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Abstract

Combinatorial harmonic analysis techniques are used to develop new analytical methods for the study of
interacting particle systems in continuum based on a Bogoliubov functional approach. Concrete applications
of the methods are presented, namely, conditions for the existence of Bogoliubov functionals, a uniqueness
result for Gibbs measures in the high temperature regime. We also propose a new approach to the study of
non-equilibrium stochastic dynamics in terms of evolution equations for Bogoliubov functionals.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The combinatorial harmonic analysis on configuration spaces introduced and developed in
[15,17,19,22] is a natural tool for the study of equilibrium states of continuous systems in terms
of the corresponding Bogoliubov or generating functionals. Originally, this class of functionals
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was introduced by N.N. Bogoliubov in [4] to define correlation functions for statistical mechanics
systems. In the context of classical statistical mechanics, this class of functionals, as a basic
concept, was analyzed by G.I. Nazin. We refer to [27] for historical remarks and references
therein. Apart from this specific application, and many others, the Bogoliubov functionals are,
by themselves, a subject of interest in infinite-dimensional analysis. This is partially due to the
fact that to any probability measure μ defined on the space Γ of locally finite configurations one
may associate a Bogoliubov functional

Lμ(θ) :=
∫
Γ

∏
x∈γ

(
1 + θ(x)

)
dμ(γ ),

allowing the study of μ through the functional Lμ. Technically, this means that through the
Bogoliubov functionals one may reduce measure theory problems to functional analysis ones,
yielding a new method in measure theory as well as new applications in functional analysis.

From this standpoint, new perspectives were announced in [19] in the setting of combinato-
rial harmonic analysis on configuration spaces. The purpose of this work is to carry out these
technical improvements.

Of course, the domain of a Bogoliubov functional Lμ depends on the underlying probability
measure μ. Conversely, the domain of a Bogoliubov functional Lμ carries special properties
over to the probability measure μ. In this work we mainly analyze the class of entire Bogoliubov
functionals on a L1-space (Section 3), which is a natural environment to widen the scope of this
work towards Gibbs measures (or equilibrium states). This restriction allows, in particular, to
recover the notion of correlation function.

As a side remark, let us mention that in the same setting further progresses, under holomorphy
assumptions, are achieved in [23] on a space of continuous functions.

The close relation between probability measures and Bogoliubov functionals is best illustrated
by a “dictionary” (cf. G.I. Nazin), relating measure concepts and problems to functional analysis
ones. In this “dictionary,” the translation of the Dobrushin–Lanford–Ruelle equation, defining
Gibbs measures, leads to a functional equation, called the Bogoliubov (equilibrium) equation
(Section 4). As a result, through analytical techniques one may derive a uniqueness result for
Gibbs measures corresponding to positive potentials in the high temperature-low activity regime
(Theorem 26). Although this result does not improve the known uniqueness results for Gibbs
measures (see, e.g., [9,31,33]), the proof inspired by the classical work of D. Ruelle presents an
alternative and natural treatment of the uniqueness problem.

This work concludes with the presentation of a new method for the study of the non-
equilibrium stochastic dynamics of continuous systems based on Bogoliubov functionals (Sec-
tion 5). This method reformulates the problem in terms of evolution equations for holomorphic
functions over an infinite-dimensional space. The scheme proposed is described, for concrete-
ness, in the case of the gradient diffusion dynamics. The existence problem of these dynamics
has been well analyzed for the equilibrium case using Dirichlet forms techniques (see, e.g.,
[1,29,39]). For the non-equilibrium case, the existence problem is essentially open and at the
moment all we have is the technically very involved construction of non-equilibrium processes
done by J. Fritz in [12], in the case of smooth potentials with finite range and d � 4, or the ex-
istence of the short time evolution for correlation functions described by a correlation diffusion
hierarchy, see [21] and the references therein.

The dynamical description by Bogoliubov functionals may also be applied to other types
of stochastic dynamics of infinite particle systems as well. For a particular type of dynamics,
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namely, Glauber type dynamics in the continuum, the corresponding evolution equations for
Bogoliubov functionals may be solved using the results of [20]. This and other cases are now
being studied and will be reported in forthcoming publications.

2. Harmonic analysis on configuration spaces

Let X be a geodesically complete connected oriented Riemannian C∞-manifold1 and
Γ := ΓX the configuration space over X:

Γ := {
γ ⊂ X: |γ ∩ K| < ∞ for every compact K ⊂ X

}
.

Here | · | denotes the cardinality of a set. As usual we identify each γ ∈ Γ with the non-negative
Radon measure

∑
x∈γ εx ∈M(X), where εx is the Dirac measure with mass at x,

∑
x∈∅ εx is, by

definition, the zero measure, and M(X) denotes the space of all non-negative Radon measures
on the Borel σ -algebra B(X). This identification allows to endow Γ with the topology induced
by the vague topology on M(X). We denote the Borel σ -algebra on Γ by B(Γ ).

Another description of the measurable space (Γ,B(Γ )) is also possible. For each Y ∈ B(X),
let ΓY be the space of all configurations contained in Y , ΓY := {γ ∈ Γ : |γ ∩(X\Y)| = 0}, and let
Γ

(n)
Y be the subset of all n-point configurations, Γ

(n)
Y := {γ ∈ ΓY : |γ | = n}, n ∈ N, Γ

(0)
Y := {∅}.

For n ∈ N, there is a natural surjective mapping of

Ỹ n := {
(x1, . . . , xn): xi ∈ Y, xi �= xj if i �= j

}
onto Γ

(n)
Y defined by

symn
Y : Ỹ n → Γ

(n)
Y

(x1, . . . , xn) 
→ {x1, . . . , xn}. (1)

This leads to a bijection between the space Γ
(n)
Y and the symmetrization Ỹ n/Sn of Ỹ n under the

permutation group Sn over {1, . . . , n}, and then to a metrizable topology on Γ
(n)
Y . We denote the

corresponding Borel σ -algebra on Γ
(n)
Y by B(Γ

(n)
Y ). For Λ ∈ B(X) with compact closure (shortly

Λ ∈ Bc(X)), one clearly has ΓΛ = ⊔∞
n=0 Γ

(n)
Λ . In this case we endow ΓΛ with the topology of

the disjoint union of topological spaces and with the corresponding Borel σ -algebra B(ΓΛ). It is
easy to check that B(ΓΛ) is equal to

B(ΓΛ) = σ
({

γ ∈ ΓΛ: |γ ∩ Λ′| = n
})

, Λ′ ∈ Bc(X), n ∈ N0.

The measurable space (Γ,B(Γ )) is the projective limit of the measurable spaces (ΓΛ,B(ΓΛ)),
Λ ∈ Bc(X), with respect to the projections

1 The results stated in Sections 2–4 can be generalized to X being a Polish space. However, in this case, one has to
work with bounded sets instead of compact sets as local sets, and all definitions have to be properly adjusted. For a
generalization of the notion of local sets see [32].
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pΛ :Γ → ΓΛ

γ 
→ γΛ := γ ∩ Λ. (2)

A measurable function F is called a cylinder function with domain of cylindricity a Λ ∈ Bc(X)

if there is a measurable function FΛ :ΓΛ → R such that F = FΛ ◦ pΛ.
Apart from the spaces described above we also consider the space of finite configurations

Γ0 :=
∞⊔

n=0

Γ
(n)
X

endowed with the topology of disjoint union of topological spaces and with the corresponding
Borel σ -algebra denoted by B(Γ0).

To define the K-transform (cf. [24]), among the functions defined on Γ0 we distinguish
the space Bexp,ls(Γ0) of all complex-valued exponentially bounded B(Γ0)-measurable functions
G with local support, i.e., G�Γ0\ΓΛ

≡ 0 for some Λ ∈ Bc(X) and there are C1,C2 > 0 such
that |G(η)| � C1e

C2|η| for all η ∈ Γ0. The K-transform of any G ∈ Bexp,ls(Γ0) is the mapping
KG :Γ → C defined at each γ ∈ Γ by

(KG)(γ ) :=
∑
η⊂γ

|η|<∞

G(η). (3)

Note that for every G ∈ Bexp,ls(Γ0) the sum in (3) has only a finite number of summands different
from zero and thus KG is a well-defined cylinder function. Moreover, given a G described as be-
fore, Λ is a domain of cylindricity of KG and for all γ ∈ Γ one has |(KG)(γ )| � C1e

(C2+1)|γΛ|.
Throughout this work the so-called (Lebesgue–Poisson) coherent states eλ(f ) of B(X)-meas-

urable functions f , defined by

eλ(f, η) :=
∏
x∈η

f (x), η ∈ Γ0 \ {∅}, eλ(f,∅) := 1,

will play an essential role (see also Remark 3). This is partially due to the fact that the K-
transform of this class of functions coincides with the integrand functions of the Bogoliubov
functionals (Section 3). More precisely, for every bounded B(X)-measurable function f with
bounded support (shortly f ∈ Bbs(X)) one has eλ(f ) ∈ Bexp,ls(Γ0), and

(
Keλ(f )

)
(γ ) =

∏
x∈γ

(
1 + f (x)

)
, γ ∈ Γ.

