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Abstract. Efficient partial parsing systems (chunkers) are urgently required by
various natural language application areas as these parsers always produce partially
parsed text even when the text does not fully fit existing lexica and grammars.

Availability of partially parsed corpora is absolutely necessary for extracting
various kinds of information that may then be fed into those systems, increasing
their processing power.

In this paper, we propose an efficient partial parsing scheme based on chart
parsing that is flexible enough to support both normal parsing tasks and diagnosis
in previously obtained partial parses of possible causes (kinds of faults) that led to
those partial parses instead of complete parses.

Through the use of the built-in tabulation capabilites of the DyALog system,
we implemented a partial parser that runs as fast as the best non-deterministic
parsers. In this paper we ellaborate on the implementation of two different grammar
formalisms: Definite Clause Grammars (DCG) extended with head declarations and
Bound Movement Grammars (BMG).

Keywords: Constituent movement, Head-driven parsing, Partial parsing, Tabula-
tion

1. Introduction and motivation

It is almost impossible to completely parse every sentence in real text
from electronically available sources given the current state of the pars-
ing technologies. This is due to several unavoidable factors: errors in
the input text, unknown words, insufficient or erroneous knowledge
in both the grammar and the lexicon, errors introduced during pre-
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parsing phases by tokenizers, part-of-speech (POS) taggers, heuristic
proper name identifiers, etc.

However, unless fully parsed text is specifically required, there is
a lot of information that can be extracted from partially parsed text,
namely the syntactic structures for segments of the input text, other
than complete sentences, and this information can then be used for
automatically learning subcategorization frames (Roth and Carroll,
1996; Collins, 1997; Carroll et al., 1998), for extracting information
about gender and number of nouns and adjectives that did not exist in
the lexicon but that were POS-tagged (Marques and Lopes, 1996a)and
for defining variable length windows to be used on word sense disam-
biguation, on automatic thesaurus construction (Grefenstette, 1994),
on pp-attachment, relative clause attachment, adjective phrase attach-
ment (Ratnaparkhi, 1998; Yeh and Vilain, 1998; Collins and Brooks,
1995). Most work on these matters use fixed length windows (+n words,
with n = 5,7,10) but their efficiency would be improved if the window
length is fixed regarding the number of phrases (not words) to the right
or to the left of the word under study.

Another approach to chunking starts with human validated parsed
corpora and learns how to chunk new texts from those examples (Daele-
mans et al., 1999; Ramshaw and Marcus, 1995). Although at first these
example-based approaches might seem quite appealing and attractive
they embody a reasoning loop. In order to learn a grammar they require
parsed text for being trained and so the bottleneck is placed at the
production of correctly parsed text which is not exactly a problem
once we have grammars that were produced and ameliorated along the
years.

The use of indexed partially parsed text collections (together with
the indexed raw text) brings new insights to information retrieval tasks
by improving precision, by normalizing the text bases and queries, by
enabling further disambiguation of word senses, by allowing ellipsis and
anaphora resolution in those collections and bringing up the power of
using multiple knowledge sources other than the morphological infor-
mation analysis that is generally used for performing these kinds of
tasks.

The creation of partial treebanks is an important application of
partial parsing. For languages, such as Portuguese, for which these
resources are scarce or difficult to access, this work can serve as a boot-
strapping process for automatically acquiring and/or improving lexi-
cal and grammatical knowledge mainly by using statistical induction
techniques.

Besides the need for partial treebanks, it is necessary that the pars-
ing process can contribute to detect and overcome the causes that lead
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to partial parses. The so-called robust parsers try to overcome incom-
plete/erroneous information by using error anticipation and constraint
relaxation techniques. These methods, though avoiding the failure of
the parsing process, do not attempt to identify the real causes for
strict partial parsability and do not use that information for learning
from previous experience. On the other hand, partial parses provide
information that help to pinpoint the real causes for partial parsability
and to find corrections for those failures. According to our approach,
the use of the same chart parsing machinery (the one we are going
to present in this paper) both for partial parsing and for diagnosing
parsing faults and proposing fault corrections, enables the construction
of multiple instances of a partial chart parser, that just differs from
each other on their agenda initialization policies. These parsers will
act at different stages of the parsing problem resolution. The agenda
is initialized either with actual lexical information for normal partial
parsing or with alternative information, corresponding to possible cor-
rections (properly marked with fault modes in order to allow their
incorporation and propagation through charts while parsing), for fault
diagnosis (Lopes and Rocio, 1999; Lopes et al., 1999; Lopes and Balsa,
1998; Balsa et al., 1995). Alternative agenda information leads to alter-
native partial parses. A partial parse will only be considered for further
fault finding and fault repair if and only if it is better (it has lower
granularity, see definition 2 in section 2) than the parses previously
obtained by alternative diagnosis hypotheses. As a consequence one
obtains a declaration of the fault modes involved, and at the same time
a parse is obtained taking that fault declaration into account.

The partial parsing machinery that we present in this paper follows
the chart parsing philosophy, by using the built-in tabulation of DyA-
Log (Clergerie and Lang, 1994), a logic programming environment, with
an execution model that enables structure sharing and storing of partial
results. The grammars are clearly separated from the parsing processes
(which are hidden in DyALog) and the use of tabulation allows the
machinery to run as fast as other non-deterministic parsers (Abney,
1996; Hobbs, 1997). The partial parsers presented in this paper use two
declarative grammar formalisms: DCG extended with head declarations
for describing the syntax of phrases where there is no linguistic material
moved away from its regular position and Bound-Movement Grammar
(Lopes et al., 1996) for describing various kinds of linguistic movement
and enabling the binding of moved material to their traces (questions,
verb fronted sentences, prepositional phrase fronted sentences, rela-
tive clauses, clitics movement). These two formalisms are linguistically
adequate for describing natural language syntax in two levels. The
head declarations suggest a head-driven, bi-directional analysis of text
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(left-to-right and right-to-left). A mixed search strategy (top-down and
bottom-up) is also implicit in the grammar formalism so that the most
efficient parser can be built automatically, without losing grammatical
declarativity.

