
A STUDY ON MOODLE’S PERFORMACE

José Coelho, Vitor Rocio, Universidade Aberta, Portugal

1. Introduction

Learning Management Systems (LMS) are essential tools to the modern teaching institutions. Moodle1 is an
open source LMS, widely used by open and distance teaching universities, as well as support to face to face

courses. There are almost 40,000 registered Moodle sites, all over the world. Moodle can be installed in a wide
range of environments: operating systems (Linux, Windows), supporting databases (MySQL, PostgreSQL, ...),

and hardware.

This paper addresses the issue of Moodle’s performance within different environments, and under different
loads. What is worth changing and what isn’t to improve performance? When load increases, what should be

changed in order to obtain the largest performance gain?

To answer these questions, it is important to subject the application, in a test environment, to the real conditions

of use. In order to do it, we use historical data on the use of Moodle in Universidade Aberta (UAb). Several
Moodle instances will be subject to different load levels and the resulting performance will be measured. It is

difficult to estimate instantaneous load, even in a working site, where users’ habits are known. The number of
users is an easier question to address and may be estimated by the number of teachers and students that will be

using the LMS. So, in order to estimate future load, we present a conversion method according to the present
level of use in this university.

The rest of the text is organized as follows: in section 2 we explain our option on the performance indicator, and

enumerate a number of factors that it depends on. In section 3 we propose a test environment and select a
subset of factors to study, and in section 4 we address the question of the estimation of server load. In section 5

we describe the tests done and results obtained, and we finish in section 6 with some conclusions and future
work. The used SQL queries are presented in annex.

2. Performance

As performance indicator, we use the mean loading time of a web page in the site, including all images and
embedded objects. We chose this indicator mainly because it’s directly related to the user’s experience when

navigating the site. If loading times are long, there is a degradation of users’ experiences, and in peak times,
people typically tend to blame the software.

On the other hand, if pages are consistently quick to load, users acquire the necessary confidence to use the

application. This confidence is essential for users to become active, to routinely use the LMS, and contributing to
the success of online teaching and learning.

The LMS server must therefore have a good performance at all times (reliability and availability [1]), so we need

to know what factors performance depends on. Our experience points to the following ones:

• Downloaded page size, with embedded images and objects;

• Available bandwidth;

• Server load, at the moment the page is requested;

• Available memory;

• Processing capacity (CPU);

• Operating system and respective version;

1 http://moodle.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade Aberta

https://core.ac.uk/display/61419962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• Moodle version;

• Database management system and respective version;

• Web server and respective version;

• Database size;

• Server architecture.

These factors, among others, influence the application’s performance, in spite of belonging to different
categories. Some can be estimated for a specific situation, others are decision variables. In the next section, we

will describe a test environment that can be used and/or adapted to each institution’s reality.

3. Test environment

The test we propose consists on the measurement of mean response time of a set of selected pages, during 5

minutes. In order to emulate production conditions, the number of users and average time between mouse clicks
varies, so that we can measure performance for different use loads. The test is repeated for a set of instances

with different installation options, in order to obtain the impact of those options in the application’s final
performance.

Download size is a factor that users are easily aware of: large files aren’t generally embedded in the page, and

the browser usually shows download progress. So, pages without large embedded files are expected to load
quickly. In this test, a set of different Moodle pages is considered, in order to cover a normal use. Large file

access is not covered, since users will understand the delay in those cases. Pages of the following types: main

page; login page; password recovery; course’s main page; forum view; topic view; glossary; resource files;
database activity. Pages are randomly chosen during the test, with equal probability.

Bandwidth can limit server access, once load and page size surpasses the allowed bandwidth. If the limit is not

achieved, it doesn’t affect the test, so we will assume we have a large enough bandwidth and will not consider it.

The key factor is server load. Load can be measured by number of pages requested per minute. A Moodle user
doesn’t know what load the system has, and even for an administrator, it may be difficult to predict behaviour in

future peak uses, unless he performs tests under extreme conditions. Since this parameter is determinant in
performance, we propose in the next section, a method to estimate load through available historical use data.

The other factors are installation options. There are many, differing in cost and complexity. A thorough evaluation

of these options is not the goal of this paper, we intend only to give some indications on the most relevant factors
when choosing an architecture (software and hardware) to run Moodle.

