
Efficient computation of the Zassenhaus formula

Fernando Casas1∗ Ander Murua2† Mladen Nadinic3

June 8, 2012

Abstract

A new recursive procedure to compute the Zassenhaus formula up
to high order is presented, providing each exponent in the factorization
directly as a linear combination of independent commutators and thus
containing the minimum number of terms. The recursion can be easily
implemented in a symbolic algebra package and requires much less com-
putational effort, both in time and memory resources, than previous algo-
rithms. In addition, by bounding appropriately each term in the recursion,
it is possible to get a larger convergence domain of the Zassenhaus formula
when it is formulated in a Banach algebra.

1Institut de Matemàtiques i Aplicacions de Castelló and Departament de
Matemàtiques, Universitat Jaume I, E-12071 Castellón, Spain.

2Konputazio Zientziak eta A.A. saila, Informatika Fakultatea, EHU/UPV,
Donostia/San Sebastián, Spain.

3 Departamento de Matemática, Facultad de Ciencias, Universidad de
Santiago de Chile, Avda. Bernardo O’Higgins 3363, Estación Cen-
tral, Santiago, Chile.

1 Introduction

Products of exponentials of non-commuting indeterminate variables are of fun-
damental importance in physics and mathematics. As is well known, the Baker–
Campbell–Hausdorff theorem states that eXeY = eZ , with

Z = log(eXeY) = X + Y +
∞
∑

m=2

Zm(X,Y). (1.1)

Here Zm(X,Y) is a homogeneous Lie polynomial in the non-commuting vari-
ables X and Y . In other words, Zm is a linear combination (with rational coeffi-
cients) of commutators of the form [V1, [V2, . . . , [Vm−1, Vm] . . .]] with Vi ∈ {X,Y }

∗
Email: Fernando.Casas@uji.es

†
Email: Ander.Murua@ehu.es

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/61418868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for 1 ≤ i ≤ m. We recall that [X,Y] ≡ XY −Y X. The first terms in the series
(1.1) read explicitly

Z2 =
1

2
[X,Y], Z3 =

1

12
[X, [X,Y]]−

1

12
[Y, [X,Y]], Z4 =

1

24
[X, [Y, [Y,X]]].

The expression eX eY = eZ is then properly called the Baker–Campbell–Haus-
dorff formula (BCH for short) and plays a fundamental role in many fields of
mathematics (theory of linear differential equations [1], Lie groups [2], numerical
analysis [3]), theoretical physics (perturbation theory [4], Quantum Mechanics
[5], Statistical Mechanics [6, 7], quantum computing [8]), control theory (anal-
ysis and design of nonlinear control laws, nonlinear filters, stabilization of rigid
bodies [9]), etc. (see [10] for a comprehensive treatment of the algebraic aspects
of the BCH formula).

Although the BCH theorem establishes the precise algebraic structure of the
exponent Z in (1.1), it does not provide simple ways to compute explicitly this
series. As a matter of fact, the problem of effectively computing the BCH series
up to arbitrary degree has a long history, and different procedures have been
proposed along the years, starting with the work of Richtmyer and Greenspan
in 1965 (see [11] for a review). Most of the procedures lead to expressions where
not all the iterated commutators are linearly independent (due to the Jacobi
identity and other identities appearing at higher degrees). Equivalently, the
resulting expressions are not formulated directly in terms of a basis of the free
Lie algebra L(X,Y) generated by the symbols X and Y . Of course, it is always
possible to write these expressions in terms of a basis, but this rewriting process
is time consuming and require considerable memory resources. This in addition
is made more difficult due to the exponential growth of the number of terms
with the degree m. Recently, a new efficient algorithm has been proposed which
allows one to get closed expressions for Zm up to a very high degree in terms
of both the classical Hall basis and the Lyndon basis of L(X,Y) [11].

In the paper dealing with the expansion bearing his name, Magnus [1] cites
an unpublished reference by Zassenhaus, reporting that there exists a formula
which may be called the dual of the (Baker–Campbell–)Hausdorff formula. This
result can be stated as follows.

