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Abstract. We present a hybrid method to numerically solve the invecagtaring problem
for shape and impedance, given the far-field pattern for paielént direction. This method
combines ideas of both iterative and decomposition methiolsriting advantages of each of
them, such as getting good reconstructions and not needorgvard solver at each step. An
optimization problem is presented as the theoretic backgt@f the method and numerical
results show its feasibility.

AMS classification scheme numbers: 81Uxx

1. Introduction

Nondestructive obstacle detecting through low frequen@venpropagation motivates a
number of challenging mathematical and numerical probletis several applications such
as radar and sonar or medical imaging. Among these probleete interested in numerical
methods for reconstructing unaccessible impenetrablkkesicey obstacles and its unknown
impedance value at the boundary within a homogeneous bawkdrfrom the knowledge
of the incident field and the scattered field at large distaritae field pattern). We confine
ourselves to the case of time harmonic acoustic waves.

Given an open bounded obstaélec R? with an unbounded and connected complement
and an incident fieldu’, the direct scattering problem consists of finding the total
field u = u* + u® as the sum of the known incident field and the scattered field® such
that both the Helmholtz equation

Au+Eku=0 inR?\D (1)
with wave numbef > 0 and the impedance boundary condition

@qtz’)\uzo onl :=dD (2)

ov

are satisfied, where stands for the exterior normal vector foand the continuous real—
valued function\ > 0 is the impedance and is considered to be known in the formulat
of the direct problem. As particular cases of (2) one has teenann boundary condition
which corresponds ta = 0 and the Dirichlet boundary condition which can be interpdet
as)\ — oo. The obstacle is then called sound-hard or sound-softeotisply.

To ensure well-posedness, at infinity one needs to impos&dmemerfeld radiation
condition

lim /7 (%“
r—00 r

with the limit satisfied uniformly in all directions. Thenig known (e.g. [4, Ch.2]) that the
solutionu® has an asymptotic behaviour of the form

) = f/% <uoo(g:~) +0 (%)) e = oo,

wherez = z/|z|. The functionu., defined on the unit circl€ is denoted as the far field
pattern ofu®. By Rellich’s lemma the scattered field is completely determined by its far
field pattern.

- ikus) =0, r=]|z 3)
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The inverse problem that we are interested in is to deterbotiethe position and shape
of the obstacleD as well as the impedance given the far-field patterm., for only one
incident wave. However, most of the methods developed teestile inverse scattering
problem only recover the position and the shape of the olesfac In general, to achieve
that, iterative and decomposition methods (e.g. [19] andrEspectively) require priori
knowledge of the impedancewhile sampling methods (e.g. [3]) do not, though the latter
requires much more data then just the far field pattern forincident wave. Only recently
methods to recover both the obstatleand the impedanck were developed, as the iterative
method [14] and the method to recover the impedance in [Hliegafter the obstacle was
reconstruct by some sampling method.

In order to present the hybrid method proposed in this papemil now focus on
regularized iterative methods and decomposition meth&ds.a fixed incident field.’, the
solution to the direct scattering problem defines the operat

F:(v,0) = us (4)

that maps the paify, ¢) onto the far field corresponding to scattering by the obstadth
boundaryy and impedancé. In this sense, given the far field patterq, the inverse problem
is equivalent to finding the solution to the nonlinear anghdsed operator equation

F(T, A = us (5)

for both the unknown boundardy and the unknown impedance For the case wherg is
known, in particular for sound-soft or sound-hard obstctegularized Newton iterations
applied to (5) have been studied and used for over two dedaded7, 18, 19]). Their idea
is to linearize (5), based on the Fréchet differentiapitit the operator' (see [5, 17]) and
iterate this procedure. Due to the ill-posednesk oégularization is required in each iteration
step. The main drawback of this method is that it requiresthation to the direct scattering
problem at each iteration step and a reasonable initialsgioestart the iterations.

On the other hand, decomposition methods take care of thmoskdness and the
nonlinearity of the inverse scattering problem separatelyowever, to our knowledge,
methods of this class were only applied to recover the olestagiven a known impedance
Their idea is the following: In a first step the functiens reconstructed from the given far
field patternu,,, for example, based on an analytic continuation principlerepresenting
the scattered field® as a layer potential on an approximate boundgrysually considered
to be insideD. The requirement that the far field of the potential coinsidgth the given
far field u., leads to an ill-posed linear integral equation that can hragimately solved
via Tikhonov regularization. Then in a second step one togind the boundary” as the
location where the boundary condition (2) is satisfied inasiesquares sense. Though this
method does not need the solution to the forward problemettenstructions obtained are not
as accurate as those obtained by Newton iterations. Thalsois gap between the theoretical
background and the numerical implementation of the method.

