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Abstract — Weights restriction is a well-known tech
nique in the DEA field. When those techniques are gglied,
weights cluster around its new limits, making its ealuation
dependent of its levels. This paper introduces a newap-
proach to weights adjustment by Goal Programming teh-
niques, avoiding the imposition of hard restrictiors that
can even lead to unfeasibility. This method resultsn mod-
els that are more flexible.
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I.  INTRODUCTION

Data Envelopment Analysis (DEA)is a mathemati-
cal programming based technique to evaluate ttee rel
tive performance of organisations. While the magm a
plications have been in the evaluation of not-forfip
organisations, the technique can be successfufiiieab
to other organisations, as a recent evaluatiorank$ in
India has demonstrated [1].

With this paper, we have two objectives in mindeTh
first one is to present DEA-Data Envelopment Anialys
a technique which may have useful applications amyn
evaluation contexts, namely when assessing not-for-
profit organisations. In addition to allowing thenking
of the organisations traditionally termed decision-
making units, DEA also creates the conditions te im
prove performance through target setting and raleeh
identification. We also briefly describe the tedue of
deleted domain, also known as Superefficiency.

The second objective is to introduce an entirely ne
way of adjusting multipliers by means of Goal Pro-
gramming Techniques. This adjustment is a much more
general way of dealing with the incorporation obge-
nous structure preferences so far relying only éghts
restriction techniques, which, in our point of viéeads
to the concentration of the weights in its upped an
lower limits.

DEA is suited for this type of evaluation because i
enables results to be compared making allowanaes fo
factors[2]. DEA makes it possible to identify efficient
and inefficient units in a framework where resudre
considered in their particular context. In additi@EA
also provides information that enables the comparaf
each inefficient unit with its "peer group”, thattd say,

a group of efficient units that are identical witle units
under analysis. These role-model units can thestumd

ied in order to identify the success factors théitep
comparable units can attempt to follow. Thanassoeti

al [3] argue that DEA is preferable to other methods,
such as regression analysis, which also make gilples

to contextualize results.

The present paper is structured as follows. The nex
section describes the development and fields ofiGpp
tion of the technique, while section Il introductse
DEA models followed by a numerical example. In sec-
tion 1V, we present Superefficiency evaluation, @a
tension of DEA also known as deleted domain. Sectio
V and VI deal with the graphical solution in theiglds
space and makes a very short description of thghtgei
restrictions technique respectively.

In section VII, a new concept of multiplier adjust-
ment is introduced and exemplified through a smath
set.

In section VIII, a case with artificially generatddta
is solved to highlight the potentialities of thechnique.
This paper ends up with a final section with thaato-
sions and directions of future work. Readership not
familiar with DEA, may find the brief introducticio the
method presented below useful, but for those wheh wi
to follow the matter further there is a good revieiv
DEA in Boussofiane et §#].

Il.  HISTORY AND APPLICATIONS OF DEA

DEA is a mathematical programming technique pre-
sented in 1978 by Charnes, Cooper and Rhodes [5],
although its roots may be found as early as 199+am
rel’s seminal work [6]. This technique is usualiyro-
duced as a non-parametric one, but in fact, isrestthe
assumption of linearity [7] and for the original dets
even in the more stringent assumption of propoation
ity.

Its application has been focused mainly on the effi
ciency assessment of not-for-profit organizaticgiace
these cannot be evaluated on the basis of tradition
economic and financial indicators used for comnagrci
companies.
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The first application of DEA was in the field of &d
cation, in the analysis of tHerogram Follow Through
conducted in the USA, in the late seventies [8hc&i
then, it has been used to assess efficiency irs aaech
as health [9, 10], prisons [11], courts [12], umsites
and many other not-for-profit sectors. NowadaysADE
can be seen to have spread to other fields su€haasit
[13], Mining [14], Air Transportation [15], and ewe
Banking and Finance [16].

However, many applications belong to the field of
education and range from primary education [17, 8]
secondary [19, 20, 2/and university levels [22].

In Data Envelopment Analysis, the organizational
units to be assessed should be relatively homogeaneo
and were originally termed Decision Making Units A
the whole technique is based on, the comparis@acii
DMU with all the remaining ones a considerable darg
set of units is necessary for the assessment todam-
ingful. We will assume that each DMU produces N
outputs by means of M inputs.