Theorem 1.1 (Zassenhaus Formula). Let L(X,Y) be the free Lie algebra gen-
erated by X and Y . Then, eX+Y can be uniquely decomposed as

eX+Y = eX eY
∞
∏

n=2

eCn(X,Y) = eX eY eC2(X,Y) eC3(X,Y) · · · eCn(X,Y) · · · , (1.2)

where Cn(X,Y) ∈ L(X,Y) is a homogeneous Lie polynomial in X and Y of
degree n.

The existence of such a formula is an immediate consequence of the BCH
theorem. In fact, it is clear that e−XeX+Y = eY+D, where D involves Lie
polynomials of degree > 1. Now e−Y eY+D = eC2+D̃, where D̃ involves Lie
polynomials of degree > 2 and the process is repeated again. Induction allows
one to get the general result.

2

By comparing with the BCH formula it is possible to obtain the first terms
of the formula (1.2) as

C2(X,Y) = −
1

2
[X,Y], C3(X,Y) =

1

3
[Y, [X,Y]] +

1

6
[X, [X,Y]].

Although less familiar than the BCH formula, the Zassenhaus formula con-
stitutes nevertheless a standard tool in several fields, since the disentangling of
the exponential of the sum of two non-commuting operators into an (in gen-
eral infinite) product of exponential operators arises for instance in statistical
mechanics, many-body theories, quantum optics, path integrals, q-analysis in
quantum groups, etc. [12]. Also in particle accelerators physics, Dragt and
his collaborators have used the Zassenhaus formula to compute the relevant
maps both in Taylor and factored product form [13]. Yet in another context,
very recently Iserles and Kropielnicka [14] have proposed a new family of high-
order splitting methods for the numerical integration of the time-dependent
Schrödinger equation based on a symmetric version of the Zassenhaus formula.

Several systematic computations of the terms Cn for n > 3 in the Zassenhaus
formula have been carried out in the literature, starting with the work of Wilcox
[7], where a recursive procedure is presented that has been subsequently used to
get explicit expressions up to C6 in terms of nested commutators [12]. On the
other hand, Volkin [15] proposed a general technique to express a function of
non-commuting operators as an expansion in successively higher commutators
of the operators involved. In particular, he was able to get recursive formulae
up to C9. By following an idea already suggested by Wilcox in [7], Suzuki [16]
obtained the successive terms Cn(X,Y) in

eλ(X+Y) = eλX eλY eλ
2C2 eλ

3C3 · · · (1.3)

by differentiating both sides with respect to λ and setting λ = 0 after each
differentiation. In this way

C2 =
1

2

(

d2

dλ2
(e−λY e−λXeλ(X+Y))

)

λ=0

=
1

2
[Y,X]

C3 =
1

3!

(

d3

dλ3
(e−λ2C2e−λY e−λXeλ(X+Y))

)

λ=0

=
1

3
[C2,X + 2Y]

and in general, for n ≥ 3,

Cn =
1

n!

(

dn

dλn
(e−λn−1Cn−1 · · · e−λ2C2e−λY e−λXeλ(X+Y))

)

λ=0

. (1.4)

Finally, Baues [17] gave explicit formulae for the Zassenhaus terms via ho-
motopy theory and more recently Kurlin [18] obtained a closed expression for
∑

n≥2Cn in the metabelian case.
All of these proposals give results for Cn as a linear combination of nested

commutators. In contrast, Scholz and Weyrauch [19] proposed a recursive pro-
cedure based on upper triangular matrices that can be easily implemented in
a symbolic algebra package. In this case, however, the expressions for Cn are

3

not explicitly written down in terms of homogeneous Lie polynomials. More
recently [20], the same authors have applied a technique related to one previ-
ously used by Witschel [21] to get Cn up to n = 15 in less than 2 minutes of
CPU time. Here also the Zassenhaus terms are written as

Cn =
∑

w,|w|=n

gw w, (1.5)

where gw is a rational coefficient and the sum is taken over all words w with
length |w| = n in the symbols X and Y , i.e., w = a1a2 · · · an, each ai being
X or Y . Of course, one may always apply the Dynkin–Specht–Wever theorem
[22], and express Cn as

Cn =
1

n

∑

w,|w|=n

gw [w], (1.6)

that is, the individual terms are the same as in the associative series (1.5) except
that the word w = a1a2 . . . an is replaced with the right nested commutator
[w] = [a1, [a2, . . . [an−1, an] . . .]] and the coefficient gw is divided by the word
length n. In this way Cn is constructed as a linear combination of nested
commutators of homogeneous degree n, that is, as a linear combination of
elements of the homogeneous subspace L(X,Y)n of degree n of the free Lie
algebra L(X,Y). As a matter of fact, another representation of (1.5) in terms
of nested commutators is proposed in [20] which, it is claimed, contains less
terms than the Dynkin–Specht–Wever representation. In any case, it should
be stressed that the set of nested commutators [w] for words w of length n in
either representation is not a basis of the homogeneous subspace L(X,Y)n.

