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Abstract

For a set X and a variety V of bands, let BV(X) be the relatively free band in
V on X. For an arbitrary band variety V and an arbitrary set X, we determine the
group of automorphisms of End (BV(X)), the monoid of endomorphisms of BV(X).
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1 Introduction

In general, given a variety A of algebras, it is of independent interest to determine the
group of automorphisms of End (A), where A is a free algebra in A and End (A) is
the monoid of endomorphisms of A. Many years ago, Schreier [21] and Mal’cev [14]
solved this problem for unstructured sets (that is, algebras without operations) and
Glusǩın [10] solved it for vector spaces. In recent years, this kind of questions gained in
importance and attracted wider attention for its links to universal algebraic geometry.
(For a detailed explanation of these links, a list of references and related problems,
see the excellent paper by Mashevitzky, B. Plotkin, and E. Plotkin [15].) Given the
large number of published papers, preprints, lectures and, especially, open problems
that recently appeared on this subject—prompted by the links to universal algebraic
geometry—we can anticipate that, for years to come, many new papers will be written
describing the group of automorphisms of End(A) for various varieties A.

Along this line of research, our aim is to describe the automorphisms of End (A)
for any free object A of any variety V of bands (idempotent semigroups). Analogous
problems dealing with varieties of semigroups were solved by Mashevitzky and Schein
[16] for the variety of all monoids and by Formanek [7] for the variety of all groups.
However, we solve the problem not only for the variety of all bands but for all subvarieties
of this variety. In fact, with the very particular exceptions of sets and vector spaces,
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there is no other variety of algebras for which this problem has been solved for all free
objects of all subvarieties.

Varieties of bands and their free objects have been studied by numerous authors.
The lattice of all varieties of bands was described by Birjukov [4], Fennemore [6], and
Gerhard [8]. (See Figure 1.) A simplified system of identities for band varieties (one
identity for each variety if one excludes x2 = x) and a solution of the world problem in
relatively free bands were given by Gerhard and Petrich [9].

For a non-empty set X and a variety V of bands, denote by BV(X) the relatively
free band in V on X, and by End (BV(X)) the monoid of endomorphisms of BV(X).
To determine the group Aut (End (BV(X))), we use the theorem stating that for every
band B, the automorphisms of End (B) are induced by permutations on B. This theorem
and other preliminary material is presented in Section 2. In Section 3, we introduce the
concept of d-invariant relatively free band and determine Aut (End (BV(X))) for every
band variety V that includes the variety SL of semilattices. This group is either S(X)×C2

or S(X), depending on whether or not BV(X) is d-invariant. Section 4 deals with the
varieties of rectangular bands. It turns out that the variety V of all rectangular bands is
exceptional in the sense that Aut (End (BV(X))) is not encountered in any other band
variety. In Section 5, we determine which relatively free bands are d-invariant and which
are not. This gives us corollaries that determine Aut (End (BV(X))) given any band
variety V and any set X. Finally, Section 6 provides a number of open problems.

2 Preliminaries

Let S be a semigroup. Any bijection φ : S → S such that (ab)φ = (aφ)(bφ) for all
a, b ∈ S is called an automorphism of S. (We write mappings on the right, that is,
aφ rather than φ(a).) The group of automorphisms of S will be denoted by Aut (S).
A subset C of S is called characteristic in S if Cφ = C for every φ ∈ Aut (S), where
Cφ = {aφ : a ∈ C}.

Let X be an arbitrary non-empty set. The full transformation semigroup T (X)
consists of all mappings from X to X (full transformations of X) with composition
as the semigroup operation. The semigroup T (X) has the symmetric group S(X) of
all permutations of X as its group of units. Let S be a subsemigroup of T (X). An
automorphism φ of S is called inner if there is g ∈ S(X) such that aφ = g−1ag for every
a ∈ S. (In such a case, we write φ = φgS .) The set Inn(S) of all inner automorphisms of
S is a subgroup of Aut (S). We denote by GS the normalizer of S in S(X), that is, GS

denotes the subgroup of the symmetric group S(X) consisting of all permutations g of X
such that g−1Sg = S. Note that every element g ∈ GS induces an inner automorphism
φgS of S.

A band is a semigroup in which every element is an idempotent. Let B be a band.
Define a ternary relation ρ on B by

ρ = { (x, y, z) : z = xy }.

Since x = xx for every x ∈ B, the relation ρ is reflexive. It is clear that for every mapping
a : B → B, a is an endomorphism of B ((xy)a = (xa)(ya) for all x, y ∈ B) if and only
if a preserves ρ ((x, y, z) ∈ ρ ⇒ (xa, ya, za) ∈ ρ for all x, y, z ∈ B). Thus End (B), the
semigroup of endomorphisms of B, consists of all transformations of B that preserve the
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reflexive relation ρ. It is well known (see [23, Theorem 1] or [3, Lemma 2.1]) that if
S is a semigroup of transformations of X that preserve a given reflexive relation on X
then Aut (S) ∼= GS (where “∼=” means “is isomorphic to.”) Hence we have the following
result.

Theorem 2.1 Let B be any band. Then

Aut (End (B)) ∼= GEnd (B).

We introduce now some standard material about band varieties in order to clearly
establish notation and definitions. A variety of semigroups is a class of semigroups closed
under subsemigroups, homomorphic images, and direct products. Let A be a countably
infinite set. Denote by A+ the free semigroup on A. Let u, v ∈ A+. We say that a
semigroup S satisfies the identity u = v if uα̂ = vα̂ for every α : A→ S, where α̂ is the
unique extension of α to a homomorphism from A+ to S. Let R be a binary relation
on A+. We denote by [R] the class of all semigroups S such that S satisfies the identity
u = v for every (u, v) ∈ R. If R is finite, say R = {(u1, v1), . . . , (un, vn)}, we write
[u1 = v1, . . . , un = vn] for [R]. Now, for every binary relation R on A+, the class [R] is
a variety of semigroups. Conversely, for every variety V of semigroups, there is a binary
relation R on A+ such that V = [R]. (See [12, p. 111].) For example, [xy = yx] is the
variety of commutative semigroups.

Let V be a nontrivial (containing a semigroup with at least two elements) variety of
semigroups, and let X be a non-empty set. We say that a semigroup F ∈ V is a V-free
semigroup on X (or a relatively free semigroup in V on X) if it satisfies the following
properties:

(1) X generates F ;

(2) For every S ∈ V and every mapping φ : X → S, there is an extension of φ to a
homomorphism φ : F → S.

