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This paper analyzes the effect of introducing an energy storage (ES) system in an
intermittent renewable energy power plant such as a photovoltaic (PV) installation.
The aim of this integration is to achieve an improvement in the operability of these
power plants by increasing their production predictability. This will allow a further PV
integration within the electrical power system, facilitating the system’s load—demand
balance. In this manner, the paper proposes two power management strategies (PMSs),
each with different configurations, for operating a PV power plant: the first focuses on
fixing constant power production and the latter focuses on reducing the high frequency
fluctuations of the production. Thereafter, this paper analyzes and quantifies the ratings
of the ES system (ESS) required to ensure a reliable performance of the plant on an
annual basis for each of the PMSs with their different possible configurations. The
resulting ES ratings vary with these PMS configurations. It can be concluded that
significant improvements in production predictability are achieved with an ESS energy
capacity of approximately 50% of the average daily energy produced by the PV panels
and a power rating of around 55% of the plant’s rated power. All the results are based
on l-year-long simulations which used real irradiance data sampled every 2min.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4765696]

. INTRODUCTION

Thanks to the increased financial stimulus experienced by renewable energies across the
planet during the last decade, photovoltaic (PV) systems have emerged as an important power
source.'” Nowadays, solar power is rapidly growing as an effective renewable source of electri-
cal energy.>* However, this promising evolution of the PV power capacity faces a challenge in
achieving large penetration into the electrical power system (EPS) due to the stochastic nature
of the solar resource. In fact, this is an issue for most of the renewable energy sources (RESs),
which usually present intermittent production. For PV and other intermittent RESs, a more con-
trollable and nonfluctuating production should be assured to increase their share in the genera-
tion mix while offering some ancillary services.” This fact also paves the way for the imple-
mentation of hybrid generation technologies and the integration of energy storage (ES) systems
into PV power plants.®® The first analysis of ES integration into PV power plants dates from
20 years ago.” However, the youngness of ES technologies and the small size of the PV power
plants at that time made this solution impractical. Subsequently, in the early 2000s, when the
renewable experience arose, this topic regained importance. As an example, note the creation of
a European Network for Investigation on Storage Technologies for Intermittent Renewable
Energies (INVESTIRE),' established between 2001 and 2003 under the Fifth EU Framework
Program, which made a thorough study of the contribution of ES systems (ESSs) to the integra-
tion of renewable generators. The main objective of the Network was to evaluate the maturity of
storage technologies and to recommend R&D strategies to improve their use with renewables.

1941-7012/2012/4(6)/063101/14/$30.00 4,063101-1 © 2012 American Institute of Physics
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Nevertheless, it was not until recent years that a significant development in most ES technolo-
gies (REDOX, Li-Ion and NaS batteries, supercapacitors, etc.) was achieved. This great devel-
opment coincides in a moment of increasing demands on the operating conditions of large
renewable generation systems, which are getting larger and larger. As a result, the possibility of
implementing ESSs in PV power plants has become an issue of particular relevance nowa-
days."'™"® This research is being further complemented by demonstration projects, like the one
started in 2010 as part of the Eurogia + cluster,' in which a demonstration PV power plant
with 1.1 MW of lithium ion batteries has been developed with the overall objective of reducing
the cost of energy, providing ancillary services, improving network stability, and offering back-
up functions.

Therefore, the technical interest in introducing ESSs in PV plants is clear and the question
that arises is what their energy and power capacities should be and how the combined PV + ES
production should be managed. This paper deals with both issues, proposing two different
power management strategies (PMSs) and assessing the ESS rating that is required for each of
them. The installation of an ESS in a PV power plant introduces a considerable cost increase,
apart from the additional space needed for its location, and therefore it is important to optimize
both its rating and its exploitation strategy. The analysis conducted in this paper returns some
significant figures regarding the ESS power and energy capacity ratings which would guarantee
a certain degree of confidence throughout the year when forcing the PV plant to track a particu-
lar PMS. This should help PV plant designers to select the optimal ESS rating according to a
given expected performance. The structure of the prototype PV + ES power plant considered is
represented in Figure 1.

