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Abstract – Weights restriction is a well-known tech-

nique in the DEA field. When those techniques are applied, 
weights cluster around its new limits, making its evaluation 
dependent of its levels. This paper introduces a new ap-
proach to weights adjustment by Goal Programming tech-
niques, avoiding the imposition of hard restrictions that 
can even lead to unfeasibility. This method results in mod-
els that are more flexible. 
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I.  INTRODUCTION  

Data Envelopment Analysis (DEA) is a mathemati-
cal programming based technique to evaluate the rela-
tive performance of organisations. While the main ap-
plications have been in the evaluation of not-for-profit 
organisations, the technique can be successfully applied 
to other organisations, as a recent evaluation of banks in 
India has demonstrated [1]. 

With this paper, we have two objectives in mind. The 
first one is to present DEA-Data Envelopment Analysis, 
a technique which may have useful applications in many 
evaluation contexts, namely when assessing not-for-
profit organisations. In addition to allowing the ranking 
of the organisations traditionally termed decision-
making units, DEA also creates the conditions to im-
prove performance through target setting and role-model 
identification. We also briefly describe the technique of 
deleted domain, also known as Superefficiency. 

The second objective is to introduce an entirely new 
way of adjusting multipliers by means of Goal Pro-
gramming Techniques. This adjustment is a much more 
general way of dealing with the incorporation of exoge-
nous structure preferences so far relying only in weights 
restriction techniques, which, in our point of view leads 
to the concentration of the weights in its upper and 
lower limits. 

DEA is suited for this type of evaluation because it 
enables results to be compared making allowances for 
factors [2]. DEA makes it possible to identify efficient 
and inefficient units in a framework where results are 
considered in their particular context. In addition, DEA 
also provides information that enables the comparison of 
each inefficient unit with its "peer group", that is to say, 

a group of efficient units that are identical with the units 
under analysis. These role-model units can then be stud-
ied in order to identify the success factors that other 
comparable units can attempt to follow. Thanassoulis et 
al [3] argue that DEA is preferable to other methods, 
such as regression analysis, which also make it possible 
to contextualize results. 

The present paper is structured as follows. The next 
section describes the development and fields of applica-
tion of the technique, while section III introduces the 
DEA models followed by a numerical example. In sec-
tion IV, we present Superefficiency evaluation, an ex-
tension of DEA also known as deleted domain. Section 
V and VI deal with the graphical solution in the weights 
space and makes a very short description of the weights 
restrictions technique respectively. 

In section VII, a new concept of multiplier adjust-
ment is introduced and exemplified through a small data 
set. 

In section VIII, a case with artificially generated data 
is solved to highlight the potentialities of this technique. 
This paper ends up with a final section with the conclu-
sions and directions of future work. Readership not 
familiar with DEA, may find the brief introduction to the 
method presented below useful, but for those who wish 
to follow the matter further there is a good review of 
DEA in Boussofiane et al [4]. 

II.  HISTORY AND APPLICATIONS OF DEA  

DEA is a mathematical programming technique pre-
sented in 1978 by Charnes, Cooper and Rhodes [5], 
although its roots may be found as early as 1957 in Far-
rel`s seminal work [6]. This technique is usually intro-
duced as a non-parametric one, but in fact, it rests on the 
assumption of linearity [7] and for the original models 
even in the more stringent assumption of proportional-
ity. 

Its application has been focused mainly on the effi-
ciency assessment of not-for-profit organizations, since 
these cannot be evaluated on the basis of traditional 
economic and financial indicators used for commercial 
companies. 
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The first application of DEA was in the field of Edu-
cation, in the analysis of the Program Follow Through, 
conducted in the USA, in the late seventies [8]. Since 
then, it has been used to assess efficiency in areas such 
as health [9, 10], prisons [11], courts [12], universities 
and many other not-for-profit sectors. Nowadays, DEA 
can be seen to have spread to other fields such as Transit 
[13], Mining [14], Air Transportation [15], and even 
Banking and Finance [16]. 

However, many applications belong to the field of 
education and range from primary education [17, 18], to 
secondary [19, 20, 21] and university levels [22]. 

In Data Envelopment Analysis, the organizational 
units to be assessed should be relatively homogeneous 
and were originally termed Decision Making Units. As 
the whole technique is based on, the comparison of each 
DMU with all the remaining ones a considerable large 
set of units is necessary for the assessment to be mean-
ingful. We will assume that each DMU produces N 
outputs by means of M inputs. 

