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E-mail: serranho@math.uni-goettingen.de

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Aberto da Universidade Aberta

https://core.ac.uk/display/61419927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A HYBRID METHOD FOR INVERSE SCATTERING FOR SHAPE AND IMPEDANCE 2

Abstract. We present a hybrid method to numerically solve the inverse scattering problem
for shape and impedance, given the far-field pattern for one incident direction. This method
combines ideas of both iterative and decomposition methods, inheriting advantages of each of
them, such as getting good reconstructions and not needing aforward solver at each step. An
optimization problem is presented as the theoretic background of the method and numerical
results show its feasibility.

AMS classification scheme numbers: 81Uxx

1. Introduction

Nondestructive obstacle detecting through low frequency wave propagation motivates a
number of challenging mathematical and numerical problemswith several applications such
as radar and sonar or medical imaging. Among these problems,we are interested in numerical
methods for reconstructing unaccessible impenetrable scattering obstacles and its unknown
impedance value at the boundary within a homogeneous background from the knowledge
of the incident field and the scattered field at large distances (far field pattern). We confine
ourselves to the case of time harmonic acoustic waves.

Given an open bounded obstacleD ⊂ R
2 with an unbounded and connected complement

and an incident fieldui, the direct scattering problem consists of finding the total
field u = ui + us as the sum of the known incident fieldui and the scattered fieldus such
that both the Helmholtz equation

∆u + k2u = 0 in R
2\D (1)

with wave numberk > 0 and the impedance boundary condition
∂u

∂ν
+ iλu = 0 onΓ := ∂D (2)

are satisfied, whereν stands for the exterior normal vector toΓ and the continuous real–
valued functionλ ≥ 0 is the impedance and is considered to be known in the formulation
of the direct problem. As particular cases of (2) one has the Neumann boundary condition
which corresponds toλ = 0 and the Dirichlet boundary condition which can be interpreted
asλ → ∞. The obstacle is then called sound-hard or sound-soft, respectively.

To ensure well-posedness, at infinity one needs to impose theSommerfeld radiation
condition

lim
r→∞

√
r

(

∂us

∂r
− ikus

)

= 0, r = |x| (3)

with the limit satisfied uniformly in all directions. Then itis known (e.g. [4, Ch.2]) that the
solutionus has an asymptotic behaviour of the form

us(x) =
eik|x|

√

|x|

(

u∞(x̂) + O

(

1

|x|

))

, |x| → ∞,

wherex̂ = x/|x|. The functionu∞ defined on the unit circleΩ is denoted as the far field
pattern ofus. By Rellich’s lemma the scattered fieldus is completely determined by its far
field pattern.
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The inverse problem that we are interested in is to determineboth the position and shape
of the obstacleD as well as the impedanceλ, given the far-field patternu∞ for only one
incident wave. However, most of the methods developed to solve the inverse scattering
problem only recover the position and the shape of the obstacle D. In general, to achieve
that, iterative and decomposition methods (e.g. [19] and [9], respectively) requirea priori
knowledge of the impedanceλ while sampling methods (e.g. [3]) do not, though the latter
requires much more data then just the far field pattern for oneincident wave. Only recently
methods to recover both the obstacleD and the impedanceλ were developed, as the iterative
method [14] and the method to recover the impedance in [1], applied after the obstacle was
reconstruct by some sampling method.

In order to present the hybrid method proposed in this paper we will now focus on
regularized iterative methods and decomposition methods.For a fixed incident fieldui, the
solution to the direct scattering problem defines the operator

F : (γ, ζ) 7→ u∞ (4)

that maps the pair(γ, ζ) onto the far field corresponding to scattering by the obstacle with
boundaryγ and impedanceζ . In this sense, given the far field patternu∞, the inverse problem
is equivalent to finding the solution to the nonlinear and ill-posed operator equation

F (Γ, λ) = u∞ (5)

for both the unknown boundaryΓ and the unknown impedanceλ. For the case whereλ is
known, in particular for sound-soft or sound-hard obstacles, regularized Newton iterations
applied to (5) have been studied and used for over two decades(see [7, 18, 19]). Their idea
is to linearize (5), based on the Fréchet differentiability of the operatorF (see [5, 17]) and
iterate this procedure. Due to the ill-posedness ofF regularization is required in each iteration
step. The main drawback of this method is that it requires thesolution to the direct scattering
problem at each iteration step and a reasonable initial guess to start the iterations.

On the other hand, decomposition methods take care of the ill-posedness and the
nonlinearity of the inverse scattering problem separately. However, to our knowledge,
methods of this class were only applied to recover the obstacleD given a known impedanceλ.
Their idea is the following: In a first step the functionu is reconstructed from the given far
field patternu∞, for example, based on an analytic continuation principle,by representing
the scattered fieldus as a layer potential on an approximate boundaryγ, usually considered
to be insideD. The requirement that the far field of the potential coincides with the given
far field u∞ leads to an ill-posed linear integral equation that can be approximately solved
via Tikhonov regularization. Then in a second step one triesto find the boundaryΓ as the
location where the boundary condition (2) is satisfied in a least squares sense. Though this
method does not need the solution to the forward problem, thereconstructions obtained are not
as accurate as those obtained by Newton iterations. There isalso a gap between the theoretical
background and the numerical implementation of the method.

