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Abstract— We extend the Clark-Ocone formula to a suitable class of generalized Brownian function-
als. As an example we derive a representation of Donsker’s delta function as (limit of) a stochastic
integral.

1. INTRODUCTION

For suitable functionals ¢ of Brownian motion, expressed in terms of It integrals

o=E (p) + / m(r) dB(r) 1)

the Clark-Ocone formula [5], [14] provides us with an explicit formula for the integrand
m(-), given . It has become clear that such an expression should be useful in the
determination of hedging portfolios, see e.g., 1], (3], [15]. Another application is in the
context of determining the quadratic variation process of Brownian martingales, see
e.g., [7] for a recent example.

On the other hand it was pointed out in [2] that the conditions on ¢ are restrictive. It
seems desirable to extend the validity of (1) and of the Clark-Ocone formula. A possible
setting is that of generalized functionals of white noise as described, e.g., in [8]-[13],
[16]. In particular the generalized function space elaborated in [16], or the larger one
of [8], retain the probabilistic properties that are required for such a generalization. In
[3] one finds an announcement of results in terms of the Potthoff-Timpel [4], [16] space
(in the meantime elaborated in [1]), for related results in the space D' of Malliavin
calculus see [17]. Here we use the space of [8], which we present in the following
section together with extensions of the Skorohod and Ité integrals, the gradient and
some further auxiliary notions. Section 3 has our generalization of the Clark-Ocone
formula, in Section 4 we translate the result into the language, often useful in practical
calculations, of the S—transform. A case in point is Donsker’s §~function for which we
elaborate the generalized Clark-Ocone formula in Section 5.

2. REGULAR GENERALIZED FUNCTIONS OF WHITE NOISE

2.1. Regular generalized functions

We will recall the definition and some properties of the space G~ of regular generalized
functions of White Noise (8], [9].
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Within the Hilbert space L2(R) = L?(R,R?), d € N, of vector valued square inte-
grable functions we consider the space Sg(R) of vector valued Schwartz test functions.
The topology on S4(R) may be given in terms of a system of increasing Hilbertian
norms

2 d -~
|€1p = Z ‘51'12716 = (611 ---154) € Sd(R))gi € S(R),'L =1, “"d’p € No.
i=1

The basic nuclear triple is thus
S4(R) € L(R) c S4(R).

On S;(R) we fix the canonical Gaussian measure g4 which is determined by the char-
acteristic function

1 -
C (E) = exp <_§Z/R§‘2(t) dt) , & € S4(R).
i=1

The space L%(S}(R), pa) will be briefly denoted by (L?).
We will denote by 7 the d-tuple (ny,...,n4), n; € Np, and write

d

n = Zn,-,
i=1
d

il = [
i=1

The norm and the inner product in L2(R") will be denote by |-|,, and (-, -),,, respectively.
Considering square integrable white noise functionals ¢ for which the chaos expansion

p@) = Z <% o5 >
7

d
Z/ dta(t], .. t8) [ : w®™ 1 (¢, th)
i R* i=1

converges rapidly, i.e.,
2 _ - 2
llells = D (@)227 |pal’ < oo,
7

we define the Hilbert space G} as
Gi={pe (Lol <o}
The space of test functions G! is defined as the projective limit of the spaces G§, ¢ € No,
Gl=pr- li;nG;.

Let GZ; be the dual with respect.to (L?) of G} and G~! the dual space of G' with
respect to (L?). The corresponding bilinear dual pairing < -,- > is connected to the
sesquilinear inner product on (L?) by

L Fp>»= (F,Qo)([,z), if Fe (Lz)
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(We shall use the same notation < -, - >> for dual pairings in more general settings such
as, e.g., for L*(R) ® G*1!). Since the constant function 1 is in G! we may extend the
definition of the expectation E (-) from integrable functions to distributions ® € G!:

E(?)=<x%,1>».