The paper starts by describing and analyzing the characteristics of the power generated by
a generic PV plant, discussing the interest of including an ESS, and defining some advanced
operational characteristics that can be achieved thanks to the introduction of ES. Then, Sec. III
introduces the two different PMSs proposed for use in PV power plants. Section IV focuses on
defining the type of analysis performed. The simulation results are presented and discussed in
Sec. V. Finally, some concluding remarks are stated in the last section.

Il. OPERATION OF PV POWER PLANTS WITH ENERGY STORAGE
A. Characteristic production by PV plants

The characteristic power production of a particular PV plant at a location on the Earth can
be derived from the analysis of the solar irradiance and irradiation levels at that location during
a particular period of time. This analysis provides information on how much and how fre-
quently the sun’s energy strikes a surface. Unlike wind resource, which varies in a stochastic
way, with the statistical distribution of wind speed being similar to a Weibull distribution, the
solar resource cannot be so clearly assimilated in any statistical model. Nevertheless, knowl-
edge of irradiance levels is needed for effective research into solar energy applications.”’ Due
to the cost and difficulty of measuring them, irradiance values are not normally available?* and
many mathematical models have been required to estimate the data of the irradiance that is
expected to come into contact with a certain tilted plane at a given location.”*>*

Pes

FIG. 1. Prototype grid-tied PV power plant with a generic ESS.
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However, since models are locally adapted and depend on different estimations and approx-
imations, none of them can assure an accurate instantaneous irradiance prediction in any place
at any time. As a matter of fact, this forecasted value largely varies as a function of the sto-
chastic atmospheric phenomena (clouds) which take place at many orders of magnitude both
spatially and temporally.?” The scales of these phenomena range from local clouds on distance
scales of hundreds of meters and timescales of seconds to seasonal variations on global geo-
graphic scales.

Modeled global irradiance data approximations can be consulted in several international
irradiance databases (SolarGIS, PVGIS, Satel-light, SoDa, ESRA, SOLEM]I, etc.) as well as dif-
ferent meteorological agencies and other sources such as NASA or ESA. Most of them are
compared and analyzed in Stri et al.*®

In this paper, the analysis focuses on one specific location in the south of Spain (Sanlicar
la Mayor). Its expected daily irradiance patterns have been extracted from the PVGIS solar
database. This database provides the monthly statistically averaged clear and real sky patterns
at any location all over Europe throughout a year. These patterns, normally obtained for an
optimal tilted plane (around 33° in the location under study), reflect clear differences for fall
and winter months, as can be observed in Figure 2, mainly due to the frequent presence of
clouds during these two seasons.

Apart from these statistical patterns, actual irradiance values measured at the selected loca-
tion throughout the year 2009 have been used in this work. These data contain a time series of
365 days’ irradiance values sampled every 2min, which is accurate enough to estimate the
effect of the passing clouds and the expected plant energy yield.”' These values can be used to
represent the spectrum of the power produced throughout the year by a PV plant installed at
that location. This is represented in Figure 3, where two different sets of data have been intro-
duced: a dispersion of points which represent the spectra of different groups of days and a con-
tinuous line which represents the averaged value of the power spectrum. The clear day—night
repetition pattern around 86400s (24 h) and its harmonics can be seen, as well as the stochastic
nature of the variations due to clouds at higher frequencies.

B. ES improvements, characteristics, and selection

The integration of ES will provide PV power plants with advanced control characteristics
such as power production predictability improvement (capacity firming?) and power production
smoothing.” Regarding the first, it seems likely that it should be compulsory in the coming
future to be able to forecast the amount of power supplied by renewables to be injected into the
grid with a certain degree of confidence some hours in advance, as is already the case for other
types of generators.” This will pave the way not only for an extended penetration of PV instal-
lations but also for their access to the electricity markets. On the other hand, although PV pro-
duction smoothing is not currently a grid requirement for renewables in general, a reduction in
the fluctuations of the power generated by PV plants is desirable and could also be demanded
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FIG. 2. Standard irradiance for each month on a 33° tilted plane in the south of Spain. (a) Clear sky conditions, ideal irradi-
ance. (b) Real sky conditions, average daily expected irradiance.
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FIG. 3. PV power spectrum on the selected site (Sanlicar la Mayor, Spain).