Bound-Movement Grammar (BMG, for short) involves movement
operators that were incorporated in DyALog. Thus, a BMG can be
directly compiled, and the corresponding parser is also generated auto-
matically. This parser acts on the chunked text obtained by the previous
bi-directional head-driven DCG based parser.

Section 2 of this paper defines some fundamental notions on partial
parsing used throughout the paper. In section 3 the parsing architecture
is presented. An introduction to the DyALog system is made in section
4. Sections 5 and 6 introduce the two grammar formalisms and detail
the implementations of the corresponding parsers in DyALog. Exper-
iments with the partial parsers are reported in section 7. We discuss
our approach and compare it with related work in section 8 Finally,
in section 9 conclusions are drawn and future work in the area will be
discussed.

2. Definitions

The notions related to partial parsing used in this paper are formally
defined in this section. We assume here a rather general notion of
grammar. The important aspect is the existence of a derivation relation,
denoted as

Sh =>*;91”.Sﬁ

where Sy, S1...S), are grammar symbols (terminal or non-terminal).
All other traditional grammar features (initial symbol, set of termi-
nals, form of production rules) are undefined, leaving room for the use
of a rather diversified set of formalisms. Two instances of grammar
formalism are defined in sections 5 and 6, corresponding to two levels
of syntactic analysis acting in tandem.

The notion of partial parse is central to our work and is formally
defined as:

Definition 1 - A partial parse P over an input string wi...w,, ac-
cording to a grammar G is a sequence of k tuples of the form < p;, p;+1,C >,
1 = 1...k, where p; =0, px+1 = n, p; < pi41 for each i, and C is a non-
terminal from G deriving the input substring stretching from position
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pi to position p;y1, i.e., C =" wp,1...wp,,, (each token w, is located
between positions p — 1 and p).

In order to select partial parses for further consideration in a fault
finding process, we need a measure of granularity.

Definition 2 - The granularity g of a partial parse P is the ratio
k/n, where k is the number of triples in P and n is the number of tokens
in the input string.

We are now able to define a partial parser.

Definition 3 - A partial parser is a function F that maps a non-
empty set P of partial parses over an input string wy...w, into another
non-empty set of partial parses over the same input string, on the
condition that for each P € P there is a @ € F(Q) such that g(Q) <

g(P).

From definition 3, we notice that, in order to produce partial parses
from an input string, we need at least one partial parse! This appar-
ently endless recursion is easily solved by pre-parsing (POS-tagging)
the input string, i.e., by assigning part-of-speech tags to each token in
the input string. As we can see from definitions 1 and 2, the result is
already an upper bound granular partial parse.

Finally, we define a subsumption relation between partial parses,
since the output of the partial parser can contain redundancies in the
form of partial parses subsumed by other partial parses.

Definition 4 - A partial parse P is subsumed by another partial
parse Q (both P and Q are partial parses over wj...w, according to
a grammar G) iff for each triple < p;,p;11,C1 >€ P there is a triple
< gj,qj+1,Co >€ @Q such that p; > g5, pi+1 < ¢j41 and Cy =" XY,
where XY are strings of symbols from G.

3. Parsing architecture

The partial parser implemented in the scope of the work presented
in this paper is divided into four levels of a cascaded architecture.
The lower level (level 0) is a neural-net part-of-speech tagger (Marques
and Lopes, 1996b; Marques, 2000) that assigns syntactic categories to
words in raw input text, thus producing a first partial parse. Each of
the subsequent levels (1, 2 and 3) picks up the partial parse produced
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Figure 1. FSA for compound proper names

by the previous level and produces another partial parse with lower
granularity (or equal, in the worst case).

Level 1 is a pre-processor based on finite-state automata. Its pur-
pose is to identify sequences of words described by very specific, local
grammars: numbers written in full, dates, compound proper names,
temporal/spatial adverbial clauses and complex prepositions, adverbs
and conjunctions. We show in figure 1 the automata for compound
proper names in Portuguese as an example of the mechanisms used at
this level.

Level 2 is a partial chart parser using a DCG extended with head
declarations, and identifies sentence constituents (noun phrases, verb
phrases, prepositional phrases, adjective phrases and adverbial phrases)
involving no movement. Level 3 deals with constituents moved out of
the canonical order, and uses the Bound Movement Grammar (BMG)
formalism. Both levels 2 and 3 are described in more detail in sections
5 and 6. These two levels work in tandem.

4. A brief description of DyALog

Levels 2 and 3 of the parsing architecture described in the previ-
ous section are implemented in DyALog, a logic programming en-
vironment featuring tabulation and structure-sharing. These features
are achieved through an execution model based on logic pushdown
automata (LPDA).
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4.1. LogGic PusHDOWN AUTOMATA (LPDA)

LPDA are non-deterministic pushdown automata with logic terms as
stack symbols. A classic PDA consists of a finite state memory and a
pushdown memory (whose state determines the state of the automa-
ton), together with a finite set of transitions, defining the possible
successive state changes. The finite state memory is absent from LPDA
since it can always be encoded in the pushdown stack, without loss of
generality.

There are three kinds of transitions in LPDA, corresponding to
different kinds of operations on the pushdown stack: PUSH, POP
and SWAP. PUSH is the classic primitive of stack manipulation for
inserting a symbol on the top of the stack. POP is not the classic POP
primitive for stacks. Instead, it replaces the two stack top symbols by
another symbol. SW AP simply replaces the top symbol with another
symbol. The following notation for these transitions is used in this

paper:

PUSH : B— CB
POP:BD w—C(C
SWAP :B— C

The — operator denotes a transition between the states specified on
its left- and right-hand sides. B, C' and D are any stack symbols and the
sequences shown represent the top of the stack (leftmost corresponds
to topmost).