Since X generates F , an extension φ is necessarily unique. For the variety T of trivial
semigroups, we define a T -free semigroup on X to be any trivial semigroup. A V-free
semigroup on X is isomorphic to X+/ρV , where ρV is the congruence on X+ defined by

(u, v) ∈ ρV ⇔ for every S ∈ V and every α : X → S, uα̂ = vα̂. (2.1)

(See [12, p. 110].) If V is a nontrivial variety then X is embedded in X+/ρV via the
injection x → xρV (where x ∈ X and xρV is the congruence class of x modulo ρV) [18,
Lemma I.8.5]. Note that for all varieties V1 and V2 of semigroups,

V1 ⊆ V2 ⇔ ρV2 ⊆ ρV1 . (2.2)

A variety of bands is a variety of semigroups in which every semigroup is a band.
The varieties of bands with inclusion form a lattice, with B = [x2 = x] as the greatest
elements and T = [x = y] as the least element (see Figure 1).

For a variety V of bands and a non-empty set X, we denote by BV(X) the V-free
semigroup on X. We will refer to BV(X) as the V-free band on X, and assume that
BV(X) = X+/ρV , where ρV is the congruence on X+ defined by (2.1). That is,

BV(X) = {wρV : w ∈ X+ }.
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We will represent the congruence classes modulo ρV (the elements of BV(X)) by their
representatives, that is, we will write w ∈ BV(X) instead of wρV ∈ BV(X). Moreover,
for u, v ∈ X+, we shall write u = v both when uρV = vρV (that is, when u and v are
equal as elements of BV(X)), and when u and v are equal as words in X+. It should
always be clear from the context which equality is meant.

Let V be a nontrivial variety of bands. Since the mapping x→ xρV from X to BV(X)
is injective, we have

for all x, y ∈ X, x = y in BV(X)⇔ x = y in X+. (2.3)

Our objective is to determine the group of automorphisms of End (BV(X)), where
V is an arbitrary variety of bands and X is an arbitrary non-empty set. Almost all
varieties of bands contain the variety of semilattices (see Figure 1). We begin our study
with these varieties.

3 Band Varieties V with SL ⊆ V
A semilattice is a commutative band. The class SL of semilattices is a variety. Through-
out this section, we assume that X is a non-empty set and that V is a variety of bands
such that SL ⊆ V.

Our objective is to prove that Aut (End (BV(X))) is isomorphic to either S(X) or
S(X)×C2, where C2 is the group with two elements. In view of Theorem 2.1, it suffices
to prove the statement for GEnd (B), where B = BV(X). Recall that GEnd (B) is the
group of permutations g ∈ S(B) such that g−1End (B)g = End (B).

For w ∈ X+, the content C(w) of w is defined as the set of all elements of X (letters)
that occur in w. For example, if w = abacabc then C(w) = {a, b, c}. For the SL-free
band BSL(X), we have the following [12, Proposition 4.6.5]:

for all u, v ∈ X+, u = v in BSL(X)⇔ C(u) = C(v). (3.1)

Since SL ⊆ V, it follows from (2.2) and (3.1) that

for all u, v ∈ X+, u = v in BV(X)⇒ C(u) = C(v). (3.2)

Let x ∈ X. It follows from (3.2) that xρV = {xk : k ≥ 1}, which we shall always represent
by x.

Let B = BV(X). We say that a subset J of B is independent if for all u, v ∈ J ,
u 6= v (in BV(X)) ⇒ C(u) ∩ C(v) = ∅. (Note that this definition makes sense because
of (3.2).) If J ⊆ B is not independent, we say that it is dependent .

Lemma 3.1 Let B = BV(X) and g ∈ GEnd (B). Then Xg = X.

Proof: Suppose X is finite with, say, n elements. Since g is a bijection, |Xg| = n.
Observe that if J ⊆ B is dependent and a ∈ End (B) restricted to J is one-to-one, then
Ja is dependent. (Indeed, if u, v ∈ J with u 6= v and x ∈ C(u) ∩ C(v), then ua, va ∈ Ja
with ua 6= va and C(xa) ⊆ C(ua) ∩ C(va).)

Define a ∈ End (B) by: xa = xg−1 for every x ∈ X. (Such an a exists and is unique
since B is the V-free band on X.) For every x ∈ X,

(xg)(g−1ag) = xag = xg−1g = x.
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Thus (Xg)(g−1ag) = X. It follows that g−1ag restricted to Xg is one-to-one (since
|Xg| = |X| = n). Hence, by the observation above, Xg must be independent (since
g−1ag is an endomorphism and X is independent). It follows that Xg = X (since X is
the only subset of B that is independent and has n elements).

Suppose X is infinite. Let x ∈ X. We claim that xg ∈ X. Let u = xg and suppose,
by way of contradiction, that u /∈ X. Then u = pu′ for some p ∈ X and u′ ∈ B.

Let v = xg−1 and w = pg−1. Then w 6= x (since w = x would imply u = xg = wg =
(pg−1)g = p ∈ X, but we have that u /∈ X). Since X is infinite, there is z ∈ X such that
z /∈ C(v). Define a ∈ End (B) by: xa = v and ya = z for every y ∈ X − {x}. Then

u(g−1ag) = x(ag) = vg = x.

Hence, since g−1ag ∈ End (B), we have

x = u(g−1ag) = p(g−1ag)u′(g−1ag).

Then C(p(g−1ag)u′(g−1ag)) = C(x) = {x}, and so p(g−1ag) = u′(g−1ag) = x. Thus
x = p(g−1ag) = (pg−1)ag = (wa)g, and so wa = v (since x = vg and g is one-to-
one). Since w 6= x, there is y ∈ C(w) such that y 6= x. But then z = ya, and so
{z} = C(ya) ⊆ C(wa) = C(v), which is a contradiction (since z /∈ C(v)).

The claim has been proved, that is, Xg ⊆ X. By the foregoing argument applied to
g−1, we also have Xg−1 ⊆ X. The result follows. 2

For a function f : A→ B and A1 ⊆ A, we denote by f |A1 the restriction of f to A1.

Lemma 3.2 Let B = BV(X) and let g ∈ GEnd (B) be such that g |X = idX . Then for
every w ∈ B, C(wg) = C(w).

Proof: Let w ∈ B. We first show that C(wg) ⊆ C(w). Let w = x1 . . . xk and
wg = y1 . . . yn, where xi, yj ∈ X. Define a ∈ End (B) by: xa = x for every x ∈ C(w),
and za = x1 for every z ∈ X − C(w). Note that C(ua) ⊆ C(w) for every u ∈ B. Now,

(x1 . . . xk)(gg−1ag) = (x1 . . . xk)ag = ((x1a) . . . (xka))g = (x1 . . . xk)g = wg.

On the other hand,

(x1 . . . xk)(gg−1ag) = (y1 . . . yn)(g−1ag)

= y1(g
−1ag) . . . yn(g−1ag) (since g−1ag ∈ End (B))

= (y1ag) . . . (ynag) (since g |X is the identity)

= (y1a) . . . (yna) (since each yja ∈ X and g |X is the identity)

= (y1 . . . yn)a.

Thus wg = (y1 . . . yn)a, and so C(wg) = C((y1 . . . yn)a) ⊆ C(w).
By the foregoing argument applied to g−1 and wg, we have C(w) = C((wg)g−1) ⊆

C(wg). Hence C(wg) = C(w). 2

Let S be a semigroup. A bijection φ : S → S is called an anti-automorphism of S if
(ab)φ = (bφ)(aφ) for all a, b ∈ S.

