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Lisboa, Lisboa, Portugal
4 Department of Mathematical and Statistical Sciences, University of Alberta,

Edmonton, Canada

E-mail: fcosta@uab.pt, jpinto@math.ist.utl.pt,

henry.vanroessel@ualberta.ca, rafael@uab.pt

Abstract. In a recent paper Laurençot and van Roessel (2010) studied the scaling

behaviour of solutions to a two-species coagulation-annihilation system with total

annihilation and equal strength coagulation, and identified cases where self-similar

behaviour occur, and others where it does not. In this paper we proceed with the

study of this kind of systems by assuming that the coagulation rates of the two

different species need not be equal. By applying Laplace transform techniques the

problem is transformed into a two dimensional ordinary differential system that can

be transformed into a Lotka-Volterra competition model. The long-time behaviour of

solutions to this Lotka-Volterra system helps explain the different cases of existence

and nonexistence of similarity behaviour, as well as why, in some cases, the behaviour

is nonuniversal, in the sense of being dependent of initial conditions.
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1. The coagulation-annihilation system

The two-species coagulation-annihilation system describes the time evolution of the

concentration of clusters of two different particle species (A and B, say) in which the
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A-particle clusters [resp., B-particle clusters] undergo coagulation between themselves,

symbolically

Aµ + Aλ −→ Aµ+λ [resp., Bµ +Bλ −→ Bµ+λ], (1)

but when an A-particle cluster and a B-particle cluster come together, they annihilate

each other, and in the simplest such model the annihilation is complete, i.e., for all µ

and λ,

Aµ +Bλ −→ ∅. (2)

These processes, as well as similar ones, have been approached in the literature

through a variety of techniques, including Monte Carlo simulations in lattice systems

(see, e.g., Hoyuelos and Mártin (1996), Privman et al. (1995), and Sokolov and Blumen

(1994)), renormalization group theory (see, e.g., Lee and Cardy (1995)), or mean field

rate equations (see references below).

In a mean field description of this process, denoting by a(t, µ) the concentration

of A-clusters of size µ at time t, the differential equation for the rate of change of this

concentration due to coagulation equation (1) is

∂a

∂t
(t, µ) = −Ka(µ, λ)a(t, µ)a(t, λ),

and analogously for the rate of change of the B-clusters concentration, with rate

coefficientes Kb(µ, λ). The annihilation process (2) contributes with a rate of change,

for either a(t, µ), or b(t, λ), given by

∂a

∂t
(t, µ) =

∂b

∂t
(t, λ) = −L(µ, λ)a(t, µ)b(t, λ).

When considering the different ways a given cluster of a certain type and size can be

created and destroyed these contributions must be taken together and the resulting

mathematical model is either a system for a countable number of ordinary differential

equations, if the cluster sizes are discrete, µ, λ ∈ N
+, or a system of integro-differential

equations, for continuous cluster sizes, µ, λ ∈ R
+ (see below).

These models were considered by Ben-Naim and Krapivsky (1995) for discrete

cluster sizes and for reaction rates independent of the cluster sizes and all with the same

value, Ka(µ, λ) = Kb(µ, λ) = L(µ, λ) = 2. In that work, the authors investigated the

time evolution of the system and the existence, or nonexistence, of a universal similarity

behaviour of the solutions. More recently, Laurençot and van Roessel (2010) considered

these same issues in the case of continuous cluster sizes with reaction rates also

independent of the cluster sizes but with the coagulation rates Ka(µ, λ) = Kb(µ, λ) = k

possibly different from the annihilation kernel L(µ, λ) = L, a case that had already been

considered by Krapivsky (1993) for the discrete case with k = 2.

In this paper we extend the analysis of Laurençot and van Roessel (2010) by

considering the possibility of the coagulation rates of A-clusters and of B-clusters to

be different from each other, i.e., we consider Ka(µ, λ) = Ka, Kb(µ, λ) = Kb, and
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L(µ, λ) = L, where Ka, Kb, L are positive constants, otherwise unrestricted. Using

the Laplace transform approach of Laurençot and van Roessel (2010) we obtain a

two dimensional system of ordinary differential equations that governs the scaling

dynamics of the coagulation-annihilation model. In contradistinction to what was

done for the corresponding ordinary differential system in Ben-Naim and Krapivsky

(1995) and Laurençot and van Roessel (2010), we study the behaviour of solutions

to the ordinary differential system by transforming it into a Lotka-Volterra competition

system. The analysis of the equilibria of this competition system and their stability allow

us to draw conclusions about the existence, or nonexitence, of scaling behaviour in the

coagulation-annihilation model, as well as providing a dynamical systems explanation for

the nonuniversality of the scaling behaviour already identified in the above mentioned

papers for some parameter regions. The final result of this analysis in presented in

Table 4.

