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VOLUME GROWTH, NUMBER OF ENDS AND THE

TOPOLOGY OF A COMPLETE SUBMANIFOLD

VICENT GIMENO* AND VICENTE PALMER*

Abstract. Given a complete isometric immersion ϕ : Pm
−→ Nn in an

ambient Riemannian manifold Nn with a pole and with radial sectional cur-
vatures bounded from above by the corresponding radial sectional curvatures
of a radially symmetric space Mn

w
, we determine a set of conditions on the

extrinsic curvatures of P that guarantees that the immersion is proper and
that P has finite topology in the line of the results in [24] and [25]. When
the ambient manifold is a radially symmetric space, it is shown an inequality
between the (extrinsic) volume growth of a complete and minimal submanifold
and its number of ends which generalizes the classical inequality stated in [1]
for complete and minimal submanifolds in R

n. We obtain as a corollary the
corresponding inequality between the (extrinsic) volume growth and the num-
ber of ends of a complete and minimal submanifold in the Hyperbolic space
together with Bernstein type results for such submanifolds in Euclidean and
Hyperbolic spaces, in the vein of the work [12].

1. Introduction

A natural question in Riemannian geometry is to explore the influence of the cur-
vature conduct of a complete Riemannan manifold on its geometric and topological
properties. Classical results concernig this are the gap theorems showed by Greene
and Wu in [7], (see too [8]), and, when it is considered a minimal submanifold (prop-
erly) immersed in the Euclidean space R

n, the Berstein-type theorems showed by
Anderson in [1] and by Schoen in [32]. Greene and Wu’s results states, roughly
speaking, that a Riemannian manifold with a pole and with faster than quadratic
decay of its sectional curvatures is isometric to the Euclidean space. On the other
hand, Anderson proved, as a corollary of a generalization of the Chern-Osserman
theorem on complete and minimal submanifolds of Rn with finite total (extrinsic)
curvature, that any of such submanifolds having one end is an affine n-plane. More
examples concerning submanifolds immersed in an ambient Riemannian manifold
and the analysis of its (intrinsic and extrinsic) curvature behavior are the gap re-
sults, (of Bernstein-type), given by Kasue and Sugahara in [12] (see Theorems A
and B), where an accurate (extrinsic) curvature decay forces to minimal, (or not)
submanifolds with one end of the Euclidean and Hyperbolic spaces to be totally
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21206-C02-02.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/61420168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1112.4042v2


2 V. GIMENO AND V. PALMER

geodesic, and the gap results for minimal submanifolds in the Euclidean space with
controlled scalar curvature given by Kasue in [13].

The estimation of the number of ends of these submanifolds plays a fundamental
rôle in all the Bernstein-type results above mentioned. In this way, it is proved in
[1] (see Theorems 4.1 and 5.1 in that paper) that given a complete and minimal
submanifold ϕ : Pm −→ R

n, (m > 2) having finite total curvature
∫

P ‖BP ‖mdσ <

∞, its (extrinsic) volume growth, defined as the quotient
Vol(ϕ(P )∩B0,n

t )
ωntn

is bounded

from above by the number of ends of P , E(P ), namely

(1.1) lim
t→∞

Vol(ϕ(P ) ∩B0,n
t )

ωntn
≤ E(P )

where Bb,n
t denotes the metric t− ball in the real space form of constant curvature

b, IKn(b), and ‖BP ‖ denotes the Hilbert-Schmidt norm of the second fundamental
form of P in R

n. If moreover E(P ) = 1, it is concluded (using inequality (1.1)) the
Bernstein-type result above alluded, namely, that Pm is an affine plane, i.e. totally
geodesic in R

n, (see Theorem 5.2 in [1]).
In the paper [3] it was proved that inequality (1.1) is in fact an equality when

the minimal submanifold in R
n exhibits an accurate decay of its extrinsic curvature

‖BP ‖ and in the paper [12] it was proved that, if the submanifold P has only one
end and the decay of its extrinsic curvature ‖BP ‖ is faster than linear, (when the
ambient space is Rn) or than exponential, (when the ambient space is Hn(b)), then
it is is totally geodesic.

Within this study of the behavior at infinity of complete and minimal subman-
ifolds with finite total curvature immersed in the Euclidean space, it was proved
also in [1] and in [22] that the immersion of a complete and minimal submanifold
P in R

n or H
n(b) satisfying

∫

P
‖BP ‖mdσ < ∞ is proper and that P is of finite

topological type.
We should mention here the results in [24] and in [25], where has been stated

new conditions on the decay of the extrinsic curvature for a completely immersed
submanifold P in the Euclidean space ([24]) and in a Cartan-Hadamard manifold
([25]) which guarantees the properness of the submanifold and the finiteness of its
topology.

In view of these results, it seems natural to consider the following three issues:

(1) Can the properness/finiteness results in [24] and [25] be extended to sub-
manifolds immersed in spaces which have not necessarily non-positive cur-
vature?,

(2) Do we have an analogous to inequality (1.1) between the extrinsic volume
growth and the number of ends when we consider a minimal submanifold
(properly) immersed in Hyperbolic space which exhibit an accurate extrin-
sic curvature decay?.

(3) Moreover, is it possible to deduce from this inequality a Bernstein-type
result in the line of [1] and [12]?.

We provide in this paper a (partial) answer to these questions, besides other lower
bounds for the number of ends for (non-minimal) submanifolds in the Euclidean
and Hyperbolic spaces and other gap results related with these estimates. As a
preliminary view of our results, we have the following theorems, Theorem 1.1 and
Theorem 1.2, which follows directly from our Theorem 3.5. In Theorem 1.1 we
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have the answer to the two last questions, namely, setting equation (1.1), but in
the Hyperbolic case, and a Bernstein-type result for minimal submanifolds in the
Hyperbolic space, in the line studied by Kasue and Sugahara in [12], (see assertion
(A-iv) of Theorem A). On the other hand, Theorem 1.2 encompasses a slightly less
general version of assertion (A-i) of Theorem A in [12].