Studied factors are as follows:

• Database dimension: small (3 MB) vs. large (400 MB)

• Moodle version: 1.7 vs. 1.8 vs. 1.9

• DBMS: MySQL vs. PostgreSQL2

• Server architecture: single server vs. 2 servers (front end/back end)

• Operating system/hardware: Windows-based amateur PC3; Linux-based professional server4

The questions we intend to answer are: How does performance degrade with the increase of the database?
What is the performance difference among different versions? Is there a performance difference in DBMS? How

much and in what load conditions? What is the gain by having two servers instead of one? What is the
performance boost when using a professional server architecture when compared to a low end system?

In section 5 we describe a series of tests that start to answer these questions. To perform these tests, we need

to know the real load level that the system is subject to, and this is the purpose of the following section.

2 http://www.mysql.com; http://www.postgresql.org
3 Dell PowerEdge 750, Pentium 4 2.8GHz, 512MB RAM, Windows Server 2003
4 Acer Altos R510Mk2, Xeon 4x3.0GHz, 4GB RAM, Fedora 8

4. Test load

Server load can be measured at each moment by counting the number of page views per minute, that naturally

varies through the day. Our goal is to estimate its peak value, since it corresponds to the moment when the
server is subject to a larger load, and more users are connected.

There are two ways to obtain statistical information on the server load: by analysing the web server’s log files, or

by querying Moodle’s mdl_log database table, that registers all events in the LMS. These two sources of
information dot not coincide, one complements the other. For instance, the number of page views in October

2007 in UAb is 2,201,980, according to the database, and 4,874,261 according to the log files. In what value

should we believe? The answer becomes clear when we analyse the URLs of the top pages accessed: log files
account for auxiliary pages (stylesheets, scripts, ...) while the Moodle database doesn’t. The information in the

database is naturally more reliable, since the application details are taken into account. The web server is blind
with regard to the application it is running. Therefore, we choose to use the database info whenever possible and

use the log files info as complementary data. All database queries are shown in the annex, so that readers can
repeat the analysis in this paper.

There is a large difference between a casual user that registers in Moodle out of curiosity, but rarely uses it

afterwards, and a user that connects to the platform in a daily basis. In order to determine what kind of user
explains the number of page views, we considered: the number of page views per month, from October 2005 to

December 2007; the number of users that accessed the platform at least once in each month; and the number of
active users. Active users are defined as those who access the platform at least on 15 different days in each

month. As an alternative we considered also those users who access the platform at least on 10 and 5 different
days in each month. Figure 1 shows a scatter plot with linear adjustments, for this data.

Figure 1 – Active users vs. page views

As we can see, active users that accessed at least 15 days, are the ones that best explain page views, even if
the adjustment is not perfect, probably being very dependent on the online methodology used in the institution. In

UAb, adjustment for this period is Page views per month = active users * 1758. We will adopt a pessimistic
approach for this and upcoming expressions, so we’ll round constants to values that represent a worse scenario:
Page views per month = active users * 2000.

After estimating page views per month, we’ll need to estimate the maximum number of page views per day, and

we can do better than to simply divide by the number of days in the month, since server load varies along the
week. Table 1 shows the total number of page views per week day in UAb’s Moodle, since it started being used,

and their respective percentages. As we can see, Monday is the most loaded day, about 18% of the whole 7-day
week, being 1.24 times more than the average. This factor can be used to correct the number of page views per

day, when converting from the number of page views per month: we multiply the number of page views per
month by 1.24/30 = 4.1%, which, when applying our pessimistic criteria, becomes 5%.

Table 1 - Total number of page views per week day

Week day Page views %

Sunday 1023126 10,6%

Monday 1719622 17,8%

Tuesday 1624534 16,8%

Wednesday 1549641 16,0%

Thursday 1515350 15,7%

Friday 1331909 13,8%

Saturday 908703 9,4%

To find out the peak load, we need to study traffic distribution throughout the day, in order to determine the most

loaded hour. Figure 2 shows traffic distribution throughout the 24 hours of the day.

Figure 2 – Traffic distribution throughout the 24h

As we can see, the peak is achieved at 22:00, with 8% of all pages viewed in a day. Again, applying a

pessimistic factor, we round this value to 10%.