2. Scaling behaviour via Laplace transforms

The time evolution of a population of A-clusters and B-clusters, with continuous cluster

sizes, undergoing coagulation and annihilation according to the reactions (1) and (2),

and with reaction rates independent of the cluster sizes, can be described by the following

system of integro-differential equations (see Laurençot and van Roessel (2010))

∂a

∂t
(t, λ) =

1

2

∫ λ

0

Kaa(t, λ− µ)a(t, µ)dµ− a(t, λ)

(∫ ∞

0

Kaa(t, µ)dµ+

∫ ∞

0

Lb(t, µ)dµ

)
,

∂b

∂t
(t, λ) =

1

2

∫ λ

0

Kbb(t, λ− µ)b(t, µ)dµ− b(t, λ)

(∫ ∞

0

Kbb(t, µ)dµ+

∫ ∞

0

La(t, µ)dµ

)
.

As in Laurençot and van Roessel (2010), we can rescale this system so that a smaller

number of free parameters remain (two, in this case): let κ := Kb/Ka, J := 2L/Ka and

rescale the time t 7→ 2t/Ka. Let

A(t) :=

∫ ∞

0

a(t, λ)dλ, B(t) :=

∫ ∞

0

b(t, λ)dλ. (3)

Then, the coagulation-annihilation system becomes

∂a

∂t
(t, λ) =

∫ λ

0

a(t, λ− µ)a(t, µ)dµ− a(t, λ) (2A(t) + JB(t)) , (4)

∂b

∂t
(t, λ) = κ

∫ λ

0

b(t, λ− µ)b(t, µ)dµ− b(t, λ) (2κB(t) + JA(t)) , (5)

with initial conditions a(0, λ) = a0(λ) > 0, b(0, λ) = b0(λ) > 0, λ ∈ R
+. The study

of the case J > 0 and κ = 1 was done in Laurençot and van Roessel (2010). Here we

will consider any positive value of J and κ.

To study the scaling dynamics of (4)-(5) we will follow previous studies of this

system and other coagulation type equations and resort to Laplace transforms, a tool
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that is well adapted to the convolution structure of (4)-(5). Following Laurençot and

van Roessel (2010), define the Laplace transforms by

F (t, x) := L(a(t, ·))(x) :=

∫ ∞

0

e−λxa(t, λ)dλ,

G(t, x) := L(b(t, ·))(x) :=

∫ ∞

0

e−λxb(t, λ)dλ,

and use (4)-(5) to get the following system for the time evolution of F and G

∂F

∂t
(t, x) = F 2(t, x)− (2A(t) + JB(t))F (t, x),

∂G

∂t
(t, x) = κG2(t, x)− (2κB(t) + JA(t))G(t, x),

with initial conditions F (0, x) = F0(x) := L(a0(·))(x), and G(0, x) = G0(x) :=

L(b0(·))(x). Observe that the system of differential equations for F and G can be

written only in terms of F and G themselves, since, from (3), we have A(t) = F (t, 0)

and B(t) = G(t, 0). Assuming we know the behaviour of A(t) and B(t), each of the

equations for F and G can be easily solved independently of the other to give

F (t, x) =
F0(x)e

−P (t)

1− F0(x)
∫ t

0
e−P (s)ds

, G(t, x) =
G0(x)e

−Q(t)

1− κG0(x)
∫ t

0
e−Q(s)ds

, (6)

where

P (t) :=

∫ t

0

(2A(s) + JB(s))ds and Q(t) :=

∫ t

0

(2κB(s) + JA(s))ds. (7)

Observe that, apart from the factor κ, these are exactly equal to the functions

occurring in Laurençot and van Roessel (2010), so, once the long-time dynamic

behaviour of the functions A(t) and B(t) is known, exactly the same computations

can be reproduced to get the behaviour of the Laplace transforms F and G and, a

posteriori, the dynamic scaling behaviour of the solutions of (4)-(5).

To get the needed information on the dynamics of the functions A(t) and B(t) first

observe that, by integrating equations (4)-(5) over (0,∞), we easily conclude that A

and B must be the solutions to the system




dA

dt
= −A2 − JAB

dB

dt
= −κB2 − JAB

(8)

with initial conditions A(0) = A0 := F0(0) > 0 and B(0) = B0 := G0(0) > 0.

What we need to know about the long-time behaviour of solutions to (8) in order to

pursue the above program are the rates of convergence to zero of the positive solutions

to this system (that positive solutions of (8) necessarily converge to zero is obvious by

inspection).

In Laurençot and van Roessel (2010) the particular (symmetric) version of (8) with

κ = 1 was studied by applying a change of variables that allows one to solve for one of
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the variables in terms of the other, effectively decoupling the system. That change of

variables is also not dissimilar from the one used by Ben-Naim and Krapivsky (1995).