[ll. DEA FORMULATIONS WITHA NUMERICAL
EXAMPLE
In DEA, efficiency ) of a specific decision mak-
ing unit (DMUj) is defined as the ratio between a
weighted sum of its N outputspf and a weighted sum
of its M inputs Xnj', a natural extension of the concept
of efficiency used in the fields of physics and ieegr-
ing [23]:
N
vy
h=3" )
2 H X
meL mj' M
When assessing a set of J organisations, whgfe X

stands for the Fll:l] input of the Eh DMU, with a similar
meaning for Yy, the weightgumj’ andvnj, in expres-
sion (1), are chosen for each j DMU under evahrati
as those that maximize its efficiency as definechpy
Several constraints have to be added to the maximiz
tion problem:

. The strict positivity [24 of the weightgumj’,
vnj (also known as virtual multipliers or simply as
“multipliers”).

. For scaling purposes, all J DMUs under
analysis must have efficiencies not exceeding aeeal
value, typically one or 100%, as is usual in engjire
definitions of efficiency.

*A third kind of restriction has to be included, cn
otherwise this linear fractional program would gligln
infinite number of solutions. In fact, if a set weights
Hmj’, Vnj’ returns the optimal solution, so would

kumj’.kvnj'. Making the denominator, in Expres-

sion (1), equal to one or 100%, circumvents thisasi
tion.

Therefore, we have to solve the following maximiza-
tion problemfor each oneof the J DMUs under analy-
sis:

Max h,-' == 2)
D HX
memj M
st pmj >0 =1..M 3)
Vpj >0 n=1...N (4)
N
2.V
h, =4 o<1 j=1.J (5)
D UX
m=1Mm mj
M
Dux =1 (6)
m=1mj'mj‘

This Fractional Linear Program can be solved by
means of the Charnes and Cooper transformatioh [25
which yield the following Linear Program:

N
Max fy.= D vy @)
=1 nj
M
st Y pUx =1 (8)
e mj ™
N M
dvys > ux j=1... 9)
n=1 nj’ nj m=1m' mj
Hmj 2€>0 m=1...M (20)
vnj’ >2e>0 n=1...N (12)

The problem above is known as the multiplier prob-
lem, since its unknowns are the weights, whichuste
ally lower bounded by a small quant&y(Expressions:
10-11) so that all Inputs and Outputs are consdi@re
the evaluation [24 even if with a minor weight, set in
all the following formulations equal to 0

The dual of this problem, which we shall call thre e
velopment problem, provides important information
about economies that could be achieved in allripats;
it also indicates which efficient units the inefint unit
being assessed should emulate. Those efficiers ardt
usually referred to as the reference set or pemrpgof
the unit under evaluation.

To illustrate the Data Envelopment Analysis tech-
niqgue, an example is introduced in Table I, with 12
DMUs producing two Outputs ¥and Y2 from a single

Input X1, under the assumption of constant returns to
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scale, which simply means that if one doubles tipaits
of any unit it would be expected that its Outputsuid
also double. In algebraic form, this can be statedf x
yields Outputs ythen Inputs kxshould produce Outputs

kyj .

Table I- Outputs normalised by Input X1

DMU x1 yl y2 yl/x1] y2/x1]
1 4.0 2.0 28.0 .500 7.0D0
2 5.0 1.0 22.5 .200 4.5P0
3 6.0 6.0 12.g 1.000 2.004
4 10.0 8.0 60.0 .80( 6.0p0
5 11.0 7.0 16.5 .636 1.5p0
6 8.0 6.0 12.9 .750 1.50
7 9.0 7.0 6.0 778 .66}
8 5.0 3.0 30.0 .600 6.0D0
9 5.5 4.4 5.5 .800 1.000
10 8.0 4.0 72.0 .500 9.0p0
11 10.0 2.0 20.( .200 2.0p0
12 8.0 1.0 4.0 125 .500

In this simple example, we can normalise the Ougtput
by the only Input and plot them in the plane. Tikialso
equivalent to consider that we are dealing withoa-c
stant input of 1. This way we will be working ineth
plane defined by x=1 in the 3 dimensional one irtpuat
outputs space.

From Figure 1 it is easy to understand the reémon
naming this technique Data Envelopment Analysis; in
fact each DMU is analysed against the envelopédef t
most efficient units. For instance, the efficiemfyDMU
8 is 0.857 (see Table II). This means that it coaltlice
its input to 85.7% of its current value reachirgtérget,
Ci 8 (where Ci stands faomposite unit under minimi-
sation of inputs), which is the same as for DMU 11
except that, for the latter, a reduction to 28.60K gs
current level of inputs would be necessary for tigU
to become efficient, since its efficiency is onl286.
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Figure 1- Efficient frontier and radial projections for ineff
cient units.

Although the results could be obtained graphically,
we present in table Il the results obtained by stay-
dard linear optimisation software.