From general duality theory it follows that

¢'=JGy

920
therefore, every distribution is of finite order, i.e., for every ® € G~ there exxsts g€Ny

such that ® € G '; It turns out from the deﬁmtxon that the Hilbert space G} ¢ can be
described as follows:

G:;={<1>(w) Z< 3%, 85 >, [12)%, = }:2 " 147 <°°}

Given £ € Sy4(R), let us consider the Wick exponential

- d
:exp< &, > =exp (< > -1 ; f£2(t)dt>
=Y 4 <:a® 887 > G e Si(R).
7

Since the sum
é@n

D (e |

L3R B Xﬁ:w qLﬁdﬂl)

2
converges if and only if 2¢ l£
-11,3(11&)

2

G, but they are in those G} for which 2 quZ(R) < 1. Thus it is still possible to define
d

an S-transform in the space G~! because every distribution is of finite order. Given

- 2
® € G, there exists g € Np such that & € GZ1. For all £ € S4(R) with 29 Iqm(R) <
d

< 1, the Wick exponentials are not test functions in

we define the S-transform of ® as

S@(g) =« ®,:exp < -,€>:>>= Z (@ﬁ,@ﬁ)

n

n.
This definition extends to complex vectors 7 € Sy4,c(R) such that 2¢ I'ﬂng R) <L

S3(7) =< @, exp <, T>>= Y (¥5,7°7) . (2)

n

Therefore, for ® € G_q, (2) defines the S-transform for every 77 from the open neigh-
borhood of zero, Uy = {77 € Sy,c(R) : 29 I’ﬂig(R) <1},q€ No.
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2.2. Generalization of the gradient operator

We begin with the observation that the Hida derivative §; fails to be pointwise defined
on the spaces Gi;. However we still may consider the gradient (8*.-)1<i<a as an operator

(8. )1<ica : GE-R* @ L* (R) ® G, .
Given v a test function from G! with kernel functions 15, n € Ny, we define the operator
gradient of ¥, Vi = (8*.9)1<i<d, where, for each 1 < i < d, 8*.¢ is the functional from
L?(R) ® G}, g € No, characterized by the sequence
Yilt,s) = (ni + 1)¢m(s}, eS8 st st s, 88) € L (R) ® L*(R™),
= (ny,...,Nq).

In fact,

¥

/R dt (722 [y (s, )2 Z((ﬁ“&i)z)?zq"

n+0ilnsy

270 Y ()20 [yall,

i,n>1
which proves that 8*.9 € L*(R) ® G} for every non negative integer number ¢ and,
moreover, the continuity of the linear operators 8 : G} —+L? (R) ® G/:

1671 5eRy00y < 277 Il ¥ € G,

for every g € No. Hence,
d
i l2 -
S0l e mypas <4270 Wl ¥ € G,
i=1

which proves that the linear operator V : Gl=R® ® L? (R) ® G/ is continuous.

We extend the operator gradient from test functions on G! (introduced above) to
distributions on G~1.

Given a regular generalized function ® from ¢!, ® € GZ! for some q € Ny, charac-
terized by the sequence (®7), n € Ng, ®7 € L¥(R™), consider the functional character-
ized by the sequence

®i(t,s) = (n; + l)Qm (s, sk 5oty sh b s, ., 88,) € L* (R) © L*(R™),
n e No.

Using the inequality 2=%k2 < 2 for k = (p — ¢)n > 0, we have
2

L

Jr dt 277" (n; +1)2
il n+0;

2
= Y277 (n; + 1)2
n R

Qm ('1t’ )

=2y 2-a(n+1)9=(p=0)(n+1)(p, 4 1)2
7l

ntl
d
Pt il ()

2
d
n+ 0;

+1 _
=& L 27" %l

,n>1

< 2 E2-q(n+1)
= (p-0)? 1

n+1



M. Faria, M. J. Oliveira and L. Streit 167

where the above sum is convergent because ® € G:},. Hence, the sequence (®%),
n € No, defines a functional from L?(R) ® G::,. Keeping the terminology and the
notation introduced above, we will denote this functional by 8'® and the operator

(0i®)1<i<a Will be called the gradient of ®, denoted by V&. Using this notation, it
follows from (3) that

op+1
HVQHEQ"@Lz(]R)@G’l < d(p )2 "QHG" ’

for every pair p > q > 0, which proves that the gradient is a bounded linear operator
from GZ; into RY® L2(1R) ®G,ifp>q.
2.3. An extension of the Skorohod and It integrals

In [10] the Skorohod integral was discussed in a white noise setting. An extension to
certain generalized white noise integrands can be found in [6].