In this work the idea is to develop a method combining ideas ofboth this two methods
that not only recovers the obstacleD but also the unknown impedanceλ, requiring just one
incident wave as in [14].
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In [13] it was suggested combining ideas of both of these two reconstruction methods
in order to create an iterative method using as background idea analytic continuation of the
total field. In this sense this method is called hybrid. The same idea was applied to an
inverse boundary value problem in potential theory [2] and to inverse scattering from sound-
soft cracks [15] and from sound-hard obstacles [16]. This new method does not need a forward
solver and the accuracy of the reconstructions is as satisfactory as for the Newton iterations,
provided the initial guess is close enough to the exact boundary. In the present paper we
describe an extension of the hybrid method to inverse scattering for shape and impedance.

This paper is organized as follows. In section 2 the direct scattering problem is solved
by an integral equation method, in order to introduce layer potentials and other important
concepts that we will need throughout the paper. In section 3the operator G is introduced as
being the operator that for a givenC2–smooth fieldu maps a curveγ and a functionζ onto
the boundary condition with impedanceζ of that fieldu overγ. The Fréchet differentiability
of G is also settled. In section 4 the inverse scattering problemis posed in terms ofG and the
hybrid method is proposed to numerically solve it. In section 5 an optimization problem is
presented as the background for the method and finally, in section 6, the numerical procedure
is explained and some numerical reconstructions are presented to show the feasibility of the
method.

2. The Direct Problem

To introduce notations, we briefly discuss the solution to the direct scattering problem via
the combined single and double-layer potential approach. For details we refer, for example,
to [4, Ch.3]. Given the domainD with boundaryΓ of classC2 and the incident fieldui, we
want to find the uniquely determined scattered fieldus such that (1)–(3) are satisfied. By

Φ(x, y) =
i

4
H

(1)
0 (k|x − y|)

we denote the fundamental solution to the two-dimensional Helmholtz equation in terms of
the Hankel functionH(1)

0 of the first kind and order zero. After introducing the singleand
double-layer potential with densityϕ on a closedC2–curveγ by

(Sγϕ)(x) :=

∫

γ

Φ(x, y) ϕ(y) ds(y), x ∈ R
2, (6)

(Kγϕ)(x) :=

∫

γ

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ R

2, (7)

respectively, we representus as a combined single and double-layer potential, that is, inthe
form

us = (KΓ − iηSΓ)ϕ in R
2\D (8)

with some fixed coupling termη > 0. Sinceus given by (8) satisfies the Helmholtz equation
and the Sommerfeld radiation conditionϕ has to be determined such that the boundary
condition (2) is satisfied.
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By the jump relations, considering the combined layer potential (8) as defined inR2\Γ,
its trace onΓ is given by

us
± = ±ϕ

2
+ (KΓ − iηSΓ)ϕ onΓ,

where± stands for the limit when approachingΓ from outside and insideD, respectively.
The normal trace ofus has also a jump and is given by

∂us

∂ν
= ±iη

ϕ

2
+ (TΓ − iηK∗

Γ)ϕ onΓ

in terms ofK∗
Γ, which is the adjoint operator ofKΓ, and the hyper-singular operator

(Tγϕ)(x) :=
∂

∂ν(x)

∫

γ

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ γ. (9)

In order to satisfy the boundary condition (2), the densityϕ ∈ C1,α(Γ) has to be obtained as
solution to

BΓ,λ ϕ = −
(

∂ui

∂ν
+ iλui

)

onΓ (10)

where

Bγ,ζ = i (η + ζ)
I

2
+ Tγ + i

(

ζKγ − ηK∗
γ

)

+ ζ η Sγ (11)

is the exterior trace operatorBγ,ζ : C1,α(γ) → C0,α(γ) of the combined single and
double layer potential and maps densitiesϕ in the Hölder space of uniformly continuously
differentiable functions with exponentα > 0 into the space of Hölder continuous functions
in γ.

Equation (10) is uniquely solvable (cf. [4]) and an approximate solution can be obtained,
for example, by a collocation method as described in [12].

We note that via the asymptotics of the Hankel function the far field pattern of the
combined layer potential (8) is given by

u∞ = F∞,Γ ϕ onΩ

with F∞,γ := (K∞,γ − iηS∞,γ) given in terms of the far field operators

(S∞,γϕ)(x̂) =
eiπ/4

√
8πk

∫

γ

e−ikx̂·y ϕ(y) ds(y), x̂ ∈ Ω (12)

(K∞,γϕ)(x̂) =
eiπ/4

√
8πk

∫

γ

∂e−ikx̂·y

∂ν(y)
ϕ(y) ds(y), x̂ ∈ Ω. (13)

3. Differentiability with respect to the Boundary and the Impedance

For the further analysis, a parameterization of the boundary curves is required. We assume
that

γ = {z(s) : s ∈ [0, 2π]},
with a 2π periodicC2–smooth functionz : R → R

2 and counter-clockwise orientation such
that z|[0,2π) is injective. Our hybrid method is based on the linearization of the operatorG
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that, given aC2-smooth fieldu defined in a neighbourhood ofγ, maps the pair(z, ζ), wherez
parametrizes the contourγ andζ is an impedance function defined onγ, onto the impedance
boundary condition trace ofu onγ, that is,

G : (z, ζ) 7→ (ν · gradu + i ζ u) |γ
or in a slight abuse of notation

G : (z, ζ) 7→ ν · (gradu ◦ z) + i(ζ u) ◦ z in [0, 2π]. (14)

In this section our task is to proof that the operatorG is Fréchet differentiable with respect
to both the parameterization variablez and the impedance variableζ . This will be of major
importance for the presentation of the hybrid method in the next section. Clearly, the Fréchet
differentiability ofG is related with the smoothness of bothu andζ . Consideringu to beC2-
smooth and assumingζ to beC1-smooth thenG is Fréchet differentiable with respect to both
of this variables. Taking these assumptions our task is now just to characterize the Fréchet
derivativeG′.