A transition is applicable to a given state (represented by the stack)
if the symbol(s) on the top of the stack unify with the symbol(s) on the
left of the — operator. In this case, the stack is subject to the specified
operation (PUSH, POP or SWAP) and the substitution resulting
from the unification is applied to the whole stack, producing the new
state of the automaton.

LPDA are the basic model of logic program execution in DyALog.
There are two essential procedures that need to be performed in or-
der to run a logic program: the compilation of a logic program into
a set of LPDA transitions and the implementation of the resulting
non-deterministic LPDA.

More details on the internal workings of DyALog can be found
on (Clergerie and Lang, 1994). The compilation scheme for BMG is
presented in this paper on subsection 6.2.4. The LPDA implementa-
tion uses tabulation techniques and allows the use of different search
strategies through modulation, which is described on the following
subsection.
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4.2. MODULATION

In DyALog, a predicate is solved by pushing a call atom into the LPDA
stack and waiting for a corresponding return atom to be popped.
Different search strategies are achieved by distributing (modulating)
the predicate information (functor and arguments) between these two
atoms. For instance, to obtain a pure top-down search strategy, all
predicate information must be conveyed in the call atom. On the other
hand, to obtain a bottom-up strategy, none of the predicate information
should be conveyed in the call atom, but only matched against the
return atom. Finer strategies can also be defined.

DyALog provides a directive dcg_mode/4 to specify the modulation
relative to a set of DCG (or BMG) non-terminals (and mirrors the
declaration mode/2 used for Prolog predicates).

Both non-terminal names and respective arguments can be modu-
lated with the following scheme:

:-dcgmode (NT, NT_Info, Left Pos, Right_Pos).

NT is a non-terminal or a list of non-terminals, NT_Info specifies the
type of modulation for the non-terminal functor and arguments, and
Left_Pos and Right_Pos specify the type of modulation for the left
and right positions? in the input. A plus sign (+) in each of NT_Info,
Left_Pos and Right_Pos indicates that the respective information is
conveyed in the call atom, while a minus sign (-) indicates the op-
posite: the info should only be matched against the return atom. In
other words, + indicates top-down prediction, while - indicates bottom-
up propagation. The second argument of the dcg mode/4 directive,
NT_Info, may separately specify modulations for both the non-terminal
name and respective arguments, through a notation that mirrors the
functor-argument structure of the non-terminal. For instance, a value
of +(+,—) for NT_Info with respect to a non-terminal nt with two
arguments specifies a + modulation for the name nt, a + modulation
for the first argument and a - modulation for the second argument.

As a more thorough example, the directive

: —dcg mode([nty/2,nts /2], +(+, =), +, —).

produces the call and return atoms in table I (assuming nt; and
nty non-terminals with 2 arguments each, arg;; and arg;o for nt;, and
args and argyy for nts):

This particular modulation for the left and right positions (respec-
tively + and -) assumes that parsing is to be done from left to right,
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Table I. Call and Return atoms for nt; and nt»

DCG non-terminal nti(argii,argi2) nta(argii,argiz)
Expanded nt1(L, R,argi1,argiz) nt2(L, R,argii,argi2)
Call deg-call.nt1 2(L,argi1) deg-call_nta 2(L,args1)
Return dcg-return(R,argi2) dcg-return(R, argsz2)
s — — > np, vp. head(s,vp). (a)
np — — > det,n(Type),n_args(Type). head(np,n). (b)
vp — — > v(Type), v_args(Type). head(vp,v). (c)
pp — — > prep, np. head(pp,np). (d)
n_args(0) — — > [] (e)
nargs(l) — — > pp (f)
v_args(0) — — > ] (g)
v_args(1l) — — > np. (h)
v_args(2) — — > np, pp. (i
(

e

v_args(3) — — > pp.

Figure 2. Example of a grammar for level 2

since only the left position is known at call time. When parsing right-
to-left, the modulation for the left and right positions must be - and +,
respectively, because now only the right position is known at call time.
If neither the left nor the right positions are known, then modulation
of both parameters must be -. The possibility of specifying different
modulations for different predicates is especially useful in our mixed
bi-directional parsing strategy, as we will see in the following section.

5. Partial parsing with DCG extended with head
declarations

Level 2, in our parsing architecture, identifies sentence constituents, us-
ing a DCG grammar extended with head declarations. We first present
the grammar notation, and then detail the parser implementation.
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5.1. DEFINITION AND EXAMPLE OF DCG EXTENDED WITH HEAD
DECLARATIONS

The grammar for level 2, which describes the structures of phrases in
a sentence, is a DCG (Pereira and Warren, 1980), extended with head
declarations, which specify head constituents in phrases.

Figure 2 shows an example of a reduced grammar used at level 2 3.
Declaration (b), for instance, states that a noun is the head of a noun
phrase?.

The head declarations allow the parsing procedure to follow a bidi-
rectional strategy; those constituents to the right of the head are ana-
lyzed left-to-right, those to the left are analyzed right-to-left.

This horizontal bidirectionality is combined with a vertical bidirec-
tionality that reflects the co-existence of rules that have an associated
head declaration and rules that do not have it. Rules that have an
associated head declaration are triggered by the head category in a
bottom-up way; those that don’t have an associated head declaration
are triggered top-down by the category on the left-hand side.

Careful coding of the grammar and head declarations allows one to
achieve an adequate compromise between bottom-up propagation and
top-down prediction, while avoiding parsing incompleteness (Ritchie,
1999)

As a main guideline for coding the head declarations, the category
on the right-hand side (RHS) of a rule whose features determine specific
information on the other constituents on the RHS of that rule should
be chosen as head. The heads declared in the grammar of figure 2 are
a good example of the application of this principle. For instance, by
choosing the noun as the head of the noun phrase on rule (b), we allow
noun arguments (n_args) to be selected at once on the basis of Type,
provided by the noun lexical information.