in the near future by grid operators to guarantee a stable and balanced operation. This smooth-
ing can be obtained by running the ESS as an energy buffer, that is, by reducing the variability
of the production with reference to an average value. The time horizon of such a control strat-
egy would stretch from seconds to hours depending on the size of the ESS. The size or the
energy ratings required by the ESS could be reduced if the same PV production smoothing was
programmed as a combination of an ESS integration with other techniques that have already
been proposed in the literature, for example, with accurate solar forecasting methods®* and geo-
graphic smoothing through aggregation of different power plants.®>°

Various reviews can also be found in the literature which analyze the current development
status of the most important ES technologies available in the market.>®*’® Some of these
works also classify these ES technologies and examine their corresponding characteristics and
possible applications. Among the different classifications proposed, a widely accepted one is
that dividing ES technologies between those storing energy in an electromagnetic way (direct
storage) and those storing energy in a mechanical or chemical way (indirect storage). In the
direct storage group, technologies such as ultracapacitors (UCs) or superconducting magnetic
energy storage (SMES) can be highlighted, while in the other group, technologies such as
pumped hydro (PHES), compressed air (CAES), or flywheels (FESSs) can be pointed out as
mechanical systems and fuel cells (FCs) or batteries (BESS) as chemical ones.

Amongst these ES technologies, few are able to meet the requirements of PV power plant
applications. These requirements determine fast reaction time, high efficiency, ability to inde-
pendently size storage power and capacity, reduced physical size to be placed on the location,
ease of maintenance, long lifecycle, and maturity of the technology.” According to them,
CAES or PHES could not be used due to their geographical dependence and limited modularity,
while others present limitations in terms of maturity (SMES) and low efficiency (FCs). Then,
although UCs and FESSs could be used for certain high power, low energy applications, bat-
teries arise as the key technology to be integrated within PV power plants. On the one hand,
among the different battery technologies, lead-acid battery systems have been mostly used in
past applications, mainly due to their maturity and low cost, but performance limitations, short
lifecycles, and high maintenance demands have limited their adoption in PV applications. On
the other hand, breakthroughs in a new generation of lithium ion based BESSs are entering the
market, meeting most of the PV power plants’ operation requirements. Moreover, a significant
improvement in their performance is expected in the near future due to the large research effort
that is taking place in this field, especially focused on its potential application in electric
vehicles.***! In this manner, lithium ion batteries are considered to be the candidate technology
for use in PV +ES plants in the next years for operation with high energy demand strategies.
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However, other ES technologies such as the aforementioned UCs or FESSs could be applied in
combination with lithium ion batteries to provide smoothing or other low energy strategies.

lll. PROPOSED POWER MANAGEMENT STRATEGIES

The extended operation functionalities that a PV power plant with ES can offer to the grid
depend not only on the power and energy rating of the ESS incorporated but also on the PMS
implemented in the plant control system. This work proposes two different PMSs to convert the
PV instantaneous and stochastic production into a controlled generation useful for the grid.
These strategies have been called “constant output” and “fluctuations reduction,” and have been
designed to cope with two potential grid-connection requirements for renewable energy genera-
tors: power capacity firming and output smoothing, respectively.

In any case, the PV power plant production will now track a power reference generated by
the control system according to the following equation:

Pref - (va +PES); (1)

where P, is the reference power (dependent on the control strategy), P,, is the instantaneous
power provided by the PV panels (dependent mainly on time, location, and weather), and Pgg
is the current power which will have to be delivered or received by the ESS. This is in turn

Discharge : Pgs > 0 — dEgs/dt = —Pgs/ ¢4, 2
Charge : Pgs < 0 — dEgs/dt = —Pgs X &, 3)

where Erg is the energy stored (available in the ES), while ¢. and ¢, are the charging and dis-
charging efficiencies, respectively.

Thus, Pgg is adjusted so as to complement the PV panels’ production and therefore achieve
control over the power produced by the power plant, hence improving its predictability. The
two different PMSs, named constant output power and fluctuations reduction, are presented and
analyzed in the following.

A. Constant output power management strategy (COPMS)

This first PMS is based on setting constant values of power (constant power steps) as P,
for the PV power plant. Its main goal is to provide power capacity firming, that is, a more
stable and predictable production which could be traded in the electricity markets with high
reliability. Electricity markets’ configurations are quite diverse worldwide although they are
normally run in a continuous way and present constant settlement periods of 1h or less. For the
specific case of the Iberian Electricity Market (MIBEL), which was used as a reference for the
analysis presented in this paper, the settlement periods are 1 h long and the production is traded
the day before (although it also presents an intraday market with six sessions in which produc-
tion can be renegotiated).