Considering an element ¢ from L% (R)® G :; for some g € Ny, characterized by the
sequence ®;(-;-) € L2 (R)®L?(R™), n € Ny, let us consider the functional characterized
by the sequence

5
v

0
5 € Lz(]Rn))ﬁ = (nla ...,Tld),n € N:

=

where & denotes the symmetrization of ® in the variables ¢, si, ..., s}
n 3

m n;—1-

n

— 0
Since, for each 1 <i < d,

> rols

n,n>1

2 2

IA

> 2me

n ﬁ,nZl

(4)

n—0; —0;

L2(RyeL2(R™™)
-4 /R dt;r"" |®a(t; )2

27182 rypat

i

the sequence (¥%), n € No, defines a distribution from G:;. We denote it by I;(®).

For every test function 9 from G! with kernel functions (3), n € No, we have for each
1<i1<d,

<L(®),y> = il (5
1

=),

(Q ’d;ii)
,n>1 m LQ(R)®L2(R"—1)
= f dt Z (m)' <Q (t; ')7ni¢ﬁ('vt) ))
® ﬁ n-1

,n>1 n—0;
= [gdt € &(t;-), 000 >=< 8,0'¢ >,

and I;(®) is the unique functional from G~ for which the above equality holds for every
test function ¥ € G'; if I'(®) is another functional in such conditions, it turns out that
&L I;(®) — I'(®),- > is identically equal to zero on G*.



168 A generalized Clark-Ocone formula

We may now formulate the

Definition. Given ® an element from R? @ L? (R) ® G:; for some ¢ € Np, we call
generalized Skorohod integral of @ the distribution on G~1, I(®), defined by the sum

d
I(@) =) (%),
i=1

where, for each i = 1,...,d, I;(®;) is the unique regular generalized function from G~!
for which the following equality

((I:(2:), %)) = ((2:,0'9))

holds for every test function v from G!.

This definition generalizes the notion of Skorohod integral. In fact, in the particular
situation ¢ € R? ® L? (R) ® D,

= {F €(LY):Flw) =) <o®  Fi>, Y aAln|Fal < oo} ,
L 7

the generalized Skorohod integral I(®) coincides with the Skorohod integral. In view of
the relation between the Skorohod and It6 integral we may add the following remark.

Remark 1. For t € R, let F; denote the o-algebra generated by the random vari-
ables {B(s),s < t}, where (B:),.R is a d-dimensional Brownian motion. If F €

R? ® L2(R)®(L?) and it is adapted to the filtration (F,),cg, then the generalized
Skorohod integral I(F) is equal to the It6 integral of F. Without the first condition we
speak of a generalized Ité integral.

Before ending this subsection, we return to the sequence of inequalities (4) which
imply
- 2
I7:(8)lIG-2 < 270 [ @illL2Rypo-? »

i.e., I is a bounded linear operator from R‘® LZ(IR)@G:}] into G:f], q € Np.
2.4. Some notations and definitions

For the next sections it is useful to introduce some notations and recall some definitions.
We shall denote by ©; the Heaviside function

[ lifs<t
o ={ oifs 51

and also the linear operator given by
O f() =2 0:()f().

The functional derivatives JIJT’ for suitable G, are defined as

G +ef) = () » 36U 4,
/ JolO 57 ¢

lim
e—0
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In particular for cylinder functions G(f) = g (f h(t) f(t) dt) where g is a differentiable

function, then
6G(f
T ( ( / R t)dt) h(r). (5)

For what follows it is also helpful to define the notion of second quantization of Oy,
t € R, defined on the space G=*. Recall:

For bounded linear operators A on L? (R) the linear map which transforms each
sequence (p,), n € N, pz € L?(R™), to the sequence (4%"¢;), n € Ny, is called the
second gquantization of A. It is denoted by I'(A).