Besides the K-transform, we also consider the dual operator K∗. Let M1
fexp(Γ ) denote the

set of all probability measures μ on (Γ,B(Γ )) with finite local exponential moments, i.e.,∫
eα|γΛ| dμ(γ ) < ∞ for all Λ ∈ Bc(X) and all α > 0.
Γ
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By the definition of a dual operator, given a μ ∈ M1
fexp(Γ ), K∗μ =: ρμ is a measure defined on

(Γ0,B(Γ0)) by ∫
Γ0

G(η)dρμ(η) =
∫
Γ

(KG)(γ )dμ(γ ), (4)

for all G ∈ Bexp,ls(Γ0). The measure ρμ is called the correlation measure corresponding to μ.
For more details see, e.g., [15,24]. This definition shows, in particular, that2

Bexp,ls(Γ0) ⊂ L1(Γ0, ρμ).

Moreover, on the dense set Bexp,ls(Γ0) in L1(Γ0, ρμ) the inequality ‖KG‖L1(μ) � ‖G‖L1(ρμ)

holds, allowing an extension of the K-transform to a bounded operator K :L1(Γ0, ρμ) →
L1(Γ,μ) in such a way that equality (4) still holds for any G ∈ L1(Γ0, ρμ). For the extended
operator the explicit form (3) still holds, now μ-a.e. This means, in particular,(

Keλ(f )
)
(γ ) =

∏
x∈γ

(
1 + f (x)

)
, μ-a.a. γ ∈ Γ, (5)

for all B(X)-measurable functions f such that eλ(f ) ∈ L1(Γ0, ρμ), cf., e.g., [15].

Remark 1. All the notions described above as well as their relations are graphically summa-
rized in Fig. 1. Having in mind the concrete application in Section 5, let us mention the natural
meaning of this figure in the context of an infinite particle system. The state of such a system is
described by a probability measure μ on Γ and the functions F on Γ are considered as observ-
ables of the system and they represent physical quantities which can be measured. The expected
values of the measured observables correspond to the expectation values

∫
Γ

F (γ )dμ(γ ). In this
interpretation we call the functions G on Γ0 quasi-observables, because they are not observables
themselves, but can be used to construct observables via the K-transform. In this way one obtains
all observables which are additive in the particles, e.g., number of particles, energy.

In the sequel, we fix on (X,B(X)) a non-atomic Radon measure σ , i.e., σ({x}) = 0 for
all x ∈ X, which we assume to be non-degenerate, i.e., σ(O) > 0 for all non-empty open
sets O ⊂ X. Technically, the more challenging case is σ(X) = ∞.

F

〈F,μ〉 =
∫
Γ

F(γ )dμ(γ )

μ

K∗

G

K

〈G,ρμ〉 =
∫
Γ0

G(η)dρμ(η)

ρμ

Fig. 1.

2 Throughout this work all Lp-spaces, p � 1, consist of complex-valued functions.
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Example 2. The Poisson measure πσ with intensity σ is the probability measure defined on
(Γ,B(Γ )) by∫

Γ

exp

(∑
x∈γ

ϕ(x)

)
dπσ (γ ) = exp

( ∫
X

(
eϕ(x) − 1

)
dσ(x)

)
, ϕ ∈ D,

where D := C∞
0 (X) denotes the Schwartz space of all infinitely differentiable real-valued func-

tions on X with compact support. The correlation measure corresponding to the Poisson measure
πσ is the so-called Lebesgue–Poisson measure λσ (with intensity σ ), cf. [8],

λσ :=
∞∑

n=0

1

n!σ
(n),

where each σ (n), n ∈ N, is the symmetrization of the product measure σ⊗n, i.e., the image mea-
sure on Γ

(n)
X of the measure σ⊗n under the mapping symn

X defined in (1). For n = 0 we set
σ (0)({∅}) := 1.

Remark 3. The following Lebesgue–Poisson measure properties emphasize the role of coherent
states. First, eλ(f ) ∈ Lp(Γ0, λσ ) whenever f ∈ Lp(X,σ) for some p � 1, and, moreover,∫

Γ0

∣∣eλ(f, η)
∣∣p dλσ (η) = exp

( ∫
X

∣∣f (x)
∣∣p dσ(x)

)
.

Second, given a dense subspace L ⊂ L2(X,σ ), the set {eλ(f ): f ∈ L} is total in L2(Γ0, λσ ).
Concerning the second property, let us observe that there is a natural isomorphism between the
space L2(Γ0, λσ ) and the symmetric Fock space over L2(X,σ ). The image of the classical coher-
ent states in this Fock space (usually denoted by e(f )) under this isomorphism gives the elements
eλ(f ) ∈ L2(Γ0, λσ ). This justifies the terminology and notation used. For more details see [18].

3. Bogoliubov functionals

For the case X = R
d , d ∈ N, we refer to [27] and his own references therein.

Definition 4. Let μ be a probability measure on (Γ,B(Γ )). The Bogoliubov functional Lμ cor-
responding to μ is a functional defined at each B(X)-measurable function θ by

Lμ(θ) :=
∫
Γ

∏
x∈γ

(
1 + θ(x)

)
dμ(γ ),

provided the right-hand side exists for |θ |.

We note that if Lμ(|θ |) < ∞, then the product
∏

x∈γ (1 + θ(x)) is μ-a.e. absolutely conver-
gent. For the definition and properties of infinite products see [14].

It is clear that the set of θ for which Lμ(|θ |) is finite depends on the measure μ fixed
on (Γ,B(Γ )). Conversely, the same set reflects special properties over the underlying measure μ.
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For instance, probability measures μ for which the Bogoliubov functional is well defined on mul-
tiples of indicator functions 1Λ, Λ ∈ Bc(X), necessarily have finite local exponential moments,
i.e., μ ∈ M1

fexp(Γ ). The converse is also true. In fact, for all α > 0 and all Λ ∈ Bc(X) we have∫
Γ

eα|γΛ| dμ(γ ) =
∫
Γ

∏
x∈γ

eα1Λ(x) dμ(γ ) = Lμ

((
eα − 1

)
1Λ

)
< ∞.

In the sequel, for each probability measure μ on (Γ,B(Γ )) and each Λ ∈ Bc(X), we denote
by μΛ := μ ◦ (pΛ)−1 the image measure on ΓΛ of the measure μ under the projection pΛ

defined in (2), i.e., μΛ is the projection of μ onto ΓΛ. Given a Λ ∈ Bc(X), the definition of a
Bogoliubov functional Lμ on the space of all functions θ with support contained in Λ reduces to
the Bogoliubov functional LμΛ :

Lμ(θ) =
∫
Γ

∏
x∈γ

(
1 + θ(x)

)
dμ(γ ) =

∫
Γ

∏
x∈γΛ

(
1 + θ(x)

)
dμ(γ ) = LμΛ(θ).

Furthermore, one may straightforwardly express the μ-measure of a large class of sets by the
Bogoliubov functional Lμ. In fact, given z1, . . . , zn ∈ C and a collection of mutually disjoint sets
Λ1, . . . ,Λn ∈ Bc(X), Δ := ⊔n

i=1 Λi , n ∈ N, the above calculation has shown that

Lμ

(
n∑

i=1

zi1Λi
− 1Δ

)
=

∫
Γ

∏
x∈γΔ

(
n∑

i=1

zi1Λi
(x)

)
dμ(γ ).

Since ΓΔ may be written as the disjoint union

ΓΔ =
∞⊔

k1,...,kn=0

{
γ ∈ ΓΔ: |γΛi

| = ki, i = 1, . . . , n
}
,

the latter integral is then equal to

∞∑
k1,...,kn=0

z
k1
1 . . . zkn

n μ
({

γ ∈ Γ : |γΛi
| = ki, i = 1, . . . , n

})
.

Heuristically, this means that

μ
({

γ ∈ Γ : |γΛi
| = ki, i = 1, . . . , n

})
= 1

k1! . . . kn!
∂k1+···+kn

∂z
k1
1 . . . ∂z

kn
n

Lμ

(
n∑

i=1

zi1Λi
− 1⋃n

i=1 Λi

)∣∣∣∣∣
z1=···=zn=0

. (6)

According to the definition of the σ -algebra B(Γ ), the collection of sets appearing in the
left-hand side of the informal equality (6) already characterizes the measure μ.

Of course, in order to apply the above procedure we must assume that the Bogoliubov func-
tional Lμ is well defined and differentiable on the class of linear combinations of indicator
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functions which appears in (6). As the linear space spanned by indicator functions or the spaces of
measurable functions are both difficult to handle, throughout this work we will consider Bogoliu-
bov functionals on a L1(X,σ ) =: L1(σ ) space, for a measure σ defined as before. Furthermore,
we will assume for simplicity that the Bogoliubov functionals are entire. We observe that from
the viewpoint of particle systems these restrictions are natural. Actually, even stronger properties
should be expected.