When κ 6= 1 we could not find a change of variables akin to those, so we need to

consider a different approach. The one we use here is of a more geometrical nature: it is

based on a change of variables in (8) that transforms it into a Lotka-Volterra competition

system, the equilibrium points of which are related to the long-time asymptotic profiles

of the solutions to (8). This approach will not provide all the details concerning

the constants involved, but will give the correct rates of convergence relevant for the

coagulation studies downstream. The final result is presented in Table 1 at the end of

next section.

3. A Lotka-Volterra competition system

Let Ã(t) := (t+1)A(t) and B̃(t) := (t+1)B(t). If (A,B) solves (8) with initial condition

A(0) = A0 > 0, B(0) = B0 > 0, then (Ã, B̃) is a solution of the system




(t+ 1)
dÃ

dt
= Ã− Ã2 − JÃB̃

(t+ 1)
dB̃

dt
= B̃ − κB̃2 − JÃB̃,

(9)

with the same initial conditions. Let us change the time scale t 7→ τ := log(t + 1),

and define x(τ) := Ã(t(τ)), y(τ) := κB̃(t(τ)). Then, (x, y) solves the following Lotka-

Volterra competition system
{
ẋ = x(1− x− J

κ
y)

ẏ = y(1− y − Jx),
(10)

where the dot represents the derivative with respect to τ, and the solution satisfies the

initial condition x(0) = A0, y(0) = κB0. The analysis of the convergence to equilibria

of solutions to (10) provides information about the rates of convergence to zero of the

solutions to the original system (8).

It is clear that (10) has always three nonnegative equilibria, the points (0, 0) which

is always unstable, and the points (1, 0) and (0, 1) whose stability depends on the values

of the parameters J and κ. Additionally to these equilibria, in some parameter regions

there is a single strictly positive equilibrium point, whose stability also depends on where

the parameters lie. Finally, in the single parameter point κ = J = 1 system (10) has a

degenerate continuum of equilibria formed by all the points in the straight line segment

between (1, 0) and (0, 1).

The study of what happens in all relevant parameter regions and of the global and

linearized stability properties (eigenvalues, invariant regions, etc.) of the equilibria in

each case is a standard exercise that can be checked in the literature (see, e.g., Murray

(2002, Section 3.4)) and so, we will start by stating those properties without proof, and

shall deal only with those geometric aspects needed for the application to (8) and not
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available in Murray (2002), such as the eigenvectors of (some) of the linearizations, or

the dynamics on the center manifold (in the final case).

There are a number of relevant parameter sets that need to be considered, namely

Ω1 = {(J, κ) ∈ R
2+ : κ > J and J < 1},

Ω2 = {(J, κ) ∈ R
2+ : κ > J and J > 1},

Ω3 = {(J, κ) ∈ R
2+ : κ < J and J > 1},

Ω4 = {(J, κ) ∈ R
2+ : κ < J and J < 1},

as well as the boundaries Ωij := ∂Ωi ∩ ∂Ωj , and the point Ω∗ =
⋂

Ωij = {(1, 1)}. All

these sets are ploted in Figure 1.

J

κ

1

1

Ω2

Ω1

Ω4

Ω3

Ω12

Ω41 Ω34

Ω23

Ω∗

κ = J

Figure 1. Parameter sets relevant to the study of (10). The dotted line (κ = 1)

corresponds to the parameter case studied in Laurençot and van Roessel (2010).

3.1. Parameters in Ω1 (κ > J and J < 1)

In this case, (10) has a unique positive equilibrium (x∞, y∞) = ( κ−J
κ−J2 ,

κ−Jκ
κ−J2 ) that is

globally exponentially asymptotically stable in the interior of R+ × R
+. Hence, the

equilibria lying on the coordinate axis, (1, 0) and (0, 1), are linearly unstable. So, for all

initial conditions, we know that

(x(τ), y(τ)) =

(
κ− J

κ− J2
,
κ− Jκ

κ− J2

)
(1 + o(1)), as τ → ∞,

which, reverting to the original variables, gives




A(t) = 1

(1+J α
β
)t
(1 + o(1))

B(t) = α/β

(1+J α
β
)t
(1 + o(1))

as t→ ∞, (11)

where α = 1 − J and β = κ − J. Note that, when κ = 1 we have α/β = 1 and (11)

reduces to the equation (30) of Laurençot and van Roessel (2010).
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3.2. Parameters in Ω2 (κ > J > 1)

In this case the point (1, 0) is globally asymptotically stable in R
+ × R

+. So, as in the

previous case, the behaviour of the function A(t) can be immediately read off from that

of x(τ):

A(t) =
1

t
(1 + o(1)) as t→ ∞.

