (12) we have

[ y ] (1) = + ¢ (ale_T

y(T) = (Const,)efT + h.o.t., as7 — o0,

1
0

and thus

which implies, via (15), that (16) also holds with J = 2.
Summarizing: in the case k > J > 1 the asymptotic behaviour of positive solutions
to (8) is

as t — oo. (18)

At) = %(1 +0(1))
B(

t) = SO (1 4 o(1))

3.3. Parameters in Qy (k< J <1)

In this case the point (0, 1) is globally asymptotically stable in RT x RT and we could
proceed with the analysis as in the previous section. However, we can avoid it by
observing that this case is easily reduced to the previous one by changing = <> y and
i <> J. Hence, we can read out the asymptotic behaviour directly from (18):

{ At) = €oBst-(1 4 o(1))
B(t) = L(1+0(1))

Note that, due to the factor x in the definition of y, the expression for B(¢) in (19) is
not exactly that of A(t) in (18).

as t — oo. (19)

3.4. Parameters in Qs (k < J and J > 1)

This case corresponds to the situation when there is a unique saddle point in the interior
of RT x R*, with the same coordinates as (2, Yoo ) in Section 3.1, and the two equilibria
(1,0) and (0, 1) are asymptotically stable points whose basins of attraction in Rt x R*
are open sets € o) and 1), respectively, and whose separatrix w := m N m
is the stable manifold of (4, ¥yso). It is easy to conclude that w is the straight line
Yy = z%:x, since in points of this line the slope of the vetor field of (10) is equal to the
slope of the line, Z—i’ =9/% = Yoo/ Too (see Figure 2).

So, taking into consideration the results in Sections 3.1, 3.2 and 3.3, we have

o If By = § Ay, then the solution behaves as in (11),
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Figure 2. Equilibria of (10) for parameters in Q3. Circles represent equilibria: full
circles are exponentially asymptotically stable equilibria, the shaded circle is a saddle
point, and the white circle is an unstable equilibrium. The dashed lines are the
nullclines of (10) and the arrows represent the flow on the corresponding line. The
straight line w is the separatrix of the basins of attraction of the stable equilibria.

o If By < %AO, then the solution behaves as in (18),
e If By > § A, then the solution behaves as in (19).

This dependence on the initial conditions was already observed in Laurencot and
van Roessel (2010) for the particular case when k = 1. The present geometric picture
helps us to understand its origin a little better.

3.5. Parameters in the boundary lines k =J or J =1

We start by observing that, here again, the case k = J can be reduced to the case J =1
by changing the variables x <+ y and J/k <> J. Thus, we shall only study this last case.

3.5.1. Parameters in Q. (k = J =1). This degenerate case has the whole line segment
between (1,0) and (0, 1) as equilibria. By a quick inspection of the vector field of (10)
we conclude that every positive solution to (10) will converge to a point (Zs, Yso) of this
line segment. Furthermore, one easily concludes that the function m(t) := y(t)/x(t)
satisfies m = y:%yx = 0, and this means that the orbits of (10) are straight lines with
slope m = yo/zo. Thus, the limit point (2., Y ) is obtained as the intersection of the

straight lines y = 1 — x and y = z—g:p, which implies that z,, = xo”ffyo and Yoo = xoy—fyo

Hence, reverting to the original variables, we conclude that

{ At) = 25 (1 + o(1)

B(t) = o22(1 + o(1)

as t — oo. (20)



Coagulation-annihilation models and competition systems 10

3.5.2. Parameters in Q34 (k < J = 1). In this case the equilibrium (0,1) is globally
asymptotically stable (in Rt x R"). Using the remark in Section 3.3 and observing that
all computations in Section 3.2 still hold with J = 1, we conclude that the result in
Section 3.3 is valid also for this case:

{ A(t) = OB (14 o(1))
B(t) = L(1+0(1))

as t — oo. (21)

3.5.8. Parameters in {415 (k > J = 1). In this case the equilibrium (1,0) is globally
asymptotically stable (in R x R¥). Again, as in Section 3.2, the behaviour of the
component A(t) of the solution to (8) can be immediately read off from the fact that
x(1) — 1 as 7 — oo, but the precise rate of decay of B(t) requires a little more effort.
As in Section 3.2, we start by linearizing (10) about the equilibrium solution (1,0) to
obtain the jacobian matrix

J(1,0) = [ _é _o; ] ,

which has eigenpairs
A =—1, v = (1,0)7, A =0, vy =(1,—k)".

The existence of a zero eigenvalue implies that the nonlinear dynamics cannot be
analyzed via the linearized system using the Hartman-Grobman theorem, but we need
to investigate the dynamics on the center manifold of (1,0). This manifold is tangent
to the eigenspace correspondent to Ay = 0. To simplify the computations let us change
variables from (x,y) to (z,y) in such a way that (1, 0) is mapped to (0, 0), the eigenspace
correspondent to A\; = —1 becomes the z-axis and the eigenspace correspondent to
Ao = 0 becomes the y-axis. It is easy to see that T := x — 1 + y/k,y := y fulfills these
requirements. System (10) becomes

oo =
y = —1y—(r—1)y°/r.
By standard methods (see, e.g., Carr (1981)) we conclude that, up to second order,
the center manifold is the graph of a function ¢(y) = —“731@'2 + O(y?). Thus,
substituting ¥ = ¢(7) in the J-equation in (22) we conclude that 7 satisfies § =
—%@2 + "‘R—_ng?’ + O(y*). Thus, knowing that ¥ — 0 as 7 — oo, we can write this
equation as

d K g
— — = — =1 1), — 0.
P A +o(1) as T — 00
From this we can deduce that
K
— =1 1), — 00,
T +o(1) as 7 — 00

and, reverting to the original variables, we conclude that B(t) ~ ( L as t — oo.

rk—1)tlog(t+1)
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Thus, in this case we have
{ A(t) = (1 +0(1))

B(t) = e (1 +0(1))
and this concludes the analysis.

as t — oo, (23)

The results in this section are summarized in Table 1. Observe that, in all cases,
when ¢ — oo solutions of (8) converge to zero at least as fast as ¢ 1.

Table 1. Asymptotic behaviour of the solutions of (8) as t — oo. The following
notation is used: « = 1 —J, 8 = k — J, and “const.” denote positive constants
dependent on the initial data (Ao, By).

Parameter Initial data Asymptotic behaviour, as t — oo, of
set A(t) B(t)
k>JJ <1 Ag,Bo>0  (1+Jg2) 'ttt a(1+J8) ¢!
k>J=1 Ap,Bo >0 t=1 (k —1)"(tlogt)~!

k=2J>1 Ap,Bo >0 t=1 (const.)t=7
By < ady/B t=1 (const.)t=
k<J,J>1 Bo=ad/B  (1+J8) 't s(1+J8) 't
By > ady/B (const.)t—7/* kTl
k<J<L1 A9, By >0 (const.)t—7/* k1t!
k=J<1 Ao, Bo>0 (1—k)"Htlogt)™?! kTl
k=J=1 Ao, By >0 At oot !

4. On the scaling behaviour

As pointed out in section 2 just after equation (7), once we have the results in Table 1
we can apply exactly the same approach as in Laurengot and van Roessel (2010) to
obtain the values of the limits of £(¢)F'(t, %) and of &(1)G(t, %) as t — oo, for some
convenient, strictly increasing, functions £(t),((t). From these limits, the self-similar
behaviour of the solutions is obtained by the properties of the Laplace transform.

Following Laurengot and van Roessel (2010), we consider the functions

t t
o (t) = exp (/ A(s)ds) and A(t) := exp (/ B(s)ds). (24)
0 0
From the definitions (7) of P(t) and Q(t) we easily conclude that
PO = o7 (1)’B(t)! and 9V = B(t)* o/ (1), (25)

To get the long-time behaviour of &7 and Z we can, in (8), divide the A-equation by A
and the B-equation by B and integrate between ¢ = 0 and ¢ to get

A J By " J
A (t)#(t)” and B =B) (). (26)
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Inverting this relation we obtain
_ At)\*/ By \’ 2 B(t)\ /s Ao \’
0= (BO) (Y o= (B0) (M)
2 A ) \By) w20 AV 0
If we now plug the long-time behaviour of A and B into the expressions (27) we

obtain all the information we need. In fact, denoting the asymptotic behaviour ast — oo
of these several functions by

{ A(t) ~ Ast? { A (t) ~ ot

B(t) ~ Buyt? ’ B(t) ~ Booth (28)

we can use (27) and the behaviour collected in Table 1 to conclude the exponents are
those presented in Table 2. Also in Table 2 we present the result for the case k = J =1
which have to be analyzed using (20) and (24) (with an arbitrary ¢y > 0 instead of 0 in
the lower limit of integration), since (27) gives no information in this case.