For a comprehensive presentation of the general theory of holomorphic functionals on Banach
spaces see, e.g., [3,7]. We recall the following characterization of entire functionals. A functional
A :L1(σ ) → C is entire on L1(σ ) whenever A is locally bounded, and for all θ0, θ ∈ L1(σ ) the
mapping C � z 
→ A(θ0 + zθ) ∈ C is entire. Thus, at each θ0 ∈ L1(σ ), every entire functional A

on L1(σ ) has a representation in terms of its Taylor expansion,

A(θ0 + zθ) =
∞∑

n=0

zn

n! d
nA(θ0; θ, . . . , θ), z ∈ C, θ ∈ L1(σ ).

The next theorem states properties specific for holomorphic functionals A on L1-spaces and
their higher order derivatives dnA(θ0; ·).

Theorem 5. Let A be an entire functional on L1(σ ). Then each differential dnA(θ0; ·), n ∈ N,
θ0 ∈ L1(σ ) is defined by a (symmetric) kernel in L∞(Xn,σ⊗n) denoted by

δnA(θ0)

δθ0(x1) . . . δθ0(xn)

and called the variational derivative of nth order of A at the point θ0. In other words,

dnA(θ0; θ1, . . . , θn) := ∂n

∂z1 . . . ∂zn

A

(
θ0 +

n∑
i=1

ziθi

)∣∣∣∣∣
z1=···=zn=0

=:
∫
Xn

δnA(θ0)

δθ0(x1) . . . δθ0(xn)

n∏
i=1

θi(xi) dσ⊗n(x1, . . . , xn)

for all θ1, . . . , θn ∈ L1(σ ). Moreover, for all r > 0∥∥∥∥ δnA(θ0)

δθ0(x1) . . . δθ0(xn)

∥∥∥∥
L∞(Xn,σn)

� n!
(

e

r

)n

sup
‖θ ′‖

L1(σ )
�r

∣∣A(θ0 + θ ′)
∣∣. (7)

Remark 6. According to Theorem 5, the Taylor expansion of an entire functional A at a point
θ0 ∈ L1(σ ) may be written in the form

A(θ0 + θ) =
∞∑

n=0

1

n!
∫
n

δnA(θ0)

δθ0(x1) . . . δθ0(xn)

n∏
i=1

θ(xi) dσ⊗n(x1, . . . , xn),
X
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for all θ ∈ L1(σ ). Using the notation

(
D|η|A

)
(θ0;η) := δnA(θ0)

δθ0(x1) . . . δθ0(xn)
for η = {x1, . . . , xn} ∈ Γ

(n)
X , n ∈ N,

this means

A(θ0 + θ) =
∫
Γ0

eλ(θ, η)
(
D|η|A

)
(θ0;η)dλσ (η),

where λσ is the Lebesgue–Poisson measure introduced in Example 2. Concerning the esti-
mate (7), we note that A being entire does not insure that for every r > 0 the supremum on
the right-hand side is always finite. This will hold if, in addition, the entire functional A is of
bounded type, that is,

∀r > 0, sup
‖θ‖

L1(σ )
�r

∣∣A(θ0 + θ)
∣∣ < ∞, ∀θ0 ∈ L1(σ ).

For simplicity, throughout this work we will assume this assumption.

Some parts of the proof of Theorem 5 are of a technical nature outside of the context of the
paper, but they are standard in the theory of holomorphic functionals on Banach spaces. Because
of this, we just present a sketch of these parts conveniently adapted to our aims. Consequences
specific for L1-spaces are presented in more detail.

Proof. According to the Cauchy formula for holomorphic functionals on Banach spaces, each
differential dnA(θ0; ·) of an entire functional A on L1(σ ) is a bounded symmetric n-linear func-
tional on L1(σ ).

In particular, for n = 1, the first order differential dA(θ0; ·) is a bounded linear functional
on L1(σ ), insuring that it can be represented by a kernel in L∞(σ ), the so-called first varia-
tional derivative δA(θ0)/δθ0(x). Furthermore, the (usual) operator norm of the bounded linear
functional dA(θ0; ·) is equal to ‖δA(θ0)/δθ0(·)‖L∞(X,σ ).

For higher orders, the proof of existence of the corresponding variational derivatives is a
straightforward consequence of the following (non-trivial) isometries between the Banach spaces

Bn

(
L1(X,σ )

) � (
L1(Xn,σ⊗n

))′ � L∞(
Xn,σ⊗n

)
, (8)

Bn(L
1(X,σ )) being the space of all bounded n-linear functionals on L1(X,σ ). For the proof

see, e.g., [6,36,38]. These isometries prove, on the one hand, the existence of the variational
derivatives

δnA(θ0)

δθ0(x1) . . . δθ0(xn)
∈ L∞(

Xn,σ⊗n
)

as kernels for dnA(θ0; ·), and, on the other hand, that the operator norm of dnA(θ0; ·) ∈
Bn(L

1(X,σ )) is given by ∥∥∥∥ δnA(θ0)

δθ (·) . . . δθ (·)
∥∥∥∥ ∞ n ⊗n

.

0 0 L (X ,σ )
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This shows the first part of the theorem. To prove the second one, we observe that by the Cauchy
formula, for any θ ∈ L1(σ ) one has

1

n! dnA(θ0; θ, . . . , θ) = 1

2πi

∫
|z|=r

A(θ0 + zθ)

zn+1
dz

for any r > 0 and any n ∈ N. Therefore

∣∣dnA(θ0; θ, . . . , θ)
∣∣ � n! sup

‖θ ′‖
L1(σ )

�r

∣∣A(θ0 + θ ′)
∣∣(‖θ‖L1(σ )

r

)n

,

and an application of the polarization identity extends this inequality to θ1, . . . , θn ∈ L1(σ ):

∣∣dnA(θ0; θ1, . . . , θn)
∣∣ � n!

(
e

r

)n

sup
‖θ ′‖

L1(σ )
�r

∣∣A(θ0 + θ ′)
∣∣ n∏
i=1

‖θi‖L1(σ ),

see, e.g., [7, Theorem 1.7]. �
Remark 7. Observe that the first isometry in (8) is specific of L1-spaces. The analogous result
does not hold neither for other Lp-spaces, nor Banach spaces of continuous functions, or Sobolev
spaces.

Theorem 5 stated for Bogoliubov functionals yields the next result. In particular, it gives a
rigorous sense to the discussion at the beginning of this section. For the definition of the Poisson
measure see Example 2.

Corollary 8. Let Lμ be a Bogoliubov functional corresponding to some probability measure μ

on (Γ,B(Γ )). If Lμ is entire of bounded type on L1(σ ), then the measure μ is locally ab-
solutely continuous with respect to the Poisson measure πσ , i.e., for all Λ ∈ Bc(X) the measure
μΛ = μ ◦ (pΛ)−1 is absolutely continuous with respect to πΛ

σ = πσ ◦ (pΛ)−1. Moreover, for all
Λ ∈ Bc(X) one has

dμΛ

dπΛ
σ

(γ ) = eσ(Λ)
(
D|γ |Lμ

)
(−1Λ;γ ) for πΛ

σ -a.a. γ ∈ ΓΛ,

and for each r > 0 there is a constant C � 0 such that∣∣∣∣dμΛ

dπΛ
σ

(γ )

∣∣∣∣ � eσ(Λ)C|γ |!
(

e

r

)|γ |
for πΛ

σ -a.a. γ ∈ Γ
(n)
Λ .

Proof. In Theorem 5 replace A by the functional Lμ and θ0 by an indicator function −1Λ for
some Λ ∈ Bc(X). Thus, for all functions θ ∈ L1(σ ) with support contained in Λ we find

Lμ(θ) = Lμ

(−1Λ + (θ + 1Λ)
) =

∫ ∏
x∈η

(
1 + θ(x)

)(
D|η|Lμ

)
(−1Λ;η)dλσ (η).
ΓΛ



Y.G. Kondratiev et al. / Journal of Functional Analysis 238 (2006) 375–404 385
On the other hand, according to the considerations done at the beginning of this section, we also
have

Lμ(θ) =
∫
ΓΛ

∏
x∈γ

(
1 + θ(x)

)
dμΛ(γ ).

Therefore ∫
ΓΛ

∏
x∈γ

(
1 + θ(x)

)
dμΛ(γ ) =

∫
ΓΛ

∏
x∈η

(
1 + θ(x)

)(
D|η|Lμ

)
(−1Λ;η)dλσ (η)

for all functions θ ∈ L1(σ ) with support contained in Λ. The proof follows by a monotone class
argument. �

Since μ ∈ M1
fexp(Γ ) whenever the corresponding Bogoliubov functional is well defined on

the whole space L1(σ ), one can associate the correlation measure ρμ = K∗μ to a such measure.
Equalities (5) and (4) then yield a description of the functional Lμ in terms of the measure ρμ:

Lμ(θ) =
∫
Γ

(
Keλ(θ)

)
(γ ) dμ(γ ) =

∫
Γ0

eλ(θ, η) dρμ(η). (9)

Within this formalism Theorem 5 states as follows.