5



For a word w ∈ X+, the dual w of w is the word obtained from w by reversing the
order of the letters. For example, if w = cabacba then w = abcabac. Note that for all
u, v ∈ X+,

u = u and uv = v u. (3.3)

Let B = BV(X). We say that B is d-invariant if for all u, v ∈ X+,

u = v in B ⇒ u = v in B.

Let B = BV(X) be d-invariant. The mapping d : B → B defined by wd = w will be
called the duality mapping on B. Since B is d-invariant, we have that for all u, v ∈ B,

u = v ⇔ u = v ⇔ ud = vd.

Thus d is a well-defined bijection on B, that is d ∈ S(B). It follows from the definition
of d and (3.3) that d has the following properties:

(1) d |X = idX , that is, xd = x for every x ∈ X.

(2) d is an anti-automorphism of B, that is, d is a bijection and (uv)d = (vd)(ud) for
all u, v ∈ B.

(3) d = d−1, that is, w(dd) = w for every w ∈ B.

Note that if B = BV(X) and d : B → B given by wd = w is well defined then B is
d-invariant.

We prove that if B = BV(X) and g ∈ GEnd (B), then g is an automorphism of B or
an anti-automorphism of B (Lemma 3.3–Lemma 3.7).

Lemma 3.3 Let B = BV(X) be d-invariant and let d be the duality mapping on B.
Then d ∈ GEnd (B).

Proof: Since d−1 = d, it suffices to show that dEnd (B)d ⊆ End (B). Let a ∈ End (B)
and u, v ∈ B. Then

(uv)(dad) = (vd ud)(ad) = (v(da)u(da))d = u(dad) v(dad).

Thus dad ∈ End (B), and the result follows. 2

In fact, using a similar argument, one can prove a more general statement: if B =
BV(X) and g is an anti-automorphism of B then g ∈ GEnd (B).

Lemma 3.4 Let B = BV(X), let g ∈ GEnd (B) be such that g |X = idX , and let x, y ∈ X
with x 6= y. Then:

(1) If (xy)g = xy then g is the identity mapping on B.

(2) If (xy)g = yx then g is the duality mapping on B.
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Proof: Let u and v be arbitrary elements of B. Let a ∈ End (B) be such that xa = u
and ya = v. Then:

(xy)(gg−1ag) = (xy)(ag) = (xa ya)g = (uv)g.

To prove (1), suppose (xy)g = xy. Then, since g−1ag ∈ End (B) and g |X = idX ,
we have:

(xy)(gg−1ag) = (xy)(g−1ag) = x(g−1ag) y(g−1ag) = x(ag) y(ag) = (ug)(vg).

Thus (uv)g = (ug)(vg), and so g is an automorphism of B. But the only automorphism
of B that fixes every element of X is idB. Hence g = idB.

To prove (2), suppose (xy)g = yx. Then, since g−1ag ∈ End (B) and g |X = idX ,
we have:

(xy)(gg−1ag) = (yx)(g−1ag) = y(g−1ag)x(g−1ag) = y(ag)x(ag) = (vg)(ug).

Thus (uv)g = (vg)(ug), and so g is an anti-automorphism of B. But the only anti-
automorphism of B that fixes every element of X is d, the duality mapping on B. Hence
g = d. 2

Lemma 3.5 Let B = BV(X), let g ∈ GEnd (B) be such that g |X = idX , and let x, y ∈ X
with x 6= y. Then either (xy)g = xy or (xy)g = yx.

Proof: By Lemma 3.2, C((xy)g) = C(xy) = {x, y}. Since B is a band, the only
elements of B with content {x, y} are xy, yx, xyx, and yxy.

Suppose (xy)g = xyx. Let a ∈ End (B) be such that xa = xy and ya = x. Then:

(xy)(gg−1ag) = (xy)(ag) = (xa ya)g = (xyx)g.

On the other hand, since (xy)g = xyx, g−1ag ∈ End (B), and g |X = idX , we have:

(xy)(gg−1ag) = (xyx)(g−1ag) = x(g−1ag) y(g−1ag)x(g−1ag) = x(ag) y(ag)x(ag)

= ((xy)g)(xg)((xy)g) = (xyx)x(xyx) = xyx.

Thus (xyx)g = xyx = (xy)g, implying xyx = xy (since g is one-to-one). Hence (xy)g =
xyx = xy.

Using a similar argument (with a ∈ End (B) such that xa = y and ya = xy), we can
prove that if (xy)g = yxy then yxy = xy, and so (xy)g = yxy = xy.

Since the only remaining possibilities are (xy)g = xy and (xy)g = yx, the result
follows. 2

Lemma 3.6 Let B = BV(X) and let g ∈ GEnd (B) be such that g | X = idX . Then
g = idB or g = d.

Proof: If |X| = 1, say X = {x}, then B = {x}, and so g = idB. If |X| ≥ 2 then the
result follows immediately from Lemma 3.4 and Lemma 3.5. 2
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Lemma 3.7 Let B = BV(X) and g ∈ GEnd (B). Then:

(1) If B is d-invariant then g is an automorphism of B or an anti-automorphism of B.

(2) If B is not d-invariant then g is an automorphism of B.

(3) If |X| ≥ 2 and g is both an automorphism of B and an anti-automorphism of B
then V = SL.

Proof: To prove (1) and (2), define θ : GEnd (B) → S(X) by hθ = h |X. By Lemma 3.1,
θ is well defined. Since (h1h2) |X = (h1 |X)(h2 |X) for all h1, h2 ∈ GEnd (B), we have
that θ is a group homomorphism.

Let α = gθ (that is, α = g |X). Consider h ∈ End (B) defined by: xh = xα for
every x ∈ X. Then h is an automorphism of B. (Indeed, define h′ ∈ End (B) by:
xh′ = xα−1 for every x ∈ X. Then x(hh′) = x(h′h) = x for every x ∈ X, which implies
that hh′ = h′h = idB.) Clearly hθ = α = gθ.

Suppose that B is d-invariant. Then, by Lemma 3.6, Ker(θ) = {idB, d}. Thus, since
hθ = gθ, we have gh−1 ∈ Ker(θ) = {idB, d}, that is, g = idBh or g = dh. In the former
case, g is an automorphism of B; and, in the latter case, it is an anti-automorphism of
B. This proves (1).

Suppose that B is not d-invariant. Then the duality mapping d is not well defined
on B, and so, by Lemma 3.6, Ker(θ) = {idB}. Thus θ is one-to-one, and so hθ = gθ
implies h = g. Since h is an automorphism of B, (2) follows.

To prove (3), suppose |X| ≥ 2 and g is both an automorphism of B and an anti-
automorphism of B. Let x, y ∈ X. Since g is onto, there are u, v ∈ B such that x = ug
and y = vg. Since g is both an automorphism and an anti-automorphism, we have:

xy = (ug)(vg) = (uv)g = (vg)(ug) = yx.

