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SUMMARY

The importance of randomization tests is very vkelbwn in experimental research,

particularly in biometry. The aim of the presensearch is to evaluate the impact of
distributional shape on the power of the randoriomatest for difference between the

means of two independent groups (witj¥n,=16). To manipulate shape in terms of
asymmetry and kurtosis, we usg@ndh distributions. We evaluated the power of the
randomization test, and also the power of the Stutleest, as a comparison standard,
with data simulated from 1g8-andh distributions for seven values of effect size. For
each condition, we generated 20 000 samples, andedch one the power of

randomization tests was estimated using 1000 petions. We set the value of Type |

error probability at 0.05. The results show gamgower for both tests with increasing

skewness and/or kurtosis, with a slight advantagetfe randomization tests over the
Student-t test.
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1. Introduction

Randomization tests are significance tests basetth@mandom assignment of
experimental units to treatments in order to tegiotheses about treatment
effects. Their validity is based on a random-assgm model, whereas the
validity of classical tests, e.g. Student-t testbased on a random-sampling
model. Given the widespread use of non-random ssnpl experimental
research, namely in the behavioural and sociahee® as well in biometry,
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randomization tests are not only a way of avoidiigjributional assumptions,
but they allow us to drop the most implausible agsiion of typical
experimental research: random sampling from a ipdgiopulation.

The randomization idea stems from Fisher (1935)jtbwas Pitman (1937a,
1937b, 1938) who first presents a type of signifte tests, “which may be
applied to samples from any population”, basedandom assignment alone.
These tests were further developed by Kempthorg2(11955), Hinkelmann
and Kempthorne (1994), Edgington (1964, 1966, 19@®%9b, 1995) and
recently Edgington and Onghena (2007).

With the advent of computers, interest in thesdstdms shifted from
theoretical considerations — the validation of sieel methods — to practical
applicability. Even with moderate sample sizesyeghmay be so many data
permutations that it would not be feasible to gateethem all. Contributions
from Dwass (1957) and Chung and Fraser (1958) geavihe possibility of
using only a subset of all possible data permutafichus rendering this
computer-intensive technique practical. Some rebeapplications can be
found in Manly (1997) and Edgington and Onghen®720

When analysing data from an experiment, where Xipergnental units are
randomly assigned to treatments, if we use a tiistic, like t or F, the
distinction between a randomization and a classastlis the way of calculating
the significance. In the case of a randomizatiost, t¢he significance is
calculated by a procedure in which the data areateplly permuted, and the
significance thus obtained is exact, conditionatf@ndata. With this procedure,
the researcher can calculate the significance pfstatistical test, even of one
whose sampling distribution has not yet been aaly derived. Thus to
analyse the data, the researcher is free to chtbedest that is most likely to be
sensitive to the type of treatment effect thatxgeeted.

When the assumptions for using classical testsnae the classical and
randomization tests are equivalent in terms ofstieadl power.

The concept of statistical power, the probabilifyrejecting a false null
hypothesis, dates back to the work of Neyman aradea. In a series of papers
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(Neyman, Pearson 1928a, 1928b, 1933), these audtaies] that the choice of
test must take into consideration not only the hiyesis, but also the
alternatives against which it is being tested oiditicing the distinction between
errors of the first and second kind and propodimglikelihood-ratio criterion as
a general method of test construction.

The Neyman-Pearson theory of statistical infereigemainstream in
mathematical statistics (see e.g. Lehmann 1986;dVGraybill, Boes 1974)
and also in the social and behavioural sciencee, (geg., Hays 1994;
Marascuilo, Serlin 1988; Winer, Brown, Michels 139However, in these
sciences power analyses were neglected, and weamgit Cohen (1962) for
introducing the notion of statistical power to bebaral scientists. The
handbook on power analysis, by Cohen (1969), updaie1988, allowed
researchers planning an experiment to determinesémeple size needed to
detect a given population effect size, taking etoount the two types of errors.

As stated above, the classical and randomizatiets tare equivalent in
terms of power, when the assumptions for usingsidab tests are met.
However, in empirical research, the data seldonwaaié behaved, frequently
presenting a non-normal shape.

To study distributional shape, Tukey (1977) introeld the g-andh
distributions. The investigation of their propestisras extended by Hoaglin
(1983, 1985), Martinez and Iglewicz (1984), Baditinand Chatterjee (1988 e
1991), Mills (1995), Dutta and Babbel (2002), Fieldd Genton (2006), and
Headrick, Kowalchuk and Sheng (2008).