LEMMA 2.1 For bounded linear operators A on L% (R), ['(A) is a continuous operator

on G~L.

Proof. Given a bounded linear operator A on L2 (R), for every element & € G~!
(belonging to GZ}, for some g), we have,

S o2 48,2 < S 274 842,

i

—-q?

for every non negative integer number p. If || A]|? < 2P~ for some p € Ny the above sum
is majorized by ||®||%,-, and the second quantization of A is a bounded linear operator
-9

from G-} ¢ into G':, In particular, if ||4|| < 1, I'(A) is a bounded linear operator from
G~1 into 1tself The lemma is proved.

In particular, for A = Oy, for some t € R, it follows that

IT(@n)ellg-: < 3 27 |02 4|2 < |81 -

for every q € Ny. Hence I'(©;) is a bounded linear operator from the space of regular
generalized functions G~! into itself.

Remark 2. Consider the o-algebra F; generated by the random variables {B(s),s < t}.
['(©;)® coincides with the conditional expectation for elements ® from §~! with respect
to F;, as introduced in [8].

3. THE GENERALIZED CLARK-OCONE FORMULA

Now we are prepared to present the main result of this note. It generalizes the well
known Clark-Ocone formula to regular generalized functions of white noise, i.e., to the
space G~1.

THEOREM 3.1 (Generalized Clark-Ocone Formula) Let & be a regular generalized
function, ® € G~1. Then it can be written as a generalized It6 integral

& = E () + I(m)

with
mi(t) = [(0,)8i®
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Proof. We begin by noting that the integrand m is non-anticipating. Let ® be an
arbitrary element from G}, i.e., ® € G- 1 for some ¢, characterized by the sequence
(®57), n € No. Hence, for every test functxon ¥ € G! with kernel functions given by
(¥7), n € Ng, we have

fi,n>1

where, for each n-tuple @ = (n,...,n4) such that n > 1,

(anwn / dns Qn( ~)311 1sn, )d}ﬂ( ,311 1811, )

Taking each variable s, j = 1,...,n;, i = 1,...,d, in term, in the range s} >
sup sk, the above mtegral can be written as

(4LE)#(i.5)

ZZ/ ds} / d" s @80, 85, . Ssha RSt sk s,

i=1 j=1

which is equal to

d T
Zni/ dr/ d* s ®5(... 1,8, n'__l, )Ya(-. ‘r,si,...,sﬁ,i_l;...),
i=1 R -0

by the symmetry of ®; and the kernel function ¥z with respect to each ni-tuple of
variables (si,...,s%.),i=1,...,d. This means,

<%9y>» -E@E@W)= ¥ n'Zn,fRd‘r(9® "ea(,7 ) Yl ))

,n>1 i=1 -1

= 5 Jgdr % i (030 Vay(, ) 0nr7,)

i=l fi,n;>1 ~1

=5 Jpdr 5 G0 (0% ndalr, ), nataleri )

fi,ni>1 n—1

= T il ®n i 5Ty )\ RN
5 hrerga (9’ e b g O ))n
d
=Y «I(0.)0®,0 > .
i=1

Therefore,
d

< 9,9 >=E(®)E @)+ ) < L([(0.)8'9),¢ >,

=1
for every 9 belongs to G!, which implies the result. Theorem 3.1 is proved.

4. S-TRANSFORM

In this section, we find an expression to the S-transform of a regular generalized function
® € G~! which corresponds to the Clark-Ocone formula established above.



M. Faria, M. J. Oliveira and L. Streit 171

THEOREM 4.1 Given a regular generalized function & from G~! and q € Ny such that
® e G:},, its S-transform is equal to

5(2)(©-7),

i o
Se(M=E(@)+Y. [ dru(r)
,,=1/R T ()

for every 7 = (m1, ...,na) € Uj.