Thus, since B is the V-free band on X and |X| ≥ 2, it follows that for every S ∈ V and
for all a, b ∈ S, ab = ba. Hence every band in V is a semilattice, which implies V = SL. 2

With the preceding lemmas, we can determine the group of automorphisms of the
semigroup End (BV(X)) for any variety V of bands that contains the variety SL of
semilattices. We denote by C2 the cyclic group of order 2, say C2 = {1, t}.

Theorem 3.8 Let X be a set with |X| ≥ 2, let V be a variety of bands such that SL ⊆ V,
and let B = BV(X). Then:

(1) If V = SL or B is not d-invariant then Aut (End (B)) is isomorphic to S(X).

(2) If V 6= SL and B is d-invariant then Aut (End (B)) is isomorphic to S(X)× C2.

Proof: Since Aut (End (B)) is isomorphic to GEnd (B) (Theorem 2.1), Aut (End (B))
in statements (1) and (2) can be replaced with GEnd (B).

To prove (1), suppose that V = SL or V is not d-invariant. Define θ : GEnd (B) →
S(X) by gθ = g |X. By the proof of Lemma 3.7, θ is a well-defined group homomorphism,
Ker(θ) = {idB}, and for every α ∈ S(X) there is h ∈ GEnd (B) such that α = hθ. (If
V = SL then V is d-invariant, and so, according to the proof of Lemma 3.7, Ker(θ) =
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{idB, d}. But if V = SL then d = idB, and so Ker(θ) = {idB}.) Hence θ is a group
isomorphism, which proves (1).

To prove (2), suppose that V 6= SL and V is d-invariant. Define φ : GEnd (B) →
S(X)× C2 by:

gφ =

{
(g |X, 1) if g is an automorphism of B
(g |X, t) if g is an anti-automorphism of B.

Then φ is well defined by Lemma 3.1 and Lemma 3.7. It is routine to verify that
φ is a group homomorphism. (For example, suppose that g1, g2 ∈ GEnd (B) are anti-
automorphisms of B. Then g1g2 is an automorphism of B, and so:

(g1g2)φ = ((g1g2) |X, 1) = ((g1 |X)(g2 |X), 1) = (g1 |X, t)(g2 |X, t) = (g1φ)(g2φ).)

Suppose gφ = (idX , 1). Then g |X = idX and g is an automorphism of B. Thus
g = idB. Hence Ker(φ) = {idB}, and so φ is one-to-one.

Let α ∈ S(X). By the proof of Lemma 3.7, there is an automorphism h of B such
that h |X = α and hd |X = α. Hence hφ = (α, 1) and (hd)φ = (α, t) (since d is an
anti-automorphism of B, and so hd is an anti-automorphism of B), which shows that φ
is onto. Thus φ is a group isomorphism, which proves (2). 2

4 Varieties of Rectangular Bands

A semigroup S is called a rectangular band if aba = a for all a, b ∈ S. It is called a left
zero semigroup if ab = a for all a, b ∈ S; and it is called a right zero semigroup if ab = b
for all a, b ∈ S. It is clear that the left zero semigroups and right zero semigroups are
rectangular bands.

The classes of all rectangular bands, left zero semigroups, and right zero semigroups
are varieties of bands, which we shall denote, respectively, by RB, LZ, and RZ. These
three varieties and the variety T of trivial bands are the only varieties of bands that do
not contain the variety SL of semilattices (see Figure 1).

Every left zero semigroup B is relatively free in LZ on X = B. Since ab = a for all
a, b ∈ B, every transformation of B is an endomorphism, that is, End (B) = T (B). It is
well known [14], [21] that Aut (T (B)) ∼= S(B). The same argument applies to right zero
semigroups. It follows that if V = LZ or V = RZ then Aut (End (BV(X))) is isomorphic
to S(X).

It remains to consider the variety RB of all rectangular bands. Every rectangular
band B is isomorphic to a semigroup L × R, where L = Bz and R = zB (for a fixed
z ∈ B), with multiplication (k1, p1)(k2, p2) = (k1, p2) [12, Theorem 1.1.3]. The monoid
End (B) is isomorphic to T (L)×T (R). The following lemma shows that if B is a V-free
band on X then B = X ×X.

Lemma 4.1 Let V = RB, B = BV(X), and z ∈ B. Then:

(1) Bz = Xz and zB = zX.

(2) |Xz| = |zX| = |X|.
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Proof: To prove (1), let wz ∈ Bz, where w = x1 . . . xn ∈ B (n ≥ 1, xi ∈ X).
Since B is a rectangular band, uvp = up for all u, v, p ∈ B [12, Theorem 1.1.3]. Thus
wz = x1 . . . xnz = x1z ∈ Xz. Hence Bz = Xz. By a similar argument, we obtain
zB = zX.

To prove (2), define f : X → Xz by xf = xz. It is clear that f is onto. Let x, y ∈ X
with x 6= y. Consider the rectangular band L×R with L = {1, 2} and R = {1}. Since B
is the RB-free band on X, there is a homomorphism φ : B → L×R such that xφ = (1, 1)
and yφ = (2, 1). We have zφ = (a, 1), where a = 1 or a = 2, and so

(xz)φ = (xφ)(zφ) = (1, 1)(a, 1) = (1, 1) and (yz)φ = (yφ)(zφ) = (2, 1)(a, 1) = (2, 1).

It follows that xz 6= yz, and so f is one-to-one. Hence |Xz| = |X|. By a similar argu-
ment, we obtain |zX| = |X|. 2

We first consider B = X × X with |X| = 2, say X = {1, 2}. Here we use the fact
that Aut (End (B)) ∼= GEnd (B). Let a : B → B. We say that a left-splits k0 ∈ X if
there are p1, p2 ∈ X such that (k0, p1)a = (k1, q1) and (k0, p2)a = (k2, q2) with k1 6= k2.
We have a dual definition of what it means that a right-splits p0 ∈ X. It follows from
[12, Proposition 4.4.2] that a ∈ End (B) if and only if there are a1, a2 ∈ T (X) such that
a = a1 × a2. (For f : A → B and g : C → D, we denote by f × g the mapping from
A×C to B ×D defined by (x, y)(f × g) = (xf, yg).) The existence of such a1 and a2 is
clearly equivalent to a not splitting (left or right) any element of X.