However, in order to have the rate of convergence of B(t), the information provided

by the convergence of y(τ) is not yet sufficient: in fact, what y(τ) → 0 implies is that

B(t) converges to zero faster than 1/t. Thus, when applied to the study of self-similar

behaviour of the coagulation-annihilation equations, this case is certain to lead us into

the kind of trouble already faced in Laurençot and van Roessel (2010) when one of the

functions was converging to zero at a faster rate than 1/t.

Even if the result proves to be irrelevant for self-similar studies we will complete the

analysis by identifying the rate at which B(t) converge to zero. This requires information

about the rate of convergence of y(τ) to zero. This is the kind of information provided by

the linearization, when applicable. Linearizing (10) about (1, 0) we obtain the jacobian

matrix

J(1, 0) =

[
−1 −J

κ

0 1− J

]
,

which, when J 6= 2, has the eigenpairs

λ1 = −1, v1 = (1, 0)T, λ2 = 1− J, v2 = (
J

κ
, J − 2)T.

Hence, we can write
[
x

y

]
(τ) =

[
1

0

]
+ Φ

(
α1e

−τ

[
1

0

]
+ α2e

(1−J)τ

[
J
κ

J − 2

])
, (12)

where Φ is the topological conjugacy provided by the Hartman-Grobman theorem.

Remember that Φ(0) = 0 and DΦ(0) = id. So, when τ → ∞ we can write
[
x

y

]
(τ) =

[
1

0

]
+ α1e

−τ

[
1

0

]
+ α2e

(1−J)τ

[
J
κ

J − 2

]
+ h.o.t., (13)

and, in particular, we obtain

y(τ) = α2(J − 2)e(1−J)τ + h.o.t., as τ → ∞. (14)

Note that α2 depends on the initial data (A0, B0) in an unknown way, and also that

α2(J − 2) > 0. Now, remembering that τ = log(t + 1), and observing that

e(1−J) log(t+1)

t+ 1
=

(t+ 1)1−J

t+ 1
=

1

(t+ 1)J
=

1

tJ
(1 + o(1)), as t→ ∞, (15)

we conclude that

B(t) =
const.

tJ
(1 + o(1)) as t→ ∞, (16)
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where “const.” is a positive constant depending on the initial data (A0, B0) in an

unspecified way.

When J = 2 we need to compute the generalized eigenpair of the jacobian matrix

J(1, 0), which is

λ2 = −1, v2 = (1, 0)T.

Now, instead of (12) we have
[
x

y

]
(τ) =

[
1

0

]
+ Φ

(
α1e

−τ

[
1

0

]
+ α2e

−τ

[
τ

−κ
2

])
, (17)

and thus

y(τ) = (const.)e−τ + h.o.t., as τ → ∞,

which implies, via (15), that (16) also holds with J = 2.

Summarizing: in the case κ > J > 1 the asymptotic behaviour of positive solutions

to (8) is
{

A(t) = 1
t
(1 + o(1))

B(t) = const.
tJ

(1 + o(1))
as t→ ∞. (18)

3.3. Parameters in Ω4 (κ < J < 1)

In this case the point (0, 1) is globally asymptotically stable in R
+ × R

+ and we could

proceed with the analysis as in the previous section. However, we can avoid it by

observing that this case is easily reduced to the previous one by changing x ↔ y and
J
κ
↔ J . Hence, we can read out the asymptotic behaviour directly from (18):

{
A(t) = const.

tJ/κ
(1 + o(1))

B(t) = 1
κt
(1 + o(1))

as t→ ∞. (19)

Note that, due to the factor κ in the definition of y, the expression for B(t) in (19) is

not exactly that of A(t) in (18).

3.4. Parameters in Ω3 (κ < J and J > 1)

This case corresponds to the situation when there is a unique saddle point in the interior

of R+×R
+, with the same coordinates as (x∞, y∞) in Section 3.1, and the two equilibria

(1, 0) and (0, 1) are asymptotically stable points whose basins of attraction in R
+ ×R

+

are open sets Ω(1,0) and Ω(0,1), respectively, and whose separatrix ω := Ω(1,0) ∩ Ω(0,1)

is the stable manifold of (x∞, y∞). It is easy to conclude that ω is the straight line

y = y∞
x∞

x, since in points of this line the slope of the vetor field of (10) is equal to the

slope of the line, dy
dx

= ẏ/ẋ = y∞/x∞ (see Figure 2).