The purpose of this paper is twofold. First, to present a new recurrence
that allows one to express the Zassenhaus terms Cn directly as a linear com-
bination of independent elements of the homogeneous subspace L(X,Y)n. In
other words, the procedure, which can be easily implemented in a symbolic
algebra package, gives Cn up to a prescribed degree directly in terms of inde-
pendent commutators involving n operators X and Y . In this way, no rewriting
process in a basis of L(X,Y) is necessary, thus saving considerable computing
time and memory resources. Moreover, we are able to express directly Cn with
the minimum number of commutators required at each degree n.

The second aspect we are dealing with concerns the convergence of the
Zassenhaus formula when it is formulated in a Banach algebra. As far as we
know, there are only two previous results in the literature. The first one was
obtained by Suzuki [16] starting with the recurrence (1.4). Specifically, he was
able to prove that if |λ|(‖X‖ + ‖Y ‖) ≤ log 2 − 1/2 the infinite product (1.3)
converges. Subsequently, Bayen [23] generalized the analysis, showing that the
product (1.3) converges if |λ|(‖X‖ + ‖Y ‖) ≤ r, where r ≈ 0.596705 is a root
of a certain transcendental equation. In the present work, we obtain sharper
bounds for the terms of the Zassenhaus formula which show that the product
(1.2) converges in an enlarged domain.

A simple but important remark is in order here. In some applications, the
“left-oriented” Zassenhaus formula

eX+Y = · · · eĈ4(X,Y) eĈ3(X,Y) eĈ2(X,Y) eY eX (1.7)

4

is used instead of (1.2). A simple observation shows that the exponents Ĉi and
Ci are related through

Ĉi(X,Y) = (−1)i+1Ci(X,Y), i ≥ 2

and so we may restrict ourselves to analyzing the “right-oriented” formula (1.2).

2 Constructing the Zassenhaus terms

2.1 A new recurrence

To derive our recursive procedure, it is convenient to introduce a parameter λ
as in (1.3),

eλ(X+Y) = eλX eλY eλ
2C2 eλ

3C3 eλ
4C4 · · · (2.1)

so that the original Zassenhaus formula (1.2) is recovered when λ = 1. More-
over, we consider the compositions

R1(λ) = e−λY e−λX eλ(X+Y) (2.2)

and for each n ≥ 2,

Rn(λ) = e−λnCn · · · e−λ2C2 e−λY e−λX eλ(X+Y) = e−λnCn Rn−1(λ). (2.3)

It is then clear that

Rn(λ) = eλ
n+1Cn+1 eλ

n+2Cn+2 · · · (2.4)

Finally, we introduce

Fn(λ) ≡

(

d

dλ
Rn(λ)

)

Rn(λ)
−1, n ≥ 1. (2.5)

To determine the series Fn(λ) we proceed as follows. On the one hand, a simple
calculation starting from (2.3), leads for n ≥ 2 to

Fn(λ) = −nCn λ
n−1 + e−λnCn

(

d

dλ
Rn−1(λ)

)

Rn−1(λ)
−1 eλ

nCn

= −nCn λ
n−1 + e−λnCn Fn−1(λ) e

λnCn

= −nCn λ
n−1 + e−λnadCnFn−1(λ)

= e−λnadCn (Fn−1(λ)− nCn λ
n−1), (2.6)

where we have used the well known formula

eABe−A = eadAB =
∑

n≥0

1

n!
adnAB

with
adAB = [A,B], adjAB = [A, adj−1

A B], ad0AB = B.