Remark 1 Later on in sections 4 and 6 the operatorG will be applied to the total fieldu
and the impedanceλ defined as in the previous section. Therefore the assumptiononu holds
true in applications since the total fieldu is an analytic function in its domain of definition.
However, for the scattering problem the impedanceλ is usually just assumed to be continuous
on the boundaryΓ. Though one needs thatλ is C1-smooth for the following analysis, this
problem can be overcome by a restriction to star-shaped domains, as we will see further on.

To simplify this task we will split the operatorG in a sum of two operators

G(z, ζ) = G1(z) + iG2(z, ζ).

We define

G1 : z 7→ z′⊥

|z′| · (gradu ◦ z) in [0, 2π] (15)

wherez⊥ = (z2,−z1) and

G2 : (z, ζ) 7→ (ζu) ◦ z in [0, 2π]. (16)

We note that the differentiability ofG1 was already considered in [16]. We formulate the result
and revisit the proof after introducing some notation. We denote byτ the tangential vector to
the boundary in the counter-clockwise direction, byH the mean curvature and byhν , hτ the
normal and tangential components of the vectorh, respectively. We also note that

h′
τ := h′ · τ and h′

ν := h′ · ν,
and asG1 only depends onz we will denote for simplicityG′

1 := ∂G1/∂z.

Theorem 1 The operatorG1 : C2[0, 2π] → C[0, 2π] is Fréchet differentiable and its
derivative is given by

G′
1(z)h = − h′

ν

|z′|
∂u

∂τ
◦ z +

[

∂2u

∂τ∂ν
◦ z − H

∂u

∂τ
◦ z

]

hτ + hν
∂2u

∂ν2
◦ z (17)

in [0, 2π].



A HYBRID METHOD FOR INVERSE SCATTERING FOR SHAPE AND IMPEDANCE 7

Proof. Let h be sufficiently small to ensure that

γz+h = {z(s) + h(s) : s ∈ [0, 2π]}
describes a closed curve.

We decompose

G1(z + h) − G1(z) =
(z′⊥ + h′⊥

|z′ + h′| − z′⊥

|z′|
)

·
(

gradu ◦ (z + h)
)

(18)

+
z′⊥

|z′| ·
(

gradu ◦ (z + h) − gradu ◦ z
)

and treat both terms on the right hand side separately. UsingTaylor’s formula, we begin by
noting that

z′⊥ + h′⊥

|z′ + h′| − z′⊥

|z′| =
h′⊥

|z′| −
z′⊥(z′ · h′)

|z′|3 + O(|h′|2)

=
1

|z′|(h
′⊥ − h′

τν) + O(|h′|2)

sinceτ = z′/|z′|. Using

gradu ◦ (z + h) − grad u ◦ z = O(|h|)
we consequently have

(z′⊥ + h′⊥

|z′ + h′| − z′⊥

|z′|
)

·
(

grad u ◦ (z + h)
)

(19)

=
1

|z′|(h
′⊥ − h′

τ ν) · grad u ◦ z + O(|h′|2) + O(h′ · h).

We now perform a change of variables in a neighbourhood ofγ by

x(s, ε) = z(s) + εν(s), s ∈ [0, 2π], ε ∈ (−ε0, ε0) (20)

and set

v(s, ε) = u(z(s) + εν(s)).

In the new coordinate system we have that

grad v(s, ε) =
1

|z′(s) + εν ′(s)|2
∂v

∂s
(s, ε) [z′(s) + εν ′(s)] +

∂v

∂ε
(s, ε)ν(s).

Therefore we can rewrite (19) as
(z′⊥ + h′⊥

|z′ + h′| − z′⊥

|z′|
)

·
(

grad u ◦ (z + h)
)

= − h′
ν

|z′|2
∂v

∂s
+ O(|h′|2)

(21)

+ O(|h′ · h|)
using the equalities

h′⊥ · τ = −h′
ν and h′⊥ · ν = h′

τ .
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We now consider the second term on the right hand side of (18).Taylor’s formula and
the relationsν · z′ = 0 andν ′ · ν = 0 imply that

ν(s) · [grad v(s + σ, ǫ) − grad v(s, 0)]

=

[

∂2v

∂s∂ε
(s, 0) − H(s)

∂v

∂s
(s, 0)

]

σ +
∂2v

∂ε2
(s, 0) ǫ + O

(

σ2 + ǫ2
)

where the mean curvatureH in two dimensions is given by

H =
z′1z

′′
2 − z′2z

′′
1

|z′|3 = −z′′ · ν
|z′|2 . (22)

In view of the second term on the right hand side of (18) we wantto choose the pair(σ, ǫ)

such that

z(s) + h(s) = z(s + σ) + ǫν(s + σ).

By Taylor’s formula, we note that

h(s) − ǫν(s) + O(σǫ) = z(s + σ) − z(s) = z′(s)σ + O(σ2)

and therefore

h(s) = z′(s)σ + ǫ ν(s) + O(σǫ) + O(σ2).

Comparing the previous expression with the decomposition

h(s) =
hτ (s)

|z′(s)|z
′(s) + hν(s)ν(s),

we have

σ =
hτ (s)

|z′(s)| and ǫ = hν(s).