So, taking into consideration the results in Sections 3.1, 3.2 and 3.3, we have

• If B0 =
α
β
A0, then the solution behaves as in (11),
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��

y

x
1

1

Ω(1,0)

Ω(0,1)

ω

Figure 2. Equilibria of (10) for parameters in Ω3. Circles represent equilibria: full

circles are exponentially asymptotically stable equilibria, the shaded circle is a saddle

point, and the white circle is an unstable equilibrium. The dashed lines are the

nullclines of (10) and the arrows represent the flow on the corresponding line. The

straight line ω is the separatrix of the basins of attraction of the stable equilibria.

• If B0 <
α
β
A0, then the solution behaves as in (18),

• If B0 >
α
β
A0, then the solution behaves as in (19).

This dependence on the initial conditions was already observed in Laurençot and

van Roessel (2010) for the particular case when κ = 1. The present geometric picture

helps us to understand its origin a little better.

3.5. Parameters in the boundary lines κ = J or J = 1

We start by observing that, here again, the case κ = J can be reduced to the case J = 1

by changing the variables x↔ y and J/κ↔ J. Thus, we shall only study this last case.

3.5.1. Parameters in Ω∗ (κ = J = 1). This degenerate case has the whole line segment

between (1, 0) and (0, 1) as equilibria. By a quick inspection of the vector field of (10)

we conclude that every positive solution to (10) will converge to a point (x∞, y∞) of this

line segment. Furthermore, one easily concludes that the function m(t) := y(t)/x(t)

satisfies ṁ = ẏx−yẋ
x2 ≡ 0, and this means that the orbits of (10) are straight lines with

slope m = y0/x0. Thus, the limit point (x∞, y∞) is obtained as the intersection of the

straight lines y = 1− x and y = y0
x0

x, which implies that x∞ = x0

x0+y0
and y∞ = y0

x0+y0
.

Hence, reverting to the original variables, we conclude that
{
A(t) = A0

(A0+B0)t
(1 + o(1))

B(t) = B0

(A0+B0)t
(1 + o(1))

as t→ ∞. (20)
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3.5.2. Parameters in Ω34 (κ < J = 1). In this case the equilibrium (0, 1) is globally

asymptotically stable (in R
+×R

+). Using the remark in Section 3.3 and observing that

all computations in Section 3.2 still hold with J = 1, we conclude that the result in

Section 3.3 is valid also for this case:{
A(t) = const.

t1/κ
(1 + o(1))

B(t) = 1
κt
(1 + o(1))

as t→ ∞. (21)

3.5.3. Parameters in Ω12 (κ > J = 1). In this case the equilibrium (1, 0) is globally

asymptotically stable (in R
+ × R

+). Again, as in Section 3.2, the behaviour of the

component A(t) of the solution to (8) can be immediately read off from the fact that

x(τ) → 1 as τ → ∞, but the precise rate of decay of B(t) requires a little more effort.

As in Section 3.2, we start by linearizing (10) about the equilibrium solution (1, 0) to

obtain the jacobian matrix

J(1, 0) =

[
−1 − 1

κ

0 0

]
,

which has eigenpairs

λ1 = −1, v1 = (1, 0)T, λ2 = 0, v2 = (1,−κ)T.

The existence of a zero eigenvalue implies that the nonlinear dynamics cannot be

analyzed via the linearized system using the Hartman-Grobman theorem, but we need

to investigate the dynamics on the center manifold of (1, 0). This manifold is tangent

to the eigenspace correspondent to λ2 = 0. To simplify the computations let us change

variables from (x, y) to (x̃, ỹ) in such a way that (1, 0) is mapped to (0, 0), the eigenspace

correspondent to λ1 = −1 becomes the x̃-axis and the eigenspace correspondent to

λ2 = 0 becomes the ỹ-axis. It is easy to see that x̃ := x − 1 + y/κ, ỹ := y fulfills these

requirements. System (10) becomes
{

˙̃x = −x̃− x̃ 2 − (κ− 1)ỹ 2/κ2

˙̃y = −x̃ỹ − (κ− 1)ỹ 2/κ.
(22)

By standard methods (see, e.g., Carr (1981)) we conclude that, up to second order,

the center manifold is the graph of a function φ(ỹ) = −κ−1
κ2 ỹ

2 + O(ỹ 3). Thus,

substituting x̃ = φ(ỹ) in the ỹ-equation in (22) we conclude that ỹ satisfies ˙̃y =

−κ−1
κ
ỹ 2 + κ−1

κ2 ỹ
3 + O(ỹ 4). Thus, knowing that ỹ → 0 as τ → ∞, we can write this

equation as

d

dτ

κ

(κ− 1)ỹ
=

˙̃y

−κ−1
κ
ỹ 2

= 1 + o(1), as τ → ∞.

From this we can deduce that
κ

(κ− 1)τ ỹ
= 1 + o(1), as τ → ∞,

and, reverting to the original variables, we conclude that B(t) ∼ 1
(κ−1)t log(t+1)

as t→ ∞.
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Thus, in this case we have
{

A(t) = 1
t
(1 + o(1))

B(t) = 1
(κ−1)t log t

(1 + o(1))
as t→ ∞, (23)

and this concludes the analysis.