The number of steps defining the P,.r to be tracked in this PMS will be decided by the
plant operator as a function of the electricity market conditions. Then, the duration of the steps
is adapted to the 1-h settlement periods of the market. Thereafter, the value of the power to be
generated during each of the steps is calculated so that over the whole day it will match the PV
production defined by the PVGIS clear sky model for that day. Thus, an initial P, is defined
but this is then adjusted by a weather based correction which takes into account the actual
weather conditions (Figure 4). This correction will be null for clear days but will modify the
reference (reducing it as a function of the weather forecast and using the PVGIS real sky
model) during cloudy days.

Figure 5 represents four different energy production reorganization patterns for a clear day
(a four-step type, a single 6-h step, a single 10-h step, and a single 14-h step). All of them gen-
erate the same amount of energy over the day. It can be noticed that this PMS works very well
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FIG. 5. Resulting P, for different configurations of the constant power steps PMS for a sunny day.

on clear days when the production pattern extracted from PVGIS fits the actual PV production
well. However, this PMS is not so precise for cloudy days when larger amounts of ES capacity
will be required to avoid system saturations due to unpredicted sudden PV power variations.
This is one of the reasons why, in order to get a reference idea of the ESS requirements for
operating the PV plant in this PMS, the sizing analysis has been performed on an annual basis
(including clear and cloudy days) and has considered the power generation with the same num-
ber of steps every day.

B. Fluctuations-reduction power management strategy (FRPMS)

This second PMS is focused on smoothing out the irregular PV production. Thus, it flattens
the power delivered by the PV power plant to the grid using the ESS as an energy filter. In this
manner, the goal of this strategy is to remove the high frequency component of the power gen-
erated by the PV plant.

Therefore, the input to the control system for this PMS is the instantaneous actual PV pro-
duction, which is fed to the low-pass first-order discrete filter presented in Eq. (4)

Filtery(z) = %, with @, = % _ 10g;a) ’ (4)

where o, is the cutting frequency, t its time constant, and T the sampling time of the input sig-
nal (2min in this case). The filter characteristic parameter “a” is adapted by choosing the t
value according to the degree of fluctuations in the power to be removed. Then, Eq. (4) pro-
vides a smoothed power curve which is used as the new P, for the PV power plant. Some
examples of PV power smoothing can be observed in Figure 6, where a 3-day simulation with
a high presence of passing clouds has been represented. Note that, as the degree of filtering
increases (“a” becomes closer to 1), a more constant production can be obtained but also a
higher ESS capacity will be required. However, PV plant operations with degrees of filtering
beyond 0.97 would not deliver significant benefits to the grid but at the same time they require

Downloaded 06 Nov 2012 to 150.128.131.2. Redistribution subject to AIP license or copyright; see http://jrse.aip.org/about/rights_and_permissions



063101-7 Beltran et al. J. Renewable Sustainable Energy 4, 063101 (2012)

— 1 000 C T T T T T T T T T T — PV

= —a=0.90
~ a=0.97
S 800r *a=0.99
:g 0=0.995
s 600- ]
Q o)

c [
@ 400 IR | .
~

g 200 =

[]

o 0 . J .

6 12 18 24 30 36 42 48 54 60

Time (hours)

FIG. 6. Resulting P, for different configurations of the fluctuations-reduction PMS during three cloudy days.

enormous amounts of ES. Thus, these levels of filtering will not normally be considered for
practical use.

Unlike the previous strategy, the FRPMS seems inappropriate for clear days with low
power fluctuations, being more useful for cloudy days. Therefore, this PMS should be applied
for smoothing out the PV production, reducing the intermittent solar power spikes and valleys,
and making the operation and planning of the EPS easier. However, it would not enable PV
power plants to access the electricity markets with highly predictable production.