Let g ∈ GEnd (B). (We continue to assume that X = {1, 2}.) Suppose that g left-
splits 1, that is,

(1, 1)g = (k, p) and (1, 2)g = (l, q)

with k 6= l. We claim that p = q. Suppose p 6= q. Then either (i) (2, 1)g = (k, q)
and (2, 2)g = (l, p) or (ii) (2, 1)g = (l, p) and (2, 2)g = (k, q). Suppose (i) is true.
Consider a = a1 × a2 ∈ End (B), where 1a1 = 2a1 = 1, 1a2 = 1, and 2a2 = 2. Then
(k, p)(g−1ag) = (k, p) and (l, p)(g−1ag) = (l, q). Thus g−1ag right-splits p, which is a
contradiction since g−1ag ∈ End (B). If (ii) is true, we obtain a contradiction in a similar
way. Hence

(1, 1)g = (k, p), (1, 2)g = (l, p), (2, 1)g = (m, q), and (2, 2)g = (n, q),

where k 6= l, m 6= n, and p 6= q. It follows that if g left-splits 1 then it left- and right-
splits 1 and 2, and ({1} × X)g = X × {p}. We can use a similar argument when g
right-splits 1, and when g left- or right-splits 2, obtaining the following lemma.

Lemma 4.2 Let X = {1, 2}, B = X ×X, and g ∈ GEnd (B). If g splits any element of
X then for every i ∈ X,

({i} ×X)g = X × {pi}, and (X × {i})g = {ki} ×X.

Lemma 4.3 Let X = {1, 2}, B = X × X, and g : B → B. Then g ∈ GEnd (B) if and
only if there are g1, g2 ∈ S(X) such that g = g1 × g2 or g = (g1 × g2)δ, where δ ∈ S(B)
is defined by (k, p)δ = (p, k).
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Proof: It is clear that if g = g1 × g2 or g = (g1 × g2)δ then g ∈ GEnd (B). To prove the
converse, suppose g ∈ GEnd (B). If g does not split any element of X then g = g1 × g2
for some g1, g2 ∈ S(X). Suppose that g splits an element of X. Define g1, g2 ∈ S(X) by
ig1 = pi and ig2 = ki, where pi and ki are the elements from Lemma 4.2 (i = 1, 2). It is
routine to check that for all k, p ∈ X, (k, p)g = (pg2, kg1), that is, g = (g1 × g2)δ. 2

We now consider B = X × X with |X| > 2. Here we use the fact that End (B) ∼=
T (X)× T (X). Let S be a characteristic subsemigroup of a semigroup T . Then a lift of
φ ∈ Aut (S) is any ψ ∈ Aut (T ) such that ψ |S = φ.

Lemma 4.4 Let X be a set with |X| > 2, T = T (X), and ψ : T × T → T × T . Then
ψ ∈ Aut (T × T ) if and only if there are g1, g2 ∈ S(X) such that ψ = φg1T × φg2T or
ψ = (φg1T × φ

g2
T )λ, where λ : T × T → T × T is defined by (a, b)λ = (b, a).

Proof: Let S = S(X), and let φ : S × S → S × S. It is well known that if |X| > 2,
then φ ∈ Aut (S × S) if and only if there are φ1, φ2 ∈ Aut (S) such that φ = φ1 × φ2 or
φ = (φ1 × φ2)µ, where µ : S × S → S × S is defined by (g, h)µ = (h, g).

Since S × S is the group of units of T × T , it is characteristic in T × T . Thus the
automorphisms of T × T are precisely the lifts of the automorphisms of S × S.

We claim that every φ ∈ Aut (S × S) has at most one lift to T × T , or equivalently,
that idS×S , the identity of Aut (S × S), has exactly one lift, namely idT×T . Indeed,
suppose τ is a lift of idS×S , that is, τ ∈ Aut (T ×T ) and τ |S×S = idS×S . For u, v ∈ T ,
let (u, v)τ = (u∗, v∗). For x ∈ X, denote by ax the element of T with range {x}, and
by Sx the stabilizer of x in S. Let u ∈ T . Then ug = u for every g ∈ Sx if and only if
u = ax. Let x, y ∈ X. Then for all g ∈ Sx and h ∈ Sy,

(a∗x, a
∗
y) = (ax, ay)τ = ((ax, ay)(g, h))τ = (ax, ay)τ(g, h)τ = (ax, ay)τ(g, h) = (a∗xg, a

∗
yh).

It follows that for all x, y ∈ X, (a∗x, a
∗
y) = (ax, ay), that is, (ax, ay)τ = (ax, ay).

Now let x, y ∈ X and u, v ∈ T . It is obvious that (ax, ay)(u, v) = (axu, ayv). Thus

(axu, ayv) = (axu, ayv)τ = ((ax, ay)(u, v))τ = (ax, ay)τ(u, v)τ

= (ax, ay)((u, v)τ) = (ax, ay)(u∗, v∗) = (axu∗ , ayv∗).

Thus, if (u∗, v∗) = (u, v)τ then xu∗ = xu and yv∗ = yv for all x, y ∈ X. It follows that
(u, v)τ = (u, v), so that τ = idT×T . The claim has been proved.

Now, let ψ ∈ Aut (T × T ). Then ψ is a lift of φ = ψ | S × S ∈ Aut (S × S). Since
|X| > 2, there are φ1, φ2 ∈ Aut (S) such that φ = φ1 × φ2 or φ = (φ1 × φ2)µ. Suppose
|X| 6= 6. Then every automorphism of S = S(X) is inner, so that φ1 = φg1S and φ2 = φg2S
for some g1, g2 ∈ S(X). Then φ1×φ2 can be lifted to φg1T ×φ

g2
T ∈ Aut (T ×T ). Clearly µ

can be lifted to λ. Since a lift of φ is unique, we have ψ = φg1T ×φ
g2
T or ψ = (φg1T ×φ

g2
T )λ.

If |X| = 6 then there are outer automorphisms of S(X). However, we will prove that
since φ can be lifted to ψ, φ1 and φ2 must be inner. Suppose φ = φ1 × φ2. We claim
that (T ×{1})ψ = T ×{1}, where 1 = idX . For x ∈ X, let (ax, 1)ψ = (ux, vx). Let g ∈ S
and x ∈ X. Since (ax, 1) = (g, 1)(ax, 1), we have

(ux, vx) = (g, 1)φ(ax, 1)ψ = (gφ1, 1φ2)(ux, vx) = (gφ1ux, vx).

Since g was arbitrary, it follows that ux = hux for every h ∈ G, which implies that ux
is a constant mapping. Thus, for every x ∈ X, (ax, 1)ψ = (ax1 , vx), where x1 ∈ X. In
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a similar way, we prove that for every y ∈ X, (1, ay)ψ = (wy, ay2), where wy ∈ T and
y2 ∈ X.

It is clear that M = {(ax, ay) : x, y ∈ X} is the minimal ideal of T × T . Let
x′, y′ ∈ X. Since ψ maps M onto M , there are x, y ∈ X such that (ax, ay)ψ = (ax′ , ay′).
Since (ax, ay) = (ax, 1)(1, ay), we have

(ax′ , ay′) = (ax, 1)ψ(1, ay)ψ = (ax1 , vx)(wy, ay2) = (ax1wy, vxay2).

