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SUMMARY  

The importance of randomization tests is very well known in experimental research, 
particularly in biometry. The aim of the present research is to evaluate the impact of 
distributional shape on the power of the randomization test for difference between the 
means of two independent groups (with n1=n2=16). To manipulate shape in terms of 
asymmetry and kurtosis, we used g-and-h distributions. We evaluated the power of the 
randomization test, and also the power of the Student-t test, as a comparison standard, 
with data simulated from 12 g-and-h distributions for seven values of effect size. For 
each condition, we generated 20 000 samples, and for each one the power of 
randomization tests was estimated using 1000 permutations. We set the value of Type I 
error probability at 0.05. The results show gains in power for both tests with increasing 
skewness and/or kurtosis, with a slight advantage for the randomization tests over the 
Student-t test. 

Key words: Randomization tests, statistical power, g-and-h distributions. 

1. Introduction 

Randomization tests are significance tests based on the random assignment of 

experimental units to treatments in order to test hypotheses about treatment 

effects. Their validity is based on a random-assignment model, whereas the 

validity of classical tests, e.g. Student-t test, is based on a random-sampling 

model. Given the widespread use of non-random samples in experimental 

research, namely in the behavioural and social sciences, as well in biometry, 
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randomization tests are not only a way of avoiding distributional assumptions, 

but they allow us to drop the most implausible assumption of typical 

experimental research: random sampling from a specified population. 

The randomization idea stems from Fisher (1935), but it was Pitman (1937a, 

1937b, 1938) who first presents a type of significance tests, “which may be 

applied to samples from any population”, based on random assignment alone. 

These tests were further developed by Kempthorne (1952, 1955), Hinkelmann 

and Kempthorne (1994), Edgington (1964, 1966, 1969a, 1969b, 1995) and 

recently Edgington and Onghena (2007). 

With the advent of computers, interest in these tests has shifted from 

theoretical considerations – the validation of classical methods – to practical 

applicability. Even with moderate sample sizes, there may be so many data 

permutations that it would not be feasible to generate them all. Contributions 

from Dwass (1957) and Chung and Fraser (1958) provided the possibility of 

using only a subset of all possible data permutations, thus rendering this 

computer-intensive technique practical. Some research applications can be 

found in Manly (1997) and Edgington and Onghena (2007). 

When analysing data from an experiment, where the experimental units are 

randomly assigned to treatments, if we use a test statistic, like t or F, the 

distinction between a randomization and a classical test is the way of calculating 

the significance. In the case of a randomization test, the significance is 

calculated by a procedure in which the data are repeatedly permuted, and the 

significance thus obtained is exact, conditional on the data. With this procedure, 

the researcher can calculate the significance of any statistical test, even of one 

whose sampling distribution has not yet been analytically derived. Thus to 

analyse the data, the researcher is free to choose the test that is most likely to be 

sensitive to the type of treatment effect that is expected. 

When the assumptions for using classical tests are met, the classical and 

randomization tests are equivalent in terms of statistical power. 

The concept of statistical power, the probability of rejecting a false null 

hypothesis, dates back to the work of Neyman and Pearson. In a series of papers 
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(Neyman, Pearson 1928a, 1928b, 1933), these authors stated that the choice of 

test must take into consideration not only the hypothesis, but also the 

alternatives against which it is being tested, introducing the distinction between 

errors of the first and second kind and proposing the likelihood-ratio criterion as 

a general method of test construction. 

The Neyman-Pearson theory of statistical inference is mainstream in 

mathematical statistics (see e.g. Lehmann 1986; Mood, Graybill, Boes 1974) 

and also in the social and behavioural sciences (see, e.g., Hays 1994; 

Marascuilo, Serlin 1988; Winer, Brown, Michels 1991). However, in these 

sciences power analyses were neglected, and we must credit Cohen (1962) for 

introducing the notion of statistical power to behavioural scientists. The 

handbook on power analysis, by Cohen (1969), updated in 1988, allowed 

researchers planning an experiment to determine the sample size needed to 

detect a given population effect size, taking into account the two types of errors. 

As stated above, the classical and randomization tests are equivalent in 

terms of power, when the assumptions for using classical tests are met. 

However, in empirical research, the data seldom are well behaved, frequently 

presenting a non-normal shape. 

To study distributional shape, Tukey (1977) introduced the g-and-h 

distributions. The investigation of their properties was extended by Hoaglin 

(1983, 1985), Martinez and Iglewicz (1984), Badrinath and Chatterjee (1988 e 

1991), Mills (1995), Dutta and Babbel (2002), Field and Genton (2006), and 

Headrick, Kowalchuk and Sheng (2008). 