Theorem 1.1. Let ϕ : Pm −→ H
n(b) be a complete, proper and minimal immer-

sion with m > 2. Let us suppose that for sufficiently large R0 and for all points
x ∈ P such that r(x) > R0, (i.e. outside a compact),

‖BP
x ‖ ≤ δ(r(x))

e2
√
−b r(x)

where r(x) = dHn(b)(o, ϕ(x)) is the (extrinsic) distance in H
n(b) of the points in

ϕ(P ) to a fixed pole o ∈ H
n(b) such that ϕ−1(o) 6= ∅ and δ(r) is a smooth function

such that δ(r) → 0 when r → ∞. Then:

(1) The finite number of ends E(P ) is related with the volume growth by

Supt>0

Dt(o)

Vol(Bb,m
t )

≤ E(P )

where Dt(o) = {x ∈ P : r(x) < t} = {x ∈ P : ϕ(x) ∈ Bb,n
t (o)} is the

extrinsic ball of radius t in P , (see Definition 2.1).
(2) If P has only one end, P is totally geodesic in H

n(b)

When the ambient manifold is R
n, we have the following Bernstein-type result

as in [12]:

Theorem 1.2. Let ϕ : Pm −→ R
n be a complete non-compact, minimal and proper

immersion with m > 2. Let us suppose that for sufficiently large R0 and for all
points x ∈ P such that r(x) > R0, (i.e. outside the compact extrinsic ball DR0(o)
with ϕ−1(o) 6= ∅),

‖BP
x ‖ ≤ ǫ(r(x))

r(x)

where ǫ(r) is a smooth function such that ǫ(r) → 0 when r → ∞. Then:

(1) The finite number of ends E(P ) is related with the volume growth by

Supt>0

Vol(Dt)

Vol(B0,m
t )

≤ E(P )

(2) If P has only one end, P is totally geodesic in R
n.

These results, that we shall prove in Section 8, (together the corollaries of Section
4), follows from two main theorems, stablished in Section 3. In the first (Theorem
3.1) we show that a complete isometric immersion ϕ : Pm −→ Nn, (m > 2),
with controlled second fundamental form in a complete Riemannian manifold which
possess a pole and has controlled radial sectional curvatures is proper and has finite
topology. In the second (Theorem 3.4) it is proved that a complete and proper
isometric immersion ϕ : Pm −→ Mn

w, (m > 2), with controlled second fundamental
form in a radially symmetric spaceMn

w with sectional curvatures bouded from below
by a radial function has its volume growth bounded from above by a quantity which
involve its (finite) number of ends.
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The proof of both theorems follows basically the argumental lines of the proofs
given in [24] and [25] and some ideas in [3]. An important difference to these results
is that, on our side, we allow to the ambient manifold to have positive sectional
curvatures, bounding from above only the sectional curvatures of the planes con-
taining radial directions. However, to show the properness of the immersion in [25],
the ambient manifold must have non-positive sectional curvatures, and to assure
the finiteness of the topology of the immersion P , this ambient manifold must be,
in addition, simply connected, (i.e. a Cartan-Hadamard manifold). This difference
is based in following considerations.

To obtain the finiteness of the topology in Theorem 3.1, we show that the re-
stricted, (to the submanifold) extrinsic distance to a fixed pole (in the ambient
manifold) has no critical points outside a compact and then, we apply classical
Morse theory. To show that the extrinsic distance function has no critical points
we compute its Hessian as we can find it in [16] and [27]. These results are, in its
turn, based in the Jacobi-Index analysis for the Hessian of the distance function
given in [6], in particular, its Theorem A, (see Subsection 2.3). This comparison
theorem is different of the Hessian comparison Theorem 1.2 used in [25]: while in
this last theorem, the space used as a model to compare is the real space form with
constant sectional curvature equal to the bound on the sectional curvatures of the
given Riemannian manifold, in our adaptation of Theorem A in [6], (see Theorem
2.10), only the sectional curvatures of the planes containing radial directions from
the pole are bounded by the corresponding radial sectional curvatures in a radially
symmetric space used as a model.

We also note at this point that although we use the definition of pole given by
Greene and Wu in [6], (namely, the exponential must be a diffeomorphism at a
pole), in fact, the comparison of the Hessians in Theorem A holds along radial
geodesics from the poles defined as those points which have not conjugate points,
as in [25].

1.1. Outline. The outline of the paper is the following. In Section §.2 we present
the definiton of extrinsic ball, together the basic facts about the Hessian comparison
theory of restricted distance function we are going to use and an isoperimetric
inequality for the extrinsic balls which plays an important rôle in the proof of
Theorem 3.4 . Section §.3 is devoted to the statement of the main results (Theorem
3.1, Theorem 3.4 and Theorem 3.5). We shall present in Section 4 two lists of
results based in Theorems 3.1, 3.4 and 3.5: the first set of consequences is devoted
to bound from above the volume growth of a submanifold by the number of its ends,
in several contexts, obtaining moreover some Bernstein-type results. In the second
set of corollaries are stated some compactification theorems for submanifolds in R

n,
in H

n and in H
n × R

l. Sections §.5, §.6, §.7 are devoted to the proof of Theorems
3.1, 3.4, and 3.5, respectively. Theorem 1.1, Theorem 1.2 and the corollaries stated
in Section §.4 are proved in Section §.8.

2. Preliminaires

2.1. The extrinsic distance. We assume throughout the paper that ϕ : Pm −→
Nn is an isometric immersion of a complete non-compact Riemannian m-manifold
Pm into a complete Riemannian manifold Nn with a pole o ∈ N , (this is the precise
meaning we shall give to the word submanifold along the text) . Recall that a pole
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is a point o such that the exponential map

expo : ToN
n → Nn

is a diffeomorphism. For every x ∈ Nn − {o} we define r(x) = ro(x) = distN(o, x),
and this distance is realized by the length of a unique geodesic from o to x, which
is the radial geodesic from o. We also denote by r|P or by r the composition
r ◦ ϕ : P → R+ ∪ {0}. This composition is called the extrinsic distance function
from o in Pm. The gradients of r in N and r|P in P are denoted by ∇Nr and
∇P r, respectively. Then we have the following basic relation, by virtue of the
identification, given any point x ∈ P , between the tangent vector fields X ∈ TxP
and ϕ∗x

(X) ∈ Tϕ(x)N

(2.1) ∇Nr = ∇P r + (∇Nr)⊥,

where (∇Nr)⊥(ϕ(x)) = ∇⊥r(ϕ(x)) is perpendicular to TxP for all x ∈ P .

Definition 2.1. Given ϕ : Pm −→ Nn an isometric immersion of a complete and
connected Riemannian m-manifold Pm into a complete Riemannian manifold Nn

with a pole o ∈ N , we denote the extrinsic metric balls of radius t > 0 and center
o ∈ N by Dt(o). They are defined as the subset of P :

Dt(o) = {x ∈ P : r(ϕ(x)) < t} = {x ∈ P : ϕ(x) ∈ BN
t (o)}

where BN
t (o) denotes the open geodesic ball of radius t centered at the pole o in

Nn. Note that the set ϕ−1(o) can be the empty set.