IV. RELATIONSHIP BETWEEN THE PMS AND THE ESS RATING

Taking into account its current elevated cost, it is important to define the minimum ESS rat-
ing necessary to achieve the objectives of the selected PMS. However, given that the data used to
manage the plant are based on statistics and on weather forecasts and that the real operation of
the plant is stochastic, the only way to guarantee that the PMS objectives are mostly fulfilled is
by assigning the worst case ratings to the ESS. If an ideal estimation of the future PV production
was available, the best case ratings for each PMS could be easily calculated. However, in practice
there will always be an error in the estimation of the actual production, and consequently the
ESS should be overrated to overcome these possible deviations. In this way, if a 100% operation
guarantee is required, the ES should be rated to full PV plant power and for the daily maximum
produced energy, which would involve installing an enormous, unaffordable ESS. On the con-
trary, if the error is bounded to a certain margin, the overrating can also be limited although esti-
mation errors can bring situations in which it will not be possible to track the PMS reference ei-
ther because the ESS is full or because it has run out of energy. In order to minimize these
situations, an improved operation of the PV power plant working under any of the PMSs can be
achieved by introducing a control loop which continuously monitors the state of charge (SOC) of
the ESS. This SOC supervision allows a reference SOC (SOCy,) to be defined that will be
regained every time the instantaneous SOC deviates within a defined time period (tsoc). In this
way, saturations of the ESS can be minimized (reducing SOC oscillations) and a smaller ESS can
be introduced to properly track the same P,.. Conversely, the production is distorted with regard
to the ideally defined P, This distortion is due to the power devoted to recovering the SOCy,
level within that t5oc. Thus, the global equation driving the operation of the PV +ES plant, with
this complementary control being active, can be defined as

Egs — Egsmax X SOCy,
PES - (Pref - va) + ( & ESmax X ! )7 (5)
Tsoc

where

* P,,—current power required at the point of common coupling (PCC),
* P, —current solar photovoltaic power,
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» Epg—current ESS energy,

* Ersma—energy capacity of ESS,

* SOCp—reference state of charge, as a percentage of the energy capacity,
* Tgoc—storage charge time constant.

Therefore, Eq. (5) is an evolution of (1) that is focused on tracking the P, defined by each
PMS, which includes a term defining the SOC supervisory complementary control (in charge of
keeping the instantaneous SOC as close as possible to SOCy). As already introduced, note that
this new term influences the dynamics of the system by modifying the ideal response of the plant.
The tradeoff between the two opposite effects (reducing the need for large ESS energy capacities
versus a higher generated power distortion) is mainly defined by the t5oc value. Generally, this
tradeoff value has been fixed to 150 =24h, and this value is used in all those analyses presented
in the following where the influence of 5o Was not subject to analysis.

V. RESULTS AND DISCUSSION

The two PMSs described have been simulated considering a 1-MW-rated PV plant like that
in Figure 1. The actual irradiance values presented in Sec. II were used to simulate a whole
year of operation of the plant using these values to define the production assigned to the PV
panels of the plant. Then, this production was analyzed in combination with the P, previously
defined according to the PVGIS, to analyze the amount of ES needed to operate the plant
according to the different PMSs. This has been done using MATLAB/SIMULINK® and two main
types of results have been obtained: those related to the improvement in plant operability and
those related to the ESS sizing. Both are introduced and discussed in the following.

A. PV power availability and predictability improvement

First of all, if an ESS large enough to avoid saturations is introduced and the system is
considered ideal (no losses while charging or discharging the ESS), the optimal improvement in
power availability and predictability that could be achieved with each of the PMS configura-
tions can be statistically determined. This is done by means of the plant’s production cumula-
tive distribution function (CDF), which describes the probability that the PV production will be
at least equal to or higher than a given percentage of the total PV plant rated power over the
year.

Therefore, Figure 7 represents the CDF for the different power production patterns pre-
sented in Figures 5 and 6. Note that the CDF of the PV power plant production can be modified
enormously by the different PMSs, ranging from a low power value production that is a hardly
constant in time (the case which approximately corresponds to the FRPMS with a=0.995 in
the figure) to a high power value production that is assured during approximately 35% of the
calculated time only (the case of using the constant power strategy with an 8-h step with a

z‘ 1 : T T T T T
= H —PV production
S o8 ---1 step 8h COPMS| -
8 —4 steps COPMS
aosk - —a=0.995 FRPMS | |
3 ---a=0.99 FRPMS
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Q
o
< 0 I 1 | ] I 1 | - 2
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FIG. 7. CDF for the PV 4 ES power output operating under different PMS.
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power value equal to 0.8 p.u. (per unit)). Thus, the fractions of time when high or low power
levels are generated can be modified by using the ESS as a function of the PMS implemented.
On the contrary, note also how the CDFs resulting for the COPMS are more constant than those
obtained for the FRPMS, which could be expected given their different goals.