Therefore, we can write the second term on the right hand sideof (18) as

ν(s) ·
(

gradu(z(s) + h(s)) − grad u(z(s))
)

=

(23)
[

∂2v

∂s∂ε
(s, 0) − H(s)

∂v

∂s
(s, 0)

]

hτ (s)

|z′(s)| +
∂2v

∂ε2
(s, 0)hν(s) + O

(

|h|2
)

.

Inserting (21) and (23) into (18) and by definition of the Fréchet derivative

|G1(z + h) − G1(z) − G′
1(z)h| = O(||h||2C2), ||h||C2 → 0,

one gets

G′
1(z(s))h(s) = − h′

ν

|z′|2
∂v

∂s
(s, 0) +

[

∂2v

∂s∂ε
(s, 0) − H(s)

∂v

∂s
(s, 0)

]

hτ (s)

|z′(s)|
(24)

+
∂2v

∂ε2
(s, 0)hν(s)

and by the relations

∂v

∂ε
(s, 0) =

∂u

∂ν

(

z(s)
)

(25)
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and
1

|z′(s)|
∂v

∂s
(s, 0) =

∂u

∂τ

(

z(s)
)

(26)

the result follows. �

In practice one wants to avoid computing the term∂2u/∂2ν appearing in (17). Therefore,
in the following corollary this term is eliminated by using the fact thatu satisfies the
Helmholtz equation.

Corollary 1 Provided u satisfies the Helmholtz equation, the Fréchet derivative
of G1 : C2[0, 2π] → C[0, 2π] is given by

G′
1(z)h = −k2hνu◦z− ∂

∂τ

(

hν

(

∂u

∂τ
◦ z

))

+Hhν
∂u

∂ν
◦z +hτ

∂2u

∂τ∂ν
◦z(27)

in [0, 2π].

Proof. Using the same change of variables (20) as in the previous proof for the Laplace
operator we have that

∆v(s, ε) =
1

|z′(s) + εν ′(s)|

{

∂

∂s

(

1

|z′(s) + εν ′(s)|
∂v

∂s
(s, ε)

)

+
∂

∂ε

(

|z′(s) + εν ′(s)| ∂v

∂ε
(s, ε)

)}

.

Therefore we can write
∂2v

∂ε2
(s, 0) = − k2 v(s, 0) +

z′(s).z′′(s)

|z′(s)|4
∂v

∂s
(s, 0)

(28)

− 1

|z′(s)|2
∂2v

∂s2
(s, 0) + H(s)

∂v

∂ε
(s, 0)

sinceu satisfies the Helmholtz equation. This comes from the fact that in the new coordinate
system

∆v(s, ǫ) → − z′(s).z′′(s)

|z′(s)|4
∂v

∂s
(s, 0) +

1

|z′(s)|2
∂2v

∂s2
(s, 0)

+
z′(s).ν ′(s)

|z′(s)|2
∂v

∂ε
(s, 0) +

∂2v

∂ε2
(s, 0),

asǫ → 0 and from using the identity

ν ′ · z′ = z′′ · ν = −|z′|2 H.

Substituting (28) in (24) one gets the characterization

G′
1(z)h = − h′

ν

|z′|2
∂v

∂s
+

[

∂2v

∂s∂ε
− H

∂v

∂s

]

hτ

|z′|

+

[

−k2v +
z′.z′′

|z′|4
∂v

∂s
− 1

|z′|2
∂2v

∂s2
+ H

∂v

∂ε

]

hν
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or rearranging the terms

G′
1(z) = − k2hνv + Hhν

∂v

∂ε
+

hτ

|z′|
∂2v

∂s∂ε

(29)

− 1

|z′|2
[

h′
ν − hν

z′.z′′

|z′|2 + hτ H |z′|
]

∂v

∂s
− hν

|z′|2
∂2v

∂s2

where for simplicityv holds forv(s, 0).
Considering (26) one gets

∂

∂τ

(

hν

(

∂u

∂τ
◦ z

))

=
1

|z′|2
[

h′
ν + h · ν ′ − hν

z′ · z′′
|z′|2

]

∂v

∂ν
+

hν

|z′|2
∂2v

∂s2
(30)

and if one has the identity

h · ν ′ = − hτ

|z′|ν · z′′ = hτH|z′|, (31)

one can substitute (31) in (30) and the latter in (29), obtaining the result by (25) and (26).
To prove (31) one starts by noting that

h · ν ′ = h ·
(

z′′⊥

|z′| −
z′′ · z′
|z′|2 ν

)

= −h⊥ · z′′
|z′| − hν

z′′ · τ
|z′| . (32)

Now one only needs to decomposeh in its tangential and normal component in order to get

h⊥ = hτν − hντ

and apply it in (32). �

We will now characterize the Fréchet derivative of the operator G2 defined in (16) on
both the parameterizationz and on the impedanceζ . For the derivative on the first variable
we have the following result.