The results in this section are summarized in Table 1. Observe that, in all cases,

when t→ ∞ solutions of (8) converge to zero at least as fast as t−1.

Table 1. Asymptotic behaviour of the solutions of (8) as t → ∞. The following

notation is used: α = 1 − J, β = κ − J, and “const.” denote positive constants

dependent on the initial data (A0, B0).

Parameter Initial data Asymptotic behaviour, as t→ ∞, of

set A(t) B(t)

κ > J, J < 1 A0, B0 > 0
(
1 + J α

β

)−1
t−1 α

β

(
1 + J α

β

)−1
t−1

κ > J = 1 A0, B0 > 0 t−1 (κ− 1)−1(t log t)−1

κ > J > 1 A0, B0 > 0 t−1 (const.)t−J

B0 < αA0/β t−1 (const.)t−J

κ < J, J > 1 B0 = αA0/β
(
1 + J α

β

)−1
t−1 α

β

(
1 + J α

β

)−1
t−1

B0 > αA0/β (const.)t−J/κ κ−1t−1

κ < J 6 1 A0, B0 > 0 (const.)t−J/κ κ−1t−1

κ = J < 1 A0, B0 > 0 (1− κ)−1(t log t)−1 κ−1t−1

κ = J = 1 A0, B0 > 0 A0

A0+B0
t−1 B0

A0+B0
t−1

4. On the scaling behaviour

As pointed out in section 2 just after equation (7), once we have the results in Table 1

we can apply exactly the same approach as in Laurençot and van Roessel (2010) to

obtain the values of the limits of ξ(t)F (t, x
ζ(t)

) and of ξ(t)G(t, x
ζ(t)

) as t → ∞, for some

convenient, strictly increasing, functions ξ(t), ζ(t). From these limits, the self-similar

behaviour of the solutions is obtained by the properties of the Laplace transform.

Following Laurençot and van Roessel (2010), we consider the functions

A (t) := exp
(∫ t

0

A(s)ds
)

and B(t) := exp
(∫ t

0

B(s)ds
)
. (24)

From the definitions (7) of P (t) and Q(t) we easily conclude that

eP (t) = A (t)2B(t)J and eQ(t) = B(t)2κA (t)J . (25)

To get the long-time behaviour of A and B we can, in (8), divide the A-equation by A

and the B-equation by B and integrate between t = 0 and t to get

A0

A(t)
= A (t)B(t)J and

B0

B(t)
= B(t)κA (t)J . (26)



Coagulation-annihilation models and competition systems 12

Inverting this relation we obtain

A (t)J
2−κ =

(A(t)
A0

)κ( B0

B(t)

)J
and B(t)J

2−κ =
(B(t)

B0

)( A0

A(t)

)J
. (27)

If we now plug the long-time behaviour of A and B into the expressions (27) we

obtain all the information we need. In fact, denoting the asymptotic behaviour as t→ ∞

of these several functions by
{
A(t) ∼ A∞t

p

B(t) ∼ B∞t
q ,

{
A (t) ∼ A∞t

ã

B(t) ∼ B∞t
b̃

(28)

we can use (27) and the behaviour collected in Table 1 to conclude the exponents are

those presented in Table 2. Also in Table 2 we present the result for the case κ = J = 1

which have to be analyzed using (20) and (24) (with an arbitrary t0 > 0 instead of 0 in

the lower limit of integration), since (27) gives no information in this case.

Table 2. Exponents of the long-time behaviour (28) of the functions (A,B) and

(A ,B) obtained from the results in Table 1.

Case Parameter sets p q ã b̃

(i)

κ > J, J < 1

κ < J, J > 1 (with initial

conditions B0 = αA0/β)

−1 −1
J − κ

J2 − κ

J − 1

J2 − κ

(ii)

κ > J > 1

κ < J, J > 1 (with initial

conditions B0 < αA0/β)

−1 −J 1 0

(iii)

κ < J 6 1

κ < J, J > 1 (with initial

conditions B0 > αA0/β)

−
J

κ
−1 0 1/κ

(iv) κ = J = 1 −1 −1 A0

A0+B0

B0

A0+B0

For the only two situations for which the asymptotic behaviour of either A or B is

not asymptotically a power law (when κ > J = 1, and when κ = J < 1) we can still use

(27) and the results in Table 1 to conclude the results presented in Table 3.

Table 3. Long-time behaviour of the functions (A,B) and (A ,B) when κ > J = 1,

and κ = J < 1.