Thus ay′ = vxay2 , which implies y′ = y2. Using (ax, ay) = (1, ay)(ax, 1), we obtain
ay′ = ay2vx = ay′vx. This gives y′vx = y′, and so, since y′ was arbitrary, vx = 1. Let
z ∈ X. Select g ∈ S such that xg = z. Then (az, 1) = (ax, 1)(g, 1), and so

(az1 , vz) = (ax, 1)ψ(g, 1)φ = (ax1 , 1)(gφ1, 1) = (ax1gφ1, 1).

Thus vz = 1. We proved that for every x ∈ X, (ax, 1)ψ = (ax1 , 1).
Let a ∈ T and x ∈ X. Let (a, 1)ψ = (ua, va). Since (ax, 1) = (a, 1)(ax, 1), we have

(ax1 , 1) = (a, 1)ψ(ax, 1)ψ = (ua, va)(ax1 , 1) = (ax1 , va).

Thus va = 1, and so (a, 1)ψ = (ua, 1). The claim has been proved.
Define ψ1 : T → T by aψ1 = ua. It is clear that ψ1 ∈ Aut (T ) and ψ1 | S = φ1. It

is well known that all automorphisms of T (X) are inner. Thus ψ1 is inner, and so φ1 is
also inner. In a similar way, we prove that ({1}× T )ψ = {1}× T , which implies that φ2
is inner. A proof that φ1 and φ2 are inner when φ = (φ1 × φ2)µ is similar. (In this case,
we have (T × {1})ψ = {1} × T and ({1} × T )ψ = T × {1}.) Now we complete the proof
as in the case when |X| 6= 6. 2

Let C2 = {1, t} be the cyclic group of order 2. Consider the semidirect product
[S(X)×S(X)]nC2, where C2 acts on S(X)×S(X) by (g1, g2)

1 = (g1, g2) and (g1, g2)
t =

(g2, g1). Note that the multiplication in [S(X)× S(X)] n C2 is given by

((g1, g2), 1)((h1, h2), s) = ((g1, g2)(h1, h2)
1, 1s) = ((g1h1, g2h2), s),

((g1, g2), t)((h1, h2), s) = ((g1, g2)(h1, h2)
t, ts) = ((g1h2, g2h1), ts).

Let M = {1, 2}. We can interpret S(X) × S(X) as S(X)M , the set of functions from
M to S(X), and C2 as S(M). With this interpretation, the semidirect product [S(X)×
S(X)] n C2 becomes the wreath product S(X) o C2.

Theorem 4.5 Let X be a non-empty set, V a variety of rectangular bands, and B =
BV(X). Then

(1) If V = LZ or V = RZ then Aut (End (B)) ∼= S(X).

(2) If V = RB and |X| ≥ 2 then Aut (End (B)) ∼= S(X) o C2.

Proof: We already established (1) at the beginning of this Section. To prove (2), let
B be a free rectangular band. By Lemma 4.1, B = X ×X.

Suppose that |X| = 2 and let g ∈ GEnd (B). By Lemma 4.3, g = g1 × g2 or g =
(g1 × g2)δ, where g1, g2 ∈ S(X) and (k, p)δ = (p, k) (k, p ∈ X). Map GEnd (B) to
[S(X)× S(X)] n C2 by

g1 × g2 → ((g1, g2), 1) and (g1 × g2)δ → ((g1, g2), t).

12



It is routine to check that this mapping is a group isomorphism. Thus Aut (End (B)) ∼=
GEnd (B)

∼= [S(X)× S(X)] n C2
∼= S(X) o C2.

Suppose that |X| > 2 and let ψ ∈ Aut (T (X) × T (X)), and let T = T (X). By
Lemma 4.4, ψ = φg1T × φ

g1
T or ψ = (φg1T × φ

g1
T )λ, where g1, g2 ∈ S(X) and (a, b)λ = (b, a)

(a, b ∈ T (X)). Map Aut (T (X)× T (X)) to [S(X)× S(X)] n C2 by

φg1T × φ
g1
T → ((g1, g2), 1) and (φg1T × φ

g1
T )λ→ ((g1, g2), t).

Again, it is routine to check that this mapping is an isomorphism. Thus Aut (End (B)) ∼=
Aut (T (X)× T (X)) ∼= [S(X)× S(X)] n C2

∼= S(X) o C2. 2

5 Relatively Free Bands That Are d-Invariant

Let V be a variety of bands with SL ⊆ V and SL 6= V. Then, by Theorem 3.8, the
group Aut (End (BV(X))) is isomorphic either to S(X)×C2 (if BV(X) is d-invariant) or
to S(X) (if BV(X) is not d-invariant). Therefore, to have a complete picture, we need
to determine which relatively free bands BV(X) are d-invariant and which are not.

Figure 1 presents the lattice of band varieties. At the bottom, we have the sublattice
generated by the atoms SL = [xy = yx], LZ = [xy = x], and RZ = [xy = y]. (See [12,
p. 137].) In addition to the atoms, the sublattice contains the variety T = [x = y] of
trivial bands, RB = [xyx = x] of rectangular bands, LN = [xyz = xzy] of left normal
bands, RN = [xyz = yxz] of right normal bands, and N = [xyzx = xzyx] of normal
bands. (Note that we omit the identity x2 = x in the system of identities that define
band varieties.) At the top, we have the variety B of all bands. The remaining varieties
are labeled with the identities given in [9]. The words that occur in the identities are
defined inductively as follows

G2 = x2x1, H2 = x2, I2 = x2x1x2,

Gn = xnGn−1, Hn = GnxnHn−1, In = GnxnIn−1, (n ≥ 3).

For example, G3 = x3x1x2 and H3 = x3x1x2x3x2. Thus, if V is the variety labeled
G3 = H3 (second from the bottom in column 1) then V = [x3x1x2 = x3x1x2x3x2].

The varieties V in column 3 are selfdual, that is, if V is given by the identity A = B
then A = A and B = B. It easily follows that for all u, v ∈ BV(X),

u = v in BV(X)⇔ u = v in BV(X).

In other words, for every variety V in column 3 and every set X, BV(X) is d-invariant.
The varieties in column 5 are dual to the corresponding (same-level) varieties in

column 1. That is, if a variety V in column 1 is given by the identity A = B then the
corresponding variety V∗ in column 5 is given by A = B. Similarly, the varieties in
column 4 are dual to the corresponding varieties in column 2.

Let V = [A = B] be a variety in column 1 (column 2) and V∗ = [A = B] the
dual variety in column 5 (column 4). Let X be any set with cardinality at least
max{|C(A)|, |C(B)|}. Then A 6= B in BV(X) since otherwise every semigroup S in
V would satisfy the identity A = B and we would have V ⊆ V∗, which is a contra-
diction. Hence for every variety V = [A = B] not in column 3 and every set X with
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Figure 1: The lattice of band varieties

|X| ≥ n, where n is the number of variables (letters) in the identity A = B, BV(X) is
not d-invariant.

The foregoing discussion, Theorem 3.8, and Theorem 4.5 give us the following corol-
laries.

Corollary 5.1 Let X be any set with |X| ≥ 2, let V be any variety of bands in column 3
of Figure 1 (including B), and let B = BV(X). Then:

(1) If V = T then Aut (End (B)) = {1}.