Remark 2.2. When the imersion ϕ is proper, the extrinsic domains Dt(o) are
precompact sets, with smooth boundary ∂Dt(o). The assumption on the smooth-
ness of ∂Dt(o) makes no restriction. Indeed, the distance function r is smooth in
N −{o} since N is assumed to possess a pole o ∈ N . Hence the composition r|P is
smooth in P and consequently the radii t that produce smooth boundaries ∂Dt(o)
are dense in R by Sard’s theorem and the Regular Level Set Theorem.

We now present the curvature restrictions which constitute the geometric frame-
work of our study.

Definition 2.3. Let o be a point in a Riemannian manifold N and let x ∈ N−{o}.
The sectional curvature KN(σx) of the two-plane σx ∈ TxN is then called a o-radial
sectional curvature of N at x if σx contains the tangent vector to a minimal geodesic
from o to x. We denote these curvatures by Ko,N(σx).

2.2. Model spaces. Throughout this paper we shall assume that the ambient
manifold Nn has its o-radial sectional curvatures Ko,N(x) bounded from above
by the expression Kw(r(x)) = −w′′(r(x))/w(r(x)), which are precisely the radial
sectional curvatures of the w-model space Mm

w we are going to define.

Definition 2.4 (See [23], [10] and [6]). A w−model Mm
w is a smooth warped

product with base B1 = [0,Λ[⊂ R (where 0 < Λ ≤ ∞), fiber Fm−1 = S
m−1
1 (i.e.

the unit (m − 1)-sphere with standard metric), and warping function w : [0,Λ[→
R+ ∪ {0}, with w(0) = 0, w′(0) = 1, and w(r) > 0 for all r > 0. The point
ow = π−1(0), where π denotes the projection onto B1, is called the center point of
the model space. If Λ = ∞, then ow is a pole of Mm

w .
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Proposition 2.5. The simply connected space forms K
m(b) of constant curvature

b are w−models with warping functions

wb(r) =











1√
b
sin(

√
b r) if b > 0

r if b = 0
1√
−b

sinh(
√
−b r) if b < 0.

Note that for b > 0 the function Qb(r) admits a smooth extension to r = π/
√
b.

Proposition 2.6 (See Proposition 42 in Chapter 7 of [23]. See also [6] and [10]).
Let Mm

w be a w−model with warping function w(r) and center ow. The distance
sphere Sw

r of radius r and center ow in Mm
w is the fiber π−1(r). This distance sphere

has the constant mean curvature ηw(r) =
w′(r)
w(r) .

On the other hand, the ow-radial sectional curvatures of M
m
w at every x ∈ π−1(r)

(for r > 0) are all identical and determined by

Kow,Mw
(σx) = −w′′(r)

w(r)
.

and the sectional curvatures of Mm
w at every x ∈ π−1(r) (for r > 0) of the tangent

planes to the fiber Sw
r are also all identical and determined by

K(r) = KMw
(ΠSw

r
) =

1− (w′(r))2

w2(r)
.

Remark 2.7. The w−model spaces are completely determined via w by the mean
curvatures of the spherical fibers Sw

r :

ηw(r) = w′(r)/w(r) ,

by the volume of the fiber

Vol(Sw
r ) = V0 w

m−1(r) ,

and by the volume of the corresponding ball, for which the fiber is the boundary

Vol(Bw
r ) = V0

∫ r

0

wm−1(t) dt .

Here V0 denotes the volume of the unit sphere S0,m−1
1 , (we denote in general as

Sb,m−1
r the sphere of radius r in the real space form IKm(b)) . The latter two

functions define the isoperimetric quotient function as follows

qw(r) = Vol(Bw
r )/Vol(S

w
r ) .

Besides the rôle of comparison controllers for the radial sectional curvatures of
Nn, we shall need two further purely intrinsic conditions on the model spaces:

Definition 2.8. A given w−model space Mm
w is called balanced from below and

balanced from above, respectively, if the following weighted isoperimetric conditions
are satisfied:

Balance from below: qw(r) ηw(r) ≥ 1/m for all r ≥ 0 ;

Balance from above: qw(r) ηw(r) ≤ 1/(m− 1) for all r ≥ 0 .

A model space is called totally balanced if it is balanced both from below and from
above.
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Remark 2.9. If Kw(r) ≥ −η2w(r) then Mm
w is balanced from above. If Kw(r) ≤ 0

then Mm
w is balanced from below, see the paper [16] for a detailed list of examples.

2.3. Hessian comparison analysis. The 2.nd order analysis of the restricted
distance function r|P defined on manifolds with a pole is governed by the Hessian
comparison Theorem A in [6].

This comparison theorem can be stated as follows, when one of the spaces is a
model space Mm

w , (see [27]):

Theorem 2.10 (See [6], Theorem A). Let N = Nn be a manifold with a pole o, let
M = Mm

w denote a w−model with center ow. Suppose that every o-radial sectional
curvature at x ∈ N \{o} is bounded from above by the ow-radial sectional curvatures
in Mm

w as follows:

Ko,N(σx) ≤ −w′′(r)

w(r)

for every radial two-plane σx ∈ TxN at distance r = r(x) = distN (o, x) from o in
N . Then the Hessian of the distance function in N satisfies

(2.2)

HessN (r(x))(X,X) ≥ HessM (r(y))(Y, Y )

= ηw(r)
(

‖X‖2 − 〈∇Mr(y), Y 〉2M
)

= ηw(r)
(

‖X‖2 − 〈∇Nr(x), X〉2N
)

for every vector X in TxN and for every vector Y in TyM with r(y) = r(x) = r
and 〈∇Mr(y), Y 〉M = 〈∇N r(x), X〉N .

Remark 2.11. As we mentioned in the Introduction, inequality (2.2) is true along
the geodesics emanating from o and ow which are free of conjugate points of o and
ow, (see Remark 2.3 in [6]). Other relevant observation is that the bound given in
inequality (2.2) does not depend on the dimension of the model space, (see Remark
3.7 in [27]).

We present now a technical result concerning the Hessian of a radial function,
namely, a function which only depends on the distance function r. For the proof of
this result, and the rest of the results in this subsection, we refer to the paper [27].