In this work the idea is to develop a method combining idedsath this two methods
that not only recovers the obstadlebut also the unknown impedange requiring just one
incident wave as in [14].
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In [13] it was suggested combining ideas of both of these ®ammstruction methods
in order to create an iterative method using as backgrouea dhalytic continuation of the
total field. In this sense this method is called hybrid. Theeadea was applied to an
inverse boundary value problem in potential theory [2] andhverse scattering from sound-
soft cracks [15] and from sound-hard obstacles [16]. Thwemethod does not need a forward
solver and the accuracy of the reconstructions is as seiisfaas for the Newton iterations,
provided the initial guess is close enough to the exact bayndin the present paper we
describe an extension of the hybrid method to inverse soajtéor shape and impedance.

This paper is organized as follows. In section 2 the direattedng problem is solved
by an integral equation method, in order to introduce laya@eptials and other important
concepts that we will need throughout the paper. In sectithre dperator G is introduced as
being the operator that for a giv&rf—smooth fieldu maps a curvey and a functionl onto
the boundary condition with impedan¢ef that fieldu over~. The Fréchet differentiability
of G is also settled. In section 4 the inverse scattering proldgmsed in terms af and the
hybrid method is proposed to numerically solve it. In secttoan optimization problem is
presented as the background for the method and finally, tioses, the numerical procedure
is explained and some numerical reconstructions are pessém show the feasibility of the
method.

2. The Direct Problem

To introduce notations, we briefly discuss the solution ® direct scattering problem via
the combined single and double-layer potential approach.details we refer, for example,
to [4, Ch.3]. Given the domai® with boundaryl’ of classC? and the incident field:’, we
want to find the uniquely determined scattered figlduch that (1)—(3) are satisfied. By
1

(r,y) = Hy' (klz —y])
we denote the fundamental solution to the two-dimensioreitHoltz equation in terms of
the Hankel functionHél) of the first kind and order zero. After introducing the singled
double-layer potential with density on a closed”?—curvey by

(Shp) () := /q)(x,y) p(y)ds(y), =eR? (6)
Kpe) = [ 50 pasty), o e @

respectively, we represent as a combined single and double-layer potential, that i#)en
form

u® = (Kp —inSr)e inR*\D (8)

with some fixed coupling term > 0. Sinceu® given by (8) satisfies the Helmholtz equation
and the Sommerfeld radiation conditign has to be determined such that the boundary
condition (2) is satisfied.
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By the jump relations, considering the combined layer pidé(8) as defined ifR*\T',
its trace on" is given by

uy = :I:g + (Kt —inSr)e onl,

where+ stands for the limit when approachingfrom outside and insidé), respectively.
The normal trace of® has also a jump and is given by

ou® . .
5 :I:mg + (Ir —inK7{)e onl
in terms of K}, which is the adjoint operator dfr, and the hyper-singular operator
0 0P(z,y)
(Thp)(x) = o) ), avly) e(y)ds(y), zen. 9)

In order to satisfy the boundary condition (2), the dengitg C'*(T") has to be obtained as
solution to

BR)\ Y= — <au + z)\u2> onl’ (10)
ov
where
. 1 . .
Bre=i(n+) 5+ T +i(CKy —nk;) +¢nS, (11)

is the exterior trace operatdB,. : C'*(y) — C%*(y) of the combined single and
double layer potential and maps densitiesn the Holder space of uniformly continuously
differentiable functions with exponent > 0 into the space of Holder continuous functions
in-.

Equation (10) is uniquely solvable (cf. [4]) and an approaiensolution can be obtained,
for example, by a collocation method as described in [12].

We note that via the asymptotics of the Hankel function thefileld pattern of the
combined layer potential (8) is given by

Uo = Foor  ONSY

with F ., = (K« — iS5 ~) given in terms of the far field operators

A eiT(/4 ik A

(Soonp)(2) = Nl MY o(y)ds(y), @ €Q (12)
. 62'7r/4 ae—ikzi’-y .