Proof. Taking & € G~! characterized by the sequence ($5), n € Ny, such that ® € G:;
for some g € Ny, for every test function 7 = (71, ...,Ma) € Sa,c(R) with 2¢ l'ﬂig(R) <1
we have

d
58(7) =E(®) + Y < L([(0.)8'),: exp < -, 7 >> . (6)
i=1
Here,
d o -
Y < L(D(0.)0!®),:exp < T >>= Y (25,7%7),.
i=1 An>1
Using the symmetry of ®; in each n;-tuple of variables (si,...,s}), i = 1,...,d, it

follows that

d
(27,7°%), = /"d"s(bﬁ(...;si,...,sf,‘.;...)an(s’f e mi(sk,)
d
= ZZ/ a; / o (st sshi-) [Lnn(oD) - melon,)
i=1 j=1 k=1
= Zni/dr/ d"s®a (.57, 8%, 8 5 )
i=1 R —
. . d
xni(T)mi(s3) - mi(sh—1) [ me(s¥)---m(sh,)
k=1,k#i
= Z/ dr ni(7) (n,/ d"1sd; (-, 7, )" T 3)
Thus
3
=Z dr ni(r)ui(r),
f,n>1 i=1 R
where

ui(r) = Z n,/ d"1s®; (-, 7, )7®" T %, r€R.

f,ni>1

But, for each 7,

pi(T)

n—1

I

Z (ni9®"'1‘1> () .)’,7®h—-—62)
(F(

0,)212)(.
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Hence, (6) can be written as
d
SO =E(@)+3 /md’ ni(r)5(1(0,)6,2) (7).
i=1

Observing that, for each 7,

s(re.)o,2)@m

(ni + 1) d"s @ (')Ty ')(erﬁ)®ﬁ
Z / Sy

1( )S(‘I’)(Grﬁ)

there follows the required equality

d
58 =B(#)+ Y [ drnr) 5= S(#)(©.7.
i=1

,()

Theorem 4.1 is proved.

5. AN EXAMPLE

As an application of the above let us consider ® equal to the Donsker delta function
which we may consider defined as a Fourier (Bochner) integral [10]

5(B(t) - a) = % /R dAeNBO-a)

with S-transform

(fot f(s)ds — a)2
(S8B6) - ) () = omexp | -~ feS®. (M)

It is well known that §(B(t) — a) is in G~!. From Theorems 3.1 and 4.1 it follows that

0(B(t) —a) =E (§(B(t) —a)) + /dB('r)m(T)

with 5
m(r)(f) = 570 S(2)(©-f).

The functional derivative of (7) is calculated straightforwardly using (5)

(57675®) 1 =322 ([ 1105 - c) ex _(fgf(s);s‘a)z

(here, 1jp,¢ denotes the indicator function of the interval [0,¢]), so that, projecting the
f with © ., we obtain

T 2
(s (1) = 24D ([ a5 —a) exp <_(fo J9ds = )

V2nts
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Note that the rhs depends only on
A= /f(s)e(s) ds
where e = %1[0’1,] is a unit vector in L? (R). Consequently, m depends only on the

normal random variable
1
z=<w,e>= —TB(T)

7

with S-transform

2
/%e'g“’gh(:z:)e’\"’e'%"2 =- 1\[;’.@ (VTA —a) exp (—M) .

2mt3 2t

To obtain m itself we must thus calculate the inverse Laplace transform of

) = -8 (7 - ) B bt

which gives
3/2 e
h(z) = - 1[0;/_15:') (t _t T) (VTz — a)exp (_ (g:-—;z)) ) .

Substituting

we finally obtain

Lio.(7)
(t - ‘r)3

m(r) = - (B(r) —af “)2> .

(B(1) — a)exp (— 2(=7)

One notes that m(7) is an adapted random variable in (L?) as long as 7 < ¢, and it
permits conventional Itd integration. It is thus not hard to show that, as a limit in G2,

1 2 t—e
._.%? .
\/2—77?6. + eE»IEO/O dB(r)m(r).

§(B(t) - a) =
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