On the other hand, the analysis of categories such as n_args and
v_args in the example in figure 2 depends strongly on the Type infor-
mation (subcategorization), which is conveyed in a top-down way by
the category on the left-hand side of the respective rule. So, no head
must be declared for these categories and they are processed top-down.
Each of the numbers on the argument position of n_args and v_args
denote a subcategorization class.

DCGs allow constraints in the form of Prolog goals and so does
our formalism. However, due to bidirectionality, it is more difficult
to determine when constraints should be checked. For this purpose
we added two infix operators that state explicitly when a constraint
is intended to be checked. These operators are pre and post. The
pre operator is used to force the constraint to be checked before a
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given literal. The post, forces the constraint to occur after the literal
it affects. For instance,

NT post {Const}

means that Const must be checked only after NT has been identified
and is independent of the direction (left-to-right or right-to-left) the
parser is following at the moment. The same applies to

NT pre {Const}

except that in this case the checking of the constraint takes place
before the identification of the non-terminal N'T.

The grammar specified as described above is translated into DyALog
bidirectional grammar notation and is then compiled into LPDA tran-
sitions. The translation process is described in detail in the following
subsection.

5.2. TRANSLATING DCG WITH HEAD DECLARATIONS INTO
DyALoG

5.2.1. DyALog bi-directional grammar notation

DyALog automatically builds a parser from a DCG specification. The
problem is that DCGs do not say which constituents on the right-
hand side of rules should be analyzed first. By default, parsing starts
always from the left hand side constituent of a rule. To overcome this
limitation, DyALog DCG notation was extended with two operators
(+> and <+) that may be used instead of commas (,) to separate the
constituents in the right hand side of a rule. They indicate the order
in which constituents must be analysed. For instance, the rule

a-——->b<+c+>d +> e

states that constituent ¢ must be analysed before b and d, and that
d must be analysed before e.

This is a procedural rather than a declarative notation, so we built a
translator in order to produce a grammar using these operators from a
specification in our DCG extended with head declarations. For the ex-
ample in figure 2, the result of the translation is the DyALog grammar
in figure 3.

tab_parsing.tex; 10/07/2000; 17:01; p.12



13

s ——> np <+ vp.

np --> det <+ n(Type) +> n_args(Type).
vp —-—> v(Type) +> v_args(Type).

pp —=> prep <+ np.

n_args(0) --> [].

n_args(1) --> pp.

v_args(0) --> [].

v_args(1l) --> np.

v_args(2) —--> np +> pp.

v_args(3) -—-> pp.

Figure 3. Translation of the grammar on figure 2

5.2.2. Translator implementation details
The translator works in two passes: the first does most of the work,
converting the declarative grammar notation into an internal repre-
sentation; the second produces the final DyALog program, from the
internal representation, resolving references that were not possible to
determine in the first pass.

The first pass is used for:

— determining, for each grammar rule, which are the constituents on
its right-hand side that should be analyzed from right to left (at
the left of a head) and which ones should be analyzed from left to
right (to the right of the head). For instance, for rule (b) of the
grammar in figure 2, det must be analyzed from right to left and
n_args from left to right.

— for rules not containing syntactic heads in their right-hand side,
the previous operation is unaltered, in the sense that all literals
on the right-hand side are assumed as being to the left of a (non-
existent) head. These rules are worked further on the second pass.
Example - rules (e) to (j) in the grammar of figure 2.

— marking, for each rule, its left-hand side non-terminal and its head
(if present) as outputting categories, and establishing a subsump-
tion relation between them (the left-hand side subsumes the head).
This relation will be used to avoid the output of partial parses
subsumed by others. In the example grammar of 2, s subsumes
vp, np subsumes n, vp subsumes v and pp subsumes np.

— identifying pre-terminal categories. To match pre-terminals with
the previously POS-tagged input text, dummy terminal rules for
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each pre-terminal in the grammar must be added. For instance,
the rules

det --> [det].

n(Type) --> [n(Type)].
v(Type) --> [v(Type)].
prep --> [prep].

must be added to the grammar in figure 2.

dealing with pre and post constraints, placing them in the correct
order, depending on the direction that part of the rule must be
analyzed (left-to-right or right-to-left).

— signaling syntactic errors:

e rules with 2 or more heads.

e non-terminals that are defined with both top-down and bottom-
up rules.

e incompleteness of the bidirectional notation (Ritchie, 1999)
(this may be just a warning).

The second pass does the following:

— generate two versions of headless non-terminals (except, of course,

pre-terminals), for left-to-right and right-to-left usage. The rules
for each version will differ only on the order of analysis of the
constituents. For instance, rule (i) in the grammar of figure 2 is
replaced by the following two rules:

v_args_left(2) --> np +> pp.
v_args.right(2) --> np <+ pp.

Of course, only v_args_left is needed, because, in the grammar,
v_args always appears to the right of the head. The translated
grammar in figure 3 reflects this, but in the real implementation
we don’t bother to eliminate the unused new non-terminal, because
it does not affect parsing performance.

change references to non-terminals split with the previous oper-
ation, in the right-hand side of the grammar rules to the left or
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right version, whichever the direction the parser should follow at
that point. For instace, this generates, for rule (b) of the grammar
on figure 2, the translated rule

np --> det <+ n(Type) +> n_args right(Type).

— transfer the definitions of predicates called in DCG constraints,
to the output file, with no alteration. Not being strictly part of
the grammar, these predicates must nevertheless be copied to the
output, so that the parser can use them.

— determine non-terminal modulation and produce the respective
dcg-mode declarations, to make the parser follow the head-first
bottom-up and top-down strategy defined by the grammar. For our
example grammar of figure 2, the following directives are needed:

:-dcg_mode ([s/0,np/0,vp/0,pp/0]1, -, =, -).

:-dcg_mode ([det/0,n/1,v/1,prep/0], -, -, -).
:-dcgmode ([n_args_left/1,v_args_left/1], +(+), +, -).
:-dcgmode([n_args right/1,v_,args right/1]1, +(+), -, +).