Finally, it can be concluded from the results represented in Figure 7 that by implementing
any of the PMS configurations previously introduced, mainly those of the COPMS, the CDF of
the PV plant power production can be made more regular and therefore its predictability can be
improved.

B. PV power production smoothing

Similarly, the smoothing effect achieved with the ES introduction is also analyzed. The
smoothing out comprehends a general reduction in the fluctuations of the PV power production,
that is, it reduces the variability of the instantaneous production with reference to an average
value over a period (its standard deviation). This effect makes sense mainly for the
fluctuations-reduction PMS, as observed in Figure 6, and is clearly reflected in the frequency
spectrum of the curves (Figure 8). This figure represents the comparison between the initial PV
power production spectrum, averaged as represented in Figure 3 and the PV +ES power plant
production spectrum, also averaged, for a filtering level with “a=0.95.” The reduction in the
high frequency region can be clearly appreciated.

The amount of reduction in yearly variability can be determined by calculating the standard
deviation of the plant production and comparing it with the initial PV production. This compar-
ison is presented in Table I, from which the amount by which the variability is reduced as the
filtering level is increased can be deduced. Note that tgoc =24 h has been fixed in this case.
Also, the timeframe considered in order to determine the standard deviation is the whole year,
when the mean actual production value is calculated to be 0.2256 p.u.

Therefore, a clear reduction in the PV power production variability, that is, a smoothing of
the production, can be confirmed when a large enough ESS is introduced and the proper PMS
is implemented. However, it has been previously mentioned that due to the excessive ESS rat-
ings that will be required and the small contribution to the grid operability of introducing filter-
ing levels beyond “a=0.97,” these will not be implemented in real installations.

C. ESS ratings needed to obtain the different operability improvements

From the results for both the improvement in predictability and reduction in variability, it
can be concluded that the operability of PV power plants can be improved by using ESS. The

e
| —PVwithES|

PV Power (p.u.)

H103 I “H“104 ‘ IIIIH10 I I‘ 10
Time Scale (Seconds)

FIG. 8. Power spectrum for the PV power plant with storage under the fluctuations reduction PMS (a = 0.95).
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TABLE 1. Evolution of production variability as the filtering level is incremented.

Filter parameter value Filter time constant (min) Standard deviation (p.u.)
a=0 (PV alone) 0.3392
a=0.7 Tx5.5 0.3350
a=0.8 TR 0.3336
a=0.85 T~ 12.3 0.3322
a=09 T 19 0.3291
a=0.95 t~39 0.3171
a=097 T 66 0.2959
a=0.99 T2 199 0.1866
a=0.995 T~ 399 0.1112

point now is to have a reference for how large the ESS needs to be to achieve this improve-
ment. A sizing analysis has been performed to try to define some reference values for the
amount of power and the energy capacity of the ESS that would be needed to properly operate
the PV power plant according to each of the PMSs. This analysis has also been developed in a
statistical way, calculating on an annual basis the percentage of time that the PV +ES would
track the P, fixed by each PMS, without leading to saturation, for various ES ratings of power
and energy.

To do so, a set of parameters of both the power plant characteristics and the PMS configu-
rations have been fixed. These are listed in Table II and define the case study presented in this
paper.

Note how, according to the characteristics of the location where the analysis is conducted,
the PV plant capacity factor (Cp is fixed to 4.3 MWh/MW, a typical value in the south of
Spain. This Cy is defined as the quotient of the annual average power (P4y¢) and the nominal
power (Py) of a PV plant. Thus, given that C; provides the average PV energy produced per in-
stalled MW in a day, it has been used as a base for the p.u. energy calculations. Conversely,
the PV plant nominal power (1 MW) is the value used as the base power for the p.u. system.

Finally, the parameters fixed as variable are those which have been systematically modified
in each simulation because of their influence on the plant’s proper operation. The results for
each of the PMSs can be summarized as follows.