Tukey presented this family of distributions by the following transformation 

of a standard normal random variable Z: 

( ) 2/
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where the parameters g and h represent the degrees of skewness and kurtosis 

respectively.  
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When h=0, the g-and-h distribution reduces to the first term of the right-

hand side of the above expression and is known as the g distribution. When 

g=0, the g-and-h distribution reduces to the second term of the right-hand side 

of the above expression, multiplied by Z, and is known as the h distribution. 

To see graphically how the g-and-h distribution takes different shapes 

depending on values of the parameters g and h, refer to Figure 1 in the Method 

section, where we plot the graphs of the density functions for several 

combinations of g and h. 

The g-and-h family of non-normal distributions are often used in Monte 

Carlo or statistical modelling studies. Since these distributions are merely a 

transformation of the standard normal distribution, they provide useful 

probability functions for the generation of random numbers in the course of a 

Monte Carlo simulation.  

The aim of the present research is to evaluate the impact of distributional 

shape on the power of the randomization test for the difference between the 

means of two independent groups (with 1621 == nn ). To manipulate shape in 

terms of asymmetry and kurtosis, we simulate data from g-and-h distributions. 

As a comparison standard, we also evaluate, for the same distributions, the 

power of the Student-t test. 

2. Method 

We evaluated the power of the randomization test, and also the power of the 

Student-t test, for the difference between the means of two independent groups, 

with 1621 == nn , with data simulated from 12 g-and-h distributions and 

seven effect sizes (-0.8, -0.5, -0.2, 0, 0.2, 0.5 and 0.8). 

We chose these values for the effect size (the difference between the 

population means in population standard deviation units), using Cohen (1988) 

conventional figures for small, medium and large effect sizes in the behavioural 

sciences. We simulated data from 12 g-and-h distributions, with g values of 0, 

0.4 and 0.8, h values of 0, 0.1, 0.2 and 0.3 and with the combinations of those 
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values. In Table 1 we list these g-and-h distributions, presenting their means 

and standard deviations. 

                                    
Table 1. Means and standard deviations for the 12 g-and-h simulated 

distributions 

Distribution  g h µ σ 

1 Gaussian 0 0 0 1 
2 0.4 0 0.21 1.128 
3 

skewed 
0.8 0 0.47 1.630 

4 0 0.1 0 1.182 
5 0 0.2 0 1.467 
6 

kurtotic 
0 0.3 0 1.988 

7 0.4 0.1 0.24 1.381 
8 0.4 0.2 0.29 1.816 
9 0.4 0.3 0.36 2.758 
10 0.8 0.1 0.56 2.207 
11 0.8 0.2 0.69 3.420 
12 

skewed 
and 

kurtotic 

0.8 0.3 0.87 7.165 

 

In Figure 1 we present the graphs of the density functions for these 12 

distributions. 

To simulate data from these distributions, we have written programs in R (R 

Development Core Team 2008), version 2.7.1. For each distribution we 

generated 20 000 samples, and for each one and each effect size we estimated 

the power of the Student-t and randomization tests. For the latter test we used as 

a test statistic the sum of the values of the first group, which is an equivalent 

test statistic to the difference between means. To estimate the significance of the 

randomization test for each sample we used 999 permutations, plus the one 

observed. For values for the number of samples and the number of 

permutations, we followed the guidelines in Westfall and Young (1993). 

We set the value of Type I error probability at 0.05; the power of a test was 

obtained as the proportion of samples in which the significance was equal to or 

smaller than that value. As the power of the randomization test was estimated 

using 1000  of  the  601 080 390  possible  permutations,  we  computed  a  99%  
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Figure 1. Graphs of the density functions for the 12 simulated g-and-h 
distributions 
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confidence interval for each power value. Whenever we compared the power 

values of this test with those of the Student test, we used the information 

provided by these confidence intervals. 

3. Results 

In Table 2 we present the results for the power of the two tests. To begin with 

we will analyse the results, comparing the randomization and Student-t tests. 

Then, for the randomization tests, we will describe the differences in power 

between skewed and/or kurtotic distributions (conditions 2 to 12) and the 

Gaussian (condition 1).  

Randomization test vs. Student-t test 

Comparing these two tests in terms of power, we can say that they are close to 

identical, with a small advantage for the randomization test. This advantage is 

only statistically significant in respect of the last two distributions (g = 0.8, 

h = 0.2 and g = 0.8, h = 0.3), for two-tailed tests and small and medium effect 

sizes: the gains in power range from 0.03 to 0.06. 

As regards Type I errors, the two tests adequately controlled this type of 

error: For an effect size of zero, no value exceeded the nominal level for more 

than 0.004. But for some conditions, with increasing skewness or/and kurtosis, 

the Student-t test was unduly conservative, presenting values of power below 

the nominal level. 