This last directive is not really needed, for the same reason men-
tioned above. It does not harm, though. n_args and v_args are an-
alyzed top-down, so the respective modulation is +. As for the other
non-terminals, they are analysed bottom-up from their heads, so
the corresponding modulation is -. Left and right positions are
modulated according to the horizontal direction of parsing. For
the bottom-up non-terminals, left and right positions are both
modulated -, since neither of them is known a priori.

6. Partial parsing with Bound-Movement Grammar

6.1. BOUND-MOVEMENT GRAMMAR DEFINITION

BMG is the formalism used in level 3 of our parsing architecture. It is
an extension of Extraposition Grammars (XG) (Pereira, 1981), used to
describe movement of constituents out of their canonical position. XG
implies the use of a stack where moved constituents are stored until
they are anchored at their canonical position (i.e., at the moment its
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trace is found). Being a declarative formalism, XG hides this procedural
aspect behind the following rule syntax:

NT1...NT2 — RHS

This rule states that NT2 is a moved constituent (described by the
sequence of constituents RHS - often NT2 and RHS are the same) that
needs to be anchored later in the deep structure of the sentence.

However, the use of just one movement stack is restrictive, be-
cause there are several independent types of movement: in interrogative
sentences, relative clauses, topicalization, clitics, clefting, etc. BMG
extends the XG formalism by using several stacks for the various kinds
of movement. The three dots (...) operator is replaced with int, rel
or slash, according to the type of movement involved (interrogative
sentences, relative clauses or topicalization, respectively - we will not
deal with clitics and clefting in this paper).

The other innovation in BMG is the possibility of using barriers
called island operators that may prefix constituents in the RHS of a
rule. Island operators prevent movement, of all or some types, in and
out of the affected constituent. For instance, the is1l_slash operator
in the BMG rule

8 — 1isl_slash np, vp

prevents the movement of topicalized material into the np, i.e., no
topicalized material can find its trace inside that noun phrase. Simulta-
neously, no topicalized material recognized during the parse of this noun
phrase can find its trace outside that noun phrase. Island operators can
be composed, resulting in a non-terminal prefixed by two or more island
operators.

Figure 4 shows an example of a BMG illustrating the concepts just
introduced. Remember that this grammar just becomes active after the
text has been chunked by level 2 of the parsing architecture we propose.
The directives in the first lines of the grammar specification define
BMG parameters and will be explained in the following sub-section.
Rules (a), (b) and (c) expand a sentence into a noun phrase followed
by a verb phrase, or into some topicalized or interrogative phrase (wh)
followed by a sentence. Obviously, the moved material must find its
trace inside the second sentence constituents. Rules (d) and (e) define
two types of topicalized material, to be pushed into the slash stack,
for later anchoring. Through rule (f), an interrogative noun phrase is
pushed into the quest stack. An interrogative prepositional phrase is
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:-bmg_stacks([slash,rel,quest]).
:-bmg_pushable([np/0,pp/0], [quest,rel]).
:-bmg_pushable([v/0,pp/0], [slash]).

s --> isl_slash np, vp. (a)
s --> topicalized ph, s. (b)
s --> wh, s. (c)
topicalized ph slash v(Type) --> isl v(Type). (d)
topicalized ph slash pp --> isl pp. (e)
wh quest np --> isl int np. (f)
wh quest pp --> isl int pp. (2)
np --> isl np, isl rel_c. (h)
relc --> []. (1)
rel ¢ --> rel head, s. (4)
rel head rel np --> isl relnp. (k)
rel head rel pp --> isl rel pp. 1)

vp --> isl rel isl quest v(Type), v_args(Type). (m)

v_args(0) -—> []. (n)
v_args(1l) --> np. (0)
v_args(2) --> np, pp. (p)
v_args(3) --> pp. (a)
pp ——> isl prep, isl np. (r)

Figure 4. A small Bound Movement Grammar

tab_parsing.tex; 10/07/2000; 17:01; p.17



18

pushed in a similar way in rule (g). Rule (h) attaches a relative clause
to an already found noun phrase. Relative clauses are defined in rules
(i) and (j) as empty or as a sentence preceded by a relative clause head.
Typically, the relative clause head is to be pushed into the rel stack,
according to the rules (k) and (1) and anchored inside the sentence
that forms the rest of the relative clause. Rules (m) to (r) define verb
phrases, verb arguments and prepositional phrases in the same way as
in figure 2.

Island operators are employed to prevent moved material in and
out of the affected phrases. Rule (a), for instance, prevents material
from the slash stack to find its trace in the shielded noun phrase, and,
conversely, it prevents that linguistic material inside the noun phrase to
be pushed into the slash stack. Phrases prefixed with the is1 operator
are not allowed to import or export moved material from/to any stack.
A composition of operators isl_rel and isl_quest is used in rule (m),
so that no material from the rel and quest stacks can be used as a
trace of a verb.

To illustrate the use of BMG, we present an example (Example
(1)) of the application of the grammar on figure 4 over a Portuguese
sentence:

Entre as obras sobressai um romance
Among the works stands out a novel
A novel stands out among the works

. The use of topicalization in this sentence is adequately described
by the BMG grammar. After the pre-processing phases (levels 0 and 1
- see section 3), we obtain the following categories for the words in the
sentence (we assume that verb sobressair (to stand out) is classified
in the lexicon has having subcategorization type 3 and nouns obras
(works) and romance (novel) as having type 0):

Entre (prep) as (det) obras (n(0)) sobressai (v(3)) um (det) ro-
mance (n(0))

After the parser on level 2 is applied, we obtain the following chunked
sentence:

Entre as obras (pp) sobressai (v(3)) um romance (np)

Because of the moved material, the parser on level 2 is unable to
parse the whole sentence. That is a job for level 3, that, by using the
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Ehntre as abras sobyassai LY YOREMCE

Figure 5. Parsing tree generated by the BMG parser

BMG, will completely and correctly parse the sentence, outputting the
tree on figure 5. To emphasize movement issues, we excluded the sub-
trees for the chunks identified on level 2. The bold black lines represent
links from moved constituents to their respective traces.