Thus, the estimated value of page views per hour during peak times is equal to page views per day divided by 10.
Page views per month = active users * 2000
Page views per day = page views per month / 20
Page views per hour = page views per day / 10
Page views per minute = page views per hour / 60

5. Tests and results

The Moodle instances considered are intented to cover the vectors discussed in section 2. In table 2 we show

the instances that were tested.

Table 2 – Tested Moodle instances

Instance

ID

Moodle

version

Database

dimension

DBMS Servers OS/Hardware

UAb1 1.7 3 MB MySQL 1 Linux/Professional

UAb2 1.7 400 MB MySQL 1 Linux/Professional

UAb3 1.8 3 MB MySQL 1 Linux/Professional

UAb4 1.9 3 MB MySQL 1 Linux/Professional

UAb5 1.9 3 MB MySQL 2 Linux/Professional

UAb6 1.9 3 MB PostgreSQL 1 Linux/Professional

UAb7 1.9 3 MB MySQL 1 Windows/Amateur

UAb8 1.7 3 MB MySQL 2 Linux/Professional

UAb9 1.9 400 MB MySQL 1 Linux/Professional

UAb10 1.9 400 MB MySQL 2 Linux/Professional

Each Moodle instance is submitted to different loads during 5 minutes, using Webstress Tool5. All machines

involved in the test are connected to a 1 Gb/s network, so we can disregard this factor.

The number of users and average time between mouse clicks must be specified for each configuration. We see
that we obtain different performance values for two configurations with the same number of page views per

minute, but with different number of connected users or time between mouse clicks. As a consequence, it is
essential to estimate the number of users during the test period in order to approximate the test to reality.

A query to the database allows us to obtain the number of users in 5-minute intervals, and the corresponding

average number of page views. In this way, we can obtain the average of page views per user during the test
interval, and also the average time between mouse clicks. While the number of users varies widely, from 1 to

120 users in 5 minutes, the time between mouse clicks is rather stable, with an average of 79 seconds. With a

pessimistic perspective, we will round this number to 60 seconds, and vary the number of users in order to vary
the use load. The tested loads are described in table 3.

Table 3 – Tested loads

Number of users / click delay Load pv/minute pv/hour pv/day pv/month active users/month

12 / 60 lowest 12 720 7200 144000 72

30 / 60 low 30 1800 18000 360000 180

60 / 60 medium 60 3600 36000 720000 360

120 / 60 high 120 7200 72000 1440000 720

300 / 60 peak 300 18000 180000 3600000 1800

The performance results obtained, measured in miliseconds, are presented in table 4.

Table 4 – Average response times

Instance lowest low medium high peak

UAb1 610 746 1055 2460 26640

UAb2 923 1029 1771 14411 42414

UAb3 765 1011 1549 5487 33126

UAb4 688 837 1066 3924 30756

UAb5 647 844 1306 3661 30003

UAb6 708 1024 1405 5880 34739

UAb7 1656 5271 26986 98910 -

UAb8 1037 1302 2259 6982 35918

UAb9 920 1233 2131 14373 43084

UAb10 1062 1305 2214 12473 39589

To better analyse the differences of performace, table 5 shows increases in response times between
configuration pairs, grouped by each studied factor.

Table 5 – Comparison of the performance of instances

DB Dimension (3MB->400MB) none low medium high peak

UAb1 ->UAb2, Moodle 1.7 51% 38% 68% 486% 59%

UAb4 -> UAb9, Moodle 1.9 34% 47% 100% 266% 40%

UAb5 - >UAb10, Moodle 1.9, 2 servers 64% 55% 69% 241% 32%

5 http://www.paessler.com

Moodle version

UAb1 -> UAb3 (1.7->1.8) 25% 35% 47% 123% 24%

UAb3 -> UAb4 (1.8->1.9) -10% -17% -31% -28% -7%

UAb1 -> UAb4 (1.7->1.9) 13% 12% 1% 60% 15%

UAb2 -> UAb9, DB 400MB (1.7->1.9) 0% 20% 20% 0% 2%

UAb8 -> UAb10, DB 400MB, 2 servers (1.7->1.9) 2% 0% -2% 79% 10%

DBMS (MySQL -> PostgreSQL)

UAb4 -> UAb6 3% 22% 32% 50% 13%

Architecture (1 server -> 2 servers)