Tukey presented this family of distributions by th#owing transformation
of a standard normal random variable Z:

Z 2
Yg,h(z):(—eg lj e 2,

g

where the parametegsandh represent the degrees of skewness and kurtosis
respectively.
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When h=0, theg-andh distribution reduces to the first term of the tigh
hand side of the above expression and is knowrheg distribution. When
g=0, theg-andh distribution reduces to the second term of thatritand side
of the above expression, multiplied by Z, and iewn as thén distribution.

To see graphically how thg-andh distribution takes different shapes
depending on values of the parametgendh, refer to Figure 1 in the Method
section, where we plot the graphs of the densitgctions for several
combinations ofj andh.

The g-andh family of non-normal distributions are often usedMonte
Carlo or statistical modelling studieSince these distributions are merely a
transformation of the standard normal distributighgy provide useful
probability functions for the generation of randommbers in the course of a
Monte Carlo simulation.

The aim of the present research is to evaluatentpect of distributional
shape on the power of the randomization test ferdifference between the
means of two independent groups (With=n, =16). To manipulate shape in
terms of asymmetry and kurtosis, we simulate datan §-andh distributions.
As a comparison standard, we also evaluate, fors#me distributions, the
power of the Student-t test.

2. Method

We evaluated the power of the randomization tesd, @so the power of the
Student-t test, for the difference between the medinwo independent groups,
with n, =n, =16, with data simulated from 18-andh distributions and
seven effect sizes (-0.8, -0.5, -0.2, 0, 0.2, 6@ 8).

We chose these values for the effect size (thecrdifice between the
population means in population standard deviatioits)) using Cohen (1988)
conventional figures for small, medium and largedfsizes in the behavioural
sciences. We simulated data fromdgandh distributions, withg values of 0,
0.4 and 0.8h values of 0, 0.1, 0.2 and 0.3 and with the contimna of those
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values. In Table 1 we list thegpandh distributions, presenting their means
and standard deviations.

Table 1.Means and standard deviations for theg¥hdh simulated
distributions

Distribution g h 1 c

1 Gaussian 0 0 0 1
2 Y 0 0.21 1.128
3 0.8 0 0.47 1.630
4 0 01 0 1.182
5 kurtotic 0 0.2 0 1.467
6 0 0.3 0 1.988
7 0.4 01 0.24 1.381
8 0.4 0.2 0.29 1.816
9 Ske";ed 0.4 03 036 2758
10 woie 08 0.1 0.56 2.207
11 0.8 0.2 0.69 3.420
12 0.8 03 0.87 7.165

In Figure 1 we present the graphs of the densitctfans for these 12
distributions.

To simulate data from these distributions, we hastgen programs in R (R
Development Core Team 2008), version 2.7.1. Forh edistribution we
generated 20 000 samples, and for each one andeffach size we estimated
the power of the Student-t and randomization tégisthe latter test we used as
a test statistic the sum of the values of the firetup, which is an equivalent
test statistic to the difference between meansslionate the significance of the
randomization test for each sample we used 999 yiations, plus the one
observed. For values for the number of samples #r& number of
permutations, we followed the guidelines in Westad Young (1993).

We set the value of Type | error probability at®).the power of a test was
obtained as the proportion of samples in whichsibaificance was equal to or
smaller than that value. As the power of the raridation test was estimated
using 1000 of the 601 080 390 possible pertimus, we computed a 99%
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Figure 1. Graphs of the density functions for the 12 simuat@ndh
distributions
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confidence interval for each power value. Whenavercompared the power
values of this test with those of the Student test, used the information
provided by these confidence intervals.

3. Results

In Table 2 we present the results for the powetheftwo tests. To begin with
we will analyse the results, comparing the randation and Student-t tests.
Then, for the randomization tests, we will describe differences in power
between skewed and/or kurtotic distributions (ctods 2 to 12) and the
Gaussian (condition 1).

Randomization test vs. Student-t test

Comparing these two tests in terms of power, wesagnthat they are close to
identical, with a small advantage for the randomnratest. This advantage is
only statistically significant in respect of thestawo distributionsd = 0.8,
h=0.2 andg = 0.8,h = 0.3), for two-tailed tests and small and medgeififect
sizes: the gains in power range from 0.03 to 0.06.

As regards Type | errors, the two tests adequatehtrolled this type of
error: For an effect size of zero, no value excddatie nominal level for more
than 0.004. But for some conditions, with incregstkewness or/and kurtosis,
the Student-t test was unduly conservative, praggmalues of power below
the nominal level.