Randomization tests: Gaussian vs. g-and-h distributions 

For the randomization tests we present, in Table 3, descriptive statistics 

(minimum, maximum and mean) for the differences in power between the 

g-and-h distributions and the Gaussian: 

Analysing Table 3, we can see that all comparisons show gains in power for 

lower-, upper- and two-tailed tests. The increase in the gains is connected with 

increases in skewness,  in  kurtosis  and  in  skewness  combined  with  kurtosis.  
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Table 2. Power of the Student-t and randomization tests for two independent 
samples (n1=n2=16) 

  Student-t test Randomization test 
 Effect size   Lower-tailed Upper-tailed Two-tailed Lower-tailed Upper-tailed Two-tailed 

g = 0, h = 0 -0.8 0.714 0.000 0.592 0.713 0.000 0.590 
(Gaussian) -0.5 0.394 0.001 0.277 0.391 0.001 0.275 
 -0.2 0.137 0.015 0.087 0.136 0.015 0.087 
 0 0.049 0.050 0.050 0.049 0.051 0.050 
 0.2 0.013 0.137 0.083 0.013 0.137 0.083 
 0.5 0.001 0.395 0.277 0.002 0.394 0.277 
 0.8 0.000 0.712 0.590 0.000 0.711 0.587 
g = 0.4, h = 0 -0.8 0.725 0.000 0.608 0.724 0.000 0.611 
 -0.5 0.414 0.001 0.296 0.414 0.001 0.300 
 -0.2 0.144 0.012 0.088 0.144 0.012 0.091 
 0 0.050 0.049 0.048 0.050 0.050 0.049 
 0.2 0.013 0.144 0.087 0.013 0.143 0.090 
 0.5 0.001 0.412 0.296 0.001 0.412 0.300 
 0.8 0.000 0.724 0.611 0.000 0.725 0.613 
g = 0.8, h = 0 -0.8 0.770 0.000 0.681 0.773 0.000 0.693 
 -0.5 0.489 0.000 0.374 0.494 0.000 0.393 
 -0.2 0.168 0.008 0.100 0.174 0.009 0.113 
 0 0.047 0.047 0.041 0.051 0.049 0.051 
 0.2 0.008 0.163 0.098 0.009 0.170 0.111 
 0.5 0.000 0.488 0.371 0.000 0.495 0.391 
 0.8 0.000 0.769 0.679 0.000 0.772 0.692 
g = 0, h = 0.1 -0.8 0.725 0.000 0.611 0.724 0.000 0.611 
 -0.5 0.414 0.001 0.296 0.414 0.001 0.300 
 -0.2 0.139 0.013 0.086 0.140 0.013 0.087 
 0 0.052 0.049 0.048 0.053 0.049 0.049 
 0.2 0.013 0.140 0.088 0.012 0.141 0.089 
 0.5 0.001 0.422 0.298 0.001 0.421 0.303 
 0.8 0.000 0.722 0.603 0.000 0.720 0.606 
g = 0, h = 0.2 -0.8 0.751 0.000 0.650 0.751 0.000 0.656 
 -0.5 0.450 0.001 0.331 0.451 0.001 0.341 
 -0.2 0.149 0.011 0.090 0.152 0.011 0.095 
 0 0.052 0.048 0.045 0.054 0.049 0.049 
 0.2 0.010 0.150 0.092 0.010 0.153 0.098 
 0.5 0.001 0.460 0.335 0.001 0.461 0.344 
 0.8 0.000 0.748 0.642 0.000 0.750 0.650 
g = 0, h =0.3 -0.8 0.806 0.000 0.728 0.810 0.000 0.742 
 -0.5 0.529 0.000 0.412 0.537 0.000 0.433 
 -0.2 0.172 0.006 0.103 0.179 0.007 0.116 
 0 0.050 0.046 0.042 0.053 0.049 0.050 
 0.2 0.007 0.174 0.106 0.007 0.179 0.119 
 0.5 0.000 0.539 0.420 0.000 0.546 0.442 
 0.8 0.000 0.804 0.725 0.000 0.807 0.740 
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g = 0.4, h = 0.1 -0.8 0.752 0.000 0.652 0.753 0.000 0.660 
 -0.5 0.451 0.001 0.333 0.454 0.001 0.344 
 -0.2 0.157 0.011 0.092 0.159 0.012 0.099 
 0 0.049 0.047 0.045 0.051 0.048 0.051 
 0.2 0.010 0.151 0.089 0.010 0.153 0.095 
 0.5 0.001 0.456 0.333 0.001 0.458 0.343 
 0.8 0.000 0.754 0.651 0.000 0.754 0.660 
g = 0.4, h = 0.2 -0.8 0.802 0.000 0.720 0.807 0.000 0.734 
 -0.5 0.519 0.000 0.402 0.527 0.000 0.423 
 -0.2 0.176 0.007 0.106 0.182 0.008 0.117 
 0 0.048 0.045 0.041 0.051 0.048 0.050 
 0.2 0.008 0.173 0.100 0.008 0.179 0.112 
 0.5 0.000 0.523 0.404 0.000 0.531 0.423 
 0.8 0.000 0.800 0.723 0.000 0.804 0.737 
g = 0.4, h = 0.3 -0.8 0.878 0.000 0.829 0.885 0.000 0.847 
 -0.5 0.664 0.000 0.563 0.675 0.000 0.592 
 -0.2 0.234 0.003 0.149 0.250 0.004 0.172 
 0 0.046 0.044 0.038 0.051 0.049 0.051 
 0.2 0.003 0.235 0.146 0.004 0.247 0.169 
 0.5 0.000 0.670 0.568 0.000 0.684 0.601 
 0.8 0.000 0.877 0.827 0.000 0.883 0.843 
g = 0.8, h = 0.1 -0.8 0.821 0.000 0.755 0.827 0.000 0.773 
 -0.5 0.576 0.000 0.470 0.588 0.000 0.502 
 -0.2 0.202 0.004 0.124 0.218 0.005 0.147 
 0 0.046 0.044 0.038 0.052 0.051 0.051 
 0.2 0.005 0.200 0.120 0.006 0.212 0.141 
 0.5 0.000 0.583 0.469 0.000 0.594 0.502 
 0.8 0.000 0.817 0.753 0.000 0.822 0.773 
g = 0.8, h = 0.2 -0.8 0.885 0.000 0.844 0.892 0.000 0.865 
 -0.5 0.715 0.000 0.628 0.729 0.000 0.666 
 -0.2 0.287 0.001 0.189 0.314 0.002 0.229 
 0 0.043 0.041 0.035 0.052 0.050 0.050 
 0.2 0.002 0.282 0.186 0.002 0.305 0.224 
 0.5 0.000 0.719 0.634 0.000 0.734 0.672 
 0.8 0.000 0.884 0.842 0.000 0.891 0.863 
g = 0.8, h = 0.3 -0.8 0.952 0.000 0.935 0.959 0.000 0.949 
 -0.5 0.884 0.000 0.847 0.896 0.000 0.873 
 -0.2 0.543 0.000 0.439 0.575 0.000 0.499 
 0 0.042 0.038 0.031 0.052 0.050 0.050 
 0.2 0.000 0.538 0.436 0.000 0.568 0.493 
 0.5 0.000 0.883 0.847 0.000 0.895 0.874 
 0.8 0.000 0.951 0.936 0.000 0.957 0.948 
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Table 3. Descriptive statistics for the difference in power between Gaussian and 
skewed, kurtotic and skewed/kurtotic distributions  