Table II- Results for the multiplier problem

DMU 1 Vi V2 Efficiency
1 0.250 0.179| 0.018 0.857
2 0.200, 0.000| 0.022 0.500
3 0.167| 0.152| 0.008 1.000
4 0.100, 0.091| 0.005 1.000
5 0.091] 0.083| 0.004 0.647
6 0.125/ 0.114| 0.006 0.750
7 0.111 0.111| 0.000 0.778
8 0.200, 0.143| 0.014 0.857
9 0.182] 0.182| 0.000 0.800
10 0.125 0.089| 0.009 1.000
11 0.100 0.071| 0.007 0.286
12 0.125 0.114| 0.006 0.136

IV. SUPEREFFICIENCY / DELETED DOMAIN
EXTENSION

We arrive at the concept of Superefficiency by al-
lowing the efficiency of the DMU being assessed#o
greater than unity. This is achieved by removing th
corresponding constraint from the set of J constisan
Expression (9). This is the reason why this tealmits
also known as deleted domain. The Superefficiemty o
affects units deemed as efficient, as the remowed c
straint is not binding for the inefficient unitsnee their
efficiency is, by definition, less than unity.

This extension to DEA was first published by Ander-
sen and Petersen [R@&nd its use is strongly recom-
mended by the authors as a consequence of itsisitypl
and usefulness.

By using Superefficiency, it is possible to rank al
units, even the efficient ones that by standard DEA
techniques would all be rated as equal - theiciefficy
having reached the top value of 100%.

For the example presented in the previous sedtien,
Superefficiency for the 3 efficient DMUs would be a
presented in table .

Table Ill- Superefficiency scores for the efficient units

Unit Superefficiency
Unit 4 107.50%
Unit 3 125.00%
Unit 10 128.57%

Units 3 and 10 are efficient and robust, while any
small increase in the Input or decrease in the @sitpf
Unit 4 may make it inefficient.

An important additional benefit from this extension
the DEA model is that the set of weights is uniguel
determined for the efficient units in all practiegdplica-
tions [21].
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V. GRAPHICAL SOLUTION

The linear program defined by expressions (7)
through (11) can be solved by the traditional giegih
method if we have to deal with only 2 variables.

To reduce the problem from 3 to 2 variables, wé wil
exploit the fact that we assume to be working uner
constant returns to scale assumption and so weedle
all data to unity input level, so that our new dsa will
be the following one:

DMU Xnl Ynl=yl/x1| Yn2=y2/x1
1 1 0.500 7.000
2 1 0.200 4.500
3 1 1.000 2.000
4 1 0.800 6.000
5 1 0.636 1.500
6 1 0.750 1.500
7 1 0.778 0.667
8 1 0.600 6.000
9 1 0.800 1.000

10 1 0.500 9.000
11 1 0.200 2.000
12 1 0.125 0.500

Table IV- Normalized data to unity input level

Since x;=1 its multipliery,;=1 and we have to solve
the linear program just for,; andv,,, we will illustrate
the results from the software EMS developed by Elolg
Scheel that uses an interior point solver.

Its results are presented in figure 2
D:\uhjdvelems\in\JorgeCCRxyly2.xls CRS_RAD_IN

{51 (45}
DMU Score [ «1 W (w1 {OHw [p2 {DHW} | Benchmarks ﬂ }{” »l v2
oy |40}
] F1 | @5 71%|) 00000000 071428571 0.07142857 4(024) 10[062) 000 000 000
[ 2| F2 | 50.00% 1.00000000 0.00000000 0.11111111 10/(0.50) 000 0.05 0.00
E F3  12500% |.00000000 1,25000000 0.00000000 5
E F4  107.50% .00000000 0.67500000 0.06250000 5
[ 5| F5 | Gd4.64% 100000000 0.90905091 0.04545454 3(0.59) 4(0.05) | 000 0.00 0.00
[ 5| F& | 7500% 1 00000000 0 93615962 0.00052018 3 (0 75) noo 000 noo
K F7 | 77.680%)1.00000000 1,00000000  0.00000000 3 (0.78) 000 0.00 089
B F8 | 8571%1.00000000 0.71428571 0.07142857 4(057) 10(0.29) 000 0.00 0.00
E F9 | 80.00% 1.00000000 1.00000000  0.00000000 3 (0.80) 000 0.00 060
o] F10 12857% |.00000000 0.00000000 0.14285714 4
1] F11 | 2857%/ 00000000 0 71428566 0.07142657 4(019) 10(010) 000 000 000
12 F12 | 1364% 100000000 090909051 | 0.0484B455; 2[00 4(0.05) 000 0.00 0.00

Figure 2- Results obtained with the software EMS.