Proposition 2.12. Let N = Nn be a manifold with a pole o. Let r = r(x) =
distN (o, x) be the distance from o to x in N . Let F : R −→ R a smooth function.
Then, given q ∈ N and X,Y ∈ TqN ,

HessNF ◦ r|q(X,Y ) = F ′′(r)(∇N r ⊗∇N r)(X,Y )

+ F ′(r)HessNr|q(X,Y )
(2.3)

Now, let us consider a complete isometric immersion ϕ : Pm −→ N in a Rie-
mannian ambient manifold Nn with pole o, and with distance function to the pole
r. We are going to see how the Hessians (in P and in N), of a radial function
defined in the submanifold are related via the second fundamental form BP of the
submanifold P in N . As before, we identify, given any q ∈ P , the tangent vectors
X ∈ TqP with ϕ∗q

X ∈ Tϕ(q)N along the next results.
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Proposition 2.13. Let Nn be a manifold with a pole o, and let us consider an
isometric immersion ϕ : Pm −→ N . If r|P is the extrinsic distance function, then,
given q ∈ P and X,Y ∈ TqP ,

(2.4) Hess P r|q(X,Y ) = HessNr|ϕ(q)(X,Y ) + 〈BP
q (X,Y ),∇N r|q〉

where BP
q is the second fundamental form of P in N at the point q ∈ P .

Now, we apply Proposition 2.12 to F ◦ r|P = F ◦ r ◦ ϕ, (considering P as the
Riemannian manifold where the function is defined), to obtain an expression for

Hess PF ◦ r|P (X,Y ) . Then, let us apply Proposition above to Hess P r|P (X,Y ),
and we finally get:

Proposition 2.14. Let N = Nn be a manifold with a pole o, and let Pm denote
an immersed submanifold in N . Let r|P be the extrinsic distance function. Let
F : R −→ R be a smooth function. Then, given q ∈ P and X,Y ∈ TqP ,

Hess PF ◦ r|q(X,Y ) = F ′′(r(q))〈∇N r|q , X 〉〈∇Nr|q , Y 〉
+ F ′(r(q)){HessNr|q(X,Y )

+ 〈∇N r|q, BP
q (X,Y ) 〉 }

(2.5)

2.4. Comparison constellations and Isoperimetric inequalities. The isoperi-
metric inequalities satisfied by the extrinsic balls in minimal submanifolds are on

the basis of the monotonicity of the volume growth function f(r) = V ol(Dr)
V ol(Bw

r ) , a key

result to prove Theorem 1.1. We have the following theorem.

Theorem 2.15 (See [16], [17], [18], [19] and [26]). Let ϕ : Pm −→ Nn be a
complete, proper and minimal immersion in an ambient Riemannian manifold Nn

which possess at least one pole o ∈ N . Let us suppose that the o−radial sectional
curvatures of N are bounded from above by the ow−radial sectional curvatures of
the w−model space Mm

w :

Ko,N(σx) ≤ −w′′(r(x))

w(r(x))
∀x ∈ N

and assume that Mm
w is balanced from below. Let Dr be an extrinsic r-ball in Pm,

with center at a pole o ∈ N in the ambient space N . Then:

(2.6)
Vol(∂Dr)

Vol(Dr)
≥ Vol(Sw

r )

Vol(Bw
r )

for all r > 0 .

Furthermore, if ϕ−1(o) 6= ∅,
(2.7) Vol(Dr) ≥ Vol(Bw

r ) for all r > 0 .

Moreover, if equality in inequalities (2.6) or (2.7) holds for some fixed radius R and
if the balance of Mm

w from below is sharp qw(r) ηw(r) > 1/m for all r, then DR is
a minimal cone in the ambient space Nn, so if Nn is the hyperbolic space H

n(b) ,
b < 0 , then Pm is totally geodesic in H

n(b).
If, on the other hand, the ambient space is R

n and equality in inequalities (2.6)
or (2.7) holds for all radius r > 0 then Pm is totally geodesic in R

n.

On the other hand, and also as a consequence of inequality (2.6), the volume

growth function f(r) = V ol(Dr)
V ol(Bw

r ) is a non-decreasing function of r.



VOLUME GROWTH, NUMBER OF ENDS 9

3. Main Results

We prove in this section our main results, stablishing a set of conditions that
assures that our submanifolds are properly immersed and have finite topology and
bounding from below, under certain conditions, the number of its ends.

Theorem 3.1. Let ϕ : Pm −→ Nn be an isometric immersion of a complete non-
compact Riemannian m-manifold Pm into a complete Riemannian manifold Nn

with a pole o ∈ N and satisfying ϕ−1(o) 6= ∅. Let us suppose that:

(1) The o−radial sectional curvatures of N are bounded from above by the
ow−radial sectional curvatures of the w−model space Mm

w :

Ko,N(σx) ≤ −w′′(r(x))

w(r(x))
∀x ∈ N.

(2) The second fundamental form BP
x in x ∈ P satisfies that, for sufficiently

large radius R0, and for some constant c ∈]0, 1[:
‖BP

x ‖ ≤ c ηw(ρ
P (x)) ∀x ∈ P −BP

R0
(xo)

where ρP (x) denotes the intrinsic distance in P from some fixed xo ∈
ϕ−1(o) to x.

(3) For any r > 0, w′(r) ≥ d > 0 and (ηw(r))
′ ≤ 0.

Then P is properly immersed in N and it is C∞- diffeomorphic to the interior
of a compact smooth manifold P with boundary.

Remark 3.2. To show that ϕ is proper, we shall use Theorem 2.10. Hence, it is
enough to assume that o is a pole in the sense that there are not conjugate points
along any geodesic emanating from o, (see [5] and [30]). Therefore our statement
about the properness of the immersion includes ambient manifolds N that admit
non-negative sectional curvatures, unlike the ambient manifold in Theorem 1.2 in
[25]. On the other hand, to prove the finiteness of the topology of P we need to
assume that the ambient manifold N posses a pole as it is defined in [6], namely, a
point p ∈ N where expp is a C∞ diffeomorphism. However, although our ambient
manifold must be diffeomorphic to R

n in this case, (as in Theorem 1.2 in [25], where
the ambient space must be a Cartan-Hadamard manifold), also admits non-negative
sectional curvatures.

To complete the benchmarking with the hypotheses in [24] and [25], we are going
to compare the assumptions (2) and (3) in Theorem 3.1 with the notion of “subman-
ifold with tamed second fundamental form” introduced in [24]. It is straightforward
to check that if ϕ : Pm −→ Nn is an immersion of a complete Riemannian m-
manifold Pm into a complete Riemannian manifold Nn with sectional curvatures
KN ≤ b ≤ 0, and P has tamed second fundamental form, in the sense of Definition
1.1 in [25], then there exists R0 > 0 such that for all r ≥ R0, the quantity

ar := Sup{wb

w′
b

(ρP (x))‖BP
x ‖ : x ∈ P −BP

r }

satisfies ar < 1.
Hence, taking r = R0, we have that for all x ∈ P −BP

R0
, and some c ∈ (0, 1),

‖BP
x ‖ ≤ cηwb

(ρP (x)) .
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On the other hand, when b ≤ 0, then w′
b(r) ≥ 1 > 0 ∀r > 0 and (ηwb

(r))′ ≤
0 ∀r > 0.