(Kaoyp)(Z) = o(y)ds(y), el (13)

V8rk J, Ov(y)

3. Differentiability with respect to the Boundary and the Impedance

For the further analysis, a parameterization of the boundarves is required. We assume
that

v={z(s) : s € [0,27]},
with a 27 periodicC?—smooth functiorr : R — R? and counter-clockwise orientation such
that z| (o 2 is injective. Our hybrid method is based on the linearizat the operators
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that, given aC2-smooth fieldu defined in a neighbourhood of maps the paifz, ¢), wherez
parametrizes the contogrand( is an impedance function defined gnonto the impedance
boundary condition trace ef on~, that is,

G:(2,¢)— (v-gradu+iCu) |,
or in a slight abuse of notation
G:(z,¢()—v-(graduoz)+i(Cu)oz inl0,2n]|. (14)

In this section our task is to proof that the operdtas Fréchet differentiable with respect
to both the parameterization variableand the impedance variabfe This will be of major
importance for the presentation of the hybrid method in # section. Clearly, the Fréchet
differentiability of G is related with the smoothness of batland¢. Considering: to beC?-
smooth and assumingto beC'-smooth ther; is Fréchet differentiable with respect to both
of this variables. Taking these assumptions our task is msivtp characterize the Fréchet
derivativeG'.

Remark 1 Later on in sections 4 and 6 the operat6rwill be applied to the total field:
and the impedance defined as in the previous section. Therefore the assumptiarholds
true in applications since the total fieldis an analytic function in its domain of definition.
However, for the scattering problem the impedaidg usually just assumed to be continuous
on the boundary’. Though one needs thatis C''-smooth for the following analysis, this
problem can be overcome by a restriction to star-shaped dwsnas we will see further on.

To simplify this task we will split the operat@r in a sum of two operators
G(’Z? C) = Gl(’z) + iG2(Z7 C)
We define

Z/J_

[

wherezt = (2,, —2;) and
Go: (2,() — (Cu)oz in|0,27]. (16)

We note that the differentiability @, was already considered in [16]. We formulate the result
and revisit the proof after introducing some notation. Weale byr the tangential vector to
the boundary in the counter-clockwise direction, Bythe mean curvature and By, /.. the
normal and tangential components of the veétaiespectively. We also note that

h.:=h -7 and h,:=h-v,

and ag+, only depends on we will denote for simplicity, := 0G,/0z.

Gz -(graduoz) in|0,2n] (15)

Theorem 1 The operatorG; : C?[0,27] — C[0,2x] is Fréchet differentiable and its
derivative is given by

, R, Ou 0?u ou 0*u
Gl(Z)h——mﬁ—TOZ—F %OZ—Ha—TOZ h7—+hywoz (17)

in [0, 27].
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Proof. Let h be sufficiently small to ensure that
Youn = {2(8) + h(s) : s € [0,27]}
describes a closed curve.
We decompose

Z/J_ + h/J_ Z/J_

Gl(z+h)—G1(z):< )-(gramo(z+h))

ERINED
(18)
z/J_
+ = (gramo(z+h) —graouoz>
|2/|
and treat both terms on the right hand side separately. Usiglpr's formula, we begin by
noting that
Z/J_ + h/J_ Z/J_ h/J_ Z/J_(Z/ . h/)

= = e+ Ol

ERN R F I R EIE
= — (" = how) + O(IW']?)
sincer = 2'/|Z/|. Using
graduo (z+ h) —graduo z = O(|h|)

we consequently have
(Z/J_ + h/J_ Z/J_

) : (graduo(z+h)>

ERNINED
(19)
= ﬁ(h’l —hv)-graduo z + O(|W'|*) + O(K' - h).
z
We now perform a change of variables in a neighbourhoodlnf
x(s,e) = z(s) + ev(s), s€]0,2n], e € (—&o,e0) (20)
and set
v(s,e) = u(z(s) +ev(s)).
In the new coordinate system we have that
1 ov , , v
gradv(s,e) = EIEFEBIE g(s,s) [2'(s) +ev/(s)] + a(s, e)v(s).
Therefore we can rewrite (19) as
4 pt h!, Ov 2
<7|z’ ] _ m) ) (gradu o(z+ h)) = — |Z,|2$ + O(||%)
(21)
+ O(|h' - h|)

using the equalities

W+.7=-h, and K*.-v=~hH.
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We now consider the second term on the right hand side of (Ia)lor’s formula and
the relations’ - 2z’ = 0 andv’ - v = 0 imply that

v(s) - [gradv(s + o, €) — grad v(s, 0)]

0%v ov v
= — H(s)=— ° - 2, 2
0805(8’0) (5)85(3,0) o+ 852(5’0)6+0(U + €%)
where the mean curvatufé in two dimensions is given by
nzy — 292 2w
H= EIE =TT (22)

In view of the second term on the right hand side of (18) we warthoose the paifo, €)
such that

2(s)+ h(s) = z(s+0) +ev(s+ o).
By Taylor’s formula, we note that

h(s) — ev(s) + O(oe) = z(s + o) — 2(s) = 2/(s)o + O(c?)
and therefore

h(s) = 2'(s)o + ev(s) + O(ae) + O(o?).