5

On the other hand, differentiating expression (2.4) with respect to λ and
taking into account (2.5) we arrive at

Fn(λ) = (n+ 1)Cn+1 λ
n +

∞
∑

j=n+2

j λj−1 eλ
n+1adCn+1 · · · e

λj−1adCj−1Cj . (2.7)

In other words,

Fn(λ) = (n+ 1)Cn+1 λ
n +Gn+1(λ), n ≥ 1,

where Gn+1(0) = G
(1)
n+1(0) = · · · = G

(n)
n+1(0) = 0. In consequence, we have, for

n ≥ 1,

Fn+1(λ) = e−λn+1adCn+1 Gn+1(λ), (2.8)

Cn+1 =
1

(n + 1)!
F (n)
n (0), (2.9)

Gn+1(λ) = Fn(λ)−
λn

n!
F (n)
n (0). (2.10)

Expressions (2.8)–(2.10) allow one to compute recursively the Zassenhaus terms
Cn starting from F1(λ). The sequence is

Fn(λ) −→ Cn+1 −→ Gn+1(λ) −→ Fn+1(λ) −→ · · · , n ≥ 1.

Let us analyze more in detail this procedure, with the goal of providing an
algorithm well adapted from a computational point of view.

For n = 1, and taking into account (2.2), we get

F1(λ) = −Y − e−λY Xeλ Y + e−λY e−λX(X + Y)eλXeλY

= −Y − e−λadY X + e−λadY e−λadX (X + Y)

= e−λadY (e−λadX − I)Y,

that is,

F1(λ) =

∞
∑

i=0

∞
∑

j=1

(−λ)i+j

i!j!
adiY ad

j
XY (2.11)

or equivalently

F1(λ) =

∞
∑

k=1

f1,k λ
k, with f1,k =

k
∑

j=1

(−1)k

j!(k − j)!
adk−j

Y adjXY. (2.12)

In general, from (2.6) a straightforward calculation shows that for n ≥ 2,

Fn(λ) =

∞
∑

k=n

fn,k λ
k, with fn,k =

[k/n]−1
∑

j=0

(−1)j

j!
adjCn

fn−1,k−nj, k ≥ n.

(2.13)

6

Here [k/n] denotes the integer part of k/n. Moreover, a closer examination of
(2.7) reveals that

Fn(λ) = (n + 1)Cn+1λ
n + (n+ 2)eλ

n+1adCn+1Cn+2λ
n+1 + · · ·

= (n + 1)Cn+1λ
n + (n+ 2)Cn+2λ

n+1 + · · ·

+(2n + 2)C2n+2λ
2n+1 + λ2n+2[Cn+1, Cn+2] + · · ·

=

2n+2
∑

k=n+1

k Ck λ
k−1 + λ2n+2Hn(λ), (2.14)

where Hn(λ) involves commutators of Cj, j ≥ n + 1. Notice that the terms
Cn+1, . . . , C2n+2 of the Zassenhaus formula can be then directly obtained from
Fn(λ). In particular, one directly gets from (2.11)

Cn+1 =
1

n+ 1
f1,n =

1

n+ 1

n−1
∑

i=0

(−1)n

i!(n− j)!
adiY ad

n−j
X Y, for n = 1, 2, 3. (2.15)

Explicitly,

C2 = −
1

2
[X,Y],

C3 =
1

3
[Y, [X,Y]] +

1

6
[X, [X,Y]],

C4 = −
1

8
([Y, [Y, [X,Y]]] + [Y, [X, [X,Y]]]) −

1

24
[X, [X, [X,Y]]].

Taking into account (2.13) and (2.14) we have in general

Cn+1 =
1

n+ 1
f[n/2],n n ≥ 5, (2.16)

where the expressions of fn,k are given recursively by (2.13).
In summary, the algorithm we propose for computing the Zassenhaus terms

is the following:

Define f1,k by eq. (2.12)
Cn = (1/n) f1,n−1, n = 2, 3, 4
Define fn,k n ≥ 2, k ≥ n by eq. (2.13)
Cn = (1/n)f[(n−1)/2],n−1 n ≥ 5.

(2.17)

This constitutes a new recursive way for obtaining directly the term Cn as a
homogeneous Lie polynomial in X, Y of arbitrarily large degree n which can
be easily implemented with a symbolic algebra package.

2.2 Linear independence

Algorithm (2.17), or equivalently the procedure given by the identities (2.8)–
(2.10), provides expressions for Cn that, by construction, involve only indepen-
dent commutators. In other words, they cannot be simplified further by using
the Jacobi identity and the antisymmetry property of the commutator.