All these observations make us consider our Theorem 3.1 as a natural and slight
generalization of assertions (b) and (c) of Theorem 1.2 in [25].

Observe that if we assume the properness of the immersion we obtain the follow-
ing version of Theorem 3.1, where we can remove the hypothesis about the decrease
of the function ηw(r) because the norm of the second fundamental form ‖BP

x ‖ is
bounded by the value of ηw at r(x) instead of ρP (x) :

Theorem 3.3. Let ϕ : Pm −→ Nn be an isometric and proper immersion of a
complete non-compact Riemannian m-manifold Pm into a complete Riemannian
manifold Nn with a pole o ∈ N and satisfying ϕ−1(o) 6= ∅. Let us suppose that, as
in Theorem 3.1, the o−radial sectional curvatures of N are bounded from above as

Ko,N(σx) ≤ −w′′(r(x))

w(r(x))
∀x ∈ N ,

and for any r > 0, w′(r) ≥ d > 0. Let us assume moreover that the second
fundamental form BP

x in x ∈ P satisfies that, for sufficiently large radius R0:

‖BP
x ‖ ≤ c ηw(r(x)) ∀x ∈ P −DR0(o)

where c a positive constant such that c < 1 .
Then P is C∞- diffeomorphic to the interior of a compact smooth manifold P

with boundary.

We are going to see how to estimate the area growth function of P , defined as

g(r) = V ol(∂Dr)
V ol(Sw

r ) by the number of ends of the immersion P , E(P ), when the ambient

space N is a radially symmetric space.

Theorem 3.4. Let ϕ : Pm −→ Mn
w be an isometric and proper immersion of a

complete non-compact Riemannian m-manifold Pm into a model space Mn
w with

pole ow. Suppose that ϕ−1(ow) 6= ∅, m > 2 and moreover:

(1) The norm of second fundamental form BP
x in x ∈ P is bounded from above

outside a (compact) extrinsic ball DR0(o) ⊆ P with sufficiently large radius
R0 by:

‖BP
x ‖ ≤ ǫ(r(x))

(w′(r(x)))2
ηw(r(x)) ∀x ∈ P −DR0

where ǫ is a positive function such that ǫ(r) → 0 when r → ∞.
(2) For r sufficiently large, w′(r) ≥ d > 0.

Then, for sufficiently large r, we have:

(3.1)
V ol(∂Dr)

V ol(Sw
r )

≤ E(P )

(1− 4ǫ(r))
(m−1)

2

where E(P ) is the (finite) number of ends of P .

When we consider minimal immersions in the model spaces, we have the following
result, which is an inmediate corollary from the above theorem, and Theorem 2.15
in Section 2.
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Theorem 3.5. Let ϕ : Pm −→ Mn
w be a complete non-compact, proper and mini-

mal immersion into a ballanced from below model space Mn
w with pole ow. Suppose

that ϕ−1(ow) 6= ∅ and m > 2. Let us assume moreover the hypotheses (1) and (2)
in Theorem 3.4.

Then

(1) The (finite) number of ends E(P ) is related with the (finite) volume growth
by

(3.2) 1 ≤ lim
r→∞

V ol(Dr)

V ol(Bw
r )

≤ E(P )

(2) If P has only one end, P is a minimal cone in Mn
w.

4. Corollaries

As we have said in the Introduction, we have divided the list of results based
in Theorem 3.1 and in Theorem 3.4 in two series of corollaries. The first set of
consequences follows the line of Theorem 1.1 and Theorem 1.2, (which are in fact
the main representatives of these results) presenting upper bounds for the volume
and area growth of a complete and proper immersion in the real space form IKn(b),
(b ≤ 0), in terms of the number of its ends. In the second set of corollaries, are
stated compactification theorems for complete and proper immersions in R

n, Hn(b)
and H

n(b)× R
l.

The first of these corollaries constitutes a non-minimal version of Theorem 1.1:

Corollary 4.1. Let ϕ : Pm −→ H
n(b) be a complete non-compact and proper

immersion with m > 2. Let us suppose that for sufficiently large R0 and for all
points x ∈ P such that r(x) > R0, (i.e. outside the compact extrinsic ball DR0(o)
with ϕ−1(o) 6= ∅),

‖BP
x ‖ ≤ δ(r(x))

e2
√
−b r(x)

where r(x) = dHn(b)(o, ϕ(x)) is the (extrinsic) distance in H
n(b) of the points in

ϕ(P ) to a fixed pole o ∈ H
n(b) and δ(r) is a smooth function such that δ(r) → 0

when r → ∞.Let {ti}∞i=1 be any non-decreasing sequence such that ti → ∞ when
i → ∞. Then the finite number of ends E(P ) is related with the area growth of P
by:

lim inf
i→∞

Vol(∂Dti)

Vol(Sb,m−1
ti )

≤ E(P )

The corresponding non-minimal statement of Theorem 1.2 is:

Corollary 4.2. Let ϕ : Pm −→ R
n be a complete non-compact and proper immer-

sion with m > 2. Let us suppose that for sufficiently large R0 and for all points
x ∈ P such that r(x) > R0, (i.e. outside the compact extrinsic ball DR0(o) with
ϕ−1(o) 6= ∅),

‖BP
x ‖ ≤ ǫ(r(x))

r(x)

where r(x) = dRn(o, ϕ(x)) is the (extrinsic) distance in R
n of the points in ϕ(P ) to

a fixed pole o ∈ R
n and ǫ(r) is a smooth function such that ǫ(r) → 0 when r → ∞.
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Let {ti}∞i=1 be any non-decreasing sequence such that ti → ∞ when i → ∞. Then
the finite number of ends E(P ) is related with the area growth by:

lim inf
i→∞

Vol(∂Dti)

Vol(S0,m−1
ti )

≤ E(P )

Concerning the compactification results we have the following result given by
Bessa, Jorge and Montenegro in [24] and by Bessa and Costa in [25]:

Corollary 4.3. Let ϕ : Pm −→ IKn(b) be a complete non-compact immersion in
the real space form IKn(b), (b ≤ 0). Let us suppose that for all points x ∈ P \BP

R0
(o)

(for sufficientlty large R0, where o is a pole in IKn(b) such that ϕ−1(o) 6= ∅) :

‖BP
x ‖ ≤ c hb(ρ

P (x))

where ρP (x) is the (intrinsic) distance to a fixed xo ∈ ϕ−1(o) and c is a positive
constant such that c < 1 and

hb(r) = ηwb
(r) =

{

1/r if b = 0√
−b coth(

√
−b r) if b < 0 .

is the mean curvature of the geodesic spheres in IKn(b). Then P is properly im-
mersed in IKn(b) and it is diffeomorphic to the interior of a compact smooth man-
ifold P with boundary.