6.2. BMG COMPILER IMPLEMENTATION

6.2.1. Parametrizing BMG
BMG required the implementation of new DyALog directives to declare
and define the set of movement stacks, island operators, and the con-
stituents that may be pushed and popped into/from these stacks. The
DyALog compiler has then been slightly extended to take into account
the usage of the movement stacks.

The BMG in figure 4 will help us to introduce these different direc-
tives and operators.

bmg_stacks/1 is a directive used to introduce the set of constituent
stacks, here named “slash”, “rel” and “quest”.

Introducing a stack also implicitly defines an infix push operator
with the same name used to push a constituent on this stack when
reading some non-terminal (i.e., int quest np states that np should
be pushed on quest whenever a non-terminal int is recognized).
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Several other prefix operators are also defined to set some island
constraints. These operators are

— 1isl island constraint for all stacks

— isl_<name> for every declared stack <name>.

bmg_isl/2 is a directive that may be used to name compound island
constraint operators for convenience. For instance,

: —bmg_isl(isl_relquest,[rel, quest])

declares an island constraint operator isl_relquest for stacks rel
and quest that can be used instead of isl_rel isl_quest.

bmg_pushable/2 is a directive used to specify the kind of constituents
that may appear on a given stack. For instance,

: —bmg_pushable([v/0, pp/0], [slash])

specifies that only atoms built on predicates v/0 and pp/0 may
appear on stack slash.

6.2.2. FEzpansion
In traditionnal Prolog implementation, DCG clauses are expanded into
Horn clauses by adding two extra arguments to non-terminals and
terminals denoting left and right positions in the input string.

For instance, the DCG clause

S ——> np,vp
gives rise to the Prolog clause
s(P0,P2) :- np(PO,P1),vp(P1,P2)

DyALog works similarly, except that rule expansion takes place
during the compilation process into LPDA (there is no creation of new
clauses).

A similar expansion mechanism is used for BMG non-terminals and
terminals. Besides the left and right positions, we add, for each con-
stituent stack S, two additionnal arguments yielding the value of S
just left and right of the (non-)terminal. Here again, in DyALog, this
expansion takes place during the compilation process.

tab_parsing.tex; 10/07/2000; 17:01; p.20



21

Table II. Expansion of a BMG non-terminal.

BMG non-terminal nt

Expanded nt(L, R, SL, SR, RL, RR, QL, QR)
Call deg_call nt_0(L,SL,RL,QL)
Return dcg-return(R,SR, RR,QR)

Therefore, assuming movement stacks {slash,rel,quest}, a BMG
non-terminal nt expands into

nt(LP, RP, LSlash, RSlash, LRel, RRel, LQuest, RQuest).

Given some (terminal or non-terminal) BMG constituent A, we note
A[E; é] the expanded value of A with the tuple L = (Ip,1s1,...,1sp)
(resp. B = (rp,rs1,...,rs,) ) holding the left (resp. right) values of
position and movement stacks.

6.2.3. BMG modulation
A BMG non-terminal inherits any defined DCG modulation (relative
to its standard arguments as well as to its left and right position argu-
ments). Although modulation could theoretically be extended to handle
left and right stack arguments, this is not yet implemented. The default
choice is to use left (resp. right) stack arguments in call (resp. return)
atoms (see table II).

We note CA[L; R] (resp. RA[L; R]) the call (resp. return) atom asso-
ciated to a BMG non-terminal A with current left (resp. right) position
and stack values tuple L (resp. R).

6.2.4. Compilation
We compile a grammar clause by clause. A BMG clause is denoted

Yk - Ak_g - — > Ak.la . aAIc.nk-

We introduce a set of predicates Vi ; that denote intermediary com-
putation points during the refutation of clause . Their arguments are
used to store the values of the variables of y; that are pertinent for the
rest of the refutation or for publishing.

Actually, these predicates are used to express more easily the dif-
ferent steps of the resolution strategy but are not strictly needed: they
can be avoided by using a heavier continuation style notation for the
transitions, that we will not detail here.
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The following resolution strategy extends the Prolog “modulated
Call/Return strategy” used in DyALog (Clergerie and Lang, 1994).
Besides the traditional steps [Call, Return, Select, Publish], there is
a Scan step to read terminals (also present in DCG) and a Discharge
step to use constituents already pushed into any movement stack. We
consider in this strategy that modulation may apply to the movement
stacks (even if it is not yet implemented).

The Call step is used to push a call atom into the LPDA stack
when a non-terminal comes in line to be analyzed. Return proceeds
to the next non-terminal when the analysis of the current one has been
completed. Select selects a clause to recognize a non-terminal and
Publish produces a return atom after recognizing a whole clause. In
the case of BMG these steps now take into account movement and
island operators.

We use the notation introduced in section 4.1 for LPDA transitions
and make the following abbreviations: Cy;[L; R] = CAg;[L; R] and
Rk,z-[l_;; ﬁ] = RAk.Z-[E; é] AJ vefers to the element in position j of
vector A. In the case of the L and R vectors above, j > 0 refers to
the movement stacks used, while j = 0 refers to the input string. Also,
the set of defined movement stacks is denoted as {s1,...,sy}. Note that
the symbols we introduce to denote predicates and arguments, except
Vi.i» are not logical terms themselves. They are second-order symbols
corresponding to the actual predicates and arguments in the program,
only used for the purpose of the resolution steps exposition.

Scan Reads a terminal from the input. A ;11 is a terminal. No action
on any stack.

SWAP : Vkl[/_f, g] — V]“'Jrl[g; é]
where A° = [A},;41|B°] and A7 = B for j > 0.
Discharge Discharging a pushed non-terminal in place of non-terminal

A1 from stack u (if Ag;4q1 belongs to the set of pushable non-
terminals on stack u).

SW AP : Vkl[/_f, g] — V]“'Jrl[g; é]
where A% = [A41|B*] and A7 = BY for j # u.