Theorem 2 The Fŕechet derivative ofG2 : C2[0, 2π] × C1(R2) → C[0, 2π] with respect to
the parameterization is given by

∂

∂z
G2(z, ζ)h = [(ζ gradu + u grad ζ) ◦ z] · h. (33)

Proof. We proceed as in the proof of Theorem 1. We first decompose

G2(z + h, ζ) − G2(z, ζ) = (ζ ◦ (z + h) − ζ ◦ z)(u ◦ (z + h))

+ (ζ ◦ z)(u ◦ (z + h) − u ◦ z)

and using Taylor’s Formula

u((z + h)(s)) = u(z(s)) + gradu(z(s)) · h(s) + O(|h|2), s ∈ [0, 2π]

ζ((z + h)(s)) = ζ(z(s)) + gradζ(z(s)) · h(s) + O(|h|2), s ∈ [0, 2π]

the result follows. �
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As the operatorG2 is linear in the second variable, the Fréchet derivative with respect to
the impedance is just given by

∂

∂ζ
G2(z, ζ)µ = (µ u) ◦ z. (34)

Now combining (27),(33) and (34) we arrive at the following theorem.

Theorem 3 The Fŕechet derivative ofG : C2[0, 2π]×C1(R2) → C[0, 2π] with respect to the
parameterization is given by

∂

∂z
G(z, ζ)h = − k2hνu ◦ z − ∂

∂τ

(

hν

(

∂u

∂τ
◦ z

))

+ (iζ + H)hν
∂u

∂ν
◦ z

(35)

+ hτ

[(

∂2u

∂τ∂ν
+ iζ

∂u

∂τ

)

◦ z

]

+ i [(u gradλ) ◦ z] · h

and with respect to the impedance is given by

∂

∂ζ
G(z, ζ)µ = (µ u) ◦ z (36)

both in[0, 2π]

As we will see in the next section, this last theorem is of crucial importance for the idea
and implementation of the hybrid method. Remark 2 will show that this method requires the
computation of more terms than the Newton method applied to the operator defined in (4).
However, no forward problem must be solved throughout the process of computation of the
derivative ofG, whereas for computingF ′ this must be done.

Remark 2 One can also rewrite (35) in the following form

∂

∂z
G(z, ζ)h = − k2hνu ◦ z − ∂

∂τ

(

hν

(

∂u

∂τ
◦ z

))

+ (iζ + H)hν
∂u

∂ν
◦ z

(37)

+ hτ

(

∂

∂τ

(

∂u

∂ν
+ iζu

)

◦ z

)

+ i hν

(

∂ζ

∂ν
u

)

◦ z

since we have the decomposition in the normal and tangentialdirection

h · (gradζ ◦ z) = hτ
∂ζ

∂τ
◦ z + hν

∂ζ

∂ν
◦ z.

Note that ifz is the parameterization to the true boundary solutionΓ and ζ is the true
impedance solutionλ, then the boundary condition is satisfied and consequently

∂

∂τ

(

∂u

∂ν
+ iλu

)

= 0 onΓ.

Therefore in this case the derivative is given by

∂G

∂z
(z, λ)h = − k2hνu ◦ z − ∂

∂τ

(

hν

(

∂u

∂τ
◦ z

))

+ (iλ + H)hν
∂u

∂ν
◦ z

(38)

+ i hν

(

∂λ

∂ν
u

)

◦ z.
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According to [6], where the work in [5] is extended to a non-constant impedance, this is
up to a factor−1 the impedance boundary condition to the boundary value problem that
characterizes the Fréchet derivative of the operator defined in (4). In other words and as
expected, this is up to a factor−1 the boundary values of the extra forward problem that
needs to be solved at each step of the Newton method applied tothe operator defined in (4).

4. The Hybrid Method

We are interested in introducing the hybrid method as a numerical method to solve the
inverse scattering problem for shape and impedance. In thissection we will formulate the
inverse problem in terms ofG and suggest the use of the results from the previous section to
numerically solve it. However, the first issue that needs to be addressed is uniqueness of this
inverse problem.

Theorem 4 (Uniqueness) The far-field patterns corresponding to an infinite number ofplane
waves with distinct directions uniquely determine the shape and location of the scattererD
and the impedance functionλ.

Prof. See [14, Thm. 2.1]. �

For numerical reconstructions using the hybrid method, we will consider as data the far
field pattern for just one incident direction. Though there is to our knowledge no uniqueness
result for this case, this makes sense by a formal argument. In fact, if one is given the far field
patternu∞ for one incident direction, which is a complex valued function on the unit circle or
equivalently in[0, 2π], one should formally be able to reconstruct two real valued functions
on [0, 2π]. For instance, considering star-shaped domains, this two real functions could be
the parameterization of the boundaryΓ of the scatterer and the impedanceλ defined on this
boundary.

Keeping this in mind, in order to apply the theorems in the previous section on the
differentiability of G, the impedanceζ must be defined at least in an open neighbourhood
of the contourγ parameterized byz. Therefore one needs to extend it into a neighbourhood
since the impedance is only defined on the boundary by the boundary condition. On the one
hand, one way to do it would be to extend its values along the normal direction toγ, which
is possible in a neighbourhood of the contour since the contour is assumed to beC2–smooth.
Though this idea does not impose any restrictions on the domain, we would only be able to
apply the method to continuously differentiable impedances, which is assuming more than
we usually have in practice. On the other hand, assuming thatthe boundary of the domain is
starlike, that is, it is parameterized by

z(t) = {r(t)(cos t, sin t) : t ∈ [0, 2π]} (39)

with some2π periodic positiveC2 function r, one could easily extend the impedance as a
direction dependent function, that is,ζ = ζ(x̂). In this way, the perturbationsh to the initial
parameterizationz would also be starlike in the form of

h(t) = {q(t)(cos t, sin t) : t ∈ [0, 2π]} (40)
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with some2π periodicC2 functionq and therefore the last term on the right hand side of (35)
would vanish since we would have

gradζ · h =
∂ζ

∂θ
θ · h = 0,

whereθ = x̂⊥. Therefore we get

∂

∂z
G(z, ζ)h = − k2hνu ◦ z − ∂

∂τ

(

hν

(

∂u

∂τ
◦ z

))

+ (iζ + H)hν
∂u

∂ν
◦ z

(41)

+ hτ

[(

∂2u

∂τ∂ν
+ iζ

∂u

∂τ

)

◦ z

]

which can be applied requiring the solutionλ just to be continuous, since no derivative ofζ is
now required.