Proposition 9. Let Lμ be an entire Bogoliubov functional of bounded type on L1(σ ). Then the
measure ρμ is absolutely continuous with respect to the Lebesgue–Poisson measure λσ and the
Radon–Nikodym derivative kμ := dρμ/dλσ is given by

kμ(η) = (
D|η|Lμ

)
(0;η) for λσ -a.a. η ∈ Γ0.

Furthermore, for each r > 0 there is a constant C � 0 such that

∣∣(D|η|Lμ

)
(0;η)

∣∣ � C|η|!
(

e

r

)|η|
for λσ -a.a. η ∈ Γ0.

In the sequel we call kμ the correlation function corresponding to μ.

Proof. A straightforward application of Theorem 5 yields

Lμ(θ) =
∫
Γ0

eλ(θ, η)
(
D|η|Lμ

)
(0;η)dλσ (η), θ ∈ L1(σ ),

and

∣∣(D|η|Lμ

)
(0;η)

∣∣ � C|η|!
(

e
)|η|

, λσ -a.a. η ∈ Γ0,

r
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for some C � 0 depending on r . Expression (9) then allows to identify kμ(η) with
(D|η|Lμ)(0;η). �
Remark 10. Proposition 9 shows that the correlation functions k

(n)
μ := kμ�

Γ
(n)
X

are the Taylor co-

efficients of the Bogoliubov functional Lμ. In other words, Lμ is the generating functional for the

correlation functions k
(n)
μ . This was also the reason why N.N. Bogoliubov introduced these func-

tionals. Furthermore, Bogoliubov functionals are also related to the general infinite-dimensional
analysis on configuration spaces, cf., e.g., [18]. Namely, through the unitary isomorphism Sλ de-
fined in [18] between the space L2(Γ0, λσ ) and the Bargmann–Segal space one has Lμ = Sλ(kμ).

Proposition 11. For any Bogoliubov functional Lμ entire of bounded type on L1(σ ) the following
relations between variational derivatives hold:

(
D|η|Lμ

)
(θ;η) =

∫
Γ0

kμ(η ∪ ξ)eλ(θ, ξ) dλσ (ξ) for λσ -a.a. η ∈ Γ0 (10)

and, more generally,

(
D|η|Lμ

)
(θ1 + θ2;η) =

∫
Γ0

(
D|η∪ξ |Lμ

)
(θ1;η ∪ ξ)eλ(θ2, ξ) dλσ (ξ) for λσ -a.a. η ∈ Γ0,

for θ, θ1, θ2 ∈ L1(σ ).

To prove this result as well as other forthcoming ones the next lemma shows to be useful.

Lemma 12. [11,18,34] The following equality holds:∫
Γ0

∫
Γ0

G(η ∪ ξ)H(ξ, η) dλσ (η) dλσ (ξ) =
∫
Γ0

G(η)
∑
ξ⊂η

H(ξ, η \ ξ) dλσ (η)

for all positive measurable functions G :Γ0 → R and H :Γ0 × Γ0 → R.

Proof of Proposition 11. According to Theorem 5, for all θ1, θ2, θ ∈ L1(σ ) one has

Lμ(θ1 + θ2 + θ) =
∫
Γ0

(
D|η|Lμ

)
(θ1 + θ2;η) eλ(θ, η) dλσ (η),

as well as

Lμ(θ1 + θ2 + θ) =
∫ (

D|η|Lμ

)
(θ1;η) eλ(θ2 + θ, η) dλσ (η).
Γ0
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The bounds obtained in Theorem 5 allows to apply Lemma 12 to the latter equality yielding∫
Γ0

∫
Γ0

(
D|η∪ξ |Lμ

)
(θ1;η ∪ ξ)eλ(θ2, ξ) dλσ (ξ)eλ(θ, η) dλσ (η).

The second stated equality follows by a monotone class argument. By Proposition 9 one sees that
(10) is a special case of the derived result for θ1 = 0 and θ2 = θ . �

A particular application of Proposition 11 yields the next two formulas well known in statis-
tical mechanics, see, e.g., [35], and in the theory of point processes, see, e.g., [5].

Corollary 13. Under the conditions of Proposition 11, for all Λ ∈ Bc(X) we have

kμ(η) =
∫
ΓΛ

dμΛ

dπΛ
σ

(η ∪ γ )dπΛ
σ (γ ) for λσ -a.a. η ∈ ΓΛ, (11)

and

dμΛ

dπΛ
σ

(γ ) = eσ(Λ)

∫
ΓΛ

(−1)|η|kμ(γ ∪ η)dλσ (η) for πΛ
σ -a.a. γ ∈ ΓΛ. (12)

Proof. Fixing a Λ ∈ Bc(X), in Proposition 11 replace both functions θ and θ1 by the function
−1Λ and θ2 by 1Λ. The expressions for the densities given in Corollary 8 and Proposition 9
complete the proof. �
Remark 14. Corollary 13 may be stated under more general conditions. Given a probability
measure μ on (Γ,B(Γ )) such that∫

Γ

|γΛ|n dμ(γ ),

∫
ΓΛ

2|η| dρμ(η) < ∞

for all Λ ∈ Bc(X) and all n ∈ N, one can show that μ is locally absolutely continuous with respect
to the Poisson measure πσ if and only if the correlation measure ρμ is absolutely continuous with
respect to the Lebesgue–Poisson measure λσ . Under these conditions, equalities (11) and (12)
hold (see, e.g., [15]).

Corollary 15. Let Lμ be an entire Bogoliubov functional of bounded type on L1(σ ). For any
B(Γ0)-measurable function G :Γ0 → R such that there is a f ∈ L1(σ ) so that |G| � eλ(f ) one
has ∫

Γ0

G(η)
(
D|η|Lμ

)
(θ;η)dλσ (η) =

∫
Γ0

∑
ξ⊂η

G(ξ)eλ(θ, η \ ξ) dρμ(η),

for all θ ∈ L1(σ ).
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According to Proposition 9, the correlation function kμ of an entire Bogoliubov functional on
L1(σ ) fulfills the so-called generalized Ruelle bound, that is, for any 0 � ε � 1 and any r > 0
there is some constant C � 0 depending on r such that

kμ(η) � C
(|η|!)1−ε

(
e

r

)|η|
, λσ -a.a. η ∈ Γ0. (13)

In our case, ε is zero. We note that if (13) holds for ε = 1 and for at least one r > 0, then
condition (13) is the classical Ruelle bound. For a general 0 < ε � 1 one may state the following
result.

Proposition 16. [17] If there are a function 0 � C ∈ L1
loc(X,σ ) and a 0 < ε � 1 such that

kμ(η) �
(|η|!)1−ε

eλ(C,η), λσ -a.a. η ∈ Γ0,

then there are constants c1 = c1(ε), c2 = c2(ε) > 0 such that∣∣Lμ(ϕ)
∣∣ � c1 exp

(‖ϕ‖1/ε

L1(c2Cσ)

)
, ϕ ∈D.

Furthermore, Lμ is an entire functional of bounded type on L1(Cσ).

The definition of a Bogoliubov functional clearly shows that for any probability measure
μ ∈ M1

fexp(Γ ) Lμ is a normalized functional, that is, Lμ(0) = 1. If, in addition, Lμ is an entire

functional on L1(σ ), then, according to Corollary 8, for all Λ ∈ Bc(X) we have

(
D|γ |Lμ

)
(−1Λ;γ ) = e−σ(Λ) dμΛ

dπΛ
σ

(γ ) � 0, λσ -a.a γ ∈ ΓΛ.

These conditions are also sufficient to insure that a generic entire functional on L1(σ ) is a Bo-
goliubov functional corresponding to some measure in M1

fexp(Γ ).

Proposition 17. Let L be a normalized entire functional of bounded type on L1(σ ) such that for
all Λ ∈ Bc(X) (

D|η|L
)
(−1Λ;η) � 0, λσ -a.a. η ∈ ΓΛ. (14)

Then there is a unique probability measure μ ∈ M1
fexp(Γ ) such that for all θ ∈ L1(σ )

L(θ) =
∫
Γ

∏
x∈γ

(
1 + θ(x)

)
dμ(γ ). (15)

Remark 18. This result is reminiscent of the classical characterization of completely monotonic
functions as Laplace transforms of non-negative measures, see, e.g., [10]. Proposition 17 is sub-
stantially different, because one additionally obtains special support properties of the measure,
i.e., a measure on Γ . The connection with classical results can be understood in the zero-
dimensional analogue. This means that we neglect the spatial structure, i.e., we only look at
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the distribution of the random variable γ 
→ |γΛ| for a fixed Λ. Moreover, given a measure μ

on N0, the analogue of the Bogoliubov functional is the following function defined on R by

L(k) :=
∞∑

n=0

(1 + k)nμ
({n}). (16)

We note that, on the one hand, on the interval (−1,∞) the function L is a modified Laplace
transform, namely, L(k) = ∫

N0
ex ln(1+k) dμ(x). On the other hand, the function L is actually the

classical probability generating functional considered, e.g., in [10], shifted by 1. The analogue
of Proposition 17 is then a classical characterization result: L is completely monotonic at −1 if
and only if (16) holds for a non-negative measure μ on N0. Another classical result states that
continuous completely monotonic functions are automatically holomorphic due to an approxima-
tion by Bernstein polynomials. This idea was generalized to point processes by J. Mecke in [26]
for functionals that are continuous with respect to monotonic bounded convergence. Within the
analytic functions framework (14) is a natural assumption.