7

In order to prove this assertion, it is convenient to get a more explicit
expression of Fn(λ) and Cn+1 from (2.8)–(2.10). To this end, consider for
n ≥ 1 the sets Jn and In of (n + 1)-tuples of non-negative integers recursively
defined as follows:

J1 = {(i0, i1) ∈ N
2 : i0 ≥ 1},

In = {(i0, i1, . . . , in) ∈ Jn : i0 + i1 + 2i2 + · · ·+ nin = n},

Jn+1 = (Jn\In)× N.

The set In can be directly defined as the set of (n + 1)-tuples of non-negative
integers satisfying that i0 + i1 + 2 i2 + · · ·+ n in = n and

j + 1 ≤ i0 + i1 + 2 i2 · · · + j ij for j = 0, . . . , n − 1. (2.18)

Thus, in particular, I1 = {(1, 0)}, I2 = {(1, 1, 0), (2, 0, 0)}, etc. Observe that,
by construction, each (i0, i1, . . . , in) ∈ In is such that im = 0 if m > n/2.

From (2.8)–(2.10), one can then prove by induction on n that, for n ≥ 1,

Fn(λ) =
∑

(i0,i1,...,in)∈Jn

(−1)i0+···+inλi0+i1+2i2+···+nin

i0!i1! · · · in!
adinCn

· · · adi2C2
adi1Y ad

i0
XY,

Cn+1 =
1

n+ 1

∑

(i0,i1,...,in)∈In

(−1)i0+···+in

i0!i1! · · · in!
adinCn

· · · adi2C2
adi1Y ad

i0
XY. (2.19)

In fact, this is clearly true for n = 1 (equations (2.11) and (2.15), respectively),
whereas successive application of (2.8)–(2.10) leads to the general result.

Now, repeated application of Lazard elimination principle [24], together
with I1 = {(1, 0)}, {C2} = {−1

2 [X,Y]} = {−1
2ad

i1
Y ad

i0
XY : (i0, i1) ∈ I1},

shows that, as a vector space,

L(X,Y) = span({X}) ⊕ L({adjXY : j ≥ 0})

= span({X}) ⊕ span({Y })⊕ L({adiY ad
i
XY : i ≥ 0, j ≥ 1})

= span({X,Y })⊕ L({adi1Y ad
i0
XY : (i0, i1) ∈ J1})

= span({X,Y })⊕ L({C2} ∪ {adi1Y ad
i0
XY : (i0, i1) ∈ J1\I1})

= span({X,Y,C2})⊕ L({adi2C2
adi1Y ad

i0
XY : (i0, i1, i2) ∈ J2}).

More generally, application of Lazard elimination together with (2.19) gives

L(X,Y) ⊂ span({X,Y,C2, . . . , Cn})

⊕L({adinCn
· · · adi2C2

adi1Y ad
i0
XY : (i0, . . . , in) ∈ Jn})

⊂ span({X,Y,C2, . . . , Cn})

⊕L({Cn+1} ∪ {adinCn
· · · adi2C2

adi1Y ad
i0
XY : (i0, . . . , in) ∈ Jn\In})

⊂ span({X,Y,C2, . . . , Cn+1})

⊕L({ad
in+1

Cn+1
· · · adi2C2

adi1Y ad
i0
XY : (i0, . . . , in+1) ∈ Jn+1}).

In consequence, the terms {adimCm
· · · adi2C2

adi1Y ad
i0
XY : (i0, i1, . . . , im) ∈ Jn}

are linearly independent in the free Lie algebra L(X,Y) and the same is true
for the representation (2.19) of the Zassenhaus terms.

8

2.3 Computational aspects

We have implemented the recursive procedure (2.17) in MathematicaTM as the
following algorithm.