Call Calling a non-terminal Ag;y; prefixed with island constraints
that prevent movement in the stacks belonging to the subset Is C

{81,. .. ,Sn}.
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PUSH :‘7kJIII;Z§]F%'(7kj+4[(?;l§]‘7ki[[{;£?
where G/ = A7 and DI = Bi if j ¢ Is and C9 = DJ = [] and
Al = BJ otherwise.

Return Return from a recognized non-terminal Ay ;y; prefixed with
island constraints that prevented movement in the stacks belonging
to the subset Is C {s1,...,s,}.

POP : Ry 41[C; D|Vy.i[4; B] = Vi.i11]B; E]

where G/ = AV and D/ = BJ if 5 ¢ Is and Ci = DI = [] and
Al = BJ otherwise.

Select Selecting clause 7; to recognize a non-terminal and (if a move-
ment operator is present) push a non-terminal N on stack u.

SWAP : Cio[A; B] + V10[C; D]

where G/ = A7 and D7 = BJ if j # u and C* = D" = [] and
B* = [N|A"].

Publish Publishing some information about a recognized rule -y, that
(if a movement operator is present) pushes a non-terminal N on

stack u.

SWAP: V,,,[C; D] = RyolA; B]
where G/ = A7 and DY = BJ if j # w and C* = D" = [] and
BY = [N|A"].

To illustrate the operation of the resolution strategy just presented,
we again pick example (1). We consider that it is already chunked
(see section 6) as a pp-v(3)-np sequence. So these categories are now
terminal symbols (and may be subject to a Scan step). Table ITI shows
the sequence of resolution steps needed to correctly parse the sentence
using the grammar on figure 4.
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Table III. Resolution steps needed to parse the sequence pp-v(3)-np.

Resolution step LPDA stack slash stack
Cs

Select (rule 2) V2.0

Call Ctopicalized_ph Vi

Select (rule 5) Vs Vao

Scan (pp) V5.1 Vao

Publish Rtopicalized_ph Vi PP

Return Vau PP

Call Cs Va1 PP

Select (rule 2) Va0 Vai pp

Call Ctopicalized_ph Va2, Va1 PP

Select (rule 4) V4.0 V2.0 Vai pp

Scan (v(3)) Va1 Vao Vo PP

Publish Rtopicalized ph Va2 Va1 v(3) pp

Return Va1 Vau v(3) pp

Call Cs Va1 Va1 v(3) pp

Select (rule 1) Vio Va1 Vai v(3) pp

Scan (np) Vi1 Va1 Vo v(3) pp

Call Cvp Vi1 Va1 Vau v(3) pp

Select (rule 13) Vizo Via Vai Vo v(3) pp

Discharge Viza1 Vii Vai Vaa PP

Call Cv_args(3) Viz1 Vii Va2i Vo PP

Select (rule 17) Vir.o Viza Via Vaai Vaa PP

Discharge Viza Viza Via Vai Voo

Publish Rv_args(3) Viza Vi Va1 Vau

Return Vize Via Va1 Vo

Publish Rvp Vi1 Va1 Vo

Return Via Va1 Vau

Publish Rs Va1 Vau

Return Va2 Vai

Publish Rs Va1

Return Va2

Publish Rs
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7. Experimental results

In order to test the partial parsing machinery described in this paper,
we randomly selected 30 previously POS-tagged texts from the LUSA
news corpus (40 million words) and partially parsed them with our
system. The texts had on average 1765.9 words each.

7.1. COMPARISON BETWEEN STANDARD CHART PARSING AND
DYALOG-BASED PARSING

The first experiment was made to assess the performance improvement
by using DyALog with its built-in tabulation. Due to the imprecision
in measuring small time intervals, we discarded 1 and 2-word sentences
from the sample®. Thus, we used 556 sentences, with a total of circa
50, 000 words, for this comparison. The equipment used was a Pentium
PC at 200 MHz with 64Mb of RAM running Red Hat Linux, version 5.2.
The results were 1.66 words per second when a standard chart parser
was used, and 254 words per second when DyALog was used. The
reason for such a dramatic improvement has to do with the complexity
of dealing with chart structures in a standard chart parser. DyALog
does a much more efficient management of those structures.

7.2. COMPARISON AMONG DIFFERENT PARSING STRATEGIES

The performance of different parsing strategies was measured not in
terms of time, but in terms of generated chart edges. This is due to
higher precision and unvariability of this measure, and its independence
of the actual implementation. So, we used the chart parser in Prolog for
this experiment, since we had better control over the chart structure.

The strategies tested were standard bottom-up (left-to-right) and a
mixed strategy (top-down and bottom-up) in two variants, left-to-right
and bidirectional (left-to-right and right-to-left, head-first). This last
strategy uses the full potential of DCG extended with head declara-
tions.

The input sample and equipment used were the same as for the
previous subsection. The results obtained are quantified in table IV, in
terms of generated chart edges per input word.

As can be seen from these numbers, the head-first approach mildly
improves the left-first strategy. This is mainly because in Portuguese,
the constituents to the left of heads (determiners, prepositions, ...) are
often syntactically independent of their respective head. However, for
languages in which the head appears mostly to the right of its phrase,
it could mean a significant improvement. There are also advantages in
using the head-first approach for lexical fault diagnosis, since the most
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Table IV. Performance results for different parsing strategies

Strict bottom-up left-first 21.07 edges per word
Mixed top-down and bottom-up left-first 18.54 edges per word
Mixed top-down and bottom-up head-first 18.23 edges per word

informative lexical items are heads. When the information associated
to heads is wrong or incomplete (which is more probable than on other
categories), the use of this strategy simplifies the agenda initialization,
since head categories alone trigger the rules they are used in, and no
other categories need to be put in the initial agenda.

We can see from the results on table IV that performance is im-
proved by using a mixed strategy (being left-first or head-first). In
fact, a correct distribution of information between top-down prediction
and bottom-up propagation eliminates many of the ambiguity during
parsing.