Proof of Proposition 17. For any Λ ∈ Bc(X) let us define the function

GΛ(η) := (
D|η|L

)
(−1Λ;η) � 0, η ∈ ΓΛ.

For all Λ ∈ Bc(X) we have∫
ΓΛ

GΛ(η)dλσ (η) =
∫
Γ0

eλ(1Λ,η)
(
D|η|L

)
(−1Λ;η)dλσ (η)

= L(1Λ − 1Λ) = L(0) = 1,

allowing to define a family of probability measures μΛ on (ΓΛ,B(ΓΛ)) by

μΛ(A) :=
∫
ΓΛ

1A(η)GΛ(η)dλσ (η), A ∈ B(ΓΛ).

Similarly, one verifies that the family (μΛ)Λ∈Bc(X) is consistent. Therefore, by the version of
the Kolmogorov theorem for the projective limit space (Γ,B(Γ )) [30, Chapter V, Theorem 5.1],
there is a unique probability measure μ on Γ such that the measures μΛ are the projections
of μ. From the definition of GΛ follows the relation (15) between L and μ for every θ supported
in Λ. The L1-continuity of L and monotone convergence arguments extend this relation to all
non-negative functions θ ∈ L1(σ ). The general relation follows from dominated convergence
results. �
4. Bogoliubov equations

Particularly interesting is the characterization of Gibbs measures through the Bogoliubov
functionals.
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Given a pair potential φ :X × X → R ∪ {+∞}, that is, a symmetric measurable function, let
E : Γ0 → R ∪ {+∞} be the energy functional and W :Γ0 × Γ → R ∪ {+∞} be the interaction
energy defined for all η ∈ Γ0 and all γ ∈ Γ by

E(η) :=
∑

{x,y}⊂η

φ(x, y), E(∅) := E
({x}) := 0

and

W(η,γ ) :=
{∑

x∈η, y∈γ φ(x, y), if
∑

x∈η, y∈γ |φ(x, y)| < ∞,

+∞, otherwise,

respectively. We set W(∅, γ ) := W(η,∅) := 0. A grand canonical Gibbs measure (Gibbs mea-
sure, for short) corresponding to a pair potential φ, the intensity measure σ , and an inverse
temperature β > 0, is usually defined through the Dobrushin–Lanford–Ruelle equation. For con-
venience, we present here an equivalent definition through the Georgii–Nguyen–Zessin equation
((GNZ)-equation) ([28, Theorem 2], see also [16, Theorem 3.12], [22, Appendix A.1]). More
precisely, a probability measure μ on (Γ,B(Γ )) is called a Gibbs measure if it fulfills the inte-
gral equation∫

Γ

∑
x∈γ

H
(
x, γ \ {x})dμ(γ ) =

∫
Γ

∫
X

H(x, γ )e−βW({x},γ ) dσ (x) dμ(γ ) (17)

for all positive measurable functions H : X × Γ → R. In particular, for φ ≡ 0, (17) re-
duces to the Mecke identity, which yields an equivalent definition of the Poisson measure πσ

[25, Theorem 3.1].
Correlation measures corresponding to Gibbs measures are always absolutely continuous with

respect to the Lebesgue–Poisson measure λσ . In view of this fact and Remark 14, the framework
used throughout this section is restricted to measures μ ∈ M1

fexp(Γ ) that are locally absolutely
continuous with respect to the Poisson measure πσ . Furthermore, we shall assume that the corre-
sponding correlation functions kμ fulfill the so-called Ruelle type bound inequality, that is, there
are a > 0 and 0 < ε � 1 such that

kμ(η) �
(|η|!)1−ε

eλ(a, η) = (|η|!)1−ε
a|η|, λσ -a.a. η ∈ Γ0.

According to Proposition 16, this assumption implies

Assumption 1. There are c1, c2 > 0 such∣∣Lμ(θ)
∣∣ � c1 exp

(
c2‖θ‖1/ε

L1(σ )

)
for all θ ∈ L1(σ ).

As a consequence of Proposition 16, the Bogoliubov functional Lμ is entire of bounded type
on L1(σ ).

To proceed towards the equivalent description of Gibbs measures through Bogoliubov func-
tionals, we consider potentials φ fulfilling the following semi-boundedness and integrability
conditions:
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Assumption 2. ∃B � 0: φ(x, y) � −2B for all x, y ∈ X.

Assumption 3. C(β) := ess supx∈X

∫
X

|e−βφ(x,y) − 1|dσ(y) < ∞.

Let us note that Assumptions 1–3 are essentially weaker than the usual ones for existence
results for Gibbs measures, cf., e.g., [35].

Proposition 19. Given a μ ∈M1
fexp(Γ ) and a pair potential φ, assume that Assumptions 1–3 are

fulfilled. Then μ is a Gibbs measure corresponding to the potential φ, the intensity measure σ ,
and the inverse temperature β if and only if the Bogoliubov functional Lμ corresponding to μ

solves the so-called Bogoliubov (equilibrium) equation,

δL(θ)

δθ(x)
= L

(
(1 + θ)

(
e−βφ(x,·) − 1

) + θ
)
, σ -a.e.,

for all θ ∈ L1(σ ).

Proof. The holomorphicity of Lμ on L1(σ ) implies

dLμ(θ;f ) =
∫
Γ

d

dz

∏
x∈γ

(
1 + θ(x) + zf (x)

)∣∣∣∣
z=0

dμ(γ )

=
∫
Γ

∑
x∈γ

f (x)
∏

y∈γ \{x}

(
1 + θ(y)

)
dμ(γ ), θ, f ∈ L1(σ ). (18)

Thus, for a Gibbs measure μ, the (GNZ)-equation yields for the right-hand side of (18)∫
X

f (x)

∫
Γ

∏
y∈γ

(
1 + θ(y)

)
e−βW({x},γ ) dμ(γ )dσ (x). (19)

We claim that

e−βW({x},γ ) =
∏
y∈γ

(
1 + (

e−βφ(x,y) − 1
))

, (20)

which proof we postpone to the end. Hence (19) is given by∫
X

f (x)

∫
Γ

∏
y∈γ

(
1 + θ(y)

) ∏
y∈γ

(
1 + (

e−βφ(x,y) − 1
))

dμ(γ )dσ(x)

=
∫
X

f (x)

∫
Γ

∏
y∈γ

((
1 + θ(y)

)(
e−βφ(x,y) − 1

) + 1 + θ(y)
)
dμ(γ )dσ(x).

In this way we show that for all f ∈ L1(σ )

dLμ(θ;f ) =
∫

f (x)Lμ

(
(1 + θ)

(
e−βφ(x,·) − 1

) + θ
)
dσ(x),
X
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provided (1 + θ)(e−βφ(x,·) − 1) + θ ∈ L1(X,σ ). Assumption 1 then implies that Lμ((1 + θ) ×
(e−βφ(x,·) − 1) + θ) ∈ L∞(X,σ ) which completes the first part of the proof. Conversely, the
same arguments as before yield,∫

Γ

∑
x∈γ

f (x)
∏

y∈γ \{x}

(
1 + θ(y)

)
dμ(γ )

= dLμ(θ;f ) =
∫
X

f (x)Lμ

(
(1 + θ)

(
e−βφ(x,·) − 1

) + θ
)
dσ(x)

=
∫
X

f (x)

∫
Γ

∏
y∈γ

(
1 + θ(y)

)
e−βW({x},γ ) dμ(γ )dσ (x),

showing that the measure μ fulfills the (GNZ)-equation for the class of functions H of the form

H(x,γ ) = f (x)
∏

y∈γ \{x}

(
1 + θ(y)

)
, θ, f ∈ L1(σ ).

The result follows by a monotone class argument.
To conclude this proof amounts to check the technical problems left open. Due to Assump-

tions 2 and 3 one has∥∥θe−βφ(x,·) + e−βφ(x,·) − 1
∥∥

L1(σ )
� e2βB‖θ‖L1(σ ) + C(β),

showing that (1 + θ)(e−βφ(x,·) − 1) + θ ∈ L1(X,σ ).
The infinite product

∏
y∈γ (1 + |e−βφ(x,y) − 1|) converges for σ ⊗ μ-a.a. (x, γ ), because

Assumption 3 implies that σ -a.e. ‖e−βφ(x,·) − 1‖L1(σ ) < ∞ and∫
Γ

∏
y∈γ

(
1 + ∣∣e−βφ(x,y) − 1

∣∣)dμ(γ ) < ∞.