III.  DEA FORMULATIONS WITH A NUMERICAL 

EXAMPLE  

In DEA, efficiency (hj’ ) of a specific decision mak-
ing unit (DMU j’ ) is defined as the ratio between a 
weighted sum of its N outputs Ynj’  and a weighted sum 
of its M inputs Xmj’ , a natural extension of the concept 

of efficiency used in the fields of physics and engineer-
ing [23]: 
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When assessing a set of J organisations, where Xmj 

stands for the m
th

 input of the j
th

 DMU, with a similar 
meaning for Ynj , the weights µmj’  and νnj’,  in expres-

sion (1), are chosen for each j’ DMU under evaluation 
as those that maximize its efficiency as defined by hj’ . 

Several constraints have to be added to the maximiza-
tion problem: 

• The strict positivity [24] of the weights µmj’ , 

 νnj’  (also known as virtual multipliers or simply as 

“multipliers”). 
• For scaling purposes, all J DMUs under 

analysis must have efficiencies not exceeding an agreed 
value, typically one or 100%, as is usual in engineering 
definitions of efficiency. 

•A third kind of restriction has to be included, since 
otherwise this linear fractional program would yield an 
infinite number of solutions. In fact, if a set of weights 
µmj’ , νnj’  returns the optimal solution, so would 

kµmj’ , kνnj’ . Making the denominator, in Expres-

sion (1), equal to one or 100%, circumvents this situa-
tion. 

Therefore, we have to solve the following maximiza-
tion problem for each one of the J DMUs under analy-
sis: 
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s.t. µmj’  > 0 m=1...M (3) 

 νnj’  > 0  n=1...N (4) 
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This Fractional Linear Program can be solved by 

means of the Charnes and Cooper transformation [25] 
which yield the following Linear Program: 
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 µmj’  ≥ ε > 0 m=1...M  (10) 

 νnj’  ≥ ε > 0 n=1...N (11) 
 
The problem above is known as the multiplier prob-

lem, since its unknowns are the weights, which are usu-
ally lower bounded by a small quantity ε (Expressions: 
10-11) so that all Inputs and Outputs are considered in 
the evaluation [24], even if with a minor weight ε, set in 
all the following formulations equal to 10-6.  

The dual of this problem, which we shall call the en-
velopment problem, provides important information 
about economies that could be achieved in all the inputs; 
it also indicates which efficient units the inefficient unit 
being assessed should emulate. Those efficient units are 
usually referred to as the reference set or peer group of 
the unit under evaluation. 

 
To illustrate the Data Envelopment Analysis tech-

nique, an example is introduced in Table I, with 12 
DMUs producing two Outputs Y1 and Y2 from a single 
Input X1, under the assumption of constant returns to 
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scale, which simply means that if one doubles the Inputs 
of any unit it would be expected that its Outputs would 
also double. In algebraic form, this can be stated as: if xj 
yields Outputs yj then Inputs kxj should produce Outputs 
kyj. 

 
Table I-  Outputs normalised by Input X1 

DMU x1 y1 y2 y1/x1 y2/x1 
1  4.0 2.0 28.0 .500 7.000 
2  5.0 1.0 22.5 .200 4.500 
3  6.0 6.0 12.0 1.000 2.000 
4  10.0 8.0 60.0 .800 6.000 
5  11.0 7.0 16.5 .636 1.500 
6  8.0 6.0 12.0 .750 1.500 
7  9.0 7.0 6.0 .778 .667 
8  5.0 3.0 30.0 .600 6.000 
9  5.5 4.4 5.5 .800 1.000 

10  8.0 4.0 72.0 .500 9.000 
11  10.0 2.0 20.0 .200 2.000 
12  8.0 1.0 4.0 .125 .500 

 
In this simple example, we can normalise the Outputs 

by the only Input and plot them in the plane. This is also 
equivalent to consider that we are dealing with a con-
stant input of 1. This way we will be working in the 
plane defined by x=1 in the 3 dimensional one input two 
outputs space. 

 
 From Figure 1 it is easy to understand the reason for 

naming this technique Data Envelopment Analysis; in 
fact each DMU is analysed against the envelope of the 
most efficient units. For instance, the efficiency of DMU 
8 is 0.857 (see Table II). This means that it could reduce 
its input to 85.7% of its current value reaching its target, 
Ci 8 (where Ci stands for Composite unit under minimi-
sation of inputs), which is the same as for DMU 11 
except that, for the latter, a reduction to 28.6% of X1’s 
current level of inputs would be necessary for this DMU 
to become efficient, since its efficiency is only 0.286. 
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Figure 1-  Efficient frontier and radial projections for ineffi-
cient units. 