1. ESS sizing for the COPMS

Various configurations of the constant power steps PMSs have been simulated. These
include single-stepped P, with step lengths ranging from 4 to 16 h per day. For each of them,

TABLE II. PV + ES plant case study characteristics and values.

PV +ES power plant parameter

PV plant nominal power (kW) 1000

ES nominal power (kW) Variable
ES energy capacity (kWh) Variable
ES charging efficiency (%) 90

ES discharging efficiency (%) 90
Reference SOC, SOCy, (p.u.) 0.5
Capacity factor, Cr (MWh/MW) 43
Region where the study is conducted South of Spain
ES charge time constant (tgoc) Variable
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FIG. 9. ESS power needs to guarantee the reference tracking with different degrees of confidence.

the percentage of time with proper operation of the power plant as a function of the ESS ratings
has been obtained (Figures 9 and 10).

On the one hand, Figure 9 compiles the power ratings of the ESS (in p.u. referred to the
PV plant nominal power) which guarantee that the P,., fixed by the PMS to the hybrid PV +ES
plant every 2min during the year can be tracked with a given degree of confidence. That is,
regardless of the PV instantaneous production, the ESS will not be saturated due to power limi-
tations when tracking P,.r during that percentage of time in the year. For instance, it can be
extracted from Figure 9 that when the PMS configuration defines a 10-h-constant P, the ESS
nominal power needed to track it without causing saturation with 80% confidence is 0.325 p.u.
Similarly, the ESS-rated power needed to track that same P, with 99.5% confidence is
0.575 p.u. Therefore, a clear and quick comparison of the ESS power ratings needed by the
PMS configurations with different constant power steps can be done.

On the other hand, Figure 10 represents the percentage of time with proper operation of
the plant when tracking an 8-h-step P,.r as a function, in this case, of the energy capacity of
the ESS (in p.u.). This is represented for different values of the t5oc parameter. It stands out in
Figure 10 that the lower the value of T4, the smaller the required energy capacity of the ESS,
minimizing its cost. The problem is that the lower the value of tgoc, the more the produced
power is distorted and differs from the desired constant reference, as already explained and
deduced from Eq. (5). A trade-off among them must be achieved. An analysis of this figure
allows the minimum energy capacity which guarantees the compromised production during the
year with a certain percentage of probability to be established. For instance, if the plant is oper-
ated with a single 8-h constant step P,..; and t5oc =24h, an ESS energy capacity of 0.51 p.u. is
needed to guarantee that the reference is tracked for 90% of the year and a capacity of 2 p.u. is
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FIG. 10. Percentage of time during the year without SOC saturation as a function of the ESS energy capacity.
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required to guarantee this for 99.3% of the time, that is, 2.2 MWh and 8.6 MWh, respectively,
for a 1 MW PV plant.

As a conclusion, the storage energy and power requirements derived from the different an-
nual analyses for a significant improvement in the availability during the year (using the
COPMS) are found to be between 50% and 200% of the yearly average energy produced in
one day and 50% to 60% of the rated power of the plant. This means that, for a 1 MW PV
plant, a 500kW ESS with an energy capacity equal to 2.2 MWh would guarantee tracking of
the reference for 90% of the time over the whole year for a daily constant power step lasting
8h every day with a battery time constant of less than 72 h.

2. ESS sizing for the FRPMS

In this case, a figure representing the degree of confidence of the FRPMS for an annual
analysis when the P, tracking can be effectively guaranteed without saturations is introduced.
In this way, Figure 11 lists the calculated percentages of proper operation for different ESS
sizes, depending on the values of the filter parameter “a” and for a fixed t3oc =24h. It can be
extracted from Figure 11 that with a 0.02 p.u. energy capacity the smoothing level correspond-

[Tl

ing to “a”=0.90 can be guaranteed for 97% of the time throughout the year. Equally, with a
0.15p.u. energy capacity, the smoothing level corresponding to “a”=0.97 can be guaranteed
for 98.7% of the time throughout the year.

Thus, it can be concluded that with an energy capacity ranging from 5% to 30% and
around 50% in terms of power, a significant reduction in power variability (using the FRPMS)

can be achieved.