The absolute convergence of the infinite product in (20) implies the convergence of∑
y∈γ |e−βφ(x,y) − 1|. Hence, either the series

∑
y∈γ |φ(x, y)| converges or there is a y ∈ γ

such that φ(x, y) = +∞. In the latter case the infinite product in (20) as well as e−βW({x},γ ) are
both zero. For the first case we obtain∏

y∈γ

(
1 + (

e−βφ(x,y) − 1
)) = exp

(
−β

∑
y∈γ

φ(x, y)

)
= e−βW({x},γ ). �

For higher order derivatives the corresponding Bogoliubov equations are defined as follows.

Corollary 20. Given a μ ∈ M1
fexp(Γ ) and a pair potential φ, assume that Assumptions 1–3 are

fulfilled. If μ is a Gibbs measure corresponding to the potential φ, the intensity measure σ , and
the inverse temperature β , then for all θ ∈ L1(σ ) the following relation holds:(

DnLμ

)
(θ;η) = e−βE(η)Lμ

(
(1 + θ)

(
e−βW(η,{·}) − 1

) + θ
)
, σ (n)-a.a. η ∈ Γ

(n)
X .
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Proof. It follows from successive applications of Proposition 19 and the chain rule to the func-
tion L1(σ ) � θ 
→ (1 + θ)(e−βφ(x,·) − 1) + θ ∈ L1(σ ). �
Proposition 21. For any pair potential φ and any measure μ ∈ M1

fexp(Γ ) under Assump-
tions 1–3, the following equations are equivalent:

(i) For all θ ∈ L1(σ ),

δLμ(θ)

δθ(x)
= Lμ

(
(1 + θ)

(
e−βφ(x,·) − 1

) + θ
)

for σ -a.a. x ∈ X.

(ii) For every θ, f ∈ L1(σ ),

Lμ(θ + f ) − Lμ(θ) =
∫
X

f (x)

1∫
0

Lμ

(
(1 + θ + tf )

(
e−βφ(x,·) − 1

) + θ + tf
)
dt dσ (x).

Furthermore, the previous equations imply that

(iii) For all θ, f ∈ L1(σ ),

Lμ(θ + f ) =
∫
Γ0

eλ(f, η)e−βE(η)Lμ

(
(1 + θ)

(
e−βW(η,{·}) − 1

) + θ
)
dλσ (η).

Remark 22. Assumptions 1–3 are not sufficient to insure the existence of the integral on the
right-hand side of the equation stated in (iii).

Proof. (i) ⇒ (ii). Since Lμ is entire on L1(σ ), one has

Lμ(θ + f ) − Lμ(θ) =
1∫

0

d

dt
Lμ(θ + tf ) dt

and, according to (i),

d

dt
Lμ(θ + tf ) = dLμ(θ + tf, f )

=
∫
X

f (x)Lμ

(
(1 + θ + tf )

(
e−βφ(x,·) − 1

) + θ + tf
)
dσ(x).

(ii) ⇒ (i). Assuming (ii), for any θ, f ∈ L1(σ ) one finds

d

dz
Lμ(θ + zf )

∣∣∣∣
z=0

= lim
z→0

Lμ(θ + zf ) − Lμ(θ)

z

= lim
z→0

∫
f (x)

1∫
Lμ

(
(1 + θ + tzf )

(
e−βφ(x,·) − 1

) + θ + tzf
)
dt dσ (x).
X 0



394 Y.G. Kondratiev et al. / Journal of Functional Analysis 238 (2006) 375–404
Assumptions 1–3 allow to apply the Lebesgue dominated convergence theorem and thus, inter-
changing the limit with the integrals and using the continuity of Lμ on L1(σ ), to obtain∫

X

f (x)Lμ

(
(1 + θ)

(
e−βφ(x,·) − 1

) + θ
)
dσ(x).

(i) ⇒ (iii). The holomorphicity of Lμ straightforwardly leads (Remark 6) to

Lμ(θ + f ) =
∫
Γ0

eλ(f, η)
(
D|η|Lμ

)
(θ;η)dλσ (η)

=
∫
Γ0

eλ(f, η)e−βE(η)Lμ

(
(1 + θ)

(
e−βW(η,{·}) − 1

) + θ
)
dλσ (η),

where the second equality is a consequence of Corollary 20. �
Propositions 19 and 21 lead to a uniqueness result for Gibbs measures corresponding to pos-

itive potentials. As a first step towards this purpose, we must introduce additional spaces of
functionals. More precisely, for each α > 0, let Entα(L1(σ )) be the space of all entire function-
als L on L1(σ ) such that

‖L‖α := sup
θ∈L1(σ )

(∣∣L(θ)
∣∣e−α‖θ‖

L1(σ )
)
< ∞.

It is clear that ‖ · ‖α defines a norm on Entα(L1(σ )).

Proposition 23. With respect to the norm ‖ · ‖α , Entα(L1(σ )) has the structure of a Banach
space.

Proof. Fixing an α > 0, let (Ln)n∈N be a Cauchy sequence in the space Entα(L1(σ )), i.e.,
(Lne

−α‖·‖
L1(σ ) )n∈N is a Cauchy sequence in the Banach space consisting of all complex-valued

bounded functions defined on L1(σ ) endowed with the supremum norm. By completeness, there
is a complex-valued bounded function L̄ such that

lim
n→∞ sup

θ∈L1(σ )

(∣∣Ln(θ)e
−α‖θ‖

L1(σ ) − L̄(θ)
∣∣) = 0. (21)

It remains to show that the functional L(θ) := L̄(θ)e
α‖θ‖

L1(σ ) , θ ∈ L1(σ ), is entire on L1(σ ). This
follows from the Vitali theorem (see, e.g., [13]), since by (21) the sequence (Ln)n∈N converges
pointwisely to L and, by the inequality

∣∣Ln(θ)
∣∣ � sup

θ∈L1(σ )

(∣∣Ln(θ)
∣∣e−α‖θ‖

L1(σ )
)
e
α‖θ‖

L1(σ ) = ‖Ln‖αe
α‖θ‖

L1(σ ) , n ∈ N,

the sequence (Ln)n∈N is locally uniformly bounded in L1(σ ). �
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Note that L ∈ Entα(L1(σ )) implies that L fulfills Assumption 1 for ε = 1. In this way, for
pair potentials φ fulfilling Assumptions 2 and 3, Proposition 21 has shown that any functional L

in Entα(L1(σ )) solving the initial value problem

{
δL(θ)
δθ(x)

= L((1 + θ)(e−βφ(x,·) − 1) + θ), θ ∈ L1(σ ),

L(0) = 1

is a solution of the equation

L(θ) − 1 =
∫
X

θ(x)

1∫
0

L
(
(1 + tθ)

(
e−βφ(x,·) − 1

) + tθ
)
dt dσ (x), θ ∈ L1(σ ).

In the sequel we denote by J the linear mapping defined on each space Entα(L1(σ )), α > 0, by

(JL)(θ) :=
∫
X

θ(x)

1∫
0

L
(
(1 + tθ)

(
e−βφ(x,·) − 1

) + tθ
)
dt dσ (x),

for L ∈ Entα(L1(σ )), θ ∈ L1(σ ).

Proposition 24. Let φ be a positive pair potential fulfilling Assumption 3. Then, for any α > 0,
the mapping J defines a bounded linear operator on Entα(L1(σ )). Moreover, for
all L ∈ Entα(L1(σ )),

‖JL‖α � eαC(β)

α
‖L‖α.

Proof. Let α > 0 be given. For all θ ∈ L1(σ ) one has

∣∣(JL)(θ)
∣∣ � ‖L‖α

∫
X

∣∣θ(x)
∣∣ 1∫

0

e
α‖(1+tθ)(e−βφ(x,·)−1)+tθ‖

L1(σ ) dt dσ (x)

and, according to the stated assumptions on φ,

∥∥(1 + tθ)
(
e−βφ(x,·) − 1

) + tθ
∥∥

L1(σ )

� t

∫
X

∣∣θ(y)
∣∣e−βφ(x,y) dσ (y) +

∫
X

∣∣e−βφ(x,y) − 1
∣∣dσ(y)

� t‖θ‖L1(σ ) + C(β).
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Therefore ∣∣(JL)(θ)
∣∣ � ‖L‖α‖θ‖L1(σ )e

αC(β)

1∫
0

e
αt‖θ‖

L1(σ ) dt

= ‖L‖α

eαC(β)

α

(
e
α‖θ‖

L1(σ ) − 1
)
< ‖L‖α

eαC(β)

α
e
α‖θ‖

L1(σ ) ,

showing the required estimate of the norms. �
Corollary 25. Let β > 0 be given. Then, under the assumptions of Proposition 24, on each space
Entα(L1(σ )) with

eαC(β)

α
< 1

exists a unique solution of the equation

L − JL = 1. (22)

In particular, for all β > 0 such that C(β) < e−1, there is a unique solution of Eq. (22) on each
space Entα(L1(σ )) for each α � e.