Table 2. Exponents of the long-time behaviour (28) of the functions (A, B) and
(7, PB) obtained from the results in Table 1.

Case Parameter sets P q a b
k>J, J<1
' J - J—-1
i)  k<J, J>1(withinitial -1 -1 r

2 2 _
conditions By = aAy/f) / " "

k=>J>1

(i) k<J, J>1(withinitial -1 —J 1 0
conditions By < aAg/p)
k< J<L1 7

(i) k< J, J>1(withinitial —— -1 0 1/k
conditions By > aAg/f) "

(iv) w=J=1 -1 -1 Ao Bo

Ao+Bo Ao+Bo

For the only two situations for which the asymptotic behaviour of either A or B is
not asymptotically a power law (when x > J = 1, and when x = J < 1) we can still use
(27) and the results in Table 1 to conclude the results presented in Table 3.

Table 3. Long-time behaviour of the functions (A, B) and (&, $) when £ > J = 1,
and Kk = J < 1.

Parameter Asymptotic behaviour, as t — oo, of
set A(t) B(t) o (t)le=1l A(t)l=—1
1 —1)~'  A5/Bytet -1
k>J=1 - (v = 1) 0/Bo N gt
t tlogt k—1 logt Ao/By
1— -1 1 1— B 1/k t(l—m)/fi
k=J<1 (7'%) — r logt (%Bo)

tlogt Kt kBo/Ag (1-k)Ap logt
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Now, let us point out how to use this information. We will consider only the
behaviour of F', the study of G being analogous.

Let ((t) be any positive function such that ((t) — oo as t — oco. For all fixed =,
we can use (25) to write the numerator of the expression for F' in (6) as

FO(%)eP(t) ~ Fo(0)e PO = Ayt (1) 2B(1) ™, ast — oo. (29)

Now, making = = 0 in the expression for F' in (6) and using the first equalities in
(25) and (26) we conclude that

t
/0 e PO gs = Ai()(l = ML@))

from which we can write,

L FO(%)/Oe_P(S)dS _ Aio :FO(O) - FJ%) + FO(Q%)) %}
LT . FO(O)—F(](%) N
= 4 12 A +F°(@>W]
_ ¢(t)
1 Tz 1
~ A_o _—@FO(O) +A0%—<t>], ast — 00
— e [loalha + 2] st (30)

where the asymptotic behaviour was obtained by applying Lagrange’s mean value
theorem when ((t) — oo, and in the last term ||aol|; := f;~ Aag(A)dA = —F}(0).
Gathering (29) and (30), we can write the equality for F' in (6) as follows

1 A -2 -/
F<t, L )N 0 (1) ‘%ﬁ?t) Cast — oo,
AoC(t) ¢(t) laolliz + 7y
which, can be rearranged to
A(t) o (t)B(t)’ T 1
Flt, ast — 00. 31
e A ) e mm oy

In order to be able to invert the Laplace transform and the resulting object to be

Aod(t)
P70

(31) was deduced using the assumption ((t) — oo as t — oo. Thus, the component

a positive function, we need to have — 1 as t — oo. Furthermore, remember that

a = L7Y(F) of the solution to the coagulation-annihilation system (4)-(5) exhibits a
scaling behaviour if &7 (t) — 0o as t — oo, in which case, and without loss of generality,
we can choose the similarity scaling as ((t) = 27 (t)/Ap in (31). This choice leads to
o () B(t)! F(t T ) N 1
Ao A (t)/ Ao/ |laolhz +1

Recalling that F'is the Laplace transform of a, which means that

F(t,z2) :/OOO “**a(t, ¢)ds,

, ast — oo. (32)
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we can write

T oo
F(t, )Z / gy L0 NSO g
TOTA) "y

and thus
o (1) B(t)’ z e AW2B0) ot
71:’@,7): M(M £, 20 )d , 33
Aq o (t) /A /0 € AZ a( Ao () ) dp (33)
Since the Laplace transform of <= is ﬁﬂ, equations (32) and (33) imply that, in a
weak sense,
AP L ~/laoll
lim Az a(t, 7 p) = me : (34)

The same conclusion holds true if, instead of taking the exact expressions for 7 (t) and
ZA(t) in the left-hand side of (34) we use their asymptotic form as ¢t — oc.