Comparing the previous expression with the decomposition

h(s) = 1 2(6) + hu(shv(o)
we have
o= hT—(S> €e=h,(s
2 (5)] and hy(s).

Therefore, we can write the second term on the right handdSi¢l8) as

v(s) - <gradu(z(s) + h(s)) — gradu(z(s))> _

(23)
0*v v h.(s) 0% )
— — — — h|*) .
(5.0 = HO) G 5.0)| 55+ G 6,09 + 0 ()
Inserting (21) and (23) into (18) and by definition of the ¢irét derivative
|G1(2 + h) = Gi(2) = G1(2)h] = O(I[Allg=),  [[Allez — 0,
one gets
: __ v KIS CINN RCAC)
GH(NA(s) = = 525,00+ | 552(5,0) = HE) 505, 0)| 25
(24)

0%v
+ @(570)%(5)

and by the relations

%(3,0) = %(z(s)) (25)
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and
1 oOw ou
oas = R E0) (26)
the result follows. U

In practice one wants to avoid computing the téfm /9% appearing in (17). Therefore,
in the following corollary this term is eliminated by usinget fact thatu satisfies the
Helmholtz equation.

Corollary 1 Provided u satisfies the Helmholtz equation, the &€Ehet derivative
of Gy : C?|0,27] — C[0,27] is given by

0 ou ou o*u
/ _ — _
Gl (2)h = —k*h,uoz 57 (h (87’ ))—l—Hh E oz+h,——— 55y 0 z(27)

in [0, 27].

Proof. Using the same change of variables (20) as in the previouws foothe Laplace
operator we have that

1 0 1 ov
B9 = L T ere)] {0_ <|z'<s> ) $<3’5>)

+ 2 (140 + /o1 209

Therefore we can write
v 2'(s).2"(s) Ov

9% 2(8 0) = — k*v(s,0) + FIOL g(s,O)
(28)
1 0% ov
- g0+ H S50

sinceu satisfies the Helmholtz equation. This comes from the faattiththe new coordinate
system

Z'(s).2"(s) Qv . 1 o™ .
e o500 eEae

2'(s).V/(s) Ov v s
EIO A =i

0e?
ase — 0 and from using the identity

Av(s,e) — —

V/-Z/:Z,/-V:—|Z/|2H

Substituting (28) in (24) one gets the characterization
h/ 2

, Ov N [ 0%v H@v} ,

/ — —
Gi(2)h |2/]2 Os 0s0e

2]

o 2
N {—kzv%— v 1 0% Hav} b

2[4 0s |22 Os® S
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or rearranging the terms

ov  h, 0%
'(2) = — k*h Hh,— + —
G1(2) k*h,v + > + /] 950z

(29)
dv  h, 9%v

1 22"
h, —h,—— +h.H||| — — —
[ * 2 q Os  |#]? 0s?

- |z’|2 v v |z’|2

where for simplicityv holds foru(s, 0).
Considering (26) one gets

0 ou 1 22 Ov h, 0%v
N _ Woaho—p 200, O
o7 ( (8)) B [ TRy s } o T pae ©0)

and if one has the identity

h
h-v = —|—j|1/-z”:hTH\z'\, (31)
V4
one can substitute (31) in (30) and the latter in (29), olntgithe result by (25) and (26).
To prove (31) one starts by noting that

h.yfzh.(ﬁ_ﬂy):—hl"z”—h/'f (32)

EA I |2/| |2/|

Now one only needs to decompdsé its tangential and normal component in order to get
ht =h,v —h,T

and apply itin (32). O

We will now characterize the Fréchet derivative of the aparG, defined in (16) on
both the parameterizationand on the impedancg For the derivative on the first variable
we have the following result.

Theorem 2 The Fiéchet derivative of?, : C?[0,27] x C*(R?) — C[0, 2] with respect to
the parameterization is given by

% Go(z,0)h = [(Cgradu + ugrad () o 2] - h. (33)

Proof. We proceed as in the proof of Theorem 1. We first decompose
Ga(z 4+ N, () = Ga(2,¢) = (Co (2 + h) = Coz)(uo (2 + h))
+(Coz)(uo(24+h)—uoz)
and using Taylor's Formula
u((z+ h)(s)) = u(z(s)) +gradu(z(s)) - h(s) + O(|h*), s €]0,2n]

C((z+h)(s)) = C(2(s)) + grad((z(s)) - h(s) + O(|h[*), s €[0,27]

the result follows. O
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As the operatof; is linear in the second variable, the Fréchet derivative wéspect to
the impedance is just given by

88_6 Ga(z, Op = (pu)oz. (34)

Now combining (27),(33) and (34) we arrive at the followihgorem.