Proof. According to Proposition 24, one has

‖JL‖α � eαC(β)

α
‖L‖α < ‖L‖α, L ∈ Entα

(
L1(σ )

)
.

That is, the operator J is a contraction on Entα(L1(σ )). Thus, by the contraction mapping princi-
ple, there is a unique solution of Eq. (22), namely, (1−J )−11, with (1−J )−1 defined by the von
Neumann series

∑∞
n=0 Jn. The last assertion follows by minimizing the expression α−1eαC(β)

in the parameter α. �
As a consequence of Propositions 19 and 21, we have proved the following uniqueness result.

Theorem 26. Let φ be a positive pair potential fulfilling the integrability condition

C(β) = ess sup
x∈X

∫
X

∣∣e−βφ(x,y) − 1
∣∣dσ(y) < ∞.

For each β > 0 such that C(β) < e−1 there is at most one Gibbs measure with correlation
function fulfilling the Ruelle bound with constant e and corresponding to the potential φ, the
intensity measure σ , and the inverse temperature β .

5. Stochastic dynamic equations

To deal with the differential structures used below to study a gradient diffusion dynamics of
a continuous system, this section begins by recalling a few concepts of the intrinsic geometry on
configuration spaces [2,15,22].
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5.1. Differential geometry on configuration spaces

Apart from the topological structure, the bijection defined in Section 2 between the spaces
Γ

(n)
X and X̃n/Sn also induces a differentiable structure on Γ

(n)
X (see (1)). More precisely, given n

charts (h1,U1), . . . , (hn,Un) of X, where U1, . . . ,Un are mutually disjoint open sets in X, one
constructs a chart h1 ×̂ · · · ×̂ hn of Γ

(n)
X defined on the open set U1 ×̂ · · · ×̂ Un in Γ

(n)
X ,

U1×̂ · · · ×̂Un := {
η = {x1, . . . , xn} ∈ Γ

(n)
X : ∃ι ∈ Sn s.t. xι(k) ∈ Uk, k = 1, . . . , n

}
,

by

(h1×̂ · · · ×̂hn)
({x1, . . . , xn}

) := (
h1(xι(1)), . . . , hn(xι(n))

) ∈ h1(U1) × · · · × hn(Un).

Each set Γ
(n)
X endowed with this geometry has the structure of a n · dim(X)-dimensional C∞-

manifold. In this way we have also defined a differentiable structure on Γ0. For any vector field v

on X we have (∇Γ0
v G

)
(η) =

∑
x∈η

〈(∇Γ0G
)
(η, x), v(x)

〉
TxX

,

yielding, in particular,(∇Γ0eλ(θ)
)
(η, x) = ∇Xθ(x)eλ

(
θ, η \ {x}), η ∈ Γ0, x ∈ η, (23)

∇ := ∇X being the gradient on X. For the Laplace–Beltrami operator �Γ0 on Γ0, which is

defined by the direct sum of the Laplace–Beltrami operators �Γ
(n)
X on Γ

(n)
X , we find(

�Γ0eλ(θ)
)
(η) =

∑
x∈η

�Xθ(x)eλ

(
θ, η \ {x}), (24)

where � := �X denotes the Laplace–Beltrami operator on X.
In the sequel we use the classical notation Ck(Γ0), k ∈ N ∪ {∞}, for the space of all real-

valued Ck-functions on Γ0, and Ck
0 (Γ0) for the space of all functions G in Ck(Γ0) with bounded

support such that for some ε > 0 one has G(η) = 0 for all η containing a pair x, y, x �= y, such
that |x − y| � ε.

Through the K-transform one may introduce a differential structure on Γ [15], which co-
incides with the one introduced in [2] by “lifting” the geometrical structure on the underlying
manifold X. For each G ∈ C1

0(Γ0),(∇Γ (KG)
)
(γ, x) :=

∑
η⊂γ : |η|<∞,x∈η

(∇Γ0G
)
(η, x), γ ∈ Γ, x ∈ γ,

and �Γ := K�Γ0K−1 on FP(C2
0 ,Γ ), the set of all twice differentiable cylinder polynomials F

with the property that there is a ε > 0 such that F(γ ) = 0 on all γ which contains a pair of points
in the domain of cylindricity with distance smaller than ε. Equivalently, all such functions F are
of the form F = KG, G ∈ C2(Γ0).
0
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5.2. Non-equilibrium stochastic dynamics equations

For particles in suspension in a liquid, each particle interacts with the molecules of the fluid
and the remaining particles in the suspension. At the microscopic level, the time evolution of the
whole system is described by Hamiltonian dynamics. In the mesoscopic approximation, the sys-
tem is described as the result of random perturbations of the particles with dynamics heuristically
given by a system of stochastic differential equations

{
dxk(t) = −β

2

∑
1�i �=k ∇V (xk(t) − xi(t)) dt + dWk(t), t � 0,

xk(0) = xk, k ∈ N,
(25)

for a given starting configuration γ = {xk: k ∈ N}. Here Wk , k ∈ N, is a family of independent
standard Brownian motions describing the random perturbations and V : Rd \ {0} → R is the
interaction potential between the particles.

The purpose of this subsection is to investigate the problem heuristically formulated in (25).
Let us first fix the framework. On the space X = R

d , d ∈ N, let us consider the intensity mea-
sure dσ(x) = z dm(x), m being the Lebesgue measure on R

d and z > 0 (activity), and an even
C2-function V : Rd \ {0} → R (potential) such that all the first and second order derivatives of
e−V are in L1(X,m). Accordingly, we may define a translation-invariant pair potential φ on R

d

by φ(x, y) := V (y − x). Concerning V , we may additionally assume the standard Ruelle con-
ditions of superstability, integrability (i.e., Assumption 3), and lower regularity [35], which are
sufficient to insure the existence of the corresponding Gibbs measures, cf., e.g., [35, Section 5].
In particular, this includes the class of potentials V which are bounded from below and integrable
at infinity, and having a small enough negative part.

Let us note that due to the symmetry in the labels, any solution (xk)k in (Rd)N of (25) can
be interpreted (modulo collapse) as a stochastic process with paths in the configuration space Γ ,
that is, γ (t) := {xk(t): k ∈ N}. Informally, the generator of this dynamics is given by

(HF)(γ ) := −1

2

(
�Γ F

)
(γ ) + β

2

∑
x∈γ

∑
y∈γ \{x}

〈∇xV (x − y),∇Γ F (γ, x)
〉
,

where 〈·,·〉 denotes the inner product on Rd and β the inverse temperature. Note that in contrast
to (25), the generator H is well defined, for example, on FP(C2

0 ,Γ ).
In the equilibrium dynamics case, the authors in [1] have constructed a solution for a wide

class of potentials V . More precisely, for a Gibbs measure μinv corresponding to V , the same as
used in definition (25), it has been shown that H is a positive symmetric operator on the space
L2(Γ,μinv) associated to the Dirichlet form

(HF,F )L2(μinv)
= 1

2

∫
Γ

∑
x∈γ

∣∣∇Γ F (γ, x)
∣∣2

dμinv(γ ).

This allows the use of standard Dirichlet forms techniques to construct a diffusion process
corresponding to H having μinv as an invariant (and, moreover, reversible) measure and start-
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ing on μinv-a.a. initial points. In particular, the corresponding semigroup yields a solution
Ft := e−HtF0, t � 0, in L2(Γ,μinv) of the Cauchy problem{

d
dt

Ft = −HFt, t � 0,

F0.
(26)

For further references see also [1].
An essentially more difficult and interesting question is the non-equilibrium dynamics case.

This means, the construction of the dynamics without reference to any invariant measure. In this
case, the above scheme does not apply, and the only general result was obtained in [12] for a
restrictive class of potentials and d � 4.

In the sequel we describe a new scheme for the construction of the dynamics based on the
diagram in Remark 1 (Section 2). For this purpose we shall fix a probability measure μ on Γ as
initial distribution. Now, in contrast to the previous situation, we neither assume that the measure
μ is an invariant measure nor that it has a density with respect to an invariant one. The idea is
then to transform the Cauchy problem (26) using the mappings presented in the aforementioned
diagram. More precisely, we rigorously transform the corresponding operator expression by the
linear mappings. This can be done under very mild assumptions. At the end, this leads to the
Cauchy problem (30) and (32) for Bogoliubov functionals corresponding to the states developed
in time.

The starting point for the approach is the description of the operator H in terms of quasi-
observables. In fact, as H is well defined, for instance, on FP(C2

0 ,Γ ), its image under the

K-transform yields on the space of quasi-observables the operator Ĥ := K−1HK acting on
functions G ∈ C2

0(Γ0) by

(ĤG)(η) = −1

2

(
�Γ0G

)
(η) + β

2

∑
x∈η

∑
y∈η\{x}

{〈∇xV (x − y),
(∇Γ0G

)
(η, x)

〉
+ 〈∇xV (x − y),

(∇Γ0G
)(

η \ {y}, x)〉}
. (27)

One may thus consider the Cauchy problem{
∂
∂t

Gt (η) = −(ĤGt )(η), t � 0, η ∈ Γ0,

G0 ∈ C2
0(Γ0).