From this and also accordingly with the formal argument on ”uniqueness”, we will just
consider star-shaped domains in the further analysis. Withthis assumption, for some range
of impedances one can prove injectivity for the Fréchet derivative ofG if one is laying in the
true solutionsΓ andλ to the inverse problem.

Theorem 5 If the parametrizationz and the impedanceλ are the solutions of the inverse
problem withλ > k then

∂G

∂z
(z, λ)h +

∂G

∂λ
(z, λ)µ = 0

implies thathν = 0 andµ = 0. In addition, for star-shaped domains, that is, ifz andh are of
the form (39) and (40) respectively, then it also impliesh = 0.

Proof. We start by noting that ifz and λ are correct then the boundary condition is
satisfied and so (38) is valid. Therefore by assumption we have

−k2hνu − ∂

∂τ

(

hν
∂u

∂τ

)

+ (iλ + H)hν
∂u

∂ν
+ i hν

(

∂λ

∂ν
u

)

+ iµu = 0.

Using the boundary condition again we get

(k2 − λ2)hνu +
∂

∂τ

(

hν
∂u

∂τ

)

+ i

(

λ hν H − hν
∂λ

∂ν
− µ

)

u = 0 onΓ (42)

We will now follow the ideas of Thm 2.2 in [14]. We start by noting that

∂

∂τ

(

hν
∂u

∂τ
u

)

=
∂

∂τ

(

hν
∂u

∂τ

)

u + hν

∣

∣

∣

∣

∂u

∂τ

∣

∣

∣

∣

2

and as
∂ |u|2
∂τ

= 2 Re

(

∂u

∂τ
u

)

one gets

Re

(

∂

∂τ

(

hν
∂u

∂τ

)

u

)

=
1

2

∂

∂τ

(

hν
∂ |u|2
∂τ

)

− hν

∣

∣

∣

∣

∂u

∂τ

∣

∣

∣

∣

2

.
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Now multiplying (42) byu and taking the real part we get

(k2 − λ2)hν |u|2 +
1

2

∂

∂τ

(

hν
∂ |u|2
∂τ

)

− hν

∣

∣

∣

∣

∂u

∂τ

∣

∣

∣

∣

2

onΓ

We now assume thathν does not identically vanish. One can assume without loss of generality
that the setΣ = {x ∈ Γ : hν > 0} is nonempty and integrating over this set one gets

∫

Σ

[

(k2 − λ2)|u|2 −
∣

∣

∣

∣

∂u

∂τ

∣

∣

∣

∣

2
]

hν ds = 0.

If λ > k then this implies thatu = 0 onΣ and by the boundary condition the normal derivative
of u in this set also vanishes. Therefore by Holmgreen’s theoremthis implies that the total
field u vanishes inR2\D which is a contradiction. Then we conclude thathν = 0 on Γ.
By (42) this implies thatuµ = 0, which by a similar argument as before impliesµ = 0.

Using the extra assumptions (39) and (40) onz andh respectively, one can conclude that

hν =
r q√

r2 + r′2

and sohν = 0 implies thath = 0. �

We are now in a position to present the hybrid method. As already mentioned it combines
ideas of both iterative and decomposition methods. As in thelatter, it consists of two steps. In
the first step, one deals with the ill-posedness in the spiritof the potential method of Kirsch
and Kress [8, 9, 10]. Given an approximationγ with parameterizationz of the form (39), we
start by solving the far field equation

F∞,γ ϕ = u∞ (43)

with respect toϕ. The operator on the left hand side is injective, however, asit is a compact
operator, its inversion is ill-posed and therefore stabilization is needed. For this, we suggest
using the well established Tikhonov regularization. Settling the first step, with an approximate
solutionϕ to (43) we then obtain an approximation to the total field by setting

u = ui + (Kγ − iηSγ)ϕ in R
2\γ. (44)

We now recall the parameterization to the boundary condition operatorG introduced
in (14). In order to satisfy the boundary condition, we need to find an updated
parameterizationz + h and an updated impedanceζ + µ such that

G(z + h, ζ + µ) = 0.

Therefore, in a second step, as in the classical Newton method, we solve the linearized
equation

G(z, ζ) +
∂G

∂z
(z, ζ)h +

∂G

∂ζ
(z, ζ)µ = 0 (45)

with respect toh andµ in a least squares sense. Our hybrid method then consists in repeating
both steps iteratively until some stopping criteria is fulfilled.

We point out that this method does not need a forward solver ateach iteration step which
reduces the computational costs. As we will see in section 6,this does not deteriorate the
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reconstructions. Therefore the method combines the advantages of both Newton type and
decomposition methods.

Remark 3 Note that the approximation of the total fieldu given by (44) has a jump onγ.
Therefore, at each collocation point considered for solving (45) in a least squares sense a
choice has to be made whether to use the interior or exterior values foru to compute the
Fréchet derivative ofG given in Theorem 3. Here we assume asa priori knowledge that the
initial guessγ lies inside the scatterer D and consider the exterior field for computations.

