
�

�

tab�parsing�tex� ����������� ������ p��

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade Aberta

https://core.ac.uk/display/61419162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Tabulation for multi�purpose partial parsing

Vitor Jorge Rocio �vjr�di�fct�unl�pt�� and Gabriel Pereira Lopes
�gpl�di�fct�unl�pt�
CENTRIA � Departamento de Inform�atica
Faculdade de Ci�encias e Tecnologia
Universidade Nova de Lisboa
Quinta da Torre
���� Monte de Caparica
PORTUGAL

Eric de la Clergerie �eric�clergerie�inria�fr�
INRIA � Rocquencourt � BP ���
����	 LE CHESNAY
FRANCE

Abstract� E�cient partial parsing systems �chunkers� are urgently required by
various natural language application areas as these parsers always produce partially
parsed text even when the text does not fully �t existing lexica and grammars�

Availability of partially parsed corpora is absolutely necessary for extracting
various kinds of information that may then be fed into those systems� increasing
their processing power�

In this paper� we propose an e�cient partial parsing scheme based on chart
parsing that is �exible enough to support both normal parsing tasks and diagnosis
in previously obtained partial parses of possible causes �kinds of faults� that led to
those partial parses instead of complete parses�

Through the use of the built�in tabulation capabilites of the DyALog system�
we implemented a partial parser that runs as fast as the best non�deterministic
parsers� In this paper we ellaborate on the implementation of two di�erent grammar
formalisms	 De�nite Clause Grammars �DCG� extended with head declarations and
Bound Movement Grammars �BMG��

Keywords� Constituent movement� Head�driven parsing� Partial parsing� Tabula�
tion

�� Introduction and motivation

It is almost impossible to completely parse every sentence in real text
from electronically available sources given the current state of the pars�
ing technologies� This is due to several unavoidable factors� errors in
the input text� unknown words� insu�cient or erroneous knowledge
in both the grammar and the lexicon� errors introduced during pre�

� VJR POR OS PROJECTOS
� VJR POR AS BOLSAS

c� 
��� Kluwer Academic Publishers
 Printed in the Netherlands


tab�parsing�tex� ����������� ������ p��



�

parsing phases by tokenizers� part�of�speech �POS� taggers� heuristic
proper name identi	ers� etc�

However� unless fully parsed text is speci	cally required� there is
a lot of information that can be extracted from partially parsed text�
namely the syntactic structures for segments of the input text� other
than complete sentences� and this information can then be used for
automatically learning subcategorization frames �Roth and Carroll�
�

�� Collins� �

� Carroll et al�� �

��� for extracting information
about gender and number of nouns and adjectives that did not exist in
the lexicon but that were POS�tagged �Marques and Lopes� �

�a�and
for de	ning variable length windows to be used on word sense disam�
biguation� on automatic thesaurus construction �Grefenstette� �

���
on pp�attachment� relative clause attachment� adjective phrase attach�
ment �Ratnaparkhi� �

�� Yeh and Vilain� �

�� Collins and Brooks�
�

��� Most work on these matters use 	xed length windows ��n words�
with n � �� � ��� but their e�ciency would be improved if the window
length is 	xed regarding the number of phrases �not words� to the right
or to the left of the word under study�

Another approach to chunking starts with human validated parsed
corpora and learns how to chunk new texts from those examples �Daele�
mans et al�� �


� Ramshaw and Marcus� �

��� Although at 	rst these
example�based approaches might seem quite appealing and attractive
they embody a reasoning loop� In order to learn a grammar they require
parsed text for being trained and so the bottleneck is placed at the
production of correctly parsed text which is not exactly a problem
once we have grammars that were produced and ameliorated along the
years�

The use of indexed partially parsed text collections �together with
the indexed raw text� brings new insights to information retrieval tasks
by improving precision� by normalizing the text bases and queries� by
enabling further disambiguation of word senses� by allowing ellipsis and
anaphora resolution in those collections and bringing up the power of
using multiple knowledge sources other than the morphological infor�
mation analysis that is generally used for performing these kinds of
tasks�

The creation of partial treebanks is an important application of
partial parsing� For languages� such as Portuguese� for which these
resources are scarce or di�cult to access� this work can serve as a boot�
strapping process for automatically acquiring and�or improving lexi�
cal and grammatical knowledge mainly by using statistical induction
techniques�

Besides the need for partial treebanks� it is necessary that the pars�
ing process can contribute to detect and overcome the causes that lead

tab�parsing�tex� ����������� ������ p�	



�

to partial parses� The so�called robust parsers try to overcome incom�
plete�erroneous information by using error anticipation and constraint
relaxation techniques� These methods� though avoiding the failure of
the parsing process� do not attempt to identify the real causes for
strict partial parsability and do not use that information for learning
from previous experience� On the other hand� partial parses provide
information that help to pinpoint the real causes for partial parsability
and to 	nd corrections for those failures� According to our approach�
the use of the same chart parsing machinery �the one we are going
to present in this paper� both for partial parsing and for diagnosing
parsing faults and proposing fault corrections� enables the construction
of multiple instances of a partial chart parser� that just di�ers from
each other on their agenda initialization policies� These parsers will
act at di�erent stages of the parsing problem resolution� The agenda
is initialized either with actual lexical information for normal partial
parsing or with alternative information� corresponding to possible cor�
rections �properly marked with fault modes in order to allow their
incorporation and propagation through charts while parsing�� for fault
diagnosis �Lopes and Rocio� �


� Lopes et al�� �


� Lopes and Balsa�
�

�� Balsa et al�� �

��� Alternative agenda information leads to alter�
native partial parses� A partial parse will only be considered for further
fault 	nding and fault repair if and only if it is better �it has lower
granularity� see de	nition � in section �� than the parses previously
obtained by alternative diagnosis hypotheses� As a consequence one
obtains a declaration of the fault modes involved� and at the same time
a parse is obtained taking that fault declaration into account�

The partial parsing machinery that we present in this paper follows
the chart parsing philosophy� by using the built�in tabulation of DyA�
Log �Clergerie and Lang� �

��� a logic programming environment� with
an execution model that enables structure sharing and storing of partial
results� The grammars are clearly separated from the parsing processes
�which are hidden in DyALog� and the use of tabulation allows the
machinery to run as fast as other non�deterministic parsers �Abney�
�

�� Hobbs� �

�� The partial parsers presented in this paper use two
declarative grammar formalisms� DCG extended with head declarations
for describing the syntax of phrases where there is no linguistic material
moved away from its regular position and Bound�Movement Grammar
�Lopes et al�� �

�� for describing various kinds of linguistic movement
and enabling the binding of moved material to their traces �questions�
verb fronted sentences� prepositional phrase fronted sentences� rela�
tive clauses� clitics movement�� These two formalisms are linguistically
adequate for describing natural language syntax in two levels� The
head declarations suggest a head�driven� bi�directional analysis of text

tab�parsing�tex� ����������� ������ p�




�

�left�to�right and right�to�left�� A mixed search strategy �top�down and
bottom�up� is also implicit in the grammar formalism so that the most
e�cient parser can be built automatically� without losing grammatical
declarativity�

Bound�Movement Grammar �BMG� for short� involves movement
operators that were incorporated in DyALog� Thus� a BMG can be
directly compiled� and the corresponding parser is also generated auto�
matically� This parser acts on the chunked text obtained by the previous
bi�directional head�driven DCG based parser�

Section � of this paper de	nes some fundamental notions on partial
parsing used throughout the paper� In section � the parsing architecture
is presented� An introduction to the DyALog system is made in section
�� Sections � and � introduce the two grammar formalisms and detail
the implementations of the corresponding parsers in DyALog� Exper�
iments with the partial parsers are reported in section � We discuss
our approach and compare it with related work in section � Finally�
in section 
 conclusions are drawn and future work in the area will be
discussed�

�� De�nitions

The notions related to partial parsing used in this paper are formally
de	ned in this section� We assume here a rather general notion of
grammar� The important aspect is the existence of a derivation relation�
denoted as

S� �
� S����Sn

where S�� S����Sn are grammar symbols �terminal or non�terminal��
All other traditional grammar features �initial symbol� set of termi�
nals� form of production rules� are unde	ned� leaving room for the use
of a rather diversi	ed set of formalisms� Two instances of grammar
formalism are de	ned in sections � and �� corresponding to two levels
of syntactic analysis acting in tandem�

The notion of partial parse is central to our work and is formally
de	ned as�

De�nition � � A partial parse P over an input string w����wn� ac�
cording to a grammar G is a sequence of k tuples of the form� pi� pi��� C ��
i � ����k� where p� � �� pk�� � n� pi � pi�� for each i� and C is a non�
terminal from G deriving the input substring stretching from position

tab�parsing�tex� ����������� ������ p��



�

pi to position pi��� i�e�� C �� wpi�����wpi�� �each token wp is located
between positions p� � and p��

In order to select partial parses for further consideration in a fault
	nding process� we need a measure of granularity�

De�nition � � The granularity g of a partial parse P is the ratio
k�n� where k is the number of triples in P and n is the number of tokens
in the input string�

We are now able to de	ne a partial parser�

De�nition � � A partial parser is a function F that maps a non�
empty set P of partial parses over an input string w����wn into another
non�empty set of partial parses over the same input string� on the
condition that for each P � P there is a Q � F�Q� such that g�Q� �
g�P ��

From de	nition �� we notice that� in order to produce partial parses
from an input string� we need at least one partial parse� This appar�
ently endless recursion is easily solved by pre�parsing �POS�tagging�
the input string� i�e�� by assigning part�of�speech tags to each token in
the input string� As we can see from de	nitions � and �� the result is
already an upper bound granular partial parse�

Finally� we de	ne a subsumption relation between partial parses�
since the output of the partial parser can contain redundancies in the
form of partial parses subsumed by other partial parses�

De�nition � � A partial parse P is subsumed by another partial
parse Q �both P and Q are partial parses over w����wn according to
a grammar G� i� for each triple � pi� pi��� C� �� P there is a triple
� qj� qj��� C� �� Q such that pi � qj� pi�� � qj�� and C� �

� XC�Y �
where X�Y are strings of symbols from G�

�� Parsing architecture

The partial parser implemented in the scope of the work presented
in this paper is divided into four levels of a cascaded architecture�
The lower level �level �� is a neural�net part�of�speech tagger �Marques
and Lopes� �

�b� Marques� ����� that assigns syntactic categories to
words in raw input text� thus producing a 	rst partial parse� Each of
the subsequent levels ��� � and �� picks up the partial parse produced

tab�parsing�tex� ����������� ������ p��





21 3 4

5

pn

n

pn

def_art

conj(e)

pn prep(de)

pn

pn

Figure �
 FSA for compound proper names

by the previous level and produces another partial parse with lower
granularity �or equal� in the worst case��

Level � is a pre�processor based on 	nite�state automata� Its pur�
pose is to identify sequences of words described by very speci	c� local
grammars� numbers written in full� dates� compound proper names�
temporal�spatial adverbial clauses and complex prepositions� adverbs
and conjunctions� We show in 	gure � the automata for compound
proper names in Portuguese as an example of the mechanisms used at
this level��

Level � is a partial chart parser using a DCG extended with head
declarations� and identi	es sentence constituents �noun phrases� verb
phrases� prepositional phrases� adjective phrases and adverbial phrases�
involving no movement� Level � deals with constituents moved out of
the canonical order� and uses the Bound Movement Grammar �BMG�
formalism� Both levels � and � are described in more detail in sections
� and �� These two levels work in tandem�

�� A brief description of DyALog

Levels � and � of the parsing architecture described in the previ�
ous section are implemented in DyALog� a logic programming en�
vironment featuring tabulation and structure�sharing� These features
are achieved through an execution model based on logic pushdown
automata �LPDA��

tab�parsing�tex� ����������� ������ p��



�

���� Logic Pushdown Automata �LPDA�

LPDA are non�deterministic pushdown automata with logic terms as
stack symbols� A classic PDA consists of a 	nite state memory and a
pushdown memory �whose state determines the state of the automa�
ton�� together with a 	nite set of transitions� de	ning the possible
successive state changes� The 	nite state memory is absent from LPDA
since it can always be encoded in the pushdown stack� without loss of
generality�

There are three kinds of transitions in LPDA� corresponding to
di�erent kinds of operations on the pushdown stack� PUSH� POP
and SWAP � PUSH is the classic primitive of stack manipulation for
inserting a symbol on the top of the stack� POP is not the classic POP
primitive for stacks� Instead� it replaces the two stack top symbols by
another symbol� SWAP simply replaces the top symbol with another
symbol� The following notation for these transitions is used in this
paper�

PUSH � B �� CB
POP � BD �� C
SWAP � B �� C

The �� operator denotes a transition between the states speci	ed on
its left� and right�hand sides� B� C andD are any stack symbols and the
sequences shown represent the top of the stack �leftmost corresponds
to topmost��

A transition is applicable to a given state �represented by the stack�
if the symbol�s� on the top of the stack unify with the symbol�s� on the
left of the �� operator� In this case� the stack is subject to the speci	ed
operation �PUSH� POP or SWAP � and the substitution resulting
from the uni	cation is applied to the whole stack� producing the new
state of the automaton�

LPDA are the basic model of logic program execution in DyALog�
There are two essential procedures that need to be performed in or�
der to run a logic program� the compilation of a logic program into
a set of LPDA transitions and the implementation of the resulting
non�deterministic LPDA�

More details on the internal workings of DyALog can be found
on �Clergerie and Lang� �

��� The compilation scheme for BMG is
presented in this paper on subsection ������ The LPDA implementa�
tion uses tabulation techniques and allows the use of di�erent search
strategies through modulation� which is described on the following
subsection�

tab�parsing�tex� ����������� ������ p�






���� Modulation

In DyALog� a predicate is solved by pushing a call atom into the LPDA
stack and waiting for a corresponding return atom to be popped�
Di�erent search strategies are achieved by distributing �modulating�
the predicate information �functor and arguments� between these two
atoms� For instance� to obtain a pure top�down search strategy� all
predicate information must be conveyed in the call atom� On the other
hand� to obtain a bottom�up strategy� none of the predicate information
should be conveyed in the call atom� but only matched against the
return atom� Finer strategies can also be de	ned�

DyALog provides a directive dcg mode�� to specify the modulation
relative to a set of DCG �or BMG� non�terminals �and mirrors the
declaration mode�� used for Prolog predicates��

Both non�terminal names and respective arguments can be modu�
lated with the following scheme�

��dcg mode�NT� NT Info� Left Pos� Right Pos��

NT is a non�terminal or a list of non�terminals� NT Info speci	es the
type of modulation for the non�terminal functor and arguments� and
Left Pos and Right Pos specify the type of modulation for the left
and right positions� in the input� A plus sign ��� in each of NT Info�
Left Pos and Right Pos indicates that the respective information is
conveyed in the call atom� while a minus sign ��� indicates the op�
posite� the info should only be matched against the return atom� In
other words� � indicates top�down prediction� while � indicates bottom�
up propagation� The second argument of the dcg mode�� directive�
NT Info� may separately specify modulations for both the non�terminal
name and respective arguments� through a notation that mirrors the
functor�argument structure of the non�terminal� For instance� a value
of ������ for NT Info with respect to a non�terminal nt with two
arguments speci	es a � modulation for the name nt� a � modulation
for the 	rst argument and a � modulation for the second argument�

As a more thorough example� the directive

� �dcg mode��nt���� nt�����������������

produces the call and return atoms in table I �assuming nt� and
nt� non�terminals with � arguments each� arg�� and arg�� for nt�� and
arg�� and arg�� for nt���

This particular modulation for the left and right positions �respec�
tively � and �� assumes that parsing is to be done from left to right�

tab�parsing�tex� ����������� ������ p��



��

Table I� Call and Return atoms for nt� and nt�

DCG non�terminal nt��arg��� arg��� nt��arg��� arg���

Expanded nt��L�R� arg��� arg��� nt��L�R� arg��� arg���

Call dcg call nt� 
�L� arg��� dcg call nt� 
�L� arg���

Return dcg return�R�arg��� dcg return�R� arg���

s�� � np� vp� head�s� vp�� �a�

np�� � det� n�Type�� n args�Type�� head�np� n�� �b�

vp�� � v�Type�� v args�Type�� head�vp� v�� �c�

pp�� � prep� np� head�pp� np�� �d�

n args����� � ��� �e�

n args�	��� � pp� �f�

v args����� � ��� �g�

v args�	��� � np� �h�

v args�
��� � np� pp� �i�

v args����� � pp� �j�

Figure �
 Example of a grammar for level 


since only the left position is known at call time� When parsing right�
to�left� the modulation for the left and right positions must be � and ��
respectively� because now only the right position is known at call time�
If neither the left nor the right positions are known� then modulation
of both parameters must be �� The possibility of specifying di�erent
modulations for di�erent predicates is especially useful in our mixed
bi�directional parsing strategy� as we will see in the following section�

�� Partial parsing with DCG extended with head
declarations

Level �� in our parsing architecture� identi	es sentence constituents� us�
ing a DCG grammar extended with head declarations� We 	rst present
the grammar notation� and then detail the parser implementation�

tab�parsing�tex� ����������� ������ p���



��

���� Definition and example of DCG extended with head
declarations

The grammar for level �� which describes the structures of phrases in
a sentence� is a DCG �Pereira and Warren� �
���� extended with head
declarations� which specify head constituents in phrases�

Figure � shows an example of a reduced grammar used at level � ��
Declaration �b�� for instance� states that a noun is the head of a noun
phrase��

The head declarations allow the parsing procedure to follow a bidi�
rectional strategy� those constituents to the right of the head are ana�
lyzed left�to�right� those to the left are analyzed right�to�left�

This horizontal bidirectionality is combined with a vertical bidirec�
tionality that re�ects the co�existence of rules that have an associated
head declaration and rules that do not have it� Rules that have an
associated head declaration are triggered by the head category in a
bottom�up way� those that don�t have an associated head declaration
are triggered top�down by the category on the left�hand side�

Careful coding of the grammar and head declarations allows one to
achieve an adequate compromise between bottom�up propagation and
top�down prediction� while avoiding parsing incompleteness �Ritchie�
�


�

As a main guideline for coding the head declarations� the category
on the right�hand side �RHS� of a rule whose features determine speci	c
information on the other constituents on the RHS of that rule should
be chosen as head� The heads declared in the grammar of 	gure � are
a good example of the application of this principle� For instance� by
choosing the noun as the head of the noun phrase on rule �b�� we allow
noun arguments �n args� to be selected at once on the basis of Type�
provided by the noun lexical information�

On the other hand� the analysis of categories such as n args and
v args in the example in 	gure � depends strongly on the Type infor�
mation �subcategorization�� which is conveyed in a top�down way by
the category on the left�hand side of the respective rule� So� no head
must be declared for these categories and they are processed top�down�
Each of the numbers on the argument position of n args and v args

denote a subcategorization class�
DCGs allow constraints in the form of Prolog goals and so does

our formalism� However� due to bidirectionality� it is more di�cult
to determine when constraints should be checked� For this purpose
we added two in	x operators that state explicitly when a constraint
is intended to be checked� These operators are pre and post� The
pre operator is used to force the constraint to be checked before a

tab�parsing�tex� ����������� ������ p���



��

given literal� The post� forces the constraint to occur after the literal
it a�ects� For instance�

NT post fConstg

means that Const must be checked only after NT has been identi	ed
and is independent of the direction �left�to�right or right�to�left� the
parser is following at the moment� The same applies to

NT pre fConstg

except that in this case the checking of the constraint takes place
before the identi	cation of the non�terminal NT�

The grammar speci	ed as described above is translated into DyALog
bidirectional grammar notation and is then compiled into LPDA tran�
sitions� The translation process is described in detail in the following
subsection�

���� Translating DCG with head declarations into
DyALog

������ DyALog bi�directional grammar notation

DyALog automatically builds a parser from a DCG speci	cation� The
problem is that DCGs do not say which constituents on the right�
hand side of rules should be analyzed 	rst� By default� parsing starts
always from the left hand side constituent of a rule� To overcome this
limitation� DyALog DCG notation was extended with two operators
��� and ��� that may be used instead of commas ��� to separate the
constituents in the right hand side of a rule� They indicate the order
in which constituents must be analysed� For instance� the rule

a ��� b �� c �� d �� e

states that constituent c must be analysed before b and d� and that
d must be analysed before e�

This is a procedural rather than a declarative notation� so we built a
translator in order to produce a grammar using these operators from a
speci	cation in our DCG extended with head declarations� For the ex�
ample in 	gure �� the result of the translation is the DyALog grammar
in 	gure ��

tab�parsing�tex� ����������� ������ p���



��

s ��� np �� vp�

np ��� det �� n�Type� �� n args�Type��

vp ��� v�Type� �� v args�Type��

pp ��� prep �� np�

n args��� ��� ��

n args�	� ��� pp�

v args��� ��� ��

v args�	� ��� np�

v args�
� ��� np �� pp�

v args��� ��� pp�

Figure 	
 Translation of the grammar on �gure 


������ Translator implementation details

The translator works in two passes� the 	rst does most of the work�
converting the declarative grammar notation into an internal repre�
sentation� the second produces the 	nal DyALog program� from the
internal representation� resolving references that were not possible to
determine in the 	rst pass�

The 	rst pass is used for�

� determining� for each grammar rule� which are the constituents on
its right�hand side that should be analyzed from right to left �at
the left of a head� and which ones should be analyzed from left to
right �to the right of the head�� For instance� for rule �b� of the
grammar in 	gure �� det must be analyzed from right to left and
n args from left to right�

� for rules not containing syntactic heads in their right�hand side�
the previous operation is unaltered� in the sense that all literals
on the right�hand side are assumed as being to the left of a �non�
existent� head� These rules are worked further on the second pass�
Example � rules �e� to �j� in the grammar of 	gure ��

� marking� for each rule� its left�hand side non�terminal and its head
�if present� as outputting categories� and establishing a subsump�
tion relation between them �the left�hand side subsumes the head��
This relation will be used to avoid the output of partial parses
subsumed by others� In the example grammar of �� s subsumes
vp� np subsumes n� vp subsumes v and pp subsumes np�

� identifying pre�terminal categories� To match pre�terminals with
the previously POS�tagged input text� dummy terminal rules for

tab�parsing�tex� ����������� ������ p��	



��

each pre�terminal in the grammar must be added� For instance�
the rules

det ��� det��

n�Type� ��� n�Type���

v�Type� ��� v�Type���

prep ��� prep��

must be added to the grammar in 	gure ��

� dealing with pre and post constraints� placing them in the correct
order� depending on the direction that part of the rule must be
analyzed �left�to�right or right�to�left��

� signaling syntactic errors�

� rules with � or more heads�

� non�terminals that are de	ned with both top�down and bottom�
up rules�

� incompleteness of the bidirectional notation �Ritchie� �


�
�this may be just a warning��

The second pass does the following�

� generate two versions of headless non�terminals �except� of course�
pre�terminals�� for left�to�right and right�to�left usage� The rules
for each version will di�er only on the order of analysis of the
constituents� For instance� rule �i� in the grammar of 	gure � is
replaced by the following two rules�

v args left�
� ��� np �� pp�

v args right�
� ��� np �� pp�

Of course� only v args left is needed� because� in the grammar�
v args always appears to the right of the head� The translated
grammar in 	gure � re�ects this� but in the real implementation
we don�t bother to eliminate the unused new non�terminal� because
it does not a�ect parsing performance�

� change references to non�terminals split with the previous oper�
ation� in the right�hand side of the grammar rules to the left or

tab�parsing�tex� ����������� ������ p��




��

right version� whichever the direction the parser should follow at
that point� For instace� this generates� for rule �b� of the grammar
on 	gure �� the translated rule

np ��� det �� n�Type� �� n args right�Type��

� transfer the de	nitions of predicates called in DCG constraints�
to the output 	le� with no alteration� Not being strictly part of
the grammar� these predicates must nevertheless be copied to the
output� so that the parser can use them�

� determine non�terminal modulation and produce the respective
dcg mode declarations� to make the parser follow the head�	rst
bottom�up and top�down strategy de	ned by the grammar� For our
example grammar of 	gure �� the following directives are needed�

��dcg mode�s���np���vp���pp���� �� �� ���

��dcg mode�det���n�	�v�	�prep���� �� �� ���

��dcg mode�n args left�	�v args left�	�� ����� �� ���

��dcg mode�n args right�	�v args right�	�� ����� �� ���

This last directive is not really needed� for the same reason men�
tioned above� It does not harm� though� n args and v args are an�
alyzed top�down� so the respective modulation is �� As for the other
non�terminals� they are analysed bottom�up from their heads� so
the corresponding modulation is �� Left and right positions are
modulated according to the horizontal direction of parsing� For
the bottom�up non�terminals� left and right positions are both
modulated �� since neither of them is known a priori�

�� Partial parsing with Bound�Movement Grammar

���� Bound�Movement Grammar definition

BMG is the formalism used in level � of our parsing architecture� It is
an extension of Extraposition Grammars �XG� �Pereira� �
���� used to
describe movement of constituents out of their canonical position� XG
implies the use of a stack where moved constituents are stored until
they are anchored at their canonical position �i�e�� at the moment its

tab�parsing�tex� ����������� ������ p���



��

trace is found�� Being a declarative formalism� XG hides this procedural
aspect behind the following rule syntax�

NT� � � � NT� �� RHS

This rule states that NT� is a moved constituent �described by the
sequence of constituents RHS � often NT� and RHS are the same� that
needs to be anchored later in the deep structure of the sentence�

However� the use of just one movement stack is restrictive� be�
cause there are several independent types of movement� in interrogative
sentences� relative clauses� topicalization� clitics� clefting� etc� BMG
extends the XG formalism by using several stacks for the various kinds
of movement� The three dots �� � �� operator is replaced with int� rel
or slash� according to the type of movement involved �interrogative
sentences� relative clauses or topicalization� respectively � we will not
deal with clitics and clefting in this paper��

The other innovation in BMG is the possibility of using barriers
called island operators that may pre	x constituents in the RHS of a
rule� Island operators prevent movement� of all or some types� in and
out of the a�ected constituent� For instance� the isl slash operator
in the BMG rule

s �� isl slash np� vp

prevents the movement of topicalized material into the np� i�e�� no
topicalized material can 	nd its trace inside that noun phrase� Simulta�
neously� no topicalized material recognized during the parse of this noun
phrase can 	nd its trace outside that noun phrase� Island operators can
be composed� resulting in a non�terminal pre	xed by two or more island
operators�

Figure � shows an example of a BMG illustrating the concepts just
introduced� Remember that this grammar just becomes active after the
text has been chunked by level � of the parsing architecture we propose�
The directives in the 	rst lines of the grammar speci	cation de	ne
BMG parameters and will be explained in the following sub�section�
Rules �a�� �b� and �c� expand a sentence into a noun phrase followed
by a verb phrase� or into some topicalized or interrogative phrase �wh�
followed by a sentence� Obviously� the moved material must 	nd its
trace inside the second sentence constituents� Rules �d� and �e� de	ne
two types of topicalized material� to be pushed into the slash stack�
for later anchoring� Through rule �f�� an interrogative noun phrase is
pushed into the quest stack� An interrogative prepositional phrase is