We can confirm the correctness of our results, hame
thatp,;=1 and that the values obtained for the efficiency
are equal to those previously presented in table Il
It is worthy to note that DMUs F3, F7 and F9 place
minimal weight on Output2 while DMUs F2 and F10
choose to ignore Outputl. This kind of problem gs--u
ally solved by a technique known as weight regtrist
in the sense of avoiding such a flexible set ofgivs
and incorporating value judgments.

By solving graphically, we get the graph shown in
figure 3 where we have 12 line segments, one foh ea
constraint. The feasible region is the intersectibthe
twelve (lower) half planes containing the origin.is

clear that inefficient units like F12 correspondron-
binding constraints and that the objective functien
parallel to the respective DMU constraint.

16

Weights Space

0 1 2 3 4 5 6 7 8

Figure 3- Restrictions imposed by the 12 units in the Weights
Space

For the sake of clarity, we will expand the prewou
picture just to the efficient units, in order tahilight the
feasible region defined by the pentagon ABCDO (i@ t
clockwise direction). This feasible region is alwahe
same for inefficient units for the efficient onésde-
pends on the kind of model we are working with.

In the case of the traditional model the feasiale
gion is always identical, in the deleted domairecadso
known as Superefficiency, the constraint relatedhto
DMU being analysed is deleted, and even a nonieffic
Unit can pop-up in its reference setJ2this is the case
of unit 10. In fact, its reference set is unit hce the
feasible region on the weights space is EFCDOH@ t
clockwise direction) and the objective functiorparal-
lel to the line segment 10, where it takes theyuwaiue.

0.15

0.1

0.05

0@-8 (b=
0 0.5 1 1.25 15

Figure 4- Detail around the origin of the constraints imposed
by the 12 units in the Weights Space

38



VI. WEIGHTS RESTRICTIONS appended to the objective function scaled by ateohs
To avoid a given DMU “to choose” a rather unbal- k.

anced set of weights (as is the case of units E2F40 N —
which ignore Output 1 while F3, F7 and F9 ignorg-Ou Max Gj‘ = z,}f Y_ kxP(d) 12)
put 2), it is current practice to place some restms on n=1 " M
the weights or in the virtual inputs/outputs. st Gh=Hmj’ -Om m=1..M (13)
This is a usual way to incorporate judgment values 0h=Vnj’-On n=1...N (14)
and increase the discriminating potential of theleto M
Restrictions on weights can be divided in two broad z MU X = (15)
categories: Relative and absolute weights resiristi m=zmj’ ™
As far as we know, only linear weights restrictidrare N M
been considered in the literature, thus we mayepites ZV, Z,UX =1... (16)
the weights restrictions in matrix form as follows: n=t Mo ey i ™
Bu' +BV' <C Mmj 2€>0 m=1..M 17
WhereB* O 0" andBY O O *". vpj 2€>0 n=1...N (18)
Dimensionc refers to the number of constraints. We will illustrate this technique with a simple exa

If C#0 we refer to them as absolute WelghtS restric- pie Originating from the previous data set with 12
tions. The absolute weights restrictions are tyfgica  pmuUs.
imposing a range for an individual weight. This ap- The preferred location for the weights is aroune th

proach was developed by Dyson and Thanassoulis in |ine 0. &,,=4v,,. We are not interested in justifying this
1988 [27] and generalized by Roll et al in 1991][28

Virtual weights restrictions introduced by Wong and
Beasley in 1990 [29] belong to this category also.

If C=0 we speak about relative weights restrictions
since if ly,vo is a feasible solution so ispk, kvo. The
class of relative weights restrictions includes,oam
others, the assurance region models of Type | duyll
Thompson et al in 1986 [30] and 1990 [31] respedtyiv

choice, nelther other details like the value foe ton-
stant k, or the explicit kind of penalizing funatiowe
also remind that our goal is just to exemplify aywa
adjust weights in a smoother way than the usuad har
restriction techniques do.

Therefore, the Global objective function will tatkes
following form:

N
. _ ,
i;é/\g/)e[llggis cone ratio DEA models from Charnes.ghal ij — Z,}J/ y - 2% (O'4V1_4V2) (19)
. o
We can say that the most general approach is to re- TR, Fenaliy (Strictly Convey
strict the weights to belong to a closed set, béiray B Y —
polytope or a polyhedral cone. ~kxP(d) [IF - Strictly Concave

We will now illustrate the graphical solution fdret

VII. WEIGHT ADJUSTMENT BY GOAL PROGRAMMING evaluation of Unit 10 under the constant returnscale
With standard DEA, it is common that many weights assumption and deleted domain technique.