5. An Optimization Problem

Along the lines of section 5.4 in [4], we will now relate the hybrid method with a minimization
problem as its theoretical background. The main differenceis that in [4] the analysis is done
for a single layer representation of the solution and therefore the compactness of the single
and the double layer operators is a key ingredient for the results obtained. In this case, the
operatorT ruins this compactness. To avoid this problem one assumes more regularity on the
densityϕ.

We will stick to the restriction to star-shaped domains, that is,

γr = {z(t) = r(t)(cos t sin t) | r is 2π–periodic}.
and consider only functionsr ∈ U , where

U = {r ∈ H l[0, 2π] | 0 < ri ≤ r(t) ≤ re t ∈ [0, 2π]}
for some fixedri, re ∈ R

+. We will also consider impedancesζ ∈ V given by

V = {ζ : γ → R | ζ ∈ Hp(γ), 0 ≤ ζ(x) ≤ ζe ∀x ∈ γ}
for some fixedζe ∈ R

+. For densities space we will considerϕ ∈ Hq(γ).
Assumingq > 3/2+α, for some fixedα > 0, we can restrict the operatorsF∞,γ andBγ,ζ

introduced in section 2 as operators mapping fromHq(γ) to L2(Ω) andL2(γ), respectively.
We define the cost functionΛ(r, ζ, ϕ; .) : U × V × Hq(γ) → R

+
0 given by

Λ(r, ζ, ϕ; β) = β||ϕ||2Hq(γr) + Λ1(r, ζ, ϕ) + Λ2(r, ζ, ϕ)

for β > 0, where

Λ1(r, ζ, ϕ) = ||F∞,γr
ϕ − f ||2L2(Ω)

for somef ∈ L2(Ω) and

Λ2(r, ζ, ϕ) = ||Bγr,ζϕ + g||2L2(γr)

for someg ∈ L2(R2), whereγr is the contour corresponding tor.
On the one hand, iff = u∞ and if r andζ are fixed, the minimization of

β||ϕ||2Hq(γr) + Λ1(r, ζ, ϕ)

with respect toϕ is equivalent to finding a regularized solution to (43) by Tikhonov
regularization with parameterβ. On the other hand, ifg is the impedance boundary data



A HYBRID METHOD FOR INVERSE SCATTERING FOR SHAPE AND IMPEDANCE 16

and ϕ is kept fixed, minimizingΛ2(r, ζ, ϕ) in terms ofr and ζ can be seen as finding a
solution to (45). In this way this nonlinear optimization problem is related with the inverse
scattering problem.

Given f and g, we define the pair(r0, ζ0) ∈ U × V as being optimal if there
existsϕ0 ∈ Hq(γ0) such that

Λ(r0, ζ0, ϕ0; β) = m(β)

where

m(β) := inf
r∈U,ζ∈V,ϕ∈Hq(γ)

Λ(r, ζ, ϕ; β).

We will now present some results on this optimization problem.

Theorem 6 Assume in addition toq > 3/2 + α that alsol > 5/2 andp > 1/2. Then for
eachβ > 0, f ∈ L2(Ω) andg ∈ L2(R2) there exists an optimal pair(r, ζ) ∈ U × V .

Proof. Assume the triple(rn, ζn, ϕn) to be a minimizing sequence, that is,

lim
n→∞

Λ(rn, ζn, ϕn; β) = m(β).

As U is bounded, by the Sobolev compact embeddingH l[0, 2π] ⊂ C2[0, 2π] one has
that U is compact inC2[0, 2π]. Therefore, without loss of generality, we can assume
C2–convergencern → r asn → ∞. As U is closed,r ∈ U . In a similar way one can
assumeC–convergence ofζn → ζ ∈ V .

One also has that

β||ϕn||2Hq(γr) ≤ Λ(rn, ζn, ϕn; β) → m(β)

as n → ∞, so ϕn is bounded and by a similar argument using the compact
embeddingH l[0, 2π] ⊂ C1,α[0, 2π] one can assume thatϕn → ϕ. By continuity of the
functionalΛ in all its variables, one has the result, since

Λ(r, ζ, ϕ; β) = lim
n→∞

Λ(rn, ζn, ϕn; β) = m(β).�

We are interested in the behaviour of a solution to the minimization problem as the
regularization parameter goes to zero. One can state the following convergence result. Note
that, unfortunately, it does not imply convergence to a solution of the inverse scattering
problem.

Theorem 7 Assumeq > 3/2 + α, l > 5/2 and p > 1/2. Assume also thatf is the exact
far-field patternu∞, thatg is the exact boundary datag = ∂ui/∂ν + iλui, that the solutionΓ
can be parameterized by somerΓ ∈ U and that the exact impedanceλ ∈ V . Let (βn) be
a null sequence and let(rn, ζn) be the sequence of corresponding optimal pairs. Then there
exists a convergent subsequence of(rn, ζn) and every limit point(r∗, ζ∗) represents a curve
and impedance such that

∂us

∂ν
+ iζ∗us = −g onγ∗.
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Proof. From section 2, one knows that the solution to the direct problem can be represented
by a combined single and double layer potential via the solution ϕ of (10). Therefore with the
assumptions onf andg one has that

Λ1(rΓ, λ, ϕ) = Λ2(rΓ, λ, ϕ) = 0.

Then

lim
β→0

m(β) = 0. (46)

since

m(β) ≤ Λ(rΓ, λ, ϕ; β) = β||ϕ||2Hq(γr).