Although the results could be obtained graphically, 
we present in table II the results obtained by any stan-
dard linear optimisation software. 

 
Table II-  Results for the multiplier problem 

DMU µµµµ1111    νννν1111    νννν2222    Efficiency 

1 0.250 0.179 0.018 0.857 
2 0.200 0.000 0.022 0.500 
3 0.167 0.152 0.008 1.000 
4 0.100 0.091 0.005 1.000 
5 0.091 0.083 0.004 0.647 
6 0.125 0.114 0.006 0.750 
7 0.111 0.111 0.000 0.778 
8 0.200 0.143 0.014 0.857 
9 0.182 0.182 0.000 0.800 
10 0.125 0.089 0.009 1.000 
11 0.100 0.071 0.007 0.286 
12 0.125 0.114 0.006 0.136 

 

IV.  SUPEREFFICIENCY / DELETED DOMAIN 

EXTENSION  

We arrive at the concept of Superefficiency by al-
lowing the efficiency of the DMU being assessed to be 
greater than unity. This is achieved by removing the 
corresponding constraint from the set of J constraints in 
Expression (9). This is the reason why this technique is 
also known as deleted domain. The Superefficiency only 
affects units deemed as efficient, as the removed con-
straint is not binding for the inefficient units, since their 
efficiency is, by definition, less than unity. 

This extension to DEA was first published by Ander-
sen and Petersen [26] and its use is strongly recom-
mended by the authors as a consequence of its simplicity 
and usefulness. 

By using Superefficiency, it is possible to rank all 
units, even the efficient ones that by standard DEA 
techniques would all be rated as equal - their efficiency 
having reached the top value of 100%. 

For the example presented in the previous section, the 
Superefficiency for the 3 efficient DMUs would be as 
presented in table III. 

 
Table III-  Superefficiency scores for the efficient units 

Unit Superefficiency 
Unit 4  107.50% 
Unit 3 125.00% 
Unit 10 128.57% 

Units 3 and 10 are efficient and robust, while any 
small increase in the Input or decrease in the Outputs of 
Unit 4 may make it inefficient.  

An important additional benefit from this extension to 
the DEA model is that the set of weights is uniquely, 
determined for the efficient units in all practical applica-
tions [21]. 
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V. GRAPHICAL SOLUTION  

The linear program defined by expressions (7) 
through (11) can be solved by the traditional graphical 
method if we have to deal with only 2 variables. 

To reduce the problem from 3 to 2 variables, we will 
exploit the fact that we assume to be working under the 
constant returns to scale assumption and so we will scale 
all data to unity input level, so that our new data set will 
be the following one: 

 
DMU Xn1 Yn1=y1/x1 Yn2=y2/x1 

1 1 0.500 7.000 

2 1 0.200 4.500 

3 1 1.000 2.000 

4 1 0.800 6.000 

5 1 0.636 1.500 

6 1 0.750 1.500 

7 1 0.778 0.667 

8 1 0.600 6.000 

9 1 0.800 1.000 

10 1 0.500 9.000 

11 1 0.200 2.000 

12 1 0.125 0.500 

Table IV-  Normalized data to unity input level 

Since xn1=1 its multiplier µn1=1 and we have to solve 
the linear program just for νn1 and νn2, we will illustrate 
the results from the software EMS developed by Holger 
Scheel that uses an interior point solver. 

Its results are presented in figure 2 

  
Figure 2-  Results obtained with the software EMS. 

We can confirm the correctness of our results, namely 
that µn1=1 and that the values obtained for the efficiency 
are equal to those previously presented in table II. 
It is worthy to note that DMUs F3, F7 and F9 place a 
minimal weight on Output2 while DMUs F2 and F10 
choose to ignore Output1. This kind of problem is usu-
ally solved by a technique known as weight restrictions 
in the sense of avoiding such a flexible set of weights 
and incorporating value judgments. 

 
By solving graphically, we get the graph shown in 

figure 3 where we have 12 line segments, one for each 
constraint. The feasible region is the intersection of the 
twelve (lower) half planes containing the origin. It is 

clear that inefficient units like F12 correspond to non-
binding constraints and that the objective function is 
parallel to the respective DMU constraint.  
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Figure 3-  Restrictions imposed by the 12 units in the Weights 
Space 

For the sake of clarity, we will expand the previous 
picture just to the efficient units, in order to highlight the 
feasible region defined by the pentagon ABCD0 (in the 
clockwise direction). This feasible region is always the 
same for inefficient units for the efficient ones, it de-
pends on the kind of model we are working with. 