Our last result concerns isometric immersions in H
n(b)× R

l:

Corollary 4.4. Let ϕ : Pm −→ H
n(b)×R

l be a complete non-compact immersion.
Let us consider a pole o ∈ H

n(b) × R
l such that ϕ−1(o) 6= ∅. Let us suppose that

for all points x ∈ P \BP
R0

(xo), where xo ∈ ϕ−1(o) and for R0 sufficiently large:

‖Bx‖ ≤ c

ρP (x)
.

Here ρP (x) denotes the intrinsic distance in P from the fixed xo ∈ ϕ−1(o) to x
and c is a positive constant such that c < 1. Then P is properly immersed in
H

n(b)×R
l and it is diffeomorphic to the interior of a compact smooth manifold P

with boundary.

5. Proof of Theorem 3.1

5.1. P is properly immersed. Let us define the following function:

(5.1) F (r) :=

∫ r

0

w(t)dt

Observe that F is injective, because F ′(r) = w(r) > 0 ∀r > 0, and F (r) → ∞
when r → ∞. Applying Theorem 2.10 and Proposition 2.14, we obtain, for all
x ∈ P , and given X ∈ TxP ,

(5.2)
Hess Px F (r)(X,X) ≥ w′(r(x))‖X‖2 + w(r(x))〈BP

x (X,X),∇Nr〉
≥ w′(r(x))‖X‖2 − w(r(x))‖BP

x ‖ ‖X‖2

By hypotesis there exist a geodesic ball BP
r1(x0) in P , with r1 ≥ R0, such that

for any x ∈ P \ BP
r1(x0), ‖BP

x ‖ ≤ cηw(ρ
P (x)). On the other hand, as ηw(r) is
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non-increasing and r(x) ≤ ρP (x) because ϕ is isometric, we have cηw(ρ
P (x)) ≤

cηw(r(x)), so if x ∈ P \BP
r1 :

(5.3)
Hess Px F (r)(X,X) ≥ w′(r(x))‖X‖2 − w(r)cηw(ρ

P (x)) ‖X‖2

≥ w′(r(x))‖X‖2 (1− c) ≥ d (1− c) > 0

The above result implies that there exists r1 ≥ R0 such that F ◦ r is a strictly
convex function outside the geodesic ball in P centered at x0, B

P
r1(x0). And hence,

as r(x) ≤ ρP (x) for all x ∈ P , (and therefore BP
r1(x0) ⊆ Dr1), F ◦ r is a strictly

convex function outside the extrinsic disc Dr1 .
Let σ : [0, ρP (x)] → Pm be a minimizying geodesic from x0 to x.
If we denote as f = F ◦ r, let us define h : R → R as

h(s) = F (r(σ(s))) = f(σ(s))

Then,

(5.4) (f ◦ σ)′(s) = h′(s) = σ′(s)(f) = 〈∇P f(σ(s)), σ′(s)〉

and hence,

(5.5)
(f ◦ σ)′′(s) = h′′(s) = σ′(s)(〈∇P f(σ(s)), σ′(s)〉) = 〈∇P

σ′(s)∇P f(σ(s)), σ′(s)〉
+ 〈∇P f(σ(s)),∇P

σ′(s)σ
′(s)〉 = HessPσ(s)f(σ(s))(σ

′(s), σ′(s))

We have from (5.3) that (f ◦ σ)′′(τ) = Hess P f(σ(τ))(σ′, σ′) ≥ d(1 − c) for all

τ ≥ r1 . And for τ < r1, (f ◦ σ)′′(τ)) ≥ a = infx∈BP
r1
{Hess P f(x)(ν, ν), |ν| = 1}.

Then

(f ◦ σ)′(s) = (f ◦ σ)′(0) +
∫ s

0

(f ◦ σ)′′(τ)dτ

≥ (f ◦ σ)′(0) +
∫ r1

0

a dτ + d

∫ s

r1

(1− c)dτ(5.6)

≥ (f ◦ σ)′(0) + a r1 + d (1 − c)(s− r1)

On the other hand, as

(5.7) ∇P f(σ(s)) = ∇PF (r(σ(s))) = F ′(r(σ(s)))∇P r|σ(s) = w(r(σ(s)))∇P r|σ(s)
then

∇P f(σ(0)) = w(r(σ(0)))∇P r|σ(0) = w(0)∇P r|σ(0) = 0

so we have that

(5.8) (f ◦ σ)′(0) = 〈∇P f(σ(0)), σ′(0)〉 = 0

We also have that (f ◦ σ)(0) = F (r(σ(0))) = F (0) = 0. Hence, applying inequality
(5.6),

(5.9) f(σ(s)) = (f ◦ σ)(0) +
∫ s

0

(f ◦ σ)′(τ)dτ ≥ ar1s+ d(1− c){1
2
s2 − r1s}
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Therefore,

F (r(x)) = f(x) = f(σ(ρP (x))) =

∫ ρP (x)

0

(f ◦ σ)′(s) ds

≥
∫ ρP (x)

0

a r1 + d (1− c)(s− r1) ds(5.10)

= a r1ρ
P (x) + d (1− c)

(

ρP (x)2

2
− r1 ρ

P (x)

)

Hence, if ρP → ∞ then F (r(x)) → ∞ and then, as F is strictly increasing,
r → ∞ so the immersion is proper.

5.2. P has finite topology. We are going to see that ∇P r never vanishes on
P \Dr1 . To show this, we consider, as in the previous subsection, any geodesic in
P emanating from the pole o, σ(s). We have, using inequality (5.6), that

(5.11) 〈∇P f(σ(s)), σ′(s)〉 = (f ◦ σ)′(s) ≥ a r1 + d (1 − c)(s− r1) > 0 ∀s > r1

Hence, as ‖σ′(s)‖ = 1 ∀s, then ‖∇P f(σ(s))‖ > 0 for all s > r1. But we
have computed ∇P f(σ(s)) = w(r(σ(s)))∇P r|σ(s), so, as w(r) > 0 ∀r > 0, then

‖∇P r|σ(s)‖ > 0 ∀s > r1 and hence, ∇P r|σ(s) 6= 0 ∀s > r1. We have proved that

∇P r never vanishes on P \BP
r1 , so we have too that ∇P r never vanishes on P \Dr1 .