The existence of a convergent subsequence(rk(n), ζk(n))n∈N comes from the proof of
theorem 6. For simplicity we will denotek = k(n). Let (r∗, ζ∗) be the limit point of
that convergent subsequence and letu∗ be the solution to the direct scattering problem with
boundary condition

∂u∗

∂ν
+ iζ∗u∗ = −g onγ∗.

Since(rk, ζk) is optimal there exists(ϕk)k∈N such that

Λ(rk, ζk, ϕk, βk) = m(βk).

Let now uk be the combined single and double layer potential overγk applied to the
densityϕk. The potentialuk can be interpreted as the solution to the exterior scattering
problem with boundaryγk and impedanceζk.

From (46),
∣

∣

∣

∣

∣

∣

∣

∣

∂uk

∂ν
+ iζkuk + g

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(γk)

≤ m(βk) → 0 (47)

and

||F∞,γk
ϕk − f ||2L2(Ω) ≤ m(βk) → 0 (48)

both ask → ∞.
By (47) one concludes thatuk and all its derivatives converge tou∗ on compact sets of

the exterior domain (e.g. thm. 5.16 in [4]) and so the far fieldpatterns ofuk also converge
to the far field patternu∗

∞ of u∗. By (48) we conclude thatu∗
∞ = f = u∞ and sous = u∗

follows. This concludes the proof. �

6. Numerical Results

In this final section we describe some details on the numerical implementation of the method.
For all the examples presented, we fixed the wave numberk = 1 and used as incident

field

ui(x) = eikx.d,
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that is, a plane wave with directiond ∈ Ω.
The synthetic far field data was obtained through the processdescribed in section 2. We

computed the far field pattern for one incident direction at 60 equidistant points on the unit
circleΩ and considered it as the given data for the inverse scattering problem.

For the first step of the method, equation (43) was solved by Tikhonov regular-
ization, considering 40 points over the boundaryγ. For regularization parameter we
usedβ = 0.5n × 10−10, wheren is the number of iterations.

For each iteration, in the second step of the method both the functionu and its normal
derivative∂u/∂ν have to be computed. This was done evaluating their representation integral
formula considered in section 2 using the trigonometric quadrature rules described in [12]
and in [4, Ch. 3.5]. The coupling parameter for the combined single and double layer
potential was chosen asη = k, as suggested in [11]. For the tangential derivatives occurring
in the expressions forG′ we used trigonometric differentiation, that is, we interpolated by a
trigonometric polynomial and took its derivative as approximation.

As parameterization space for the radius function we considered trigonometric
polynomials

r(t) =

Np
∑

j=0

a
(p)
j cos jt +

Np
∑

j=1

b
(p)
j sin jt

of degreeNp = 5. For impedance space we have also used trigonometric polynomials

λ(t) =

Nl
∑

j=0

a
(l)
j cos jt +

Nl
∑

j=1

b
(l)
j sin jt

with Nl = 4. Numerical experiments showed us that better results were obtained
whenNp ≥ Nl.

As stopping criteria as residual associated with each iteration step the sum of the cost
functionsΛ1(r, ζ, ϕ) + Λ2(r, ζ, ϕ) defined in the previous section in the following way. We
computed this residual for the current approximation. Thenwe solved (45) to get the
candidate for a new approximation by a Levenberg-Marquardtstep to improve on the stability
of the method. As regularization parameter for the Levenberg-Marquardt step we started
with 10−5 and if the residual for the new approximation would be largerthan for the current
approximation, we would increase the Levenberg-Marquardtparameter by a factor of 10 and
repeat the second step. Otherwise we would take the new approximation and proceed with
the next iteration repeating both steps of the method. The method was stopped when the
regularization parameter for the Levenberg-Marquardt step became equal to10−1. In the
examples presented, the stopping criteria was achieved after about 10 iterations.

We will show two examples of numerical reconstructions. As afirst example we
considered the domain parameterized by

z(1)(t) = (2 + 0.3 cos 3t) {cos(t), sin(t)}, t ∈ [0, 2π],

the impedance

λ(1)(t) = 1.5 − cos t + 0.5 sin 2t, t ∈ [0, 2π]
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and the incident directiond(1) = (−1, 0).
As a second example we used the peanut shaped domain parameterized by

z(2)(t) = 3
√

cos2 t + 0.25 sin2 t {cos(t), sin(t)}, t ∈ [0, 2π],

the impedance

λ(2)(t) = 1 + sin3 t, t ∈ [0, 2π]

and the incident directiond(2) = (0, 1).
The reconstructions obtained can be seen in figures 1–4. We represent in grey the

solution, in black the approximation and the dashed line is the initial guess. For both examples
we used as initial guess a circle of radius1.5 and a constant impedanceλ = 1.5.
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Figure 1. Reconstruction without noise for the first example.
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Figure 2. Reconstruction with2% noise for the first example.
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Figure 3. Reconstruction without noise for the second example.

It is clear that the obstacle is usually better reconstructed than the impedance, in
accordance with [14]. In comparison with [14], our reconstructions do not deteriorate if the
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Figure 4. Reconstruction with2% noise for the second example.

amplitude of the impedance is increased nor if the impedanceis close to zero, especially if
these features occur in the illuminated area of the scatterer. However, problems might occur
when recovering maximums and minimums of the impedance in the shadow region, as shown
in the reconstructions with noise. As expected, better reconstructions were obtained when the
illuminated area was greater or equal to the shadow one.
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