(2) If V = SL then Aut (End (B)) ∼= S(X).

(3) If V = RB then Aut (End (B)) ∼= S(X) o C2.

(4) If V 6= T , V 6= SL, and V 6= RB then Aut (End (B)) ∼= S(X)× C2.
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Corollary 5.2 Let V = [A = B] be any variety of bands in Figure 1 that is not in
column 3. Then for every set X with |X| ≥ n, where n is the number of variables in
A = B,

Aut (End (BV(X))) ∼= S(X).

It remains to investigate the free bands BV(X) such that V = [A = B] is not in
column 3 and |X| < n, where n is the number of variables in A = B. By duality, it
suffices to consider the varieties in columns 1 and 2.

We will use the operators on X∗ = X+ ∪ {1} introduced by Gerhard and Petrich
[9], which solve the word problem in the relatively free bands. (See also [19] and [22].)
We say that an operator t : X∗ → X∗ solves the word problem in the relatively free
band BV(X) if for all u, v ∈ X+, u = v in BV(X) if and only if t(u) = t(v) in X∗.
(Note that we write the operators on X∗ on the left, that is, t(w) rather than wt.) Any
such operator t is called an invariant for the variety V. (We assume, of course, that the
definition of t makes sense for every non-empty set X.)

Following [9], we define operators h2, i2, σ, s, ε, and e on X∗ by: h2(1) = i2(1) =
σ(1) = s(1) = ε(1) = e(1) = 1 = 1, and for any w ∈ X+:

h2(w) = the first letter occuring in w,

i2(w) = the word obtained from w by retaining only the first occurence of each letter,

σ(w) = the letter in w that is last to make its first appearance,

s(w) = the subword of w that precedes the first appearance of σ(w),

ε(w) = the letter in w that is first to make its last appearance,

e(w) = the subword of w that follows the last appearance of ε(w).

For example, h2(xzxyz) = x, i2(xzxyz) = xzy, σ(xzxyz) = y, s(xzxyz) = xzx,
ε(xzxyz) = x, and e(xzxyx) = yz.

For an operator t : X∗ → X∗, define the dual operator t by: t(w) = t(w). For n ≥ 3,
define inductively operators hn and in on X∗ by:

hn(w) = hn(s(w))σ(w)hn−1(w),

in(w) = in(s(w))σ(w)in−1(w).

The operators hn (n ≥ 3) and in (n ≥ 2) are invariants for the varieties [Gn = Hn]
and [Gn = In], respectively [9]. The duals hn and in are invariants for the corresponding
dual varieties. The operators h2 and h2 are invariants for LZ and RZ, respectively.
Recall that for the variety SL of semilattices, we have u = v in BSL(X) if and only
if C(u) = C(v). If t1 and t2 are invariants for varieties V1 and V2, respectively, then
the conjunction of t1 and t2 is an invariant for the join V1 ∨ V2. For example, since
V = [G4G3 = H4I3] is the join of [G3 = H3] and [G2 = I2] (see Figure 1), then for all
u, v ∈ X+, u = v in BV(X) if and only if h3(u) = h3(v) and i2(u) = i2(v) in X+.

The above paragraph gives us invariants for all band varieties except the variety B
of all bands. An invariant b : X∗ → X∗ for B has been given in [9]. We define b(w)
inductively on the number of letters in a word w as follows:

b(1) = 1 and b(w) = b(s(w))σ(w)ε(w)b(e(w)) (w ∈ X+).
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Column 1. We show that for all varieties V = [A = B] in column 1, if |X| < n, where
n is the number of variables in A = B, then BV(X) is d-invariant. The result will follow
from the following lemma.

Lemma 5.3 Let X be a non-empty set and n ≥ 3. For all words u, v ∈ X+, if u = v
has less than n variables and hn(u) = hn(v), then b(u) = b(v).

Proof: We proceed by induction on n. Let n = 3. By [22, Proposition 3.7], h3(u) =
h3(v) implies h3(s(u)) = h3(s(v)), σ(u) = σ(v), and h2(u) = h2(v). Since n = 3, u = v
has one or two variables. If u = v has one variable, the result is trivial since b(u) = b(v)
for all words u and v in a single variable x. Suppose u = v has two variables, say x
and y. Then s(u) = s(v) has one variable, and b(s(u)) = b(s(v)) as above. We have
h2(u) = h2(v), that is, u and v have the same last variable, say y. It follows that
ε(u) = ε(v) = x. Thus e(u) = e(v) has a single variable, y, and so b(e(u)) = b(e(v)).
Hence b(u) = b(v).

Let n ≥ 4. By [22, Proposition 3.4], for every word w,

hn(w) = hn(s(w))σ(w)hn−1(w) = hn(s(w))σ(w)hn−2(w)ε(w)hn−1(e(w)).

Again by [22, Proposition 3.7], hn(u) = hn(v) implies hn(s(u)) = hn(s(v)), σ(u) = σ(v),
ε(u) = ε(v), and hn−1(e(u)) = hn−1(e(v)). Further, hn−1(e(u)) = hn−1(e(v)) implies
hn−1(e(u)) = hn−1(e(v)). Thus, since e(u) = e(v) has at most n− 2 variables, b(e(u)) =
b(e(v)) by induction. Thus b(e(u)) = b(e(v)) since the variety B of all bands is selfdual.

To complete the proof that b(u) = b(v), we use the induction on the number of vari-
ables in u = v. If u = v has one variable, the result is trivial. Suppose u = v has at least
two variables. Then hn(s(u)) = hn(s(v)) implies b(s(u)) = b(s(v)) since s(u) = s(v) has
one less variable than u = v. We already established σ(u) = σ(v), ε(u) = ε(v), and
b(e(u)) = b(e(v)). It follows that b(u) = b(v). 2

Proposition 5.4 Let V = [A = B] be any variety of bands in column 1 or column 5
of Figure 1. Then for every set X with |X| < n, where n is the number of variables in
A = B, BV(X) is d-invariant.

Proof: By duality, we may assume that V is in column 1. Suppose V = [Gn = Hn],
n ≥ 3. Let u, v ∈ X+ be such that u = v in BV(X), that is, hn(u) = hn(v). Since
|X| < n, Lemma 5.3 gives b(u) = b(v), that is, u = v in BB(X), where B is the variety
of all bands. Since BB(X) is d-invariant, u = v in BB(X), and so u = v in BV(X) since
V ⊂ B.

Suppose V = [Gn = In], n ≥ 2. If n = 2, the result is trivial. Let n ≥ 3. Then
V1 = [Gn = Hn] is included in V (see Figure 1). Thus for all u, v ∈ X+,

u = v in BV(X) ⇒ u = v in BV1(X)

⇒ u = v in BB(X)

⇒ u = v in BB(X)

⇒ u = v in BV(X).