Inspecting Tables 2 and 3 we conclude that (34) holds, and a exhibits self-similar
behaviour, when the parameters (J, k) are in Cases (i), (ii), and (iv), and in the boundary
sets 219 U Qy ;.

An entirely analogous argument can be applied to the equation for G in (6). The
result for the Laplace transform limit is

B(t)- o (t) T 1
B G(t, %’(t)’i/Bo) ~ oz -1 ast — oo, (35)

valid in the cases when #(t) — oo as t — oo, and from this we similarly conclude that,

in a weak sense,

b(t, 29y = L omwltol, (36)
1bol[1

Asin (34), the same result will be obtained here by using, instead of the exact expressions
for o7 (t) and A(t), their asymptotic form as t — oo.

Again by inspection of the Tables 2 and 3, (36) is valid, and b exhibits self-similar
behaviour, when the parameters (J, k) satisfy Cases (i), (iii), and (iv), and in €3 5 Uy ;.

Both in (34) and in (36) the knowledge of the precise asymptotic behaviour of <7 ()
and A(t), (28), i.e., knowing both the scaling exponents and the multiplicative factors,
is necessary for getting all the details of the scaling behaviour. However, without further
effort, an inspection of the results in Tables 2 and 3 allow us to compute the dynamical
exponents involved in the scaling behaviour (34) and (36), which are physically more
interesting than the precise multiplicative constants.

Clearly, by not using the precise multiplicative factors @7, and %, the exact
constants in the similarity limit will be lost and the kind of information obtained will
not be as precise as in (34) and (36), but something like

Fag YaOalt ealt)p) = CLeT %, Jim o0l ult)p) = Chem (37)

with appropriate scaling functions v, 5, @a» and positive constants C} b Cy b
Table 4 collects the results about the scaling functions ¢,;, and ¢, in (37) that
can be gathered from the data in Tables 2 and 3.
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Table 4. Scaling functions v, () and ¢, (t) for the similarity behaviour (37) of the
a and b cluster distributions.

Parameter sets Ya(t) ©a(t) Up(2) ou(t)
k>J, J<1 J—r S
k < J, J>1 (with initial tpa(t) ¢ to(t) ¢
conditions By = aAg/f)
k>J>1
k < J, J>1 (with initial toa () t — —
conditions By < aAg/f)
k< J<LK1
k < J, J>1 (with initial — — top(t) t

conditions By > ady/f)

k>J=1 tpa(t) 7(1 == (tlogt)ps(t) (logt)=T
Og r—1
t
k=J<1 (tlogt)pa(t) (logt) ™ top(t) — ———
(logt) T~
__Agq __Bg
k=J=1 ta(t) g oo top(t) grorro

5. Conclusion

In this paper we studied the self-similar behaviour of solutions to a two-species
coagulation-annihilation cluster system with constant, but possibly distinct, reaction
coefficients, (4)-(5). It consists of a generalization of the model studied in Laurengot
and van Roessel (2010), for which the coagulation rates were constant and equal.

The approach starts with the application of Laplace transforms in the original
system (4)-(5). This leads to the expressions (6) for the Laplace transforms of the cluster
size distributions of each of the species, as functions of time and of the Laplace variable.
These expressions involve the zero moments (3) of the cluster distributions of each of the
species (i.e., their L'-norm, or, in physical terms, the total amount of clusters of each
species). In order to use (6) to get information on the similarity behaviour of the original
cluster system (4)-(5), one needs to have information about the rates of convergence to
zero of the moments (3). This is done by deriving an ordinary differential system for
the time evolution of these quantities, and by a change of variables that transforms that
system into a Lotka-Volterra competition system (10) an analysis of which provides the
sought after information.

Considering the different regions in the parameter space for which the moments (3)
have distinct rates of convergence to zero, we can use these rates and the expressions (6)
to obtain the formulas (34) and (36) for the similarity limits of the two different cluster
species, which are valid when the integrals (24) of the appropriate moments diverge to
infinity as 7 — oco. Using the asymptotic rates of divergence of those functions (24) in
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(34) and (36) we obtain the exponents governing the similarity behaviour of solutions for
all interesting parameter cases, including those obtained in Laurengot and van Roessel
(2010) as a very particular case.
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