Let

φ : ∂Dr1 × [r1,+∞) → P \Dr1

be the integral flow of a vector field ∇P r
‖∇P r‖2 with

φ(p, r1) = p ∈ ∂Dr1

It is obvious that r(φ(p, t)) = t and

φ(·, t) : ∂Dr1 → ∂Dt

is a diffeomorphism. So P has finitely many ends, and each of its ends is of finite
topological type.

In fact, applying Theorem 3.1 in [20], we conclude that, as the extrinsic annuli
Ar1,R(o) = DR(o) \Dr1(o) contain no critical points of the extrinsic distance func-
tion r : P −→ R

+, then DR(o) is diffeomorphic to Dr1(o) for all R ≥ r1 and hence
the annuli Ar1,R(o) are diffeomorphic to ∂Dr1 × [r1, R].

Remark 5.1. To show Theorem 3.3, we argue as in the beginning of the proof of
Theorem 3.1: with the same function F (r) we obtain inequality (5.2). But now we
have as hypothesis that ‖BP

x ‖ ≤ c ηw(r(x)), so we don’t need that η′w(r) ≤ 0 to get
inequality (5.3).

6. Proof of Theorem 3.4

We are going to see first that P has finite topology. As P is properly immersed,
we shall apply Theorem 3.3 and for that, it must be checked that hypotheses in that
theorem are acomplished. First, we have hypothesis (1) in Theorem 3.3 because
N = Mn

w. On the other hand, as w′(r) ≥ d > 0∀r > 0 and, for some R0, we have

that ‖BP
x ‖ ≤ ǫ(r(x))

(w′(r(x)))2 ηw(r(x)) ∀x ∈ P −DR0 where ǫ is a positive function such
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that ǫ(r) → 0 when r → ∞, hence 0 ≤ limr→∞
ǫ(r)

(w′(r))2 ≤ limr→∞
ǫ(r)
d2 = 0. There-

fore, for some constant c < 1, there exist R0 such that ‖BP
x ‖ ≤ cηw(r(x)) ∀x ∈

P −DR0 . Therefore, as ϕ : P −→ Mn
w is a proper immersion, we have by Theorem

3.3 that P has finite topological type and thus P has finitely many ends, each of
finite topological type. Hence we have, in an analogous way than in [1], and for
r1 ≥ R0 as in Section 5:

(6.1) P −Dr1 = ∪E(P )
k=1 Vk

where Vk are disjoint, smooth domains in P . Along the rest of the proof, we will

work on each end Vk separately. Let V denote one element of the family {Vk}E(P )
k=1 ,

and, given a fixed radius t > r1, let ∂V (t) denote the set ∂V (t) = V ∩∂Dt = V ∩Sw
t ,

where Sw
t is the geodesic t-sphere in Mn

w. This set is a hypersurface in Pm, with

normal vector ∇P r
‖∇P r‖ , and we are going to estimate its sectional curvatures when

t → ∞.
Suppose that ei, ej are two orthonormal vectors of Tp∂V (t) on the point p ∈

∂V (t). Then the sectional curvature of the plane expanded by ei, ej is, using Gauss
formula:

(6.2)

K∂V (t)(ei, ej) = KP (ei, ej) + 〈B∂V −P (ei, ei), B
∂V −P (ej , ej)〉

− ‖B∂V −P (ei, ej)‖2 = KN(ei, ej) + 〈B∂V −P (ei, ei), B
∂V −P (ej , ej)〉

− ‖B∂V −P (ei, ej)‖2 + 〈BP (ei, ei), B
P (ej , ej)〉 − ‖BP (ei, ej)‖2

≥ KN(ei, ej) + 〈B∂V −P (ei, ei), B
∂V −P (ej , ej)〉

− ‖B∂V −P (ei, ej)‖2 − 2‖BP‖2

where B∂V −P is the second fundamental form of ∂V (t) in P . But this second
fundamental form is for two vector fields X,Y in T∂V (t):

(6.3)

B∂V −P (X,Y ) = 〈∇P
XY,

∇P r

||∇P r|| 〉
∇P r

||∇P r|| = 〈∇P
XY,∇P r〉 ∇P r

||∇P r||2

= X(〈Y,∇P r〉) ∇P r

||∇P r||2 − 〈Y,∇P
X∇P r〉 ∇P r

||∇P r||2

= −Hess P r(X,Y )
∇P r

||∇P r||2

Then, since, for all X,Y ∈ TpM
n
w

(6.4) HessM
n
wr(X,Y ) = ηw(r)〈X,Y 〉 − 〈X,∇Mn

wr〉〈Y,∇Mn
wr〉

we have, (using the fact that ei are tangent to the fiber Sw
t , and Proposition 2.6),

that

(6.5) KMn
w
(ei, ej) = K(t) =

1

w2(t)
− η2w(t)

so for any p ∈ ∂V (t) such that t = r(p) is sufficiently large:
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(6.6)

K∂V (t)(ei, ej) ≥KMn
w
(ei, ej) +

Hess Pp r(ei, ei)Hess
P
p r(ej , ej)

||∇P r||2

− Hess P
p r(ei, ej)

2

||∇P r||2 − 2‖BP‖2

≥ K(t) +

(

ηw(t)− ‖BP ‖
)2 − ‖BP ‖2

||∇P r||2 − 2‖BP ‖2

≥ η2w(t)

(

1− 2
‖BP ‖
ηw(t)

− 2

(‖BP ‖
ηw(t)

)2

+
K(t)

η2w(t)

)

≥ η2w(t)

(

1− 4
‖BP‖
ηw(t)

+
K(t)

η2w(t)

)

= η2w(t)

(

1 +
K(t)

η2w(t)

)



1− 4

‖BP ‖
ηw(t)

1 + K(t)
η2
w(t)





≥ 1

w2(t)

(

1− 4‖BP‖w′(t)w(t)
)

≥ 1

w2(t)
(1− 4ǫ(t))

where we recall that, by hypothesis, ‖BP ‖ ≤ ǫ(t)
(w′(t))2 ηw(t) for all t = r(x) > R0,

and ǫ is a positive function such that ǫ(r) → 0 when r → ∞.
If we denote as δ(t) = 1

w2(t) (1− 4ǫ(t)) we have for each t sufficiently large that

K∂V (t)(ei, ej) ≥ δ(t) holds everywhere on ∂V (t) and δ(t) is a positive constant.
Then, the Ricci curvature of ∂V (t) is bounded from below, for these sufficiently
large radius t as