 In the case of the traditional model the feasible re-
gion is always identical, in the deleted domain case, also 
known as Superefficiency, the constraint related to the 
DMU being analysed is deleted, and even a non efficient 
Unit can pop-up in its reference set [21], this is the case 
of unit 10. In fact, its reference set is unit 1, since the 
feasible region on the weights space is EFCD0 (in the 
clockwise direction) and the objective function is paral-
lel to the line segment 10, where it takes the unity value.  
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Figure 4-  Detail around the origin of the constraints imposed 

by the 12 units in the Weights Space 



 

 39

VI.  WEIGHTS RESTRICTIONS  

To avoid a given DMU “to choose” a rather unbal-
anced set of weights (as is the case of units F2 and F10 
which ignore Output 1 while F3, F7 and F9 ignore Out-
put 2), it is current practice to place some restrictions on 
the weights or in the virtual inputs/outputs. 

This is a usual way to incorporate judgment values 
and increase the discriminating potential of the model. 

Restrictions on weights can be divided in two broad 
categories: Relative and absolute weights restrictions. 
As far as we know, only linear weights restrictions have 
been considered in the literature, thus we may present 
the weights restrictions in matrix form as follows: 

BxµT +ByνT ≤C 
Where Bx ∈ ℜcxm and By ∈ ℜ cxn. 
Dimension c refers to the number of constraints. 
If C    ≠ 0 we refer to them as absolute weights restric-
tions. The absolute weights restrictions are typically 
imposing a range for an individual weight. This ap-
proach was developed by Dyson and Thanassoulis in 
1988 [27] and generalized by Roll et al in 1991 [28]. 
Virtual weights restrictions introduced by Wong and 
Beasley in 1990 [29] belong to this category also. 
If C    = 0 we speak about relative weights restrictions 
since if µ0,ν0 is a feasible solution so is k µ0, k ν0. The 
class of relative weights restrictions includes, among 
others, the assurance region models of Type I or II by 
Thompson et al in 1986 [30] and 1990 [31] respectively, 
as well as cone ratio DEA models from Charnes et al. in 
1989 [32]. 

We can say that the most general approach is to re-
strict the weights to belong to a closed set, being it a 
polytope or a polyhedral cone. 

VII.  WEIGHT ADJUSTMENT BY GOAL PROGRAMMING  

With standard DEA, it is common that many weights 
are null in the optimal solution. One way to avoid this 
situation is to place restrictions on the weights, but, in 
this case, weights typically used to cluster in the upper 
or lower limits. By including some non-linear but con-
vex penalty in the objective function, penalizing devia-
tions from a preference region in the weights space, it is 
possible to have a more uniform distribution of the 
weights. 

This can be accomplished by the model, described by 
expressions 12 through 18 where G stands for Global 

objective function, )(dP
r

is a penalizing function of the 

deviations dm and dn of the weights from the exoge-
nously imposed goals gm and gn. 

The penalizing function will always be a convex one, 
for avoiding difficulties with local minima; it is worth 
recalling that since the feasible region is convex and the 
symmetric of the objective function is also convex, a 
local maximum is also a global maximum [33]. The 
definition of efficiency remains unchanged, so that this 
model just adjusts multipliers by a penalizing function 

appended to the objective function scaled by a constant 
k. 
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We will illustrate this technique with a simple exam-
ple originating from the previous data set with 12 
DMUs. 

The preferred location for the weights is around the 
line 0.4ν1j’=4ν2j’. We are not interested in justifying this 

choice, neither other details like the value for the con-
stant k, or the explicit kind of penalizing function, we 
also remind that our goal is just to exemplify a way to 
adjust weights in a smoother way than the usual hard 
restriction techniques do. 

Therefore, the Global objective function will take the 
following form: 
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We will now illustrate the graphical solution for the 
evaluation of Unit 10 under the constant returns to scale 
assumption and deleted domain technique. 
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Figure 5-  Graphical solution for the evaluation of Unit 10 
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In figure 5, the dotted lines correspond to constraints 
related to units 1, 3 and 4. The solid curves represent the 
isoquants of the Global objective function for G=0.6, 
1.1, 1.6 and finally 2.1. 

We can also see 3 solid straight lines: 
1. The isoquant for L=100.00% that coincides 

with the constraint that was removed be-
cause of the deleted domain technique.  