Parameter Asymptotic behaviour, as t→ ∞, of

set A(t) B(t) A (t)|κ−1| B(t)|κ−1|

κ > J = 1
1

t

(κ− 1)−1

t log t

Aκ
0/B0

κ− 1

tκ−1

log t

κ− 1

A0/B0
log t

κ = J < 1
(1− κ)−1

t log t

1

κt

1− κ

κB0/A0
log t

(κB0)
1/κ

(1− κ)A0

t(1−κ)/κ

log t
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Now, let us point out how to use this information. We will consider only the

behaviour of F , the study of G being analogous.

Let ζ(t) be any positive function such that ζ(t) → ∞ as t → ∞. For all fixed x,

we can use (25) to write the numerator of the expression for F in (6) as

F0

( x

ζ(t)

)
e−P (t) ∼ F0(0)e

−P (t) = A0A (t)−2
B(t)−J , as t→ ∞. (29)

Now, making x = 0 in the expression for F in (6) and using the first equalities in

(25) and (26) we conclude that
∫ t

0

e−P (s)ds =
1

A0

(
1−

1

A (t)

)
,

from which we can write,

1− F0

( x

ζ(t)

)∫ t

0

e−P (s)ds =
1

A0

[
F0(0)− F0

( x

ζ(t)

)
+ F0

( x

ζ(t)

) 1

A (t)

]

=
1

A0

[
x

ζ(t)

F0(0)− F0

( x

ζ(t)

)

x

ζ(t)

+ F0

( x

ζ(t)

) 1

A (t)

]

∼
1

A0

[
−

x

ζ(t)
F ′
0(0) + A0

1

A (t)

]
, as t→ ∞

=
1

A0ζ(t)

[
‖a0‖1x+

A0ζ(t)

A (t)

]
, as t→ ∞, (30)

where the asymptotic behaviour was obtained by applying Lagrange’s mean value

theorem when ζ(t) → ∞, and in the last term ‖a0‖1 :=
∫∞

0
λa0(λ)dλ = −F ′

0(0).

Gathering (29) and (30), we can write the equality for F in (6) as follows

1

A0ζ(t)
F
(
t,

x

ζ(t)

)
∼
A0A (t)−2B(t)−J

‖a0‖1x+
A0ζ(t)
A (t)

, as t→ ∞,

which, can be rearranged to

A (t)

A0ζ(t)

A (t)B(t)J

A0
F
(
t,

x

ζ(t)

)
∼

1

‖a0‖1x+
A0ζ(t)
A (t)

, as t→ ∞. (31)

In order to be able to invert the Laplace transform and the resulting object to be

a positive function, we need to have A0ζ(t)
A (t)

→ 1 as t→ ∞. Furthermore, remember that

(31) was deduced using the assumption ζ(t) → ∞ as t → ∞. Thus, the component

a = L−1(F ) of the solution to the coagulation-annihilation system (4)-(5) exhibits a

scaling behaviour if A (t) → ∞ as t→ ∞, in which case, and without loss of generality,

we can choose the similarity scaling as ζ(t) = A (t)/A0 in (31). This choice leads to

A (t)B(t)J

A0

F
(
t,

x

A (t)/A0

)
∼

1

‖a0‖1x+ 1
, as t→ ∞. (32)

Recalling that F is the Laplace transform of a, which means that

F (t, z) =

∫ ∞

0

e−ςza(t, ς)dς,
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we can write

F
(
t,

x

A (t)/A0

)
=

∫ ∞

0

e−µxa(t, A (t)
A0

µ)A (t)
A0

dµ,

and thus

A (t)B(t)J

A0

F
(
t,

x

A (t)/A0

)
=

∫ ∞

0

e−µx
(

A (t)2B(t)J

A2

0

a(t, A (t)
A0

µ)
)
dµ. (33)

Since the Laplace transform of e−ς/α

α
is 1

αz+1
, equations (32) and (33) imply that, in a

weak sense,

lim
t→∞

A (t)2B(t)J

A2
0

a(t, A (t)
A0

µ) =
1

‖a0‖1
e−µ/‖a0‖1 . (34)

The same conclusion holds true if, instead of taking the exact expressions for A (t) and

B(t) in the left-hand side of (34) we use their asymptotic form as t→ ∞.

Inspecting Tables 2 and 3 we conclude that (34) holds, and a exhibits self-similar

behaviour, when the parameters (J, κ) are in Cases (i), (ii), and (iv), and in the boundary

sets Ω1,2 ∪ Ω4,1.