  lower-tailed upper-tailed two-tailed 

Minimum 0.008 0.007 0.004 

Maximum 0.103 0.101 0.118 
Distribution 2 and 3  

(skewed) 
Mean 0.040 0.039 0.050 

Minimum 0.037 0.033 0.026 

Maximum 0.103 0.101 0.118 
Distribution 4 to 6  

(kurtotic) 
Mean 0.067 0.065 0.082 

Minimum 0.023 0.016 0.012 

Maximum 0.505 0.501 0.598 
Distribution 7 to 12  

(skewed and kurtotic) 
Mean 0.180 0.179 0.210 

 

For some of the conditions the gains in power are substantial. In general, those 

gains are greater for medium effect size, as we can see in Table 2. 

4. Conclusions 

In our simulation study, the power of the randomization test was superior in the 

case of the skewed and/or kurtotic distributions than in the case of the Gaussian 

distribution. The results of the Student-t test were similar to those of the 

randomization test. The latter test showed a slight advantage in the case of the 

two more strongly skewed and kurtotic distributions. 

Thus our results suggest that if a researcher, in planning an experiment, 

chooses a sample size needed to detect a given population effect size, assuming 

a Gaussian distribution, he will be on the safe side, in terms of power, if his data 

come from a skewed and/or kurtotic distribution (within the range of values we 

have studied).  

It is important to stress that, in this study, data for the two groups were 

simulated from the same distribution. It will be interesting, in future research, to 

evaluate power with data simulated from different distributions (e.g. data for a 

‘control’ group simulated from a Gaussian distribution and data for an 

‘experimental’ group simulated from skewed or/and kurtotic distributions). 
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It will be also interesting to use other values for the number of elements in 

each sample, to extend the range of values for the effect size and to simulate 

data from other distributions with different degrees of skewness and kurtosis. 
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