Clear[Cmt, ad, ff, cc];

$RecursionLimit= 1024;

Cmt[a_, a_]:= 0;

Cmt[a___, 0, b___]:= 0;

Cmt[a___, c_ + d_, b___] := Cmt[a, c, b] + Cmt[a, d, b];

Cmt[a___, n_ c_Cmt, b___]:= n Cmt[a, c, b];

Cmt[a___, n_ X, b___]:= n Cmt[a, X, b];

Cmt[a___, n_ Y, b___]:= n Cmt[a, Y, b];

Cmt /: Format[Cmt[a_, b_]]:= SequenceForm["[", a, ",", b, "]"];

ad[a_, 0, b_]:= b;

ad[a_, j_Integer, b_]:= Cmt[a, ad[a, j-1, b]];

ff[1, k_]:= ff[1, k] =

Sum[((-1)^k/(j! (k-j)!)) ad[Y, k-j, ad[X, j, Y]], {j, 1, k}];
cc[2] = (1/2) ff[1, 1];

ff[p_, k_]:= ff[p, k] =

Sum[((-1)^j/j!) ad[cc[p], j, ff[p-1, k - p j]], {j, 0,

IntegerPart[k/p] - 1}];
cc[p_Integer]:= cc[p] =

Expand[(1/p) ff[IntegerPart[(p-1)/2], p-1]];

The object Cmt[x1, x2, . . . , xn−1, xn] refers to the nested commutator
[x1, [x2, . . . [xn−1, xn] · · ·]]. It has attached just the linearity property (there
is no need to attach to it the antisymmetry property and the Jacobi iden-
tity). The symbol ad represents the adjoint operator and its powers adjab,
whereas ff[1,k], ff[p,k] and cc[p] correspond to expressions (2.12), (2.13)
and (2.16), respectively. Proceeding in this way, we have obtained the expres-
sions of Cn up to n = 20 with a reasonable computational time and memory
requirements. Thus, for instance, constructing the terms up to degree n = 20
with a personal computer (2.4 GHz Intel Core 2 Duo processor with 2 GBytes
of RAM) takes less than 20 seconds of CPU time and 35 MBytes of memory.
The expression for C20 has 48528 terms, all of them independent. The resulting
expressions up to C8 are identical to those expressed in the classical Hall basis.

In Table 1 we collect the CPU time (in seconds) and memory (in MBytes)
needed to construct the terms C2, C3, . . . , Cn up to a given value of n both with
the recurrence (2.17) (New) and the implementation provided in [20] using a
variant of the so-called comparison method previously introduced in [21] (W-S).
Notice that with this method, which is the most efficient of all the procedures
analyzed in [20], the Zassenhaus exponents Cj are expressed as linear combina-
tions of words of length j and not directly in terms of independent commutators
(although this is always possible by applying Dynkin–Specht–Wever theorem or
Theorem 2 in [20], and then simplifying the resulting expressions by taking into

9

account the Jacobi identity and the antisymmetry property of the commuta-
tor). For comparison, C16 has 54146 terms when expressed as combinations of
words, but only 3711 terms with the new formulation. This translates directly
into the memory requirements of both algorithms, as is evident from the results
collected in the table.

n CPU time (seconds) Memory (MBytes)

W-S New W-S New

14 29.18 0.14 122.90 0.88
16 203.85 0.59 764.32 4.09
18 3.01 11.12
20 19.18 35.27

Table 1: CPU time and memory required for the computation of the Zassenhaus terms
C2, C3, . . . , Cn up to the given value of n using the algorithm presented in [20] (W-S)
and recurrence (2.17) (New).

3 Convergence of the Zassenhaus formula

Suppose now that X and Y are defined in a Banach algebra A, that is to
say, an algebra that is also a complete normed linear space whose norm is
submultiplicative,

‖X Y ‖ ≤ ‖X‖ ‖Y ‖ (3.1)

for any two elements of A. Notice that for the commutator one has ‖[X,Y]‖ ≤
2 ‖X‖ ‖Y ‖. Then it makes sense to analyze the convergence of the Zassenhaus
formula (1.2).

As stated in the introduction, we are aware of only two previous results
establishing sufficient conditions for convergence of the form ‖X‖ + ‖Y ‖ < r
with a given r > 0. Specifically, Suzuki [16] obtained rs = log 2 − 1

2 ≈ 0.1931,
whereas Bayen [23] proved that the domain of convergence can be enlarged up
to a value of rb given by the unique positive solution of the equation

z2
(

1 + 2

∫ z

0

e2w − 1

w
dw

)

= 4(2 log 2− 1).