An entirely analogous argument can be applied to the equation for G in (6). The

result for the Laplace transform limit is

B(t)κA (t)J

B0
G
(
t,

x

B(t)κ/B0

)
∼

1

‖b0‖1x+ 1
, as t→ ∞, (35)

valid in the cases when B(t) → ∞ as t→ ∞, and from this we similarly conclude that,

in a weak sense,

lim
t→∞

B(t)2κA (t)J

B2
0

b(t, B(t)κ

B0

µ) =
1

‖b0‖1
e−µ/‖b0‖1 . (36)

As in (34), the same result will be obtained here by using, instead of the exact expressions

for A (t) and B(t), their asymptotic form as t→ ∞.

Again by inspection of the Tables 2 and 3, (36) is valid, and b exhibits self-similar

behaviour, when the parameters (J, κ) satisfy Cases (i), (iii), and (iv), and in Ω1,2∪Ω4,1.

Both in (34) and in (36) the knowledge of the precise asymptotic behaviour of A (t)

and B(t), (28), i.e., knowing both the scaling exponents and the multiplicative factors,

is necessary for getting all the details of the scaling behaviour. However, without further

effort, an inspection of the results in Tables 2 and 3 allow us to compute the dynamical

exponents involved in the scaling behaviour (34) and (36), which are physically more

interesting than the precise multiplicative constants.

Clearly, by not using the precise multiplicative factors A∞ and B∞, the exact

constants in the similarity limit will be lost and the kind of information obtained will

not be as precise as in (34) and (36), but something like

lim
t→∞

ψa(t)a(t, ϕa(t)µ) = Ca
1 e

−µCa
2 , lim

t→∞
ψb(t)b(t, ϕb(t)µ) = Cb

1e
−µCb

2 (37)

with appropriate scaling functions ψa,b, ϕa,b and positive constants Ca,b
1 , Ca,b

2 .

Table 4 collects the results about the scaling functions ψa,b and ϕa,b in (37) that

can be gathered from the data in Tables 2 and 3.
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Table 4. Scaling functions ψa,b(t) and ϕa,b(t) for the similarity behaviour (37) of the

a and b cluster distributions.

Parameter sets ψa(t) ϕa(t) ψb(t) ϕb(t)

κ > J, J < 1

κ < J, J > 1 (with initial

conditions B0 = αA0/β)

tϕa(t) t
J−κ

J2
−κ

tϕb(t) t
κ

J−1

J2
−κ

κ > J > 1

κ < J, J > 1 (with initial

conditions B0 < αA0/β)

tϕa(t) t — —

κ < J 6 1

κ < J, J > 1 (with initial

conditions B0 > αA0/β)

— — tϕb(t) t

κ > J = 1 tϕa(t)
t

(log t)
1

κ−1

(t log t)ϕb(t) (log t)
κ

κ−1

κ = J < 1 (t log t)ϕa(t) (log t)
1

1−κ tϕb(t)
t

(log t)
κ

1−κ

κ = J = 1 tϕa(t) t
A0

A0+B0 tϕb(t) t
B0

A0+B0

5. Conclusion

In this paper we studied the self-similar behaviour of solutions to a two-species

coagulation-annihilation cluster system with constant, but possibly distinct, reaction

coefficients, (4)-(5). It consists of a generalization of the model studied in Laurençot

and van Roessel (2010), for which the coagulation rates were constant and equal.

The approach starts with the application of Laplace transforms in the original

system (4)-(5). This leads to the expressions (6) for the Laplace transforms of the cluster

size distributions of each of the species, as functions of time and of the Laplace variable.

These expressions involve the zero moments (3) of the cluster distributions of each of the

species (i.e., their L1-norm, or, in physical terms, the total amount of clusters of each

species). In order to use (6) to get information on the similarity behaviour of the original

cluster system (4)-(5), one needs to have information about the rates of convergence to

zero of the moments (3). This is done by deriving an ordinary differential system for

the time evolution of these quantities, and by a change of variables that transforms that

system into a Lotka-Volterra competition system (10) an analysis of which provides the

sought after information.

Considering the different regions in the parameter space for which the moments (3)

have distinct rates of convergence to zero, we can use these rates and the expressions (6)

to obtain the formulas (34) and (36) for the similarity limits of the two different cluster

species, which are valid when the integrals (24) of the appropriate moments diverge to

infinity as τ → ∞. Using the asymptotic rates of divergence of those functions (24) in
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(34) and (36) we obtain the exponents governing the similarity behaviour of solutions for

all interesting parameter cases, including those obtained in Laurençot and van Roessel

(2010) as a very particular case.

Acknowledgments

FPC, JTP, and RS were partially supported by the CAMGSD-LARSyS throught the

pluriannual funding attributed by the Fundação para a Ciência e Tecnologia (Portugal).

References

Ben-Naim E, Krapivsky P 1995 Kinetics of aggregation-annihilation processes Phys. Rev. E 52 6066–

6070.

Carr J 1981 Applications of Center Manifold Theory (Applied Mathematical Sciences vol 35) (New

York: Springer-Verlag).
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