8. Discussion of the pros and cons of our approach and
comparison with related work

The partial parsing approach presented in this paper is purely symbolic.
Most partial parsers (chunkers) developed today use example based
learning techniques (Daelemans et al., 1999; Skut and Brants, 1998b;
Skut and Brants, 1998a) in order to achieve greater performance and
accuracy with a minimum effort on grammar coding. However, the
languages they work on (mostly English) have already a large amount of
computational resources, especially treebanks, available, which provide
training data for the statistical models used.

The absence of such computational resources for Portuguese except
for raw text poses a greater challenge when building parsing systems.
The partial parsing machinery we presented in this paper provides a
basis for a symbolic parsing system that does not need to use man-
ually annotated corpora. Moreover, the use of our level 3, based on
a Bound-Movement Grammar enables us to deal with recursion and
with linguistic movement of constituents which is not at all a problem
handled by currently available chunking techniques.

High performance could only be achieved by cascading successive
levels of parsing and by using a background tabulation machinery, like
DyALog.

Cascaded parsing is used in (Abney, 1996; Hobbs, 1997). These
works, however, over-simplify each of the cascading levels to finite-state
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automata. Through the use of built-in tabulation (specifically, by using
DyALog), we proposed to use the full potentiality of DCG and BMG
grammars without loss of efficiency. In fact, the average speed of our
system (4 ms per word = 250 words per second) rivals with the class
of parsers that Abney calls ”skimming parsers”, with a range of speeds
of 20-50 words per second.

Tabulation has been used for parsing since the Earley algorithm
(Earley, 1970) was proposed. Only recently the technique was gener-
alized for logic programming, with advantages for parsing, since the
management of the tabulation data structures is built-in and efficiently
performed.

The execution model of DyALog allows us to define different parsing
strategies, giving us an additional advantage in relation to other tabu-
lation systems (e.g. XSB (Sagonas et al., 1997)), where such strategies
cannot be directly defined.

The head-driven mixed strategy followed in parsing level 2 extends
head-corner chart parsing strategies (Sikkel and Akker, 1996) by allow-
ing the grammar writer to specify heads in the right hand side of rules
only where it makes sense. The idea is to guide the parsing process
with as much information as possible. In some rules, this information
is located in the heads. In others, the information comes top-down, and
defining a head for these rules only increases non-determinism where
there is the possibility to avoid it.

On the other hand, the risk of grammar incompleteness (as pin-
pointed by (Ritchie, 1999)) is present. We assume it and argue that
there is always the risk of making mistakes in grammar writing, even
for standard top-down CFG or DCG, and this mistake in particular
is no worse. The conditions for grammar completeness proposed by
(Ritchie, 1999) are reasonable, at least for Natural Language, which
follows well-behaved patterns, described by linguistic theories such as
X-bar. Generally, there is no need to violate those completeness con-
ditions. As an extra help, (Ritchie, 1999) also suggests an algorithm
to automatically decide if a grammar satisfies a sufficient condition for
completeness.

As for BMG, they require little effort to be implemented into a logic
programming environment already equipped with DCG. Making BMG
available in DyALog was a simple matter, through a simple extension
of the resolution strategy used.
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9. Conclusions, current and future related work

We presented in this paper a flexible partial parsing system based on
tabulation techniques. Due to the use of DyALog, a logic programming
environment with built-in tabulation, we were able to dramatically
improve parsing performance.

The choice of DyALog instead of other similar systems has to do
with its execution model, which is especially adequate for parsing tasks
in the sense that it is easily adaptable to various grammar formalisms
and search strategies.

In particular, it allowed us to implement DCG extended with head
declarations and BMG. Many search strategies are possible, and the
head-driven bi-directional strategy of the DCG extended with head
declarations was easily achieved through modulation.

The work with and on DyALog will continue, with the extension
of modulation for the movement stacks and with extensions for fault
finding support.

Fault finding representes one of the major uses of the parsing ma-
chinery described in this paper. It consists of incrementally re-parsing a
sentence on the basis of alternative, hypothetical initial information. If
this improves parsing results, then the hypotheses made are considered
for further evaluation and eventually become part of the linguistic
knowledge. This work will continue, by building new partial parsers,
specialized on the diagnosis of various kinds of faults. Recently, by
pursuing some experiments on the diagnosis of lack of verb subcatego-
rization information in the lexicon, we obtained some promising results
for some selected verbs (sobressair, consentir and respirar) that, on
some cases confirm the results obtained by statistically based methods
(Marques, 2000), and, on other cases, provide new information, not
obtainable by those methods. For instance, by using BMG, we were
able to gather evidence that the noun phrase that frequently follows
the verb sobressair is its subject and not one of its objects, as (Marques,
2000) wrongly acquires, in an automatic way.

The use of a society of diagnosing agents (Lopes and Balsa, 1998;
Lopes et al., 1999) together with cross-validation techniques will truly
allow a parsing system to evolve by learning new lexical and grammat-
ical information that reduces granularity and improves parsing preci-
sion.

The choice of granularity as a measure for filtering partial parses for
further consideration is a conscient one, and has to do with the nature
of the partial parses obtained at this stage. We prefer to decide correctly
on the basis of available (lexical, syntactical) information than to am-
biguously output partial parses based on uncertain information, even
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if they are less granular. Each of the levels of the cascaded structure
follows this principle, always trying to reduce granularity, as possible.

Notes

! Meanwhile, due to recent work in our research group on statistical extraction of
multi-word lexical units (Silva et al., 1999) some changes may be introduced at this
level. However, we will not detail that process in this paper.

2 These correspond to the extra arguments resulting from standard DCG expan-
sion into Horn clauses.

% The real grammar we use at this level has 124 rules.

* The head of a phrase is not necessarily unique, when there is more than one
rule expanding that phrase. Each of those rules may have associated a different head
category. However, the head must be uniquely identified in each rule.

® Often, these small sentences result from tokenizing and/or POS-tagging errors
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