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Universidad Jaume I, 12071 Castellón, Spain

e-mail: abeltran@mat.uji.es

and
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Abstract

It is shown that if the set of conjugacy class sizes of a finite group G is
{1, m, n, mn}, where m, n are positive integers which do not divide each
other, then G is up to central factors a {p, q}-group. In particular, G is
solvable.

1. Introduction

It is known that the structure of a finite group is strongly controlled by
the set of its conjugacy class sizes. For example, groups with two class sizes
are nilpotent and groups with three class sizes are solvable. However, in gen-
eral groups with four class sizes are not solvable, and even may be simple, as
PSL(2, 5). The authors showed in [2] and [3] that if the set of conjugacy class
sizes of a group G is exactly {1,m, n,mn} with m and n realtively prime in-
tegers, then G is solvable and in fact, it is nilpotent and m and n are prime
powers. A. Camina and R. Camina have recently proved in [5] that groups hav-
ing four class sizes such that two of them are coprime numbers are also solvable.
Furthermore, the authors determine in [4] the structure of such groups.

∗Mathematics Subject Classification: 20E45, 20D10. Finite groups. Conjugacy class sizes.
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An evident question about solvability arises when we eliminate the coprime
hypothesis and we are interested in studying which arithmetical conditions on
groups with four class sizes yield their solvability. On the other hand, there
seems to exist certain parallelism between the results obtained on the group
structure from the set of its conjugacy class sizes and the results obtained from
the set of its character degrees. In [10], groups whose character degrees are
{1,m, n,mn} are proved to be solvable. Our main result in this paper shows
the same conclusion when the set of class sizes of a group G is {1,m, n,mn}
where m and n are integers such that they do not divide mutually. In fact, we
prove something else

Theorem A. Let G be a finite group whose class sizes are {1,m, n,mn},
where m,n are positive integers which do not divide one to another, then G is
up to central factors a {p, q}-group. In particular, G is solvable.

We believe that the result is true for arbitrary integers m and n, but we
have not been able to prove it with the techniques we employ here.

Throughout this paper all groups are finite. If x is any element of a group
G, we denote by xG the conjugacy class of x in G and |xG| will be indistinctly
called the conjugacy class size of x or the index of x in G. If π is a set of primes
and G is a group, then Gπ will denote a Hall π-subgroup of G. All further
unexplained notation is standard.

2. Preliminary results

We state the necessary results for the proof of our main theorem. The first
result is elementary.

Lemma 1. Let G be a finite group. A prime p does not divide any conjugacy
class size of G if and only if G has a central Sylow p-subgroup.

Proof. See for instance Theorem 33.4 of [8]. 2

We will make use of the following interesting result due to Camina in the
particular case in which A0 = A is exactly the centralizer of an element of G
which moreover is both abelian and a maximal subgroup in the set of all proper
centralizers in G.

Lemma 2. Let G be a finite group with a subgroup A0 such that A0 is a
characteristic subgroup of A, a subgroup of G, such that every element of A0

has centralizer A or G. Let π be the set of primes dividing |A0/A0 ∩Z(G)| and
assume |π| > 1. Then either

(i) NG(A)/A is a π′-group or
(ii) |NG(A)/A| = p for some p ∈ π.
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Proof. This is Proposition 1 of [6]. 2

The following result determines some properties of the structure of groups
having exactly two conjugacy class sizes of p-regular elements for some prime p,
that is, elements whose order is a p′-number.

Theorem 3. Suppose that G is a finite group and that {1,m} are the p-
regular conjugacy class sizes of G. Then m = paqb, with q a prime distinct
from p and a, b ≥ 0. If b = 0 then G has abelian p-complement. If b 6= 0, then
G = PQ × A, with P ∈ Sylp(G), Q ∈ Sylq(G) and A ⊆ Z(G). Furthermore, if
a = 0 then G = P ×Q×A.

Proof. This result can be obtained as a consequence of two papers by A.
Camina (see [7] and [?]). An easier proof can be found in Theorem A of [1]. 2

Lemma 4. Let K�G, where G is an arbitrary finite group and K is abelian.
Let x be a noncentral element of G, and let y = [t, x] for some element t ∈ K.
Then |CG(y)| > |CG(x)|, and so the G-class of y is smaller than that of x.

Proof. This is exacty Lemma 1 of [9]. 2

Lemma 5. Let x and y be a q-element and a q′-element respectively of a
group G, such that CG(x) ⊆ CG(y). Then Oq(G) ⊆ CG(y).

Proof. It is enough to apply Thompson’s Lemma to the action of 〈x〉 × 〈y〉
on Oq(G). 2

3. Proof of the main result

In order to prove Theorem A, we will first prove the following particular
case. In the following we will write Z to denote the center of a group G.

Theorem 6. Let G be a finite group whose class sizes are {1, pa, n, pan},
where pa does not divide the positive integer n, then G is up to central factors
a {p, q}-group with p and q two distinct primes.

Proof. Notice that p can be assumed to divide n, otherwise, the result follows
by the main theorems of [2] and [3].

We assume first that there are no p-elements of index pa. Notice that the
centralizer of any element of index pa is a maximal subgroup among all central-
izers, so by considering the primary decomposition we can assume that there
exists some q-element x of index pa for some prime q 6= p. If y is a q′-element of
CG(x), then CG(xy) = CG(x) ∩CG(y) ⊆ CG(x), and since pa does not divide
n, then y has index 1 or n in CG(x). If there exists any q′-element of CG(x) of
index n, then n is the product of at most two prime powers by Theorem 3, say
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n = qbrc. In this case, necessarily r = p, and then G is a {p, q}-group (up to
central factors by Lemma 1) and the proof is finished. If there is no q′-element in
CG(x) of index n, then we can write CG(x) = Qx×Hx, with Hx an abelian q′-
complement of CG(x). As p divides n, it follows that pa < panp ≤ |G : Z|p and
this yields the fact that p divides |CG(x)/Z|. Hence, there exists a p-element
in CG(x), say t, such that CG(x) = CG(t), so t is a p-element of index pa and
this is not possible.

Suppose now that there is a p-element z of index pa. Then, if y is a p′-element
of CG(z), we have CG(zy) = CG(z)∩CG(y). As in the above paragraph y has
index 1 or n in CG(z), and if there are p′-elements of both indexes 1 and n
in CG(z), it follows that n = paqb by Theorem 3. By Lemma 1, we conclude
that G is a {p, q}-group (or a p-group if b = 0) up to central factors. Suppose
now that every p′-element of CG(z) has index 1. Accordingly, we can write
CG(z) = Pz ×Hz, where Hz is an abelian p-complement. As CG(z) has index
pa in G, we deduce that G has abelian p-complements, so in particular G is
solvable as it is the product of two nilpotent subgroups. Now, let us consider
Op′(G). Since Op′(G) is an abelian normal subgroup of G, we can apply Lemma
4 and get |CG([w, t])| > |CG(w)| for every t ∈ G and for every w ∈ Op′(G)
which is noncentral in G. Then, the hypotheses of the theorem imply that
[Op′(G), G] ⊆ Z. Moreover, by coprime action, we have Op′(G) = COp′ (G)(P )×
[Op′(G), P ], for any Sylow p-subgroup P of G. Thus, [Op′(G), P ] = 1 and, as
the p-complements of G are abelian, we deduce that necessarily Op′(G) ⊆ Z, so
F(G) = Op(G)×Zp′ . Now, if y is a p′-element of CG(z) which is non central in
G, then CG(z) = CG(y). By applying Lemma 5, we obtain y ∈ CG(Op(G)) =
CG(F(G)) ⊆ F(G), so y ∈ Z. Consequently, the p-complements of G lie in Z,
which is a contradiction. 2

Now, we are ready to prove our main result.

Proof of Theorem A. By Lemma 1, we can certainly assume that π(G) =
π(m) ∪ π(n). The proof is divided into 4 steps.

Step 1. If x has index m, then CG(x) is maximal among all centralizers.
Also, either CG(x) is abelian or n = paqb for some primes p and q, and CG(x) =
PxQx × Tx, where Px and Qx are p and q subgroups respectively, and Tx is an
abelian {p, q}′-group. The same properties can be assumed for all elements of
index n.

Suppose that x has index m, and hence it can be assumed to be a p-element
for some prime p. Notice that CG(x) is a maximal subgroup among all cen-
tralizers. Since every p′-element of CG(x) has index 1 or n in CG(x) we have
two possibilities as we have already explained in the proof of Theorem 6: either
CG(x) = Px ×Hx with Hx an abelian p′-subgroup or n = paqb for some prime
q and CG(x) = PxQx × Tx as described in the statement. We will show that
the first possibility also yields to the statement of this step. If Hx ⊆ Z, then
|G : Z| = mpd and since any class size divides this index, we deduce that n is a
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power of p, so our claim is proved. Therefore, for some prime q we can take some
noncentral q-element t ∈ Hx and certainly CG(x) = CG(t). But this implies
again that any q′-element of CG(t) has index 1 or n. Hence, we have either
CG(t) = Qt ×Kt with Kt an abelian q-complement, and accordingly CG(x) is
abelian, or n is again a product of two prime powers, as wanted.

Now if y has index n then CG(y) is maximal among all centralizers as well
and the assertion in the statement of the other property for CG(y) follows
exactly as for CG(x).

Step 2. We can assume that there exists some element of index m or n such
that its centralizer is not abelian. We can fix a q-element x of index m such
that CG(x) is not abelian and CG(x) = PxQx × Z{p,q}′ , where Px and Qx are
p and q subgroups and such that x is a q-element. Moreover, n = paqb.

Suppose that all elements of index m and n have abelian centralizer and
put A = CG(x) and B = CG(y) for some elements x and y of index m and n
respectively. If u ∈ A∩B, then A,B ≤ CG(u), whence |G : CG(u)| < min{m,n}
and so u ∈ Z. Therefore, A ∩B = Z. Then

|A/Z| = |A/A ∩B| = |AB|/|B| ≤ |G : B| = n

and so
|G/Z| = |G : A||A/Z| ≤ mn.

But this certainly contradicts the fact that G has elements of index mn
Thus, we will assume that there exists some element in G of index m or n

whose centralizer is not abelian. By the symmetry of the hypothesis, we can
fix some x of index m. By Step 1, we have CG(x) = PxQx × Tx, where Px and
Qx are p and q subgroups, and Tx is an abelian {p, q}′-group. Furthermore,
n = paqb. We prove that Tx must be central in G. In fact, if there exists some
noncentral r-element t ∈ Tx for some prime r 6= q, p then, since CG(x) ⊆ CG(t),
they are equal by the maximality. Also, every r′-element of CG(t) has index
1 or n. Since r is not a divisor of n, by Theorem 3 we obtain that n is either
a power of p or q, and then the proof of the theorem finishes by Theorem 6.
Furthermore, by using the maximality of CG(x), we can also assume without
loss that x is has prime power order, and without loss, for instance, that it is a
q-element.

Step 3. If z is an element of index mn, then CG(z) = PzQz ×Z{p,q}′ , where
Pz is a p-subgroup and Qz is a q-subgroup of CG(z) both noncentral in G, and
Z{p,q}′ denotes the {p, q}-complement of Z. As a consequence, we have that
both p and q divide |CG(y)/Z| for every element y of index n.

Let z be an element of index mn. If r divides |CG(z)/Z| and r 6= p, q,
then |G/Z|r > (mn)r ≥ mr, but mr = |G/Z|r by Step 2. Thus we can write
CG(z) = PzQz ×Z{p,q}′ , with Pz a p-subgroup and Qz a q-subgroup of CG(z).
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We will prove now that both Pz and Qz cannot be central in G. Suppose
that Qz is central in G. Since p divides |CG(x)/Z|, where x is the element
fixed in Step 2, there exists some p-element in CG(x) \ Z. Let us take any
noncentral p-element, say w, in CG(x). Notice that wx cannot have index
mn, otherwise |CG(wx)/Z| = |CG(z)/Z| is a p-power and this is not possible
because x ∈ CG(wx) \ Z. Thus CG(wx) = CG(x) = CG(w), and every q′-
element, so in particular every p-element, of CG(x) is central in CG(x). Hence
CG(x) = Px × Qx × Z{p,q}′ with Px abelian. Likewise, if t is a q-element of
CG(w), similarly we get CG(tw) = CG(w) = CG(t) and CG(w) = CG(x) has
an abelian Sylow q-subgroup too. This shows that CG(x) is abelian, which is a
contradiction.

Observe that Px is not central, otherwise Step 2 would imply that n is a
prime power and the theorem is true by Theorem 1. Now let t be a p-element
in CG(x) \ Z. If Pz is central in G then, arguing as in the above paragraph,
we have that xt cannot have index mn and so CG(xt) = CG(t) = CG(x). We
deduce again that CG(t) = CG(x) is abelian, a contradiction, so the step is
proved.

As we know that n and m are not coprime numbers, from now on we will
assume that p is a common prime of m and n (we argue similarly if the common
prime is q).

Step 4. G is a {p, q}-group.

Let y be an element of index n. We are going to show that we can assume
that CG(y) is not abelian. Suppose that CG(y) is abelian. First, we will
assume that CG(y) = NG(CG(y)) and we will get a contradiction. We know
that p divides |CG(y)/Z| by Step 3. Moreover, as CG(y) is abelian and by the
maximality of this centralizer, there exists some p-element t ∈ CG(y) such that
CG(t) = CG(y). Since p divides m and n, we have that the Sylow p-subgroups
of G are not abelian. Let P be a Sylow p-subgroup of G such that t ∈ P and
notice that Z(P ) = Zp. We can take z ∈ Z(P/Zp) and then zt = tz. Whence
z ∈ NG(CG(t)) = CG(t). Thus, z ∈ CG(y). By the maximality of CG(y) and
using the fact that CG(y) is abelian again, we conclude that CG(y) = CG(z).
However, P ⊆ NG(CG(z)) = CG(z), but this is not possible, as wanted.

Therefore, by arguing as in the above paragraph, we can take a p-element z ∈
NG(CG(y))\CG(y), whence p divides |NG(CG(y))/CG(y)|. However, by using
Lemma 2 and taking A = A0 = CG(y) we obtain exactly |NG(CG(y))/CG(y)| =
p.

On the other hand, we know that p and q both divide |CG(y)/Z| by Step 3.
Since q divides n, if Qy is the Sylow q-subgroup of CG(y), then Qy < Q for some
Sylow q-subgroup Q of G. If v ∈ NQ(Qy) \ Qy, then Qy ⊆ CG(y) ∩ CG(yv).
As CG(y) is abelian, we deduce that CG(y) = CG(yv) = CG(y)v. This means
that v is a q-element lying in NG(CG(y)) \CG(y), but this cannot occur.

Thus, CG(y) is not abelian, as wanted. By using Steps 1 and 3, we conclude
that m = pcqd. Consequently, m and n are {p, q}-numbers and G is a {p, q}-
group. 2
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