2. The isoquant for L=114.06% as determined 
by the exact quadratic programming solu-
tion shown in table V. 

3. The isoquant for L=128.57% that equals the 
score value from the Superefficiency tech-
nique depicted in figure 2. 

The optimal solution of the Superefficiency CCR 
model is the basic solution defined by the intersection of 
the constraint relative to unit 1 and µ1≥ε > 0. It is inter-

esting to note that an inefficient unit (DMU 1) is defin-
ing the optimal solution for an efficient one, a fact first 
published in 1994 [21] by Santos and Themido. 

The solution of the quadratic program can be ob-
tained in a rough manner by the graphical method as 
exemplified in figure 5, or by the results shown in the 
line corresponding to DMU 10 in Table V. 

Since the constraint relative to DMU 4 is the only 
binding one its Lagrange multiplier is the only one non-
zero (λ4=1.000). 

The optimum value for the objective function is 
G=1.070, which occurs at the point ν1=0.51 ν2=0.0982, 
deviating d= -0.188 from the preferred linear relation 
between weights, as a result we get the final value for 
efficiency of L=114.06%. This value is lower than the 
score obtained by the EMS software, since this new 
result has multipliers that are more desirable in the point 
of view of the incorporated weights preference structure, 
by the preferred linear relation between weights.  

D ν1 ν2 G d L  λ3   λ4  λ10 

1 .71 .0714 0.857 0.000 85.71% .000 0.24 .619 

2 .68 .0732 0.465-0.020 46.59% .000 0.00 .464 

3 .92 .0434 0.934 0.196 101.15% .000 0.86 .000 

4 .87 .0625 1.055 0.100 107.50% .245 0.00 .790 

5 .83 .0547 0.589 0.117 61.60% .000 0.56 .000 

6 .87 .0504 0.686 0.147 72.97% .000 0.64 .000 

7 .90 .0455 0.671 0.182 73.76% .014 0.59 .000 

8 .71 .0714 0.857 0.000 85.71% .000 0.57 .286 

9 .90 .0459 0.707 0.179 77.04% .000 0.64 .000 

10 .51 .0982 1.070-0.188 114.06% .000 1.00 .000 

11 .71 .0714 0.286 0.000 28.57% .000 0.19 .095 

12 .73 .0692 0.125 0.016 12.60% .000 0.13 .000 
Table V-  Exact quadratic programming solutions 

The objective function depends on the DMU being 
evaluated, in the previous picture DMU 10 was consid-
ered; now we will show the graphical solution for DMU 
3.  
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Figure 6-  Graphical solution for the evaluation of Unit 10 

In figure 6 the dotted lines correspond to constraints 
related to units 10 and 4. The solid curves represent the 
isoquants of the Global objective function for G=0.55, 
0.95, 1.35 and finally 1.75. 

We can also see 2 solid straight lines: 
1. The isoquant for L=100.00% that coincides 

with the constraint that was removed be-
cause of the deleted domain technique, very 
close to the isoquant for L=101.15% as de-
termined by the exact quadratic program-
ming solution shown in table V. 

2. The isoquant for L=125.00% that equals the 
score value from the Superefficiency tech-
nique depicted in figure 2. 

It is interesting to remark that the quadratic objective 
function isoquants have a different orientation from 
those depicted in figure 5, since the slope of the linear 
traditional linear objective functions were different too 

Since the constraint relative to DMU 4 is the only 
binding one its Lagrange multiplier is the only one non-
zero (λ4=0.857). 

The optimum value for the objective function is 
G=0.934, which occurs at the point ν1=0.92 ν2=0.0434, 
deviating d= 0.196 from the preferred linear relation 
between weights, as a result we get the final value for 
efficiency of L=101.15%. Again, this value is lower than 
the score obtained by the EMS software, since this new 
result has multipliers that are more evenly distributed, 
around our goal: the line ν2=0.1ν1. The results without 
weight adjustment were an efficiency score of 



 

 41

L=125.00% but with a weight pattern neglecting output 
2 (ν1=1.00 ν2=0). 

We can compare the score efficiencies obtained by 
the two models. The results are as depicted in figure 7 
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Figure 7-  Comparison of efficiency scores 

The dotted line is the line defined by y=x (restricted 
to the first orthant), to make it easy to see that all points 
are above or on that line, meaning that efficiency scores 
obtained with weight adjustment are not bigger than the 
ones obtained without adjustment. There are 3 DMUs 
(1, 8 and 11) which efficiency score remained un-
changed, as a result of the fact that their optimal weights 
as shown in the EMS results in figure 2 were already 
complying with our later specification of staying on the 
line ν2=0.1ν1. 