Theorem 3 The Fiechet derivative off : C?[0, 27| x C*(R?) — (0, 27| with respect to the
parameterization is given by

0 B 9 0 ou , ou
&G(%C)h_ — k"hyuoz — 6_7' (hu (8_702)) +(ZC+H)hV$OZ
(35)
Pu . Ou ,
+ h, {(07‘81/ +ZC§> o z} +i[(ugradX)oz] - h
and with respect to the impedance is given by
0
%G(z, On = (pu)oz (36)

both in0, 27]

As we will see in the next section, this last theorem is of @mportance for the idea
and implementation of the hybrid method. Remark 2 will shbat this method requires the
computation of more terms than the Newton method applietiécoperator defined in (4).
However, no forward problem must be solved throughout tloegss of computation of the
derivative ofG, whereas for computing” this must be done.

Remark 2 One can also rewrite (35) in the following form

0 o 9 du | du
&G(’Z7<)h_ _k hlluoz_a_7_<hy (a_TOZ)) +(Z<+H)hl,502

(37)
+ h, <aa—7_ <%+z(u) oz) +ih, <%u) oz

since we have the decomposition in the normal and tangettidtion
_ . 0¢ 9¢
h - (grad( o z) —hTa—Toz+h,,a—yoz.
Note that ifz is the parameterization to the true boundary solutiorand ¢ is the true
impedance solution, then the boundary condition is satisfied and consequently

o (Ou .
6—7_<0—V+Z)\U> =0onT.

Therefore in this case the derivative is given by
oG

0 ou ou
P (z, \)h k*h,uo z 57 <hu (aToz))+(z)\+H)h,,ayoz
(38)

+1h, (%u) o Z.
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According to [6], where the work in [5] is extended to a nomstant impedance, this is
up to a factor—1 the impedance boundary condition to the boundary value Iprokthat
characterizes the Fchet derivative of the operator defined in (4). In other vgoashd as
expected, this is up to a facterl the boundary values of the extra forward problem that
needs to be solved at each step of the Newton method applieel dperator defined in (4).

4. TheHybrid Method

We are interested in introducing the hybrid method as a nigalemethod to solve the
inverse scattering problem for shape and impedance. Irsdas8on we will formulate the
inverse problem in terms @ and suggest the use of the results from the previous section t
numerically solve it. However, the first issue that needset@adidressed is uniqueness of this
inverse problem.

Theorem 4 (Uniqueness) The far-field patterns corresponding to an infinite numbeslahe
waves with distinct directions uniquely determine the ghapd location of the scatterdp
and the impedance function

Prof. See [14, Thm. 2.1]. O

For numerical reconstructions using the hybrid method, wecansider as data the far
field pattern for just one incident direction. Though thexéo our knowledge no uniqueness
result for this case, this makes sense by a formal argumefdct, if one is given the far field
patternu., for one incident direction, which is a complex valued fuanton the unit circle or
equivalently in[0, 2], one should formally be able to reconstruct two real valugttfions
on [0, 2x]. For instance, considering star-shaped domains, this éabfunctions could be
the parameterization of the bounddrof the scatterer and the impedanceefined on this
boundary.

Keeping this in mind, in order to apply the theorems in thevioes section on the
differentiability of GG, the impedancé& must be defined at least in an open neighbourhood
of the contoury parameterized by. Therefore one needs to extend it into a neighbourhood
since the impedance is only defined on the boundary by thedasyrtondition. On the one
hand, one way to do it would be to extend its values along tlmabdirection toy, which
is possible in a neighbourhood of the contour since the eoriscassumed to b€2—smooth.
Though this idea does not impose any restrictions on the ogma would only be able to
apply the method to continuously differentiable impedanaehich is assuming more than
we usually have in practice. On the other hand, assuminghbdioundary of the domain is
starlike, that is, it is parameterized by

z(t) = {r(t)(cos t,sin t) : t € [0, 27|} (39)
with some2r periodic positiveC? functionr, one could easily extend the impedance as a

direction dependent function, that 5= ((z). In this way, the perturbationsto the initial
parameterization would also be starlike in the form of

h(t) = {q(t)(cos t,sin t) : t € [0,27]} (40)
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with some2r periodicC? functiong and therefore the last term on the right hand side of (35)
would vanish since we would have

grad(~h:%9-h:0,

wheref = i+. Therefore we get

0

0
—_ f— — 2 —_—
o G(z,()h= —k°h,uoz B (h,, (

ou

—o0
or

Pu . Ou
hr {(07‘81/ * ZCE) ° Z}

which can be applied requiring the soluti®fust to be continuous, since no derivativeaé
now required.