This concludes the proof. 2

Proposition 5.4 together with Theorem 3.8, gives us the following corollary.
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Corollary 5.5 Let V = [A = B] be any variety of bands in column 1 or column 5 of
Figure 1. Then for every set X with 2 ≤ |X| < n, where n is the number of variables in
A = B, Aut (End (BV(X))) ∼= S(X)× C2.

Column 2. Here the situation is more complicated than in column 1. Proposition 5.4
is true for the varieties V = [GnGn = InHn], n ≥ 3, and the variety LZ of left zero
semigroups, but not for the varieties V = [GnGn−1 = HnIn−1], n ≥ 3, or the variety LN
of left normal bands.

We first consider the former, for which the result will follow from the following lemma,
which is similar to Lemma 5.3.

Lemma 5.6 Let X be a non-empty set and n ≥ 2. For all words u, v ∈ X+, if u = v
has at most n variables, in(u) = in(v), and hn(u) = hn(v), then b(u) = b(v).

Proof: We proceed by induction on n. Let n = 2. Then u = v has one or two variables.
If u = v has one variable, the result is trivial. Suppose u = v has two variables. Then
i2(u) = i2(v) implies that σ(u) = σ(v) and that s(u) = s(v) has one variable. Further,
h2(u) = h2(v) implies that ε(u) = ε(v) and that e(u) = e(v) has one variable. It follows
that b(u) = b(v).

Let n ≥ 3. Since [Gn = Hn] ⊂ [Gn = In] (see Figure 1), in(u) = in(v) implies
hn(u) = hn(v). If u = v has less than n variables, then hn(u) = hn(v) implies b(u) = b(v)
by Lemma 5.3. Suppose u = v has n variables. We have that in(u) = in(v) implies
in(s(u)) = in(s(v)), σ(u) = σ(v), and in−1(u) = in−1(v); and hn(u) = hn(v) implies
hn−1(u) = hn−1(v), ε(u) = ε(v), and hn(e(u)) = hn(e(v)) (by [22, Proposition 3.7]).
Since s(u) = s(v) and e(u) = e(v) have n − 1 variables each, it follows by Lemma 5.3
that b(s(u)) = b(s(v)) and b(e(u)) = b(e(v)). Thus b(u) = b(v). 2

Proposition 5.7 Let V be a variety of bands in column 2 or column 4 of Figure 1. If
V = [GnGn = InHn] or V = [GnGn = HnIn], n ≥ 3, then for every set X with |X| < n,
BV(X) is d-invariant.

Proof: By duality, we may assume that V = [GnGn = InHn]. Then for all u, v ∈ X+,
u = v in BV(X) if and only if in−1(u) = in−1(v) and hn−1(u) = hn−1(v). Thus the result
follows from Lemma 5.6. 2

For the varieties V = [GnGn−1 = HnIn−1] and their duals, the result is as follows.

Proposition 5.8 Let V be a variety of bands in column 2 or column 4 of Figure 1. If
V = [GnGn−1 = HnIn−1] or V = [Gn−1Gn = In−1Hn], n ≥ 4, then for every set X:

(1) If |X| < n− 1 then BV(X) is d-invariant.

(2) If |X| = n− 1 then BV(X) is not d-invariant.

Proof: By duality, we may assume that V = [GnGn−1 = HnIn−1]. To prove (1), suppose
|X| < n − 1, and let u, v ∈ X+ with u = v in BV(X). Consider V1 = [Gn−1 = Hn−1].
Since V1 ⊂ V, u = v in BV1(X), so that hn−1(u) = hn−1(v). Since u = v has less than
n− 1 variables, u = v in BB(X) by Lemma 5.3. Thus u = v in BB(X), and so u = v in
BV(X).
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To prove (2), suppose that |X| = n − 1. Then Gn−1, In−1 ∈ X+. We have
Gn−1 = In−1 in BV(X) (since V ⊂ [Gn−1 = In−1]) and Gn−1 6= In−1 in BV(X) (since
V 6⊂ [Gn−1 = In−1]) – see Figure 1. Thus BV(X) is not d-invariant. 2

We dealt with the variety LZ = [xy = x] of left zero semigroups and its dual
RZ = [xy = y] in Section 4. It remains to consider the variety LN = [xyz = xzy] of left
normal bands. (Its dual is the variety RN = [xyz = yxz] of right normal bands.) The
identity [xyz = xzy] defining LN has three variables. Let X be a set with two variables,
say X = {x, y}. Since LN is the join of LZ and SL, for all u, v ∈ X+, u = v in BLN (X)
if and only if h2(u) = h2(v) and C(u) = C(v). It follows that BLN (X) is not d-invariant,
since xy = xyx in BLN (X) but yx 6= xyx in BLN (X).

The foregoing discussion, Proposition 5.7, Proposition 5.8, and Theorem 3.8, give us
the following corollary.

Corollary 5.9 Let V be a variety of bands in column 2 or column 4 of Figure 1. Then
for every set X with |X| ≥ 2:

(1) If V = [GnGn = InHn] or V = [GnGn = HnIn], n ≥ 3, and |X| < n, then
Aut (End (BV(X))) ∼= S(X)× C2.

(2) If V = [GnGn−1 = HnIn−1] or V = [Gn−1Gn = In−1Hn], n ≥ 4, and |X| < n− 1,
then Aut (End (BV(X))) ∼= S(X)× C2.

(3) If V = [GnGn−1 = HnIn−1] or V = [Gn−1Gn = In−1Hn], n ≥ 4, and |X| = n− 1,
then Aut (End (BV(X))) ∼= S(X).

(4) If V = LN or V = RN , and |X| = 2, then Aut (End (BV(X))) ∼= S(X).

If |X| = 1, say X = {x}, then for every variety V of bands BV(X) = {x}, and so
Aut (End (BV(X))) = {1}. Hence we covered all possible varieties of bands V and all
possible sets X, and our determination of Aut (End (BV(X))) is complete.

6 Problems

In connection with the general problem that motivated this paper and in parallel with
many similar open problems in various branches of algebra, we suggest the following
problems from semigroup theory:

(1) Describe Aut(Aut(F )) and Aut(End(F )), where F is a free inverse semigroup,
that is, a free algebra in the variety of all inverse semigroups. (This is the most
important free semigroup apart from the free group. See [17, Chapter VIII].)

(2) Solve analogous problems for other varieties of inverse semigroups. (See [17, Chap-
ter XII].)

(3) Describe Aut(Aut(F )) and Aut(End(F )), where F is a free completely regular
semigroup or a free ∗-regular semigroup. (See [13] and [20].)

(4) For a pseudovariety V of semigroups, describe Aut(Aut(F )) and Aut(End(F )),
where F is the free pro-V semigroup over a finite alphabet. (See [1] and [2].)
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(5) Describe Aut(Aut(F )) and Aut(End(F )), where F is an independence algebra.
(See [5] and [11].)

Acknowledgments: The authors would like to thank Professor Arthur Gerhard for pro-
viding the statement and proof of Lemma 5.3.
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