Randomization tests: Gaussian vsgy-and-h distributions

For the randomization tests we present, in Tabledéscriptive statistics
(minimum, maximum and mean) for the differencespower between the
g-andh distributions and the Gaussian:

Analysing Table 3, we can see that all comparistiosv gains in power for
lower-, upper- and two-tailed tests. The increasthé gains is connected with
increases in skewness, in kurtosis and in skew combined with kurtosis.
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Table 2. Power of the Student-t and randomization test$worindependent

samplesif;=n,=16)

Student-t test

Randomization test

Effect size Lower-tailed Upper-tailed  Two-tailed Lower-tailed  Upper-tailed ~ Two-tailed
g=0,h=0 -0.8 0.714 0.000 0.592 0.713 0.000 9@.5
(Gaussian) -0.5 0.394 0.001 0.277 0.391 0.001 0.275
-0.2 0.137 0.015 0.087 0.136 0.015 0.087
0 0.049 0.050 0.050 0.049 0.051 0.050
0.2 0.013 0.137 0.083 0.013 0.137 0.083
0.5 0.001 0.395 0.277 0.002 0.394 0.277
0.8 0.000 0.712 0.590 0.000 0.711 0.587
g=04,h=0 -0.8 0.725 0.000 0.608 0.724 0.000 .61D
-0.5 0.414 0.001 0.296 0.414 0.001 0.300
-0.2 0.144 0.012 0.088 0.144 0.012 0.091
0 0.050 0.049 0.048 0.050 0.050 0.049
0.2 0.013 0.144 0.087 0.013 0.143 0.090
0.5 0.001 0.412 0.296 0.001 0.412 0.300
0.8 0.000 0.724 0.611 0.000 0.725 0.613
g=0.8,h=0 -0.8 0.770 0.000 0.681 0.773 0.000 .69®
-0.5 0.489 0.000 0.374 0.494 0.000 0.393
-0.2 0.168 0.008 0.100 0.174 0.009 0.113
0 0.047 0.047 0.041 0.051 0.049 0.051
0.2 0.008 0.163 0.098 0.009 0.170 0.111
0.5 0.000 0.488 0.371 0.000 0.495 0.391
0.8 0.000 0.769 0.679 0.000 0.772 0.692
g=0,h=0.1 -0.8 0.725 0.000 0.611 0.724 0.000 .61D
-0.5 0.414 0.001 0.296 0.414 0.001 0.300
-0.2 0.139 0.013 0.086 0.140 0.013 0.087
0 0.052 0.049 0.048 0.053 0.049 0.049
0.2 0.013 0.140 0.088 0.012 0.141 0.089
0.5 0.001 0.422 0.298 0.001 0.421 0.303
0.8 0.000 0.722 0.603 0.000 0.720 0.606
g=0,h=0.2 -0.8 0.751 0.000 0.650 0.751 0.000 .65®
-0.5 0.450 0.001 0.331 0.451 0.001 0.341
-0.2 0.149 0.011 0.090 0.152 0.011 0.095
0 0.052 0.048 0.045 0.054 0.049 0.049
0.2 0.010 0.150 0.092 0.010 0.153 0.098
0.5 0.001 0.460 0.335 0.001 0.461 0.344
0.8 0.000 0.748 0.642 0.000 0.750 0.650
g=0,h=0.3 -0.8 0.806 0.000 0.728 0.810 0.000 74D.
-0.5 0.529 0.000 0.412 0.537 0.000 0.433
-0.2 0.172 0.006 0.103 0.179 0.007 0.116
0 0.050 0.046 0.042 0.053 0.049 0.050
0.2 0.007 0.174 0.106 0.007 0.179 0.119
0.5 0.000 0.539 0.420 0.000 0.546 0.442
0.8 0.000 0.804 0.725 0.000 0.807 0.740
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g=04,h=0.1 -0.8 0.752 0.000 0.652 0.753 0.0000.660
-0.5 0.451 0.001 0.333 0.454 0.001 0.344
-0.2 0.157 0.011 0.092 0.159 0.012 0.099
0 0.049 0.047 0.045 0.051 0.048 0.051
0.2 0.010 0.151 0.089 0.010 0.153 0.095
0.5 0.001 0.456 0.333 0.001 0.458 0.343
0.8 0.000 0.754 0.651 0.000 0.754 0.660
g=04,h=0.2 -0.8 0.802 0.000 0.720 0.807 0.0000.734
-0.5 0.519 0.000 0.402 0.527 0.000 0.423
-0.2 0.176 0.007 0.106 0.182 0.008 0.117
0 0.048 0.045 0.041 0.051 0.048 0.050
0.2 0.008 0.173 0.100 0.008 0.179 0.112
0.5 0.000 0.523 0.404 0.000 0.531 0.423
0.8 0.000 0.800 0.723 0.000 0.804 0.737
g=04,h=03 -0.8 0.878 0.000 0.829 0.885 0.0000.847
-0.5 0.664 0.000 0.563 0.675 0.000 0.592
-0.2 0.234 0.003 0.149 0.250 0.004 0.172
0 0.046 0.044 0.038 0.051 0.049 0.051
0.2 0.003 0.235 0.146 0.004 0.247 0.169
0.5 0.000 0.670 0.568 0.000 0.684 0.601
0.8 0.000 0.877 0.827 0.000 0.883 0.843
g=08,h=0.1 -0.8 0.821 0.000 0.755 0.827 0.0000.773
-0.5 0.576 0.000 0.470 0.588 0.000 0.502
-0.2 0.202 0.004 0.124 0.218 0.005 0.147
0 0.046 0.044 0.038 0.052 0.051 0.051
0.2 0.005 0.200 0.120 0.006 0.212 0.141
0.5 0.000 0.583 0.469 0.000 0.594 0.502
0.8 0.000 0.817 0.753 0.000 0.822 0.773
g=08,h=0.2 -0.8 0.885 0.000 0.844 0.892 0.0000.865
-0.5 0.715 0.000 0.628 0.729 0.000 0.666
-0.2 0.287 0.001 0.189 0.314 0.002 0.229
0 0.043 0.041 0.035 0.052 0.050 0.050
0.2 0.002 0.282 0.186 0.002 0.305 0.224
0.5 0.000 0.719 0.634 0.000 0.734 0.672
0.8 0.000 0.884 0.842 0.000 0.891 0.863
g=08,h=03 -0.8 0.952 0.000 0.935 0.959 0.0000.949
-0.5 0.884 0.000 0.847 0.896 0.000 0.873
-0.2 0.543 0.000 0.439 0.575 0.000 0.499
0 0.042 0.038 0.031 0.052 0.050 0.050
0.2 0.000 0.538 0.436 0.000 0.568 0.493
0.5 0.000 0.883 0.847 0.000 0.895 0.874
0.8 0.000 0.951 0.936 0.000 0.957 0.948
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Table 3.Descriptive statistics for the difference in powetween Gaussian and
skewed, kurtotic and skewed/kurtotic distributions