are null in the optimal solution. One way to avitis

situation is to place restrictions on the weiglbtst, in * |I:||0 1-0. e|3|:|(3\6| 1 151.1_1!6 @21 018
this case, weights typically used to cluster in tipper 4< 01.6-2. 1|:|2-1 26 I 0.14
or lower limits. By including some non-linear buire .
vex penalty in the objective function, penalizingvid- \ A N 0.12
tions from a preference region in the weights spads \ p =LJo '
possible to have a more uniform distribution of the \;, \\ o1
weights. *e |% '
This can be accomplished by the model, described by ﬁo\( <G
expressions 12 through 18 where G stands for Global \',“\'}%\Léﬂg 574 308
objective function,P(d) is a penalizing function of the .;\ . :@ A 0.06
deviations ¢ and ¢ of the weights from the exoge- \\& \ ".‘\
nously imposed goals,gnd g. ] e 10.04
The penalizing function will always be a convex pne L__,_:iQQL.
for avoiding difficulties with local minima,; it isvorth ". ~9.02
recalling that since the feasible region is conaed the ‘.4
symmetric of the objective function is also convex, s, 0

local maximum is also a global maximum [33]. The 0O 02 04 06 08 1 12 14 1.6
definition of efficiency remains unchanged, so ttim$

model just adjusts multipliers by a penalizing fiimic _ _ i _ _
Figure 5- Graphical solution for the evaluation of Unit 10

39



In figure 5, the dotted lines correspond to comstsa
related to units 1, 3 and 4. The solid curves rsmrethe
isoquants of the Global objective function for G&0.
1.1, 1.6 and finally 2.1.

We can also see 3 solid straight lines:

1. The isoquant for L=100.00% that coincides
with the constraint that was removed be-
cause of the deleted domain technique.

2. The isoquant for L=114.06% as determined
by the exact quadratic programming solu-
tion shown in table V.

The isoquant for L=128.57% that equals the
score value from the Superefficiency tech-
nigque depicted in figure 2.

The optimal solution of the Superefficiency CCR
model is the basic solution defined by the inteiisacof
the constraint relative to unit 1 apg>¢e > 0. It is inter-

esting to note that an inefficient unit (DMU 1)dsfin-
ing the optimal solution for an efficient one, @tféirst
published in 1994 [21] by Santos and Themido.

The solution of the quadratic program can be ob-
tained in a rough manner by the graphical method as
exemplified in figure 5, or by the results showntlie
line corresponding to DMU 10 in Table V.

Since the constraint relative to DMU 4 is the only
binding one its Lagrange multiplier is the only aran-
zero (\4=1.000).

The optimum value for the objective function is
G=1.070, which occurs at the pont=0.51v,=0.0982,
deviating d=-0.188 from the preferred linear rielat
between weights, as a result we get the final védue
efficiency of L=114.06%. This value is lower tharet
score obtained by the EMS software, since this new
result has multipliers that are more desirabldepoint
of view of the incorporated weights preferencedtrte,
by the preferred linear relation between weights.

Divi|v]| G| d L A3 | M0
1| .71|.0714 0.85F 0.000 85.71% .0pD24|.619
2| .68|.0732 0.465-0.020 46.59% .00MO00|.464
3| .92|.0434 0.934 0.196 101.15% .0D86|.000
4| .87|.0625 1.055 0.100 107.50% .24500|.790
5| .83|.0547 0.589 0.117 61.60% .0fM56|.000
6| .87|.0504 0.686 0.147 72.97% .00064|.000
7| .90|.0455 0.67L 0.182 73.76% .0[G159.000
8| .71|.0714 0.85F7 0.000 85.71% .0(M57.286
9| .90|.0459 0.707 0.119 77.04% .0pM64].000
10| .51|.0982 1.07D-0.188 114.06% .00N00|.000
11| .71|.0714 0.286 0.000 28.57% .00M19|.095
12 .73|.0692 0.125 0.016 12.60% .00M13|.000

Table V- Exact quadratic programming solutions

The objective function depends on the DMU being
evaluated, in the previous picture DMU 10 was ainsi
ered; now we will show the graphical solution faviD
3.

0.16

1.35
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0.14

Ul
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Figure 6- Graphical solution for the evaluation of Unit 10

In figure 6 the dotted lines correspond to constgai
related to units 10 and 4. The solid curves remtette
isoquants of the Global objective function for G&4).
0.95, 1.35 and finally 1.75.

We can also see 2 solid straight lines:

1. The isoquant for L=100.00% that coincides
with the constraint that was removed be-
cause of the deleted domain technique, very
close to the isoquant for L=101.15% as de-
termined by the exact quadratic program-
ming solution shown in table V.