From this and also accordingly with the formal argument oniueness”, we will just
consider star-shaped domains in the further analysis. Whighassumption, for some range
of impedances one can prove injectivity for the Frécheivdéve of G if one is laying in the
true solutiond™ and\ to the inverse problem.

, ou
z)) + (2C+H)h,,$oz
(41)

Theorem 5 If the parametrization: and the impedance are the solutions of the inverse

problem withA > k then
oG oG

E(Z’ Ah + 8—)\(2’ A =0

implies thath,, = 0 andx = 0. In addition, for star-shaped domains, that isz ibndh are of
the form (39) and (40) respectively, then it also imphes 0.

Proof. We start by noting that it and A are correct then the boundary condition is

satisfied and so (38) is valid. Therefore by assumption we hav

or or ov
Using the boundary condition again we get

—k?h,u — 2 (hu @) + (i)ﬁ—H)h,,@ +ih, (%u) + tpu = 0.

or

We will now follow the ideas of Thm 2.2 in [14]. We start by nagi that
2

(k;2—A2)hyu+3 (hy?) +i ()\hVH—hV? —,u)uzOOhF (42)
T 1%

0 Ou_\ 0 ou \ _ ou
or (’“a—ﬂ) =or (hva—f)“”'f or
and as
O|ul? ou _
or =2R (8_7'u)
one gets
d du\_\ 10 A|ul? ou|’
fte (5 (ha—)u) ~20r (h or ) ~ s
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Now multiplying (42) byu and taking the real part we get

10 O|ul? du

2 32 2, _ -
(k7 = Ao ful” + 20T (hV or h'/ or
We now assume that, does not identically vanish. One can assume without loseréiglity

that the sek: = {z € I" : h, > 0} is nonempty and integrating over this set one gets

/ [W ) fuf? — |2

or
If A\ > kthen thisimplies that = 0 on¥ and by the boundary condition the normal derivative
of u in this set also vanishes. Therefore by Holmgreen’s thedhesnmplies that the total
field u vanishes inR?\ D which is a contradiction. Then we conclude tigt = 0 onT.
By (42) this implies thatii. = 0, which by a similar argument as before impljes- 0.
Using the extra assumptions (39) and (40x@ndh respectively, one can conclude that

2
onl

2
] h, ds = 0.

ho—_ 4
and soh,, = 0 implies thath = 0. O

We are now in a position to present the hybrid method. As dyre@entioned it combines
ideas of both iterative and decomposition methods. As itttter, it consists of two steps. In
the first step, one deals with the ill-posedness in the ggiitihe potential method of Kirsch
and Kress [8, 9, 10]. Given an approximatigmvith parameterization of the form (39), we
start by solving the far field equation

Foor = tus (43)

with respect tap. The operator on the left hand side is injective, howevett i@sa compact
operator, its inversion is ill-posed and therefore stahtlon is needed. For this, we suggest
using the well established Tikhonov regularization. $@itthe first step, with an approximate
solutiony to (43) we then obtain an approximation to the total field kyirsg

u=1u"+(K,—inS,)p IinR*1y. (44)

We now recall the parameterization to the boundary conditiperatorGG introduced
in (14). In order to satisfy the boundary condition, we needfind an updated
parameterization + h and an updated impedan¢e- 1 such that

G(z+h,(+p)=0.

Therefore, in a second step, as in the classical Newton methe solve the linearized
equation
T s Ol G (2 O =0 (45)
with respect tdh andy in a least squares sense. Our hybrid method then consiggeating
both steps iteratively until some stopping criteria is flddl.

We point out that this method does not need a forward solvesict iteration step which
reduces the computational costs. As we will see in sectidhi§,does not deteriorate the

G(z,()+
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reconstructions. Therefore the method combines the aalgastof both Newton type and
decomposition methods.

Remark 3 Note that the approximation of the total fieldgiven by (44) has a jump omn.
Therefore, at each collocation point considered for sav{d5) in a least squares sense a
choice has to be made whether to use the interior or exterdwes foru to compute the
Fréchet derivative ofs given in Theorem 3. Here we assumeagsriori knowledge that the
initial guessy lies inside the scatterer D and consider the exterior fieldcfamputations.