Ricc∂V (t)(ξ, ξ) ≥ δ(t)(m− 1)‖ξ‖2 > 0 ∀ξ ∈ T∂V (t)

so, applying Myers’ Theorem ∂V (t) is compact and has diameter d(∂V (t)) ≤ π√
δ(t)

(see [30]). Applying on the other hand Bishop’s Theorem, (see Theorem 6 in [2]),
we obtain:

(6.7) Vol(∂V (t)) ≤ Vol(S0,m−1(1))
√

δ(t)m−1

and hence

(6.8)

Vol(∂V (t))

Vol(Sw
t )

≤ 1

w(t)m−1
√

δ(t)m−1

=
1

(1− 4ǫ(t))
(m−1)/2

Therefore, since for t large enough V ol(∂Dt(o)) ≤ ∑E(P )
i=1 V ol(∂Vi(t)) where Vi

denotes each end of P then:

(6.9)
Vol(∂Dt(o))

Vol(Sw
t )

≤ E(P )

(1− 4ǫ(t))
(m−1)/2
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7. Proof of Theorem 3.5

To show assertion (1) we apply Theorem 2.15 and inequality (3.1) in Theorem
3.4 to obtain, for r sufficiently large, (we suppose that ϕ−1(ow) 6= ∅, and take
o ∈ ϕ−1(ow) in order to have that Vol(Dr(o)) ≥ Vol(Bw

r ) for all r > 0) :

(7.1)

1 ≤Vol(Dr(o))

Vol(Bw
r )

≤ Vol(∂Dr(o))

Vol(Sw
r )

≤ E(P )

(1− 4ǫ(r))(m−1)/2

Moreover, we know (again using Theorem 2.15) that the volume growth function
is non-decreasing.

Therefore, taking limits in (7.1) when r goes to ∞, we obtain:

(7.2) 1 ≤ lim
r→∞

Vol(Dr(o))

Vol(Bw
r )

= Supr>0

Vol(Dr(o))

Vol(Bw
r )

≤ E(P )

Now, to prove assertion (2), we have, if P has one end, that

(7.3) 1 ≤ Supr>0

Vol(Dr(o))

Vol(Bw
r )

≤ 1

Hence, as f(r) = Vol(Dr(o))
Vol(Bw

r ) is non-decreasing, then f(r) = 1 ∀r > 0, so we have

equality in inequality (2.6) for all r > 0, and P is a minimal cone, (see [17] for
details).

8. Proof of Theorems 1.1 and 1.2 and the Corollaries

8.1. Proof of Theorem 1.1. We are going to apply Theorem 3.5. To do that, we
must to check hypotheses (1) and (2) in Theorem 3.4.

We have, in this case, that the ambient manifold is the hyperbolic space H
n(b).

Therefore all of its points are poles, so there exist at least o ∈ H
n(b) such that

ϕ−1(o) 6= ∅. As it is known, Hyperbolic space H
n(b) is a model space with w(r) =

wb(r) =
1√
−b

sinh
√
−br so w′

b(r) = cosh
√
−br ≥ 1 ∀r > 0.

Therefore, hypothesis (2) in Theorem 3.4 is fulfilled in this context. Concerning
hypothesis (1), it is straightforward that

(8.1)

‖BP
x ‖ ≤ δ(r(x))

e2
√
−b r(x)

≤ ǫ(r)
√
−b

sinh
√
−br cosh

√
−br

=
ǫ(r)

cosh2
√
−br

√
−b coth

√
−br =

ǫ(r)

(w′
b(r))

2
ηwb

(r)

where ǫ(r) = δ(r(x))

4
√
−b

goes to 0 when r goes to ∞.

Hence, also hypothesis (1) in Theorem 3.4 is fulfilled so, applying inequality (3.2)
in Theorem 3.5, (because P is minimal)

(8.2) 1 ≤ lim
r→∞

V ol(Dr)

V ol(Bwb
r )

≤ E(P )
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Finally, when P has one end, then limr→∞
V ol(Dr)

V ol(B
wb
r )

= 1. Since P is minimal,

by Theorem 2.15, f(r) = V ol(Dr)

V ol(B
wb
r )

is a monotone non-decreasing function, and, on

the other hand, f(r) ≥ 1 ∀r > 0 because inequality (2.7). Hence f(r) = 1 ∀r > 0,
so f ′(r) = 0 ∀r > 0. This last equality implies the equality in inequality (2.6) for
all r > 0, (see [17] or [18] for details), and we apply equality assertion in Theorem
2.15 to conclude that P is totally geodesic in H

n(b).

8.2. Proof of Theorem 1.2. In this case, we apply Theorem 3.5, being Mn
w = R

n,
i.e., being w(r) = w0(r) = r, (b = 0). Hence, w′

0(r) = 1 > 0 ∀r > 0 and η0(r) =
1
r

and hypotheses (1) and (2) in this theorem are trivially satisfied.
When P has only one end we conclude as before that the volume growth function

is constant so we conclude equality in (2.6) for all radius r > 0. Hence P is totally
geodesic in R

n applying the corresponding equality assertion in Theorem 2.15.

8.3. Proof of Corollary 4.1. We are considering now a complete and proper
immersion in H

n(b), as in Theorem 1.1, but P is not necessarily minimal. In this
setting hypotheses (1) and (2) in Theorem 3.4 are fulfilled (as we have checked in
the proof above, without using minimality). Hence taking limits in (3.1) when we
consider an increasing sequence {ti}∞i=1 such that ti → ∞ when i → ∞, we have:

lim inf
i→∞

Vol(∂Dti)

Vol(Sb,m−1
ti )

≤ E(P )

8.4. Proof of Corollary 4.2. Hypotheses (1) and (2) in Theorem 3.4 are trivially
satisfied and we argue as in the proof of Corollary 4.1 to obtain the result.

8.5. Proof of Corollary 4.3. We apply Theorem 3.1. Our ambient manifold
is IKn(b), (b ≤ 0), so hypothesis (1) about the bounds for the radial sectional
curvature holds, and as w(r) = wb(r) hence w′

b(r) ≥ 1 > 0 ∀r > 0 and η′wb
(r) ≤

0 ∀r > 0. This means that hypothesis (3) is fulfilled. Hypothesis (2) in Theorem
3.1 holds because

‖BP
x ‖ ≤ c hb(ρ

P (x))

where ρP (x) is the (intrinsic) distance to a fixed xo ∈ ϕ−1(o) and c is a positive
constant such that c < 1.

8.6. Proof of Corollary 4.4. We apply again Theorem 3.1, having into account
that the ambient space is the Cartan-Hadamard manifold H

n(b)×R
l and the model

space used to compare is Rm, with w(r) = w0(r) = r.
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