lower-tailec uppe-tailec two-tailec

o Minimum 0.00¢ 0.007 0.004
Distribution 2 and 3 ) )
Maximurnr 0.10¢ 0.101 0.11¢
(skewed)
Mear 0.04( 0.03¢ 0.05(
o Minimum 0.03i 0.03: 0.02¢
Distribution 4 to 6 ) ;
. Maximurnr 0.10¢ 0.101 0.11¢
(kurtotic) . )
Mear 0.067 0.06¢ 0.08:
o Minimum 0.02: 0.01¢ 0.01:
Distribution 7 to 12 )
Maximurnr 0.50¢ 0.501 0.59¢

(skewed and kurtotic)
Mear 0.18( 0.17¢ 0.21(

For some of the conditions the gains in power abstntial. In general, those
gains are greater for medium effect size, as wesearnn Table 2.

4. Conclusions

In our simulation study, the power of the randoricratest was superior in the
case of the skewed and/or kurtotic distributiorentm the case of the Gaussian
distribution. The results of the Student-t test evaimilar to those of the
randomization test. The latter test showed a skghvantage in the case of the
two more strongly skewed and kurtotic distributions

Thus our results suggest that if a researcherlannig an experiment,
chooses a sample size needed to detect a givemagiopleffect size, assuming
a Gaussian distribution, he will be on the safe sl terms of power, if his data
come from a skewed and/or kurtotic distributiontfuvi the range of values we
have studied).

It is important to stress that, in this study, didathe two groups were
simulated from the same distribution. It will bédgresting, in future research, to
evaluate power with data simulated from differeistributions (e.g. data for a
‘control’ group simulated from a Gaussian distribot and data for an
‘experimental’ group simulated from skewed or/anddtic distributions).
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It will be also interesting to use other values tftg number of elements in
each sample, to extend the range of values foetfeet size and to simulate
data from other distributions with different degged skewness and kurtosis.
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