We can get the full detailed results for the other re-
maining 10 DMUs by table V and locating their optimal 
weights in figures 5 or 6.  

It is now worth noting that DMUs 1 and 8 have ex-
actly the same score and the same optimal weights, since 
the relation ν2=0.1ν1 implies an intrinsic marginal rate 
of substitution of y1 by y2 of ν1/ν2=10 which is exactly 
the case for their outputs. The fact that two of its La-
grange multipliers are the only non-zero ones 
(λ4 and λ10) means that its optimal weights are in the 
intersection of the two straight lines relative to the bind-
ing restrictions of DMUs 4 and 10. 

 
Now we will introduce a last graphical example of 

the solution of the CCR Model of the data set presented 
in figure 8 where we consider one input X=1 and two 
outputs YC1 and YC2 whose name comes from the ap-
pearance of the 99 points in circular layers in the first 
orthant. 

It is time to explain that the solver for non-linear 
programs we are using is limited to 100 constraints and 
this is the reason why we do not solve bigger instances. 

In the figure 9, we also present the results of the 
EMS software under deleted domain and Constant Re-
turns to Scale assumption. 
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Figure 8-  Data for an example of absolute weights adjust-

ment 

This time the deviation at the penalizing function was 
defined as the squared distance from the average of the 
standard DEA weights normalized by its standard devia-
tion. 
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The meanings of the parameters in expression 20 are as 
follows: 
νj is the unknown weight for YCj. 
µνj is the average of the weight νj determined solving the 
standard DEA CCR model under deleted domain. 
σνj is the standard deviation of the weight νj found solv-
ing the standard DEA CCR model under deleted do-
main. 
The efficiency scores for this absolute adjustment are 
shown in figure 9, where the highest efficiency score of 
100.13% is attained by a single DMU. In fact, the 17th 
DMU has the same weights than those obtained by the 
standard minimization of inputs DEA CCR model under 
deleted domain 
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Figure 9-  Efficiency scores for absolute adjustment 
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In figure 10, we present the resulting weights that in-
stead of clustering at the upper and lower limits of its 
absolute weights restrictions, as happens with traditional 
weights restriction techniques, now they spread around 
the central previously defined value νννν=(0.6;0.6).  
We do not know of any other public work that can ac-
complish such versatility as this technique. 
This method can be further enhanced by the introduction 
of special types of penalty functions like Tchebychev 
polynomials, or maximally flat polynomials. 
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Figure 10-  Optimal weights distributing around 0.6  

VIII.  APPLICATION TO A CASE WITH 

ARTIFICIALLY GENERATED DATA  

Finally we will apply this multiplier adjustment tech-
nique to a case with two outputs and four inputs, with 
simulated data. 

Data generating process 
When generating the data for the experiments re-

ported in this section we considered two factors: produc-
tion technology, and inefficiency distribution  

Production technology 
We considered a two outputs and four inputs produc-

tion technology. This was obtained through the genera-
tion of a single aggregate output incorporating an ineffi-
ciency stochastic factor and later split in two outputs as 
suggested in 1997 by Durchholz and Barr [34]. 

The single Cobb-Douglas aggregate output and four 
inputs production technology is specified in terms of its 
efficient production function z = f (x1, x2 x3, x4), where z 
represents the maximum aggregate output that can be 
produced from the levels x1, x2, x3 and x4 of the four 
inputs. Specifically, we used the following shifted Cobb-
Douglas production function:  

i
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i
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1
0

−= ∏
=

 (21) 

ao  is a constant scale factor. 
αi is the shift from the origin for input i. 
βi is the factor elasticity for input i. 
z is the single Cobb-Douglas aggregate output 
If ∑βi = 1, then only constant returns to scale exist in 

the production process. For ∑βi < 1, decreasing returns 
to scale are present, while ∑βi > 1 indicates increasing 
returns to scale. 

In DEA, increasing returns to scale are not used be-
cause the function results in only a few DEA efficient 
points, since for higher levels of input than those defined 
by the Most Productive Scale Size the Production Pos-
sibilities Set is the polyhedral cone from the CCR 
model. Although this does not pose a problem, it does 
not represent realistic data. 