A numerical computation shows that rb = 0.59670569 Thus for ‖X‖ +
‖Y ‖ < rb one has

lim
n→∞

eX eY eC2 · · · eCn = eX+Y . (3.2)

In the following, we use recursion (2.8)–(2.10) to show that (3.2) holds
indeed for (x, y) ≡ (||X||, ||Y ||) ∈ R

2 in a domain that is larger than {(x, y) ∈
R
2 : 0 ≤ x+ y < rb}.
Clearly, (3.2) holds if

lim
n→∞

||Rn(1)|| = 1, (3.3)

10

where Rn(λ) is given by (2.4), and thus is the solution of the initial value
problem

d

dλ
Rn(λ) = Fn(λ)Rn(λ), Rn(0) = I. (3.4)

It is well known that, if
∫ 1
0 ‖Fn(λ)‖dλ < ∞, then there exists a unique solution

Rn(λ) of (3.4) for 0 ≤ λ ≤ 1, and that ‖Rn(1)‖ ≤ exp(
∫ 1
0 ‖Fn(λ)‖dλ). In con-

sequence, convergence (3.3) will be guaranteed whenever (x, y) = (‖X‖, ‖Y ‖) ∈
R
2 is such that

lim
n→∞

∫ 1

0
‖Fn(λ)‖dλ = 0.

From (2.19) we have that ‖Cn+1‖ ≤ δn+1, where δ2 = x y and for n ≥ 2,

δn+1 =
1

n+ 1

∑

(i0,i1,...,in)∈In

2i0+···+in

i0!i1! · · · in!
δinn · · · δi22 yi1xi0y.

Similarly, ‖Fn(λ)‖ ≤ fn(λ), where

f1(λ) =

∞
∑

i1=0

∞
∑

i0=1

(2λ)i0+i1

i0!i1!
yi1xi0y = e2λy(e2λx − 1)y, (3.5)

and for n ≥ 2,

fn(λ) =
∑

(i0,i1,...,in)∈Jn

2i0+···+inλi0+i1+2i2+···+nin

i0!i1! · · · in!
δinn · · · δi22 yi1xi0y.

Note that this implies

∫ 1

0
fn(λ)dλ ≤

∞
∑

k=n

δk,

so that (3.3) is ensured if the series
∑∞

k=2 δk converges. Let us analyze each
term of this series by mimicking the recursive procedure given by (2.17). From
(2.12) (or alternatively from (3.5)) and (2.13), we get

‖f1,k‖ ≤ d1,k ≡ 2ky

k
∑

j=1

1

j!(k − j)!
xjyk−j =

2k

k!
y
(

(x+ y)k − yk
)

‖fn,k‖ ≤ dn,k =

[k/n]−1
∑

j=0

2j

j!
δjndn−1,k−nj (3.6)

whence

‖Cn‖ ≤ δn =
1

n
d[(n−1)/2],n−1, n ≥ 3. (3.7)

A sufficient condition for convergence is obtained by imposing

lim
n→∞

δn+1

δn
< 1. (3.8)

11

At this point it is worth remarking that, although not reflected by the notation,
both dn,k and δn depend on (x, y) = (‖X‖, ‖Y ‖), so condition (3.8) implies in
fact a constraint on the convergence domain (x, y) ∈ R

2 of the Zassenhaus
formula. In Figure 1, we show graphically the (numerically computed) domain
D of such points (x, y). This has been obtained by computing for each point
the coefficients dn,k and δn up to n = 1000 (in fact, considering a smaller
value of n the figure does no change significantly). We have also included
for comparison the previous results x + y < 0.1931 and x + y < 0.5967 of
Suzuki and Bayen, respectively. Observe that the new convergence domain is
considerably larger. In particular, it contains the region x+ y < 1.054, but it is
not restricted to that. For instance, the convergence domain contains the sets
{(x, 2.9216) : x < 0.00292} and {(2.893, y) : y < 0.0145}, and also the points
(x, 0) and (y, 0) with arbitrarily large value of x or y.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ÈÈXÈÈ

ÈÈ
Y
ÈÈ

Figure 1: Upper boundary of convergence domain for the Zassenhaus formula obtained

with the procedure (3.6)-(3.7). Previous results 0 < ||X‖ + ‖Y ‖ < 0.1931 and 0 <

‖X‖+ ‖Y ‖ < 0.5967 are also depicted for comparison. The new domain contains the

region ‖X‖+ ‖Y ‖ < 1.054.