2. The isoquant for L=125.00% that equals the
score value from the Superefficiency tech-
nigue depicted in figure 2.

It is interesting to remark that the quadratic obje
function isoquants have a different orientationnfro
those depicted in figure 5, since the slope oflithear
traditional linear objective functions were diffat¢oo

Since the constraint relative to DMU 4 is the only
binding one its Lagrange multiplier is the only amamn-
zero (\4=0.857).

The optimum value for the objective function is
G=0.934, which occurs at the pont=0.92v,=0.0434,
deviating d=0.196 from the preferred linear relati
between weights, as a result we get the final védue
efficiency of L=101.15%. Again, this value is lowtban
the score obtained by the EMS software, sinceribig
result has multipliers that are more evenly distieil,
around our goal: the line,=0.1v;. The results without
weight adjustment were an efficiency score of
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L=125.00% but with a weight pattern neglecting otitp
2 (V1:1.00V2:0).

We can compare the score efficiencies obtained by
the two models. The results are as depicted indigu

130.0%
120.0%
110.0%
100.0%

y=1.154x - 0.0301
R*=0.9377

y =1.1166x
R’=0.9365

90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
30.0%
20.0%
10.0% .
0.0% 1%
0.000

Non-Adjusted Multipliers

0.400 0.600 0.800 1.000 1.200

Adjusted Multipliers

Figure 7- Comparison of efficiency scores

The dotted line is the line defined by y=x (res&tt
to the first orthant), to make it easy to see #gipoints
are above or on that line, meaning that efficiesmyres
obtained with weight adjustment are not bigger ttremn
ones obtained without adjustment. There are 3 DMUs
(1, 8 and 11) which efficiency score remained un-
changed, as a result of the fact that their optin@ghts
as shown in the EMS results in figure 2 were alyead
complying with our later specification of staying the
line V,=0.1v;.

We can get the full detailed results for the otteer
maining 10 DMUs by table V and locating their opdim
weights in figures 5 or 6.

It is now worth noting that DMUs 1 and 8 have ex-
actly the same score and the same optimal weiginise
the relationv,=0.1v; implies an intrinsic marginal rate
of substitution of y by y, of v4/v,=10 which is exactly
the case for their outputs. The fact that two sflia-
grange multipliers are the only non-zero ones
(AsandAy) means that its optimal weights are in the
intersection of the two straight lines relativethe bind-
ing restrictions of DMUs 4 and 10.

Now we will introduce a last graphical example of
the solution of the CCR Model of the data set presg
in figure 8 where we consider one input X=1 and two
outputs YG and YG whose name comes from the ap-
pearance of the 99 points @ircular layers in the first
orthant.

It is time to explain that the solver for non-linea
programs we are using is limited to 100 constraamtd
this is the reason why we do not solve bigger msta.

In the figure 9, we also present the results of the
EMS software under deleted domain and Constant Re-
turns to Scale assumption.

YC2

YC1

Figure 8- Data for an example of absolute weights adjust-
ment

This time the deviation at the penalizing functiwas
defined as the squared distance from the averageeof
standard DEA weights normalized by its standardadev

tion.
2 2

(I/l M J .\ (I/z “H Zj
Oy,

P(d) = (20)

Vi

The meanings of the parameters in expression 2@sare
follows:

v; is the unknown weight for Y,C

H; is the average of the weightdetermined solving the
standard DEA CCR model under deleted domain.

0y; is the standard deviation of the weighfound solv-

ing the standard DEA CCR model under deleted do-
main.

The efficiency scores for this absolute adjustnesmat
shown in figure 9, where the highest efficiencyrscof
100.13% is attained by a single DMU. In fact, thé&' 1
DMU has the same weights than those obtained by the
standard minimization of inputs DEA CCR model under
deleted domain
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Figure 9- Efficiency scores for absolute adjustment
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In figure 10, we present the resulting weights timat
stead of clustering at the upper and lower limitst®
absolute weights restrictions, as happens withtioaal
weights restriction techniques, now they spreadirzio
the central previously defined value(0.6;0.6).

We do not know of any other public work that can ac
complish such versatility as this technique.

This method can be further enhanced by the intriaiuc
of special types of penalty functions like Tchelseh
polynomials, or maximally flat polynomials.

0.9 * vl

s . V2
’....l- o" ,.‘lll.'. 0"' ‘o'
| % g & o
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Figure 10- Optimal weights distributing around 0.6

VIII. APPLICATION TO A CASE WITH
ARTIFICIALLY GENERATED DATA

Finally we will apply this multiplier adjustmentdie-
nique to a case with two outputs and four inputish w
simulated data.

Data generating process

When generating the data for the experiments re-
ported in this section we considered two factorsdpc-
tion technology, and inefficiency distribution

Production technology

We considered a two outputs and four inputs produc-
tion technology. This was obtained through the gene
tion of a single aggregate output incorporatingreffi-
ciency stochastic factor and later split in twopuis as
suggested in 1997 by Durchholz and Barr [34].