We made ao = 1, α1= α2= α3= α4= 5, the input levels 
x1, x2, x3 and x4 were generated randomly from four 
independent uniform probability distributions over the 
interval [10, 20], and the coefficients β1, β2, β3, and β4 

were randomly generated from independent uniform 
probability distributions over the interval [0.20, 0.25]. 
Since the sum of β1, β2, β3, and β4 is less than one, the 
production function in expression 21 satisfies the DEA-
BCC models assumption of a strictly concave produc-
tion function, while the shifts α1= α2= α3= α4= 5 > 0 
allow both increasing and decreasing returns to scale to 
prevail.  

 
Inefficiency distribution 
We generated the logarithm of the inefficiency, 

u=ln θ from a half-normal distribution | N (0;σ2

u) |, 

where the parameter σ2

u itself is drawn from a uniform 

distribution on the interval [0, 0.1989]. The range of 

values for the distribution of σ2

u is chosen in such a 

way that the mean efficiency given by 

E(h=1/θ)=e u
πσ /2−

 is between 0.7 and 1.0. 

Simulated observations 
We first generated random values for βi between 0.2 

and 0.25, and a value σ2

u between 0 and 0.1989. Next, 

we simulated 90 observations of the four inputs x1 
through x4 between 10 and 20. Those values were then 
substituted into the efficient production function speci-
fied in expression 21 to obtain the corresponding values 
zj = f (xij) for the efficient output quantity. Then, we 
randomly generated the logarithm of actual inefficiency 
values uk=lnθk, for each one of the 90 observations from 

the half-normal distribution | N (0;σ2

u) |.  

Finally, we obtained the values for observed aggre-
gated output quantities yj as: yj = f(xij)/exp(uj) and the 
true efficiency value hk=1/exp(uk). 

Once the single aggregate output level y was 
calculated, the two individual output levels were 
determined by assigning each individual output as 
a percentage of the aggregate. The percentages for 
each individual output were drawn from normal 
distributions with predetermined means and stan-
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dard deviations. The means of the normal distribu-
tions were chosen so that the percentages sum up 
to one. In our specific case, we chose each normal 
distribution to have a mean of 0.5 and a standard 
deviation of 0.1. 

The results from the unbounded model solved 
by the EMS software are summarized in table VI: 

 
 Eff. µ1µ1µ1µ1    µ2µ2µ2µ2    µ3µ3µ3µ3    µ4µ4µ4µ4    ν1ν1ν1ν1    ν2ν2ν2ν2    
Average 84% .03 .01 .01 .02 .09 .18 
Standard Dev. 19% .03 .02 .02 .03 .08 .09 
Coef. of Var. .222 .99 1.53 1.98 1.31 .87 .51 
Maximum 127% .10 .10 .10 .10 .28 .32 
Percentile 75% 97% .06 .02 .01 .04 .14 .24 
Percentile 50% 85% .03 .00 .00 .01 .06 .20 
Percentile 25% 70% .00 .00 .00 .00 .03 .15 
Percentile  4% 55% .00 .00 .00 .00 .00 .00 
Minimum 44% .00 .00 .00 .00 .00 .00 

Table VI-  Statistical descriptors of the results for the EMS 
software (CCR model, minimization of inputs). 

Eff. µ1µ1µ1µ1    µ2µ2µ2µ2    µ3µ3µ3µ3    µ4µ4µ4µ4    ν1ν1ν1ν1    ν2ν2ν2ν2    
Average 74% .035 .012 .007 .018 .074 .176 
StandardDev. 16% .014 .005 .003 .011 .051 .064 
Coef.of Var. .221 .403 .421 .393 .633 .692 .367 
Maximum 123% .066 .024 .014 .042 .247 .276 
Percentile 75%90% .045 .015 .008 .027 .098 .218 
Percentile 50%81% .034 .011 .007 .017 .052 .192 
Percentile 25%65% .023 .009 .005 .008 .042 .155 
Percentile  4%48% .015 .003 .002 .000 .027 .035 
Minimum 42% .012 .002 .001 .000 .002 .000 

Table VII-  Statistical descriptors of the results for our new 
model (CCR model, minimization of inputs). 

From the comparison between table VI and table VII 
we notice that: 

The Statistical descriptors of the efficiency scores in 
our model are always lower. This was expected since 
penalties may occur and our global objective function 
never exceeds the traditional linear one. 

The Average efficiency score in the classical CCR 
model is 84%, as was expected from the assumptions 
about the Half Normal distribution of the inefficiency. 