5. An Optimization Problem

Along the lines of section 5.4 in [4], we will now relate theldnd method with a minimization
problem as its theoretical background. The main differaadkat in [4] the analysis is done
for a single layer representation of the solution and tloeeesthe compactness of the single
and the double layer operators is a key ingredient for thelteesbtained. In this case, the
operator]” ruins this compactness. To avoid this problem one assumesnegularity on the
densityp.

We will stick to the restriction to star-shaped domainst tba

v = {z(t) = r(t)(costsint) | ris2r—periodic.

and consider only functionse U, where
U={recH0,27] |0 <r; <r(t) <r.tec]0,2r]}

for some fixedr;, r. € R™. We will also consider impedancese V' given by
V={C:y=R[CEH(y),0<((z) <(VreE}

for some fixed, € R*. For densities space we will considerc H%().
Assumingy > 3/2+a, for some fixedr > 0, we can restrict the operatafs, ., andB,
introduced in section 2 as operators mapping fifity) to L2(Q2) andL?(~), respectively.
We define the cost functiof(r, {, ¢;.) : U x V x H?(vy) — R{ given by

A(r, ¢, 03.8) = Bllelliraa,) + Aalr, €, 0) + Aao(r, ¢, o)
for 5 > 0, where

Ai(r, ¢, 0) = [[Faom — fllT2
for somef € L?*(Q2) and

Ao(r, ¢, 0) = || By, cp Jr9”%2(%)

for someg € L?(IR?), wherey, is the contour corresponding to
On the one hand, if = u,, and ifr and( are fixed, the minimization of

ﬂ‘ ‘(,0‘ ﬁ{q(%-) + A1 (Tv C7 @)

with respect top is equivalent to finding a regularized solution to (43) by hiokov
regularization with paramete?. On the other hand, i§ is the impedance boundary data
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and ¢ is kept fixed, minimizingAs(r, (, ) in terms ofr and ¢ can be seen as finding a
solution to (45). In this way this nonlinear optimizatioroptem is related with the inverse
scattering problem.

Given f and g, we define the pai(ro,(s) € U x V as being optimal if there
existsy, € H?(7,) such that

A(ro, Co, po; 8) = m(f)

where

m(f) = inf )A(RQ 03 3)-

reU,CeV,peHa(y

We will now present some results on this optimization proble

Theorem 6 Assume in addition t9 > 3/2 + « that alsol > 5/2 andp > 1/2. Then for
eachs > 0, f € L*(Q2) andg € L?(R?) there exists an optimal pair,() € U x V.

Proof. Assume the triplér,,, ¢, ¢,) to be a minimizing sequence, that is,
Tim A(rn, Gos on; B) = m(B).

As U is bounded, by the Sobolev compact embeddifg0, 2x] < C?[0,2x] one has
that U is compact inC?[0,2r]. Therefore, without loss of generality, we can assume
C?—convergence,, — r asn — oo. As U is closed, € U. In a similar way one can
assume&’—convergence of, — ¢ € V.

One also has that

asn — oo, SO ¢, Is bounded and by a similar argument using the compact
embeddingH'[0,27] c C%*[0,2x] one can assume that, — ¢. By continuity of the
functionalA in all its variables, one has the result, since

A(r, ¢, 93 8) = lim A(ry, Gu, on; 0) = m(f).00

We are interested in the behaviour of a solution to the miraton problem as the
regularization parameter goes to zero. One can state tlovfoy convergence result. Note
that, unfortunately, it does not imply convergence to a tsmtuof the inverse scattering
problem.

Theorem 7 Assume; > 3/2 + «, 1 > 5/2 andp > 1/2. Assume also thaf is the exact
far-field patternu,,, thatg is the exact boundary data= du’/dv + iAu’, that the solutiorl”
can be parameterized by some € U and that the exact impedancec V. Let(j3,) be
a null sequence and lét,, ¢,,) be the sequence of corresponding optimal pairs. Then there
exists a convergent subsequencérqf ¢,,) and every limit poin{r*, *) represents a curve
and impedance such that
ou®
ov

+i(*u® = —g on~*.
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Proof. From section 2, one knows that the solution to the direct lpralzan be represented
by a combined single and double layer potential via the syt of (10). Therefore with the
assumptions orf andg one has that

Ai(rp, A, 0) = Ao(, A, ) = 0.
Then

tim () = 0. (46)

since

m(ﬁ) < A(Trv A, @?ﬁ) = ﬁHQPH%q(w)'

The existence of a convergent subsequegg,), Ci(n))nen COMes from the proof of
theorem 6. For simplicity we will denoté = k(n). Let (r*,(*) be the limit point of
that convergent subsequence andufebe the solution to the direct scattering problem with
boundary condition

ou*
ov
Since(ry, (k) is optimal there exist&py ) ren such that

A7k, Cos iy Br) = m(Br)-

Let now u; be the combined single and double layer potential oyerapplied to the
density .. The potentiak,;, can be interpreted as the solution to the exterior scatferin
problem with boundary;, and impedancé,.