The single Cobb-Douglas aggregate output and four
inputs production technology is specified in terhsts
efficient production function z = f (XX, X3, X4), where z

represents the maximum aggregate output that can be

produced from the levels;xx, X3 and % of the four
inputs. Specifically, we used the following shift€dbb-
Douglas production function:

Z:aolj (% _a'i)ﬁi

a, is a constant scale factor.

q; is the shift from the origin for input

Bi is the factor elasticity for input

z is the single Cobb-Douglas aggregate output

If 2B; = 1, then only constant returns to scale exist in
the production process. F2i3; < 1, decreasing returns
to scale are present, whilef3; > 1 indicates increasing
returns to scale.

(21)

In DEA, increasing returns to scale are not used be
cause the function results in only a few DEA e
points, since for higher levels of input than thdeéined
by the Most Productive Scale Size the Productios- Po
sibilities Set is the polyhedral cone from the CCR
model. Although this does not pose a problem, gsdo
not represent realistic data.

We madea, = 1, 0;= 0,= 0i3= 0,4= 5, the input levels
X1, X2, X3 and x were generated randomly from four
independent uniform probability distributions ovitie
interval [10, 20], and the coefficienfs, B,, B3, andp,
were randomly generated from independent uniform
probability distributions over the interval [0.20,25].
Since the sum o4, B,, B3, andB, is less than one, the
production function in expression 21 satisfies EHeA-
BCC models assumption of a strictly concave produc-
tion function, while the shiftst;=a,=as=a,=5 > 0
allow both increasing and decreasing returns ttedca
prevail.

Inefficiency distribution
We generated the logarithm of the inefficiency,

2
u=In6® from a half-normal distribution |I\Qa) |,

2
where the parametea itself is drawn from a uniform

distribution on the interval [0, 0.1989]. The rangk

2
values for the distribution oa is chosen in such a
way that the mean efficiency given by
-aglan
E(h=1k)= e is between 0.7 and 1.0.

Simulated observations
We first generated random values fobetween 0.2

2
and 0.25, and a vaIuQ between 0 and 0.1989. Next,

we simulated 90 observations of the four inputs x
through % between 10 and 20. Those values were then
substituted into the efficient production functispeci-
fied in expression 21 to obtain the correspondiaigies

z; = f(x;) for the efficient output quantity. Then, we
randomly generated the logarithm of actual inefficy
values y=In0y, for each one of the 90 observations from

2
the half-normal distribution | I\Q, a) [

Finally, we obtained the values for observed aggre-
gated output quantities ns: y = f(x;)/exp(y) and the
true efficiency value fr1/exp(w).

Once the single aggregate output level y was
calculated, the two individual output levels were
determined by assigning each individual output as
a percentage of the aggregate. The percentages for
each individual output were drawn from normal
distributions with predetermined means and stan-
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dard deviations. The means of the normal distribu-  In the case of,, the proportion is similar: there are

tions were chosen so that the percentages sum uponly two null weights in the adjusted case agali&bn

to one. In our specific case, we chose each normal the classic one.

distribution to have a mean of 0.5 and a standard 't should be noted that it would be easy to avb t

deviation of 0.1. occurrence of null weights simply by_ increasing the
The results from the unbounded model solved steepness of the convex penalty function, althdbgh

. . ~~ was not our choice, since it could lead to a pthiat no
by the EMS software are summarized in table VI: 5\ at all would reach the 100% efficiency score

In an effort to show our results in the 6 dimenailon

Eff. pl p2 up3 p4 vi v2 weights space, we illustrate in figures 11 throdghits
Average 84% .03 .01 .01 .02 .09.18 projections on the bidimensional spaces. In thége f
Standard Dev. 19% .03 .02 .02 .03 .08.09 ures, the circles represent the weights for theittcmal
Coef. of Var.  .222 .99 1.531.98 1.31 .87 .51 model and the diamonds correspond to those obtained
Maximum 127% .10 .10 .10 .10 .28.32 by our model.

Percentile 75% 97% .06 .02 .01 .04 .14 .24
Percentile 50% 85% .03 .00 .00 .01 .06.20
Percentile 25% 70% .00 .00 .00 .00 .03.15
Percentile 4% 55% .00 .00 .00 .00 .00.00
Minimum 44% .00 .00 .00 .00 .00.00

Table VI- Statistical descriptors of the results for the EMS
software (CCR model, minimization of inputs).