D. Expense of the battery life under the different control configurations

Finally, it is important to make some estimates concerning the aging experienced by a battery
installed in a PV plant operating under the PMSs defined in this work. In this sense, the same an-
nual simulations were used in order to count the number of charge/discharge cycles for each depth
of discharge (DoD), a factor which highly impacts the aging. From that amount of cycles at the
different DoDs, equivalent numbers of full cycles were calculated. Thus, Table III summarizes the
results obtained for those simulations performed for the two PMSs with various configurations and
a battery rated to assure the proper operation of the plant with 95% confidence in a regular year.

Then, depending on the size of the battery and the configuration of the PMS, the aging expe-
rienced by the battery will vary greatly. The influence or effect on the aging produced by each
PMS can be appreciated when comparing the cycles experienced by the same battery operated
under each of the strategies. This is the case for the 0.5 MW/2 MWh battery, which returns 283.3
cycles for the FRPMS with a =0.99 and 375.9 cycles for the COPMS with a 4-h step configura-
tion. Similar results are obtained with a 0.5 MW/0.5 MWh battery which returns 392.5 cycles for

75100 =

s g

o o5 o
] we®

'-g ' 'o"“

c 9 o

O ot

- 85 d |

© Ry -—2=0.8

o) R =a=0.9

o 80l & a=u. |

° & a=0.95

(O] =

o 750 5 a=0.97| |

o) R4 ===3=0.99

— " ‘v

Q75 005 01 015 02 025 03 035 04 045 05

ESS energy capacity (p.u.)

FIG. 11. Percentage of time without ESS SOC saturation operating under the fluctuation-reduction strategy.
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TABLE III. Resulting number of battery equivalent full charge/discharge cycles for different operating conditions.

Battery characteristics PMS and its configuration Number of full cycles
0.5 MW-37.5kWh FRPMS with a =0.8 1314
0.5 MW-75kWh FRPMS witha=0.9 964.8
0.5 MW-250kWh FRPMS with a =0.95 500.4
0.5 MW-0.5 MWh FRPMS with a =0.97 392.5
0.5MW-2MWh FRPMS with a=0.99 283.3
0.5 MW-2 MWh COPMS with 1 step of 4h 3759
0.5 MW-1.63 MWh COPMS with 1 step of 6h 317.4
0.5 MW-0.75 MWh COPMS with 1 step of 8h 363.5
0.5 MW-0.88 MWh COPMS with 1 step of 10h 388.3
0.5 MW-1.38 MWh COPMS with 1 step of 12h 355.1
0.5 MW-1.88 MWh COPMS with 1 step of 14h 347.2
0.5 MW-0.3 MWh COPMS with 4 steps of 3 h each 444.5

the FRPMS with @ =0.97 and 490.25 for the COPMS with a single step of 8h (case simulated
separately because it provides a different degree of confidence in proper operation). Therefore, it
seems clear that the COPMS is more aggressive for the battery with regard to life expense.

VL. CONCLUSIONS

The importance of solar photovoltaic technology is already remarkable in many countries
and current trends indicate potential massive penetrations in some of them, which could repre-
sent an issue for the balance of their grids. Among other techniques, the introduction of energy
storage technologies is considered a good solution to solve the intermittency problems associ-
ated with the production of PV power plants. The enhanced production achieved by these plants
thanks to the storage integration will allow a further degree of penetration of this technology
within the grid. In this work, two potential advanced operation modes for PV plants with stor-
age have been defined and analyzed. On the one hand, the constant output power management
strategy reorganizes the PV production, making it constant by periods and, hence, predictable
and tradable in an electricity market. On the other hand, the fluctuations-reduction power man-
agement strategy reduces the high frequency oscillations in the PV power production. Both
strategies have been implemented with different configurations in a I MW PV plant model and
simulated throughout one whole year using actual irradiation data. The results show that impor-
tant improvements can be achieved in the modification of the cumulative distribution function
of the production and in the reduction of the variability, respectively. Moreover, the power and
the energy capacities required for the ESS to be installed in such a PV power plant and oper-
ated according to each of the power management strategies defined have been calculated. The
resultant ratings could be used as a reference for future PV plant developments in places with
similar cloud cover characteristics. Finally, some results and comments have been introduced
regarding the number of full charge/discharge cycles experienced by the ESS when subject to
various configurations of the PMSs presented.
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