UAb4 -> UAb5, Moodle 1.9 -6% 1% 22% -7% -2%

UAb2 -> UAb8, Moodle 1.7, DB 400MB 12% 26% 28% -52% -15%

UAb9 -> UAb10, Moodle 1.9, DB 400MB 16% 6% 4% -13% -8%

Hardware/OS (professional -> amateur)

Uab4 -> Uab7 141% 530% 2431% 2421%

We can observe a considerable increase in average response time when the database size increases. The

difference is larger in high load, where response time is still acceptable for small databases, but prohibitive for
large databases. The tests clearly reveal that version 1.8 is slower than 1.7 or 1.9, all other factors being the

same. We can also see that PostgreSQL is slower to respond than MySQL. The increase in response time is
larger for heavier loads. The tests on the architectural differences seem to indicate that 2 servers can improve

response time for higher loads, but communication overhead is a factor in lower loads. Finally, and not
surprisingly, the use of high-end hardware is the factor that most dramatically improves performace.

6. Conclusions and future work

In this paper, we proposed a method for testing the impact of installation options in the performance of Moodle.
Also, a method for estimating the peak load was proposed, that is adaptable to each institution. Finally, we study

the impact on performance of the database dimension, Moodle version, database type, architecture and
hardware/OS. We concluded that high-end hardware and small database size are the most important factors that

contribute to performance. Since data tends to increase, systems administrators are advised to consider
periodical archival of old data and database optimization. As future work we point in several directions: test

clusters with more servers; study the database growth with site usage; consider more database types, more
operating systems, more web server types.

References

1. TANENBAUM, A.; VAN STEEN, M. (2007). Distributed Operating Systems (2nd Edition). Prentice-Hall.

Annex - Queries

PageViews / Hour
SELECT hour(FROM_UNIXTIME(time)) AS HORA, Count(*) AS "Paginas Vistas" FROM
mdl_log GROUP BY HORA ORDER BY HORA;

Page Views / DayOfWeek
SELECT dayofweek(FROM_UNIXTIME(time)) AS dayofweek, Count(*) AS "Paginas
Vistas" FROM mdl_log GROUP BY dayofweek ORDER BY dayofweek;

PageViews / Month
SELECT month(FROM_UNIXTIME(time)) AS mes, year(FROM_UNIXTIME(time)) as Ano,
Count(*) AS "Paginas Vistas" FROM mdl_log GROUP BY ano,mes ORDER BY ano,mes;

Users / Month
SELECT Mes, Ano, Count(*) As "Utilizadores" FROM (SELECT userid, month(
FROM_UNIXTIME(time)) AS Mes, year(FROM_UNIXTIME(time)) As Ano FROM mdl_log
GROUP BY userid, Mes, Ano) As USR GROUP BY ano, mes ORDER BY ano, mes;

ActiveUsers15 / Month

SELECT Mes, Ano, Count(*) As "Utilizadores" FROM (SELECT userid, Mes, Ano, Count(*)
As "Dias" FROM (SELECT userid, day(FROM_UNIXTIME(time)) AS Dia, month(
FROM_UNIXTIME(time)) AS Mes, year(FROM_UNIXTIME(time)) As Ano FROM mdl_log
GROUP BY userid, Dia, Mes, Ano) As USR GROUP BY userid, ano, mes HAVING Dias>14) As
USR2 GROUP BY ano, mes ORDER BY ano, mes;

Average PageViews by number
of users in 5 minutes of the last

week

SELECT Count(*) As 5Minutos, AVG(PaginasVistas) As AvPV, Utilizadores FROM (SELECT
SUM(pv) As PaginasVistas, Count(*) as Utilizadores FROM (SELECT Count(*) As pv,
userid, minute(FROM_UNIXTIME(time)) DIV 5 AS Minuto, hour(FROM_UNIXTIME(time)
) AS hora, day(FROM_UNIXTIME(time)) AS Dia, month(FROM_UNIXTIME(time)) AS
Mes, year(FROM_UNIXTIME(time)) As Ano FROM mdl_log WHERE time > UNIX_TIMESTAMP(
SUBTIME(Now() , '7 0:0:0')) GROUP BY userid, minuto, hora, dia, Mes, Ano) As USR
GROUP BY minuto, hora, dia, Mes, Ano) As USR2 GROUP BY Utilizadores ORDER BY
Utilizadores;