In summary, we have presented a new recursive procedure that not only
allows us to get the expressions of the Zassenhaus exponents Cn directly in terms
of independent commutators in an efficient way and can be easily implemented
in any symbolic algebra package, but also shows, by bounding appropriately
each term in the recursion, that the convergence domain of the Zassenhaus

12

formula is considerably larger than the domain guaranteed by previously known
results.

Acknowledgments

This work has been partially supported by Ministerio de Ciencia e Innovación
(Spain) under project MTM2010-18246-C03 (co-financed by FEDER Funds of
the European Union) and Fundació Bancaixa under project P1.1B2009-55.

References

[1] W. Magnus, On the exponential solution of differential equations for a
linear operator, Commun. Pure Appl. Math. 7 (1954), 649-673.

[2] V.V. Gorbatsevich, A.L. Onishchik, and E.B. Vinberg. Foundations of Lie
Theory and Lie Transformation Groups. Springer, 1997.

[3] E. Hairer, Ch. Lubich, and G. Wanner. Geometric Numerical Integra-
tion. Structure-Preserving Algorithms for Ordinary Differential Equations.
Springer-Verlag, Second edition, 2006.

[4] A. J. Dragt and J. M. Finn, Lie series and invariant functions for analytic
symplectic maps, J. Math. Phys. 17 (1976), 2215-2227.

[5] G.H. Weiss and A.A. Maradudin, The Baker–Hausdorff formula and a
problem in Crystal Physics, J. Math. Phys. 3 (1962), 771-777.

[6] K. Kumar, On expanding the exponential, J. Math. Phys. 6 (1965), 1928-
1934.

[7] R.M. Wilcox, Exponential operators and parameter differentiation in quan-
tum physics, J. Math. Phys. 8 (1967), 962-982.

[8] A.T. Sornborger and E.D. Stewart, Higher-order methods for simulations
on quantum computers, Phys. Rev. A 60 (1999), 1956-1965.

[9] M. Torres-Torriti and H. Michalska, A software package for Lie algebraic
computations, SIAM Review 47 (2005), 722-745.

[10] A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra. The The-
orem of Campbell, Baker, Hausdorff and Dynkin. Lecture Notes in Math-
ematics 2034, Springer, 2012.

[11] F. Casas and A. Murua, An efficient algorithm for computing the Baker–
Campbell–Hausdorff series and some of its applications, J. Math. Phys. 50
(2009), 033513.

[12] C. Quesne, Disentangling q-exponentials: a general approach, Int. J.
Theor. Phys. 43 (2004), 545-559.

13

[13] A.J. Dragt, Lie methods for Nonlinear Dynamics with
Applications to Accelerator Physics, available online at
http://www.physics.umd.edu/dsat/.

[14] A. Iserles and K. Kropielnicka, Effective approximation for linear time-
dependent Schrödinger equation, Technical Report NA2011/15, University
of Cambridge (2011).

[15] H.C. Volkin, Iterated commutators and functions of operators, NASA
Technical Note D-4857, Washington D.C., 1968.

[16] M. Suzuki, On the convergence of exponential operators—the Zassenhaus
formula, BCH formula and systematic approximants, Commun. Math.
Phys. 57 (1977), 193-200.

[17] H.J. Baues, Commutator Calculus and Groups of Homotopy Classes. Cam-
bridge University Press, 1981.

[18] V. Kurlin, The Baker–Campbell–Hausdorff formula in the free metabelian
Lie algebra, J. Lie Theory 17 (2007), 525-538.

[19] D. Scholz and M. Weyrauch, A note on the Zassenhaus product formula,
J. Math. Phys. 47 (2006), 033505.

[20] M. Weyrauch and D. Scholz, Computing the Baker–Campbell–Hausdorff
series and the Zassenhaus product, Comput. Phys. Comm. 180 (2009),
1558-1565.

[21] W. Witschel, Ordered operator expansions by comparison, J. Phys. A:
Math. Gen. 8 (1975), 143-155.

[22] N. Jacobson. Lie Algebras. Dover, 1979.

[23] F. Bayen, On the convergence of the Zassenhaus formula, Lett. Math. Phys.
3 (1979), 161-167.

[24] C. Reutenauer. Free Lie algebras. Oxford University Press, 1993.

14