+i("ut=—g on~*.

From (46),
oup 2
B + iCu + g <m(Br) — 0 (47)
v L2()
and
||Foowk90k - f||i2(g) < m(ﬁk) —0 (48)
both ask — oo.

By (47) one concludes that, and all its derivatives converge td on compact sets of
the exterior domain (e.g. thm. 5.16 in [4]) and so the far fightterns ofu, also converge
to the far field pattern.’_ of u*. By (48) we conclude thai’, = f = u,, and sou® = u*
follows. This concludes the proof. O

6. Numerical Results

In this final section we describe some details on the numengaementation of the method.
For all the examples presented, we fixed the wave nurhberl and used as incident
field
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that is, a plane wave with directiahe ).

The synthetic far field data was obtained through the prodessribed in section 2. We
computed the far field pattern for one incident direction @e§uidistant points on the unit
circle 2 and considered it as the given data for the inverse scaitprisblem.

For the first step of the method, equation (43) was solved lhoriov regular-
ization, considering 40 points over the boundary For regularization parameter we
usedsd = 0.5" x 10~'°, wheren is the number of iterations.

For each iteration, in the second step of the method bothuhetibn« and its normal
derivativedu/0v have to be computed. This was done evaluating their reptasemintegral
formula considered in section 2 using the trigonometricdgature rules described in [12]
and in [4, Ch. 3.5]. The coupling parameter for the combiniegle and double layer
potential was chosen as= k, as suggested in [11]. For the tangential derivatives otayr
in the expressions faiw’ we used trigonometric differentiation, that is, we intdgted by a
trigonometric polynomial and took its derivative as appmaation.

As parameterization space for the radius function we censttl trigonometric
polynomials

Np Np
r(t) = Z aﬁp) cos jt + Z bgp) sin jt
j=0 j=1

of degreeN, = 5. For impedance space we have also used trigonometric polgao
N; N;
A(t) = Z agl) cos jt + Z by) sin jt
j=0 J=1

with Ny = 4. Numerical experiments showed us that better results wétaired
whennN, > N;.

As stopping criteria as residual associated with eachtiteratep the sum of the cost
functionsA;(r, (, ¢) + As(r, ¢, ) defined in the previous section in the following way. We
computed this residual for the current approximation. Then solved (45) to get the
candidate for a new approximation by a Levenberg-Marqusegt to improve on the stability
of the method. As regularization parameter for the Levegiddarquardt step we started
with 10~ and if the residual for the new approximation would be lathan for the current
approximation, we would increase the Levenberg-Marguaachmeter by a factor of 10 and
repeat the second step. Otherwise we would take the newxapyation and proceed with
the next iteration repeating both steps of the method. Theéhedewas stopped when the
regularization parameter for the Levenberg-Marquardb stecame equal ta0~t. In the
examples presented, the stopping criteria was achievedadfout 10 iterations.

We will show two examples of numerical reconstructions. A$rst example we
considered the domain parameterized by

W (t) = (2 + 0.3 cos 3t) {cos(t),sin(t)}, € [0,2q],
the impedance

AD(t) = 1.5 — cost + 0.5sin2t, t € [0,27]
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and the incident directiod® = (—1,0).
As a second example we used the peanut shaped domain paraeuklsy
2D (t) = 3v/cos? t + 0.25sin? ¢ {cos(t),sin(t)}, t € [0,2n],
the impedance
AD(t) =1 +sin®t, tel0,2n]

and the incident directiod® = (0, 1).

The reconstructions obtained can be seen in figures 1-4. Wesent in grey the
solution, in black the approximation and the dashed linkasiitial guess. For both examples
we used as initial guess a circle of radius and a constant impedange= 1.5.

Figure 3. Reconstruction without noise for the second example.

It is clear that the obstacle is usually better reconstdid¢tean the impedance, in
accordance with [14]. In comparison with [14], our recoustions do not deteriorate if the
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3

-0.5

Figure 4. Reconstruction witl2% noise for the second example.

amplitude of the impedance is increased nor if the impedackose to zero, especially if
these features occur in the illuminated area of the scattel@vever, problems might occur
when recovering maximums and minimums of the impedancesistiadow region, as shown
in the reconstructions with noise. As expected, betternsiractions were obtained when the
illuminated area was greater or equal to the shadow one.
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