(28)

Concerning the underlying Kolmogorov equation, note that due to (27) the time derivative of
each Gt�Γ

(n)

Rd

depends only on Gt�Γ
(n)

Rd

itself and Gt�Γ
(n−1)

Rd

. This means that, in contrast to (26),

one may recursively solve (28). However, the difficulty is to show that the solution of (28) is
sufficiently regular to allow for a reconstruction of the dynamics on the level of functions on Γ

through the K-transform.
According to the aforementioned diagram (Remark 1), we may also describe the dynamics in

terms of correlation functions through the dual operator Ĥ ∗ of Ĥ in the sense∫
(ĤG)(η)k(η) dλm(η) =

∫
G(η)(Ĥ ∗k)(η) dλm(η).
Γ0 Γ0
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As an aside, let us mention that in the Hamiltonian dynamics case this approach corresponds to
the well-known BBGKY-hierarchy, see, e.g., [4]. In our case, this leads informally to{

∂
∂t

k
(n)
t = −(Ĥ ∗kt )

(n),

k
(n)
0 , n ∈ N0,

where k
(n)
0 , n ∈ N0, are the correlation functions corresponding to the initial distribution μ. The

operator Ĥ ∗ can be rigorously determined on all correlation functions k fulfilling∣∣Δk(η)
∣∣ + ∣∣∇k(η)

∣∣ + k(η) � C
|η|
1 e−C2E(η), C1,C2 � 0, λm-a.a. η ∈ Γ0. (29)

This condition was exploited in [20] for an existence result. Hence, writing Ĥ ∗ explicitly, one
finds

−(Ĥ ∗k)(n)(x1, . . . , xn)

= 1

2

n∑
l=1

�xl
k(n)(x1, . . . , xn) + β

2

n∑
l,j=1
k �=j

�V (xl − xj )k
(n)(x1, . . . , xn)

+ β

2

n∑
l,j=1
l �=j

〈∇xl
V (xl − xj ),∇xl

k(n)(x1, . . . , xn)
〉

+ β

2

n∑
l=1

∫
Rd

〈∇xl
V (xl − y),∇xl

k(n+1)(x1, . . . , xn, y)
〉
dy

+ β

2

n∑
l=1

∫
Rd

�V (xl − y)k(n+1)(x1, . . . , xn, y) dy.

In theoretical physics the latter is related to the well-known Bogoliubov–Streltsova diffusion
hierarchy (see [37]).

The previous construction gives us a way to express the dynamics in terms of Bogoliubov
functionals

Lt(θ) :=
∫
Γ0

eλ(θ, η)kt (η) dλm(η), t � 0.

The idea is summarized in the following informal calculations:

∂

∂t
Lt (θ) =

∫
Γ0

eλ(θ, η)

(
∂

∂t
kt (η)

)
dλm(η) = −

∫
Γ0

eλ(θ, η)(Ĥ ∗kt )(η) dλm(η)

= −
∫ (

Ĥ eλ(θ)
)
(η)kt (η) dλm(η).
Γ0
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Heuristically, this means that the Bogoliubov functionals Lt , t � 0, are a solution of the Cauchy
problem {

∂
∂t

Lt = −H̃Lt ,

L0,
(30)

for

(H̃L)(θ) :=
∫
Γ0

(
Ĥ eλ(θ)

)
(η)k(η) dλm(η), t � 0. (31)

The operator H̃ can be rigorously defined. In fact, by (27), for all C2-functions θ on R
d with

compact support (shortly θ ∈ C2
0(Rd)) we have

(
Ĥ eλ(θ)

)
(η) = −1

2

(
�Γ0eλ(θ)

)
(η) + β

2

∑
x∈η

∑
y∈η\{x}

{〈∇xV (x − y),
(∇Γ0eλ(θ)

)
(η, x)

〉
+ 〈∇xV (x − y),

(∇Γ0eλ(θ)
)(

η \ {y}, x)〉}
.

Therefore, if the correlation function k in (31) fulfills (29), we find from equalities (23) and (24),

−(H̃L)(θ) = 1

2

∫
Γ0

∑
x∈η

�θ(x)eλ

(
θ, η \ {x})k(η) dλm(η)

− β

2

∫
Γ0

∑
x∈η

∑
y∈η\{x}

〈∇xV (x − y),∇θ(x)
〉
eλ

(
θ, η \ {x})k(η) dλm(η)

− β

2

∫
Γ0

∑
x∈η

∑
y∈η\{x}

〈∇xV (x − y),∇θ(x)
〉
eλ

(
θ, η \ {x, y})k(η) dλm(η)

= 1

2

∫
Γ0

∑
x∈η

�θ(x)eλ

(
θ, η \ {x})k(η) dλm(η)

− β

2

∫
Γ0

∑
{x,y}⊂η

〈∇xV (x − y),∇θ(x)θ(y) − ∇θ(y)θ(x)
〉

× eλ

(
θ, η \ {x, y})k(η) dλm(η)

− β

2

∫
Γ0

∑
{x,y}⊂η

〈∇xV (x − y),∇θ(x) − ∇θ(y)
〉
eλ

(
θ, η \ {x, y})k(η) dλm(η).

Given a correlation function k fulfilling (29), we note that by Proposition 16 the functional

L(θ) :=
∫

eλ(θ, η)k(η) dλm(η)
Γ0
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is in Entα(L1(σ )) for some α. An application of Corollary 15 leads then to

−(H̃L)(θ) = 1

2

∫
Rd

�θ(x)
δL(θ)

δθ(x)
dx − β

4

∫
Rd

∫
Rd

〈∇xV (x − y),∇θ(x)
(
θ(y) + 1

)

− ∇θ(y)
(
θ(x) + 1

)〉 δ2L(θ)

δθ(x)δθ(y)
dx dy (32)

for all θ ∈ C2
0(Rd).

Up to this point we have worked under assumption (29). As we have already mentioned, it
implies that the functional L in (32) is in Entα(L1(σ )) for some α > 0. In addition, by Proposi-
tion 11, the following bound follows from (29):

∣∣∣∣ δ2L(θ)

δθ(x)δθ(y)

∣∣∣∣ � e
α′‖θ‖

L1(m)e−cV (x−y), α′, c > 0, m-a.a. x, y. (33)

One might thus consider the operator H̃ acting in a Entα(L1(σ )) space for some α > 0. Hence
it is convenient to replace (29) by a condition just involving functionals from Entα(L1(σ )),
namely, (33).

To conclude let us consider the functional L(ϕ) := L(eϕ − 1) with ϕ ∈ C2
0(Rd). We observe

that if L is a Bogoliubov functional corresponding to a measure μ, then L is the Laplace trans-
form corresponding to μ, i.e.,

L(ϕ) :=
∫
Γ

exp
(〈γ,ϕ〉)dμ(γ ) = Lμ

(
eϕ − 1

)
.

In (32) consider θ = eϕ − 1 with ϕ ∈ C2
0(Rd), i.e.,

−(H̃L)
(
eϕ − 1

) = 1

2

∫
Rd

(
�ϕ(x) + ∣∣∇ϕ(x)

∣∣2)
eϕ(x) δL(θ)

δθ(x)
dx

− β

4

∫
Rd

∫
Rd

〈∇xV (x − y),∇ϕ(x) − ∇ϕ(y)
〉

× eϕ(x)+ϕ(y) δ2L(θ)

δθ(x)δθ(y)
dx dy.

The chain rule then yields

δL(ϕ)

δϕ(x)
= δL(θ)

δθ(x)

δ(eϕ − 1)(ϕ)

δϕ(x)
= δL(θ)

δθ(x)
eϕ(x), m-a.a. x

and
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δ2L(ϕ)

δϕ(x)δϕ(y)
= δ

δϕ(x)

(
δL(ϕ)

δϕ(y)

)
= eϕ(y) δ

δϕ(x)

(
δL(θ)

δθ(y)

)
= eϕ(y)+ϕ(x) δ2L(θ)

δθ(x)δθ(y)
, m-a.a. x, y.

As a consequence, for Lt given by (30) and (32), we have obtained the time evolution equation
for the Laplace transform Lt (ϕ)

∂

∂t
Lt (ϕ) = ∂

∂t
Lt

(
eϕ − 1

) = −(H̃Lt )
(
eϕ − 1

)
= 1

2

∫
Rd

(
�ϕ(x) + ∣∣∇ϕ(x)

∣∣2)δLt (ϕ)

δϕ(x)
dx

− β

4

∫
Rd

∫
Rd

〈∇xV (x − y),∇ϕ(x) − ∇ϕ(y)
〉 δ2Lt (ϕ)

δϕ(x)δϕ(y)
dx dy,

for all ϕ ∈ C2
0(Rd). This equation is related to the Hopf equation from hydrodynamics.
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