Eff. | pl | p2 | p3 | p4|vl|v2

Average 74% .035.012.007/.018.074.176

StandardDev| 16% .014.005.003.011/.051,.064

Coef.of Var. | .221].403.421.393.633.692.367

Maximum _ |123% .066.024.014.042.247.274 Figure 11- Distribution ofy (in the vertical axis) and, (in
Percentile 75| 90% .045.015.008.027.098.218 the horizontal axis)

Percentile 50| 81% .034.011/.007).017.052.192 ] .

Percentile 25/ 65%.023.009.005.008.042.155 In figure 11, we can confirm thah and, cluster

Percentile 4] 48%.015.003.002.000.027.035 over the both axes, if we do not apply our adjustsie

on multipliers. In factp; vanishes 31 times and abqut

— 5
Minimum 42% .012.002.001.000.002.000 this happens 43 times.

Table VII- Statistical descriptors of the results for our new
model (CCR model, minimization of inputs).

From the comparison between table VI and table VI
we notice that:

The Statistical descriptors of the efficiency ssoire
our model are always lower. This was expected since
penalties may occur and our global objective fuorcti
never exceeds the traditional linear one.

The Average efficiency score in the classical CCR
model is 84%, as was expected from the assumptions
about the Half Normal distribution of the ineffioiey.

The standard deviation of any multiplier is lowear
the corresponding one in the non-adjusted cass (thi
could originate from the decrease in the averagigesa
that lead us also to compute the coefficient ofatam,
confirming that, even in relative terms, the weighte

Figure 12- Distribution ofps (in the vertical axis) and, (in
the horizontal axis)

not as spread as in the original model. The considerations made about figure 11 also apply
The same conclusion also holds to any other measure g figure 12 but her@s has 38 zeros ang has 35. As a
(Maximum and percentiles). result of applying our technique only kept some ze-
Only when it comes to the minima pj andv,, we ros, but nevertheless its number dropped to 5.\drth
have a tie, but even in this case it is sufficientake mentioning that not only did we avoid the occurené
into account the values for the lower percentiledact, zeros, but we also reduced its maximal values.

M4 vanishes 35 times in the traditional linear modtel,
opposition to just 5 zeros in our model.
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Figure 13- Distribution ofv, (in the vertical axis) and, (in
the horizontal axis)

In figure 13, since we are dealing with only twad-ou
puts, the benefits of our method are not as evidenh
the input case. Regardless of that, from the Init&
DMUs that presented a null weight in output Y2 sthi
number decreased to only 2 of the initial 13, ngmel
DMU 41 and DMU 61.

If we had had more outputs, our technique would
have been more useful, in the sense that the nuaiber
zeros to reduce would have been greater.

We tried to make this representation in severaplga
ways, but this one seemed to us to be the besal¥de
investigated if the use of a data reduction teammilike

factor analysis, could be of some help, but theetar

tion matrix did not allow for an easy alternateresen-
tation of the data.

130%

61 0O
120% 4

y =1.0811x =
R? = 0.9222 u

110% +
100%
90%
80% -

70%

60%

y = 1.0322x + 0.04
R?=0.9244

50%

40% 4

30%
30%

40% 50% 60% 70% 80% 90% 100% 110% 120% 130%

Figure 14- Representation of the Score obtained by the EMS
software and our efficiency values

In figure 14, we plot the results for both the scob-
tained by the EMS software and our efficiency value
We notice that our values never exceed those flam t
CCR model and that in some cases there is a stilastan
reduction on the original value as is the casenBtance

of DMU 61 whose efficiency value dropped from an
original value of 124% to 102%.

Despite this fact, it is important to remark théstence

of a strong correlation between the two variakdes| so

we made a linear regression on it.

Although the model with a constant leads to a highe
determination coefficient of 0.9244, this consthat a

p value of 0.11, and therefore, it is not significarhus

we conclude that the EMS Scores exceed in 8% those
from our model.

IX. CONCLUSIONS

This paper introduces a new way of adjusting
weights, a matter that has already deserved mally- pu
cations in the Data Envelopment Analysis field. sThi
new method adds greater flexibility to the weigtgtric-
tions techniques. It is not our concern to predaet
potentialities or the details of weight restricgorThis
matter is already extensively covered in the axisti
literature, namely on how to set up the specifitiea
for the restrictions.

Since we are dealing with a non-linear concave ob-
jective function, we have the possibility to locate
optimal set of weights in a continuous way in castrto
the linear case where optimality always occurs atra
tex of the feasible solution set.

We used the simplest convex penalty function fer th
sake of clarity, but other convex functions like xina
mally flat polynomials or Tchebychev polynomials
could also be used.

Even the convexity restriction can be dropped legdi
to more complicated programs, that can be used for
instance in discriminating analysis.
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