The standard deviation of any multiplier is lower than 
the corresponding one in the non-adjusted case (this 
could originate from the decrease in the average values; 
that lead us also to compute the coefficient of variation, 
confirming that, even in relative terms, the weights are 
not as spread as in the original model. 

The same conclusion also holds to any other measure 
(Maximum and percentiles). 

Only when it comes to the minima of µ4 and ν2, we 
have a tie, but even in this case it is sufficient to take 
into account the values for the lower percentiles. In fact, 
µ4 vanishes 35 times in the traditional linear model, in 
opposition to just 5 zeros in our model. 

In the case of ν2, the proportion is similar: there are 
only two null weights in the adjusted case against 13 on 
the classic one. 

It should be noted that it would be easy to avoid the 
occurrence of null weights simply by increasing the 
steepness of the convex penalty function, although this 
was not our choice, since it could lead to a point that no 
DMU at all would reach the 100% efficiency score 

In an effort to show our results in the 6 dimensional 
weights space, we illustrate in figures 11 through 13 its 
projections on the bidimensional spaces. In these fig-
ures, the circles represent the weights for the traditional 
model and the diamonds correspond to those obtained 
by our model.  
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Figure 11-  Distribution of µ1 (in the vertical axis) and µ2 (in 

the horizontal axis) 

In figure 11, we can confirm that µ1 and µ2 cluster 
over the both axes, if we do not apply our adjustments 
on multipliers. In fact, µ1 vanishes 31 times and about µ2 
this happens 43 times. 
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Figure 12-  Distribution of µ3 (in the vertical axis) and µ4 (in 

the horizontal axis) 

The considerations made about figure 11 also apply 
to figure 12 but here µ3 has 38 zeros and µ4 has 35. As a 
result of applying our technique only µ4 kept some ze-
ros, but nevertheless its number dropped to 5. It is worth 
mentioning that not only did we avoid the occurrence of 
zeros, but we also reduced its maximal values. 
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Figure 13-  Distribution of ν1 (in the vertical axis) and ν2 (in 

the horizontal axis) 

In figure 13, since we are dealing with only two out-
puts, the benefits of our method are not as evident as in 
the input case. Regardless of that, from the initial 13 
DMUs that presented a null weight in output Y2, this 
number decreased to only 2 of the initial 13, namely 
DMU 41 and DMU 61. 

If we had had more outputs, our technique would 
have been more useful, in the sense that the number of 
zeros to reduce would have been greater.  
We tried to make this representation in several graphic 
ways, but this one seemed to us to be the best. We also 
investigated if the use of a data reduction technique like 
factor analysis, could be of some help, but the correla-
tion matrix did not allow for an easy alternate represen-
tation of the data.  

y = 1.0322x + 0.04

R2 = 0.9244

y = 1.0811x

R2 = 0.9222

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

30% 40% 50% 60% 70% 80% 90% 100% 110% 120% 130%

61

 
Figure 14-  Representation of the Score obtained by the EMS 

software and our efficiency values 

In figure 14, we plot the results for both the score ob-
tained by the EMS software and our efficiency values. 
We notice that our values never exceed those from the 
CCR model and that in some cases there is a substantial 
reduction on the original value as is the case by instance 

of DMU 61 whose efficiency value dropped from an 
original value of 124% to 102%. 
Despite this fact, it is important to remark the existence 
of a strong correlation between the two variables, and so 
we made a linear regression on it. 
Although the model with a constant leads to a higher 
determination coefficient of 0.9244, this constant has a 
p value of 0.11, and therefore, it is not significant. Thus 
we conclude that the EMS Scores exceed in 8% those 
from our model. 

IX.  CONCLUSIONS 

This paper introduces a new way of adjusting 
weights, a matter that has already deserved many publi-
cations in the Data Envelopment Analysis field. This 
new method adds greater flexibility to the weight restric-
tions techniques. It is not our concern to present the 
potentialities or the details of weight restrictions. This 
matter is already extensively covered in the existing 
literature, namely on how to set up the specific values 
for the restrictions.  

Since we are dealing with a non-linear concave ob-
jective function, we have the possibility to locate the 
optimal set of weights in a continuous way in contrast to 
the linear case where optimality always occurs at a ver-
tex of the feasible solution set. 

We used the simplest convex penalty function for the 
sake of clarity, but other convex functions like maxi-
mally flat polynomials or Tchebychev polynomials 
could also be used. 

Even the convexity restriction can be dropped leading 
to more complicated programs, that can be used for 
instance in discriminating analysis. 
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