tab�parsing�tex� ����������� ������ p���



�

��bmg stacks�slash�rel�quest���

��bmg pushable�np���pp����quest�rel���

��bmg pushable�v���pp����slash���

s ��� isl slash np� vp� �a�

s ��� topicalized ph� s� �b�

s ��� wh� s� �c�

topicalized ph slash v�Type� ��� isl v�Type�� �d�

topicalized ph slash pp ��� isl pp� �e�

wh quest np ��� isl int np� �f�

wh quest pp ��� isl int pp� �g�

np ��� isl np� isl rel c� �h�

rel c ��� �� �i�

rel c ��� rel head� s� �j�

rel head rel np ��� isl rel np� �k�

rel head rel pp ��� isl rel pp� �l�

vp ��� isl rel isl quest v�Type�� v args�Type�� �m�

v args��� ��� �� �n�

v args�	� ��� np� �o�

v args�
� ��� np� pp� �p�

v args��� ��� pp� �q�

pp ��� isl prep� isl np� �r�

Figure �
 A small Bound Movement Grammar

tab�parsing�tex� ����������� ������ p���



��

pushed in a similar way in rule �g�� Rule �h� attaches a relative clause
to an already found noun phrase� Relative clauses are de	ned in rules
�i� and �j� as empty or as a sentence preceded by a relative clause head�
Typically� the relative clause head is to be pushed into the rel stack�
according to the rules �k� and �l� and anchored inside the sentence
that forms the rest of the relative clause� Rules �m� to �r� de	ne verb
phrases� verb arguments and prepositional phrases in the same way as
in 	gure ��

Island operators are employed to prevent moved material in and
out of the a�ected phrases� Rule �a�� for instance� prevents material
from the slash stack to 	nd its trace in the shielded noun phrase� and�
conversely� it prevents that linguistic material inside the noun phrase to
be pushed into the slash stack� Phrases pre	xed with the isl operator
are not allowed to import or export moved material from�to any stack�
A composition of operators isl rel and isl quest is used in rule �m��
so that no material from the rel and quest stacks can be used as a
trace of a verb�

To illustrate the use of BMG� we present an example �Example
���� of the application of the grammar on 	gure � over a Portuguese
sentence�

Entre as obras sobressai um romance

Among the works stands out a novel

A novel stands out among the works

� The use of topicalization in this sentence is adequately described
by the BMG grammar� After the pre�processing phases �levels � and �
� see section ��� we obtain the following categories for the words in the
sentence �we assume that verb sobressair �to stand out� is classi	ed
in the lexicon has having subcategorization type � and nouns obras

�works� and romance �novel� as having type ���

Entre �prep� as �det� obras �n���� sobressai �v���� um �det� ro�
mance �n����

After the parser on level � is applied� we obtain the following chunked
sentence�

Entre as obras �pp� sobressai �v���� um romance �np�

Because of the moved material� the parser on level � is unable to
parse the whole sentence� That is a job for level �� that� by using the

tab�parsing�tex� ����������� ������ p��



�


Figure �
 Parsing tree generated by the BMG parser

BMG� will completely and correctly parse the sentence� outputting the
tree on 	gure �� To emphasize movement issues� we excluded the sub�
trees for the chunks identi	ed on level �� The bold black lines represent
links from moved constituents to their respective traces�

���� BMG compiler implementation

������ Parametrizing BMG

BMG required the implementation of new DyALog directives to declare
and de	ne the set of movement stacks� island operators� and the con�
stituents that may be pushed and popped into�from these stacks� The
DyALog compiler has then been slightly extended to take into account
the usage of the movement stacks�

The BMG in 	gure � will help us to introduce these di�erent direc�
tives and operators�

bmg stacks�� is a directive used to introduce the set of constituent
stacks� here named �slash�� �rel� and �quest��

Introducing a stack also implicitly de	nes an in	x push operator
with the same name used to push a constituent on this stack when
reading some non�terminal �i�e�� int quest np states that np should
be pushed on quest whenever a non�terminal int is recognized��

tab�parsing�tex� ����������� ������ p���



��

Several other pre	x operators are also de	ned to set some island
constraints� These operators are

� isl island constraint for all stacks

� isl �name� for every declared stack �name��

bmg isl�� is a directive that may be used to name compound island
constraint operators for convenience� For instance�

� �bmg isl�isl relquest� �rel� quest��

declares an island constraint operator isl relquest for stacks rel
and quest that can be used instead of isl rel isl quest�

bmg pushable�� is a directive used to specify the kind of constituents
that may appear on a given stack� For instance�

� �bmg pushable��v��� pp���� �slash��

speci	es that only atoms built on predicates v�� and pp�� may
appear on stack slash�

������ Expansion

In traditionnal Prolog implementation� DCG clauses are expanded into
Horn clauses by adding two extra arguments to non�terminals and
terminals denoting left and right positions in the input string�

For instance� the DCG clause

s ��� np�vp

gives rise to the Prolog clause

s�P��P
� �� np�P��P	��vp�P	�P
�

DyALog works similarly� except that rule expansion takes place
during the compilation process into LPDA �there is no creation of new
clauses��

A similar expansion mechanism is used for BMG non�terminals and
terminals� Besides the left and right positions� we add� for each con�
stituent stack S� two additionnal arguments yielding the value of S
just left and right of the �non��terminal� Here again� in DyALog� this
expansion takes place during the compilation process�

tab�parsing�tex� ����������� ������ p���



��

Table II� Expansion of a BMG non�terminal�

BMG non�terminal nt

Expanded nt�L�R� SL� SR�RL�RR�QL�QR�

Call dcg call nt ��L� SL�RL�QL�

Return dcg return�R�SR�RR�QR�

Therefore� assuming movement stacks fslash� rel� questg� a BMG
non�terminal nt expands into

nt�LP�RP�LSlash�RSlash� LRel�RRel� LQuest�RQuest��

Given some �terminal or non�terminal� BMG constituent A� we note

A��L� �R� the expanded value of A with the tuple �L � �lp� ls�� � � � � lsn�

�resp� �R � �rp� rs�� � � � � rsn� � holding the left �resp� right� values of
position and movement stacks�

������ BMG modulation

A BMG non�terminal inherits any de	ned DCG modulation �relative
to its standard arguments as well as to its left and right position argu�
ments�� Although modulation could theoretically be extended to handle
left and right stack arguments� this is not yet implemented� The default
choice is to use left �resp� right� stack arguments in call �resp� return�
atoms �see table II��

We note CA��L� �R� �resp� RA��L� �R�� the call �resp� return� atom asso�
ciated to a BMG non�terminal A with current left �resp� right� position

and stack values tuple �L �resp� �R��

������ Compilation

We compile a grammar clause by clause� A BMG clause is denoted

�k � Ak�� �� � Ak��� � � � � Ak�nk
�

We introduce a set of predicates rk�i that denote intermediary com�
putation points during the refutation of clause �k� Their arguments are
used to store the values of the variables of �k that are pertinent for the
rest of the refutation or for publishing�

Actually� these predicates are used to express more easily the dif�
ferent steps of the resolution strategy but are not strictly needed� they
can be avoided by using a heavier continuation style notation for the
transitions� that we will not detail here�

tab�parsing�tex� ����������� ������ p���



��

The following resolution strategy extends the Prolog �modulated
Call�Return strategy� used in DyALog �Clergerie and Lang� �

���
Besides the traditional steps 	Call
 Return
 Select
 Publish�� there is
a Scan step to read terminals �also present in DCG� and a Discharge
step to use constituents already pushed into any movement stack� We
consider in this strategy that modulation may apply to the movement
stacks �even if it is not yet implemented��

The Call step is used to push a call atom into the LPDA stack
when a non�terminal comes in line to be analyzed� Return proceeds
to the next non�terminal when the analysis of the current one has been
completed� Select selects a clause to recognize a non�terminal and
Publish produces a return atom after recognizing a whole clause� In
the case of BMG these steps now take into account movement and
island operators�

We use the notation introduced in section ��� for LPDA transitions
and make the following abbreviations� Ck�i��L� �R� � CAk�i��L� �R� and

Rk�i��L� �R� � RAk�i��L� �R�� �Aj refers to the element in position j of

vector �A� In the case of the �L and �R vectors above� j � � refers to
the movement stacks used� while j � � refers to the input string� Also�
the set of de	ned movement stacks is denoted as fs�� � � � � sng� Note that
the symbols we introduce to denote predicates and arguments� except
rk�i� are not logical terms themselves� They are second�order symbols
corresponding to the actual predicates and arguments in the program�
only used for the purpose of the resolution steps exposition�

Scan Reads a terminal from the input� Ak�i�� is a terminal� No action
on any stack�

SWAP � rk�i� �A� �B� �� rk�i��� �B� �C�

where �A� � �Ak�i��j �B
�� and �Aj � �Bj for j � ��

Discharge Discharging a pushed non�terminal in place of non�terminal
Ak�i�� from stack u �if Ak�i�� belongs to the set of pushable non�
terminals on stack u��

SWAP � rk�i� �A� �B� �� rk�i��� �B� �C�

where �Au � �Ak�i��j �B
u� and �Aj � �Bj for j 	� u�

Call Calling a non�terminal Ak�i�� pre	xed with island constraints
that prevent movement in the stacks belonging to the subset Is 

fs�� � � � � sng�

tab�parsing�tex� ����������� ������ p���



��

PUSH � rk�i� �A� �B� �� Ck�i��� �C� �D�rk�i� �A� �B�

where �Cj � �Aj and �Dj � �Bj if j 	� Is and �Cj � �Dj � �� and
�Aj � �Bj otherwise�

Return Return from a recognized non�terminal Ak�i�� pre	xed with
island constraints that prevented movement in the stacks belonging
to the subset Is 
 fs�� � � � � sng�

POP � Rk�i��� �C� �D�rk�i� �A� �B� �� rk�i��� �B� �E�

where �Cj � �Aj and �Dj � �Bj if j 	� Is and �Cj � �Dj � �� and
�Aj � �Bj otherwise�

Select Selecting clause �l to recognize a non�terminal and �if a move�
ment operator is present� push a non�terminal N on stack u�

SWAP � Cl��� �A� �B� �� rl��� �C� �D�

where �Cj � �Aj and �Dj � �Bj if j 	� u and �Cu � �Du � �� and
�Bu � �N j �Au��

Publish Publishing some information about a recognized rule �l that
�if a movement operator is present� pushes a non�terminal N on
stack u�

SWAP � rl�nl
� �C� �D� �� Rl��� �A� �B�

where �Cj � �Aj and �Dj � �Bj if j 	� u and �Cu � �Du � �� and
�Bu � �N j �Au��

To illustrate the operation of the resolution strategy just presented�
we again pick example ���� We consider that it is already chunked
�see section �� as a pp�v����np sequence� So these categories are now
terminal symbols �and may be subject to a Scan step�� Table III shows
the sequence of resolution steps needed to correctly parse the sentence
using the grammar on 	gure ��

tab�parsing�tex� ����������� ������ p��	



��

Table III� Resolution steps needed to parse the sequence pp�v�	��np�

Resolution step LPDA stack slash stack

Cs

Select �rule 
� r���

Call Ctopicalized ph r���

Select �rule �� r��� r���

Scan �pp� r��� r���

Publish Rtopicalized ph r��� pp

Return r��� pp

Call Cs r��� pp

Select �rule 
� r��� r��� pp

Call Ctopicalized ph r��� r��� pp

Select �rule � r��� r��� r��� pp

Scan �v�	�� r��� r��� r��� pp

Publish Rtopicalized ph r��� r��� v�	� pp

Return r��� r��� v�	� pp

Call Cs r��� r��� v�	� pp

Select �rule �� r��� r��� r��� v�	� pp

Scan �np� r��� r��� r��� v�	� pp

Call Cvp r��� r��� r��� v�	� pp

Select �rule ��� r���� r��� r��� r��� v�	� pp

Discharge r���� r��� r��� r��� pp

Call Cv args�	� r���� r��� r��� r��� pp

Select �rule ��� r���� r���� r��� r��� r��� pp

Discharge r���� r���� r��� r��� r���

Publish Rv args�	� r���� r��� r��� r���

Return r���� r��� r��� r���

Publish Rvp r��� r��� r���

Return r��� r��� r���

Publish Rs r��� r���

Return r��� r���

Publish Rs r���

Return r���

Publish Rs

tab�parsing�tex� ����������� ������ p��




��

�� Experimental results

In order to test the partial parsing machinery described in this paper�
we randomly selected �� previously POS�tagged texts from the LUSA
news corpus ��� million words� and partially parsed them with our
system� The texts had on average ����
 words each�

��� Comparison between standard chart parsing and
DyALog�based parsing

The 	rst experiment was made to assess the performance improvement
by using DyALog with its built�in tabulation� Due to the imprecision
in measuring small time intervals� we discarded � and ��word sentences
from the sample�� Thus� we used ��� sentences� with a total of circa
��� ��� words� for this comparison� The equipment used was a Pentium
PC at ��� MHz with ��Mb of RAM running Red Hat Linux� version ����
The results were ���� words per second when a standard chart parser
was used� and ��� words per second when DyALog was used� The
reason for such a dramatic improvement has to do with the complexity
of dealing with chart structures in a standard chart parser� DyALog
does a much more e�cient management of those structures�

��� Comparison among different parsing strategies

The performance of di�erent parsing strategies was measured not in
terms of time� but in terms of generated chart edges� This is due to
higher precision and unvariability of this measure� and its independence
of the actual implementation� So� we used the chart parser in Prolog for
this experiment� since we had better control over the chart structure�

The strategies tested were standard bottom�up �left�to�right� and a
mixed strategy �top�down and bottom�up� in two variants� left�to�right
and bidirectional �left�to�right and right�to�left� head�	rst�� This last
strategy uses the full potential of DCG extended with head declara�
tions�

The input sample and equipment used were the same as for the
previous subsection� The results obtained are quanti	ed in table IV� in
terms of generated chart edges per input word�

As can be seen from these numbers� the head�	rst approach mildly
improves the left�	rst strategy� This is mainly because in Portuguese�
the constituents to the left of heads �determiners� prepositions� ���� are
often syntactically independent of their respective head� However� for
languages in which the head appears mostly to the right of its phrase�
it could mean a signi	cant improvement� There are also advantages in
using the head�	rst approach for lexical fault diagnosis� since the most

tab�parsing�tex� ����������� ������ p���



��

Table IV� Performance results for di�erent parsing strategies

Strict bottom�up left��rst 
���� edges per word

Mixed top�down and bottom�up left��rst ���� edges per word

Mixed top�down and bottom�up head��rst ���
� edges per word

informative lexical items are heads� When the information associated
to heads is wrong or incomplete �which is more probable than on other
categories�� the use of this strategy simpli	es the agenda initialization�
since head categories alone trigger the rules they are used in� and no
other categories need to be put in the initial agenda�

We can see from the results on table IV that performance is im�
proved by using a mixed strategy �being left�	rst or head�	rst�� In
fact� a correct distribution of information between top�down prediction
and bottom�up propagation eliminates many of the ambiguity during
parsing�

� Discussion of the pros and cons of our approach and
comparison with related work

The partial parsing approach presented in this paper is purely symbolic�
Most partial parsers �chunkers� developed today use example based
learning techniques �Daelemans et al�� �


� Skut and Brants� �

�b�
Skut and Brants� �

�a� in order to achieve greater performance and
accuracy with a minimum e�ort on grammar coding� However� the
languages they work on �mostly English� have already a large amount of
computational resources� especially treebanks� available� which provide
training data for the statistical models used�

The absence of such computational resources for Portuguese except
for raw text poses a greater challenge when building parsing systems�
The partial parsing machinery we presented in this paper provides a
basis for a symbolic parsing system that does not need to use man�
ually annotated corpora� Moreover� the use of our level �� based on
a Bound�Movement Grammar enables us to deal with recursion and
with linguistic movement of constituents which is not at all a problem
handled by currently available chunking techniques�

High performance could only be achieved by cascading successive
levels of parsing and by using a background tabulation machinery� like
DyALog�

Cascaded parsing is used in �Abney� �

�� Hobbs� �

�� These
works� however� over�simplify each of the cascading levels to 	nite�state

tab�parsing�tex� ����������� ������ p���



�

automata� Through the use of built�in tabulation �speci	cally� by using
DyALog�� we proposed to use the full potentiality of DCG and BMG
grammars without loss of e�ciency� In fact� the average speed of our
system �� ms per word � ��� words per second� rivals with the class
of parsers that Abney calls �skimming parsers�� with a range of speeds
of ����� words per second�

Tabulation has been used for parsing since the Earley algorithm
�Earley� �
�� was proposed� Only recently the technique was gener�
alized for logic programming� with advantages for parsing� since the
management of the tabulation data structures is built�in and e�ciently
performed�

The execution model of DyALog allows us to de	ne di�erent parsing
strategies� giving us an additional advantage in relation to other tabu�
lation systems �e�g� XSB �Sagonas et al�� �

��� where such strategies
cannot be directly de	ned�

The head�driven mixed strategy followed in parsing level � extends
head�corner chart parsing strategies �Sikkel and Akker� �

�� by allow�
ing the grammar writer to specify heads in the right hand side of rules
only where it makes sense� The idea is to guide the parsing process
with as much information as possible� In some rules� this information
is located in the heads� In others� the information comes top�down� and
de	ning a head for these rules only increases non�determinism where
there is the possibility to avoid it�

On the other hand� the risk of grammar incompleteness �as pin�
pointed by �Ritchie� �


�� is present� We assume it and argue that
there is always the risk of making mistakes in grammar writing� even
for standard top�down CFG or DCG� and this mistake in particular
is no worse� The conditions for grammar completeness proposed by
�Ritchie� �


� are reasonable� at least for Natural Language� which
follows well�behaved patterns� described by linguistic theories such as
X�bar� Generally� there is no need to violate those completeness con�
ditions� As an extra help� �Ritchie� �


� also suggests an algorithm
to automatically decide if a grammar satis	es a su�cient condition for
completeness�

As for BMG� they require little e�ort to be implemented into a logic
programming environment already equipped with DCG� Making BMG
available in DyALog was a simple matter� through a simple extension
of the resolution strategy used�

tab�parsing�tex� ����������� ������ p���



��

�� Conclusions
 current and future related work

We presented in this paper a �exible partial parsing system based on
tabulation techniques� Due to the use of DyALog� a logic programming
environment with built�in tabulation� we were able to dramatically
improve parsing performance�

The choice of DyALog instead of other similar systems has to do
with its execution model� which is especially adequate for parsing tasks
in the sense that it is easily adaptable to various grammar formalisms
and search strategies�

In particular� it allowed us to implement DCG extended with head
declarations and BMG� Many search strategies are possible� and the
head�driven bi�directional strategy of the DCG extended with head
declarations was easily achieved through modulation�

The work with and on DyALog will continue� with the extension
of modulation for the movement stacks and with extensions for fault
	nding support�

Fault 	nding representes one of the major uses of the parsing ma�
chinery described in this paper� It consists of incrementally re�parsing a
sentence on the basis of alternative� hypothetical initial information� If
this improves parsing results� then the hypotheses made are considered
for further evaluation and eventually become part of the linguistic
knowledge� This work will continue� by building new partial parsers�
specialized on the diagnosis of various kinds of faults� Recently� by
pursuing some experiments on the diagnosis of lack of verb subcatego�
rization information in the lexicon� we obtained some promising results
for some selected verbs �sobressair� consentir and respirar� that� on
some cases con	rm the results obtained by statistically based methods
�Marques� ������ and� on other cases� provide new information� not
obtainable by those methods� For instance� by using BMG� we were
able to gather evidence that the noun phrase that frequently follows
the verb sobressair is its subject and not one of its objects� as �Marques�
����� wrongly acquires� in an automatic way�

The use of a society of diagnosing agents �Lopes and Balsa� �

��
Lopes et al�� �


� together with cross�validation techniques will truly
allow a parsing system to evolve by learning new lexical and grammat�
ical information that reduces granularity and improves parsing preci�
sion�

The choice of granularity as a measure for 	ltering partial parses for
further consideration is a conscient one� and has to do with the nature
of the partial parses obtained at this stage� We prefer to decide correctly
on the basis of available �lexical� syntactical� information than to am�
biguously output partial parses based on uncertain information� even

tab�parsing�tex� ����������� ������ p��



�


if they are less granular� Each of the levels of the cascaded structure
follows this principle� always trying to reduce granularity� as possible�

Notes

� Meanwhile� due to recent work in our research group on statistical extraction of
multi�word lexical units �Silva et al�� ����� some changes may be introduced at this
level� However� we will not detail that process in this paper�

� These correspond to the extra arguments resulting from standard DCG expan�
sion into Horn clauses�

� The real grammar we use at this level has �
 rules�
� The head of a phrase is not necessarily unique� when there is more than one

rule expanding that phrase� Each of those rules may have associated a di�erent head
category� However� the head must be uniquely identi�ed in each rule�

� Often� these small sentences result from tokenizing and�or POS�tagging errors

References

Abney� S�	 ����� �Partial parsing via �nite�state cascades�� In	 J� Carroll �ed��	
Proceedings of Workshop on Robust Parsing at Eighth Summer School in Logic�
Language and Information� pp� �����

Balsa� J�� V� Dahl� and J� Lopes	 ����� �Datalog Grammars for Abductive Syntactic
Error Diagnosis and Repair�� In	 Proceedings of the Fifth International Workshop
on Natural Language Understanding and Logic Programming� Lisbon� pp� ����
�
��

Carroll� J�� G� Minnen� and T� Briscoe	 ����� �Can Subcategorization Probabilities
Help a Statistical Parser��� In	 Proceedings of the th ACL�SIGDAT Workshop
on Very Large Corpora� Montreal� Canada� pp� �����
��

Clergerie� E� d� l� and B� Lang	 ���� �LPDA	 Another Look at Tabulation in Logic
Programming�� In	 V� Hentenryck �ed��	 Proceedings of the ��th International
Conference on Logic Programming �ICLP����� pp� ������

Collins� M�	 ����� �Three Generative� Lexicalised Models for Statistical Parsing�� In	
Proceedings of the European Chapter of the Annual Meeting of ACL�

Collins� M� and J� Brooks	 ����� �Prepositional Phrase Attachment through a
Backed�O� Model�� In	 Proceedings of the Third Workshop on Very Large
Corpora�

Daelemans� W�� S� Buchholz� and J� Veenstra	 ����� �Memory�based shallow parsing��
In	 Proceedings of the EACL��� Workshop on Computational Natural Language
Learning� Bergen� Norway� pp� ������

Earley� J�	 ����� �An E�cient Context�Free Parsing Algorithm�� Communications of
the ACM ���
�� ����
�

Grefenstette� G�	 ���� Explorations in Automatic Thesaurus Discovery� Kluwer
Academic Publishers� PhD Thesis� University of Pittsburgh�

Hobbs� J� R� e� a�	 ����� �FASTUS	 A Cascaded Finite�State Transducer for Ex�
tracting Information from Natural�Language Text�� In	 E� Roche and Y� Schabes
�eds��	 Finite�State Language Processing� Bradford Books� pp� �������

tab�parsing�tex� ����������� ������ p���



��

Lopes� J�� V� Rocio� R� Viccari� and E� Padilha	 ����� �Bound Movement Grammar
for Natural Language Parsing�� In	 Proceedings Second Workshop on Compu�
tational Processing of Writen and Spoken Portuguese� Curitiba� Brazil� October
������ ���� pp� ������

Lopes� J� G� P� and J� Balsa	 ����� �Overcoming incomplete information in NLP
systems � verb subcategorization�� In	 F� Giunchiglia �ed��	 Proceedings of
Arti�cial Intelligence� Methods Systems and Applications� �th International Con�
ference� AIMSA���� Sozopol� Bulgaria� Proceedings
 Lecture Notes on Arti�cial
Intelligence ����� pp� �������

Lopes� J� G� P� and V� J� Rocio	 ����� �An infra�structure for diagnosing causes for
partially parsed natural language input�� In	 Proceedings of the th International
Symposium on Social Communication� Santiago de Cuba� pp� �������

Lopes� J� G� P�� V� J� Rocio� and J� a� Balsa	 ����� �Superando a incompletude
da informa�c�ao lexical�� In	 P� Marrafa and M� A� Mota �eds��	 Lingu��stica
Computacional� Investiga�c�ao Fundamental e Aplica�c�oes� in Portuguese�

Marques� N�	 
���� �Uma metodologia para a modela�c�ao estat��stica da subcatego�
riza�c�ao verbal�� Ph�D� thesis� FCT � Universidade Nova de Lisboa�

Marques� N� and J� G� P� Lopes	 ����a� �Using Neural Nets for Portuguese Part�of�
Speech Tagging�� In	 Proceedings of the Fifth International Conference on the
Cognitive Science of Natural Language Understanding�

Marques� N� M� C� and J� G� P� Lopes	 ����b� �Using Neural Nets for Portuguese
Part�of�Speech Tagging�� In	 Proceedings of the Fifth International Conference on
The Cognitive Science of Natural Language Processing� Dublin City University�
Ireland�

Pereira� F�	 ����� �Extraposition Grammars�� American Journal of Computational
Linguistics ����

Pereira� F� C� N� and D� H� D� Warren	 ����� �De�nite Clause Grammars for Lan�
guage Analysis � A Survey of the Formalism and a Comparison with Augmented
Transition Networks�� Arti�cial Intelligence ��� 
���
���

Ramshaw� L� and M� Marcus	 ����� �Text chunking using transformation�based
learning�� In	 Proceedings of the 	rd Workshop on Very Large Corpora�
Cambridge� MA� USA� pp� �
���

Ratnaparkhi� A�	 ����� �Statistical Models for Unsupervised Prepositional Phrase
Attachment�� In	 Proceedings of COLING�ACL���� 	th Annual Meeting of the
Association for Computational Linguistics and ��th International Conference on
Computational Linguistics� Montreal� Canada�

Ritchie� G�	 ����� �Completeness Conditions for Mixed Strategy Bidirectional
Parsing�� Computational Linguistics ��� ������

Roth� M� and J� Carroll	 ����� �Valence induction with a head�lexicalized PCFG��
Technical report� draft at http	��www�ims�uni�stuttgart�de� mats�

Sagonas� K� F�� T� Swift� D� S� Warren� J� Freire� and P� Rao	 ����� �The XSB
Programmer�s Manual� Version ������� Technical report� State University of New
York at Stone Brook�

Sikkel� K� and R� O� D� Akker	 ����� �Predictive Head�Corner Chart Parsing�� In	
H� Bunt and M� Tomita �eds��	 Recent Advances in Parsing Technology� Kluwer�
pp� ������
�

Silva� J�� G� Dias� S� Guillore� and G� Lopes	 ����� �Using LocalMaxs Algorithm for
the Extraction of Contiguous and Non�contiguous Multiword Lexical Units�� In	
P� Barahona �ed��	 Proceedings of the �th Portuguese Conference on Arti�cial
Intelligence �EPIA����� Evora� Portugal
 Lecture Notes in Arti�cial Intelligence�
vol
 ���� pp� ������
�

tab�parsing�tex� ����������� ������ p�	�



��

Skut� W� and T� Brants	 ����a� �Chunk Tagger�� In	 Proceedings of the ESSLLI�
�� Workshop on Automated Acquisition of Syntax and Parsing� Saarbrucken�
Germany�

Skut� W� and T� Brants	 ����b� �A Maximum�Entropy Partial Parser for Unre�
stricted Text�� In	 Proceedings of the th Workshop on Very Large Corpora�
Montr�eal� Qu�ebec�

Yeh� A� S� and M� B� Vilain	 ����� �Some Properties of Preposition and Subordinate
Conjunction Attachments�� In	 Proceedings of COLING�ACL���� 	th Annual
Meeting of the Association for Computational Linguistics and ��th International
Conference on Computational Linguistics� Montreal� Canada� pp� �����
�

tab�parsing�tex� ����������� ������ p�	�



tab�parsing�tex� ����������� ������ p�	�


