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Abstract— We extend the Clark-Ocone formula to a suitable class of generalized Brownian function-
als. As an example we derive a representation of Donsker's delta function as (limit of) a stochastic
integral.

1. INTRODUCTION

For suitable functionals φ of Brownian motion, expressed in terms of Ito integrals

(I)

the Clark-Ocone formula [5], [14] provides us with an explicit formula for the integrand
ra(·), given φ. It has become clear that such an expression should be useful in the
determination of hedging portfolios, see e.g., [1], [3], [15]. Another application is in the
context of determining the quadratic variation process of Brownian martingales, see
e.g., [7] for a recent example.

On the other hand it was pointed out in [2] that the conditions on φ are restrictive. It
seems desirable to extend the validity of (1) and of the Clark-Ocone formula. A possible
setting is that of generalized functionals of white noise as described, e.g., in [8]-[13],
[16]. In particular the generalized function space elaborated in [16], or the larger one
of [8], retain the probabilistic properties that are required for such a generalization. In
[3] one finds an announcement of results in terms of the Potthoff-Timpel [4], [16] space
(in the meantime elaborated in [1]), for related results in the space D' of Malliavin
calculus see [17]. Here we use the space of [8], which we present in the following
section together with extensions of the Skorohod and Ito integrals, the gradient and
some further auxiliary notions. Section 3 has our generalization of the Clark-Ocone
formula, in Section 4 we translate the result into the language, often useful in practical
calculations, of the 5-transform. A case in point is Donsker's 5-function for which we
elaborate the generalized Clark-Ocone formula in Section 5.

2. REGULAR GENERALIZED FUNCTIONS OF WHITE NOISE
2.1. Regular generalized functions
We will recall the definition and some properties of the space Q~l of regular generalized
functions of White Noise [8], [9].
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Within the Hubert space Z^(M) = L2(R,Ed), d G N, of vector valued square inte-
grable functions we consider the space 5<*(Ε) of vector valued Schwartz test functions.
The topology on 5d(K) may be given in terms of a system of increasing Hilbertian
norms

d
= Σ&Ιρ'£ = &.····&) € Si(RUi 6 S(R),i = l,-,d,P 6 N0.

p ^The basic nuclear triple is thus

Sd(R) C

On Srf(R) we fix the canonical Gaussian measure μα which is determined by the char-
acteristic function

, i €S d

The space L2(S^(l),//d) will be briefly denoted by (L2).
We will denote by η the d-tuple (ni,...,n<j), η» € NO, and write

n! =
t=l

The norm and the inner product in L2(En) will be denote by |·|η and (·, ·)η> respectively.
Considering square integrable white noise functionals φ for which the chaos expansion

φ(ΰ) =

= Σ [
η J^

converges rapidly, i.e.,
Ml*

n

we define the Hubert space Gl
q as

G\ = (φ 6 (I2) : |M|J < 00} .

The space of test functions Ql is defined as the projective limit of the spaces Gj, q G NO,

Let GlJ be the dual with respect to (L2) of Gj and G~l the dual space of Ql with
respect to (L2). The corresponding bilinear dual pairing < ·,· > is connected to the
sesquilinear inner product on (I/2) by
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(We shall use the same notation < ·, · > for dual pairings in more general settings such
as, e.g., for L2(R) ® i/*1). Since the constant function 1 is in Ql we may extend the
definition of the expectation E (·) from integrable functions to distributions Φ G Q"1:

Ε(Φ)=«Φ,1» .

From general duality theory it follows that

a-1 = U G-\-,

therefore, every distribution is of finite order, i.e., for every Φ G G~l there exists q 6 NO
such that Φ G GlJ. It turns out from the definition that the Hubert space GlJ can be
described as follows:

S

Given ξ*€ 5^(1), let us consider the Wick exponential

:exp<w,£>: = exp ( < ΰ,ξ > -i E/i
\ i=l

Since the sum

n
n

H2
converges if and only if 2q \ξ\ 2 < 1, the Wick exponentials are not test functions in

i/1, but they are in those Gj for which 2* 1(1 < 1. Thus it is still possible to define
I lLj(M.)

an 5-transform in the space Q"1 because every distribution is of finite order. Given
Φ G (Γ1, there exists q G N0 such that Φ G GlJ. For all ξ G 5d(R) with 2q 1(1 < 1

we define the 5-transform of Φ as

=<Φ,: exp

This definition extends to complex vectors η G S^cW such that 2^ |

=« Φ,: exp < -,77

< 1,

(2)

Therefore, for Φ G GlJ, (2) defines the 5-transform for every η from the open neigh-
borhood of zero, Uq = {ff G 5d,c(l) : < 1}, q G N0.



166 A generalized Clark-Ocone formula

2.2. Generalization of the gradient operator
We begin with the observation that the Hida derivative dt fails to be pointwise defined
on the spaces G±J. However we still may consider the gradient (<9V)i<i<d a·8 an operator

Θ L2 R

Given ψ a test function from Ql with kernel functions ψχ, η G NO, we define the operator
gradient of ψ, νψ = (di .il>)\<i<d, where, for each 1 < i < d, d\^ is the functional from
Ζ/2 (R) 0 G J, ς € NO, characterized by the sequence

;̂ ^ η = (ni,...,n<i).
In fact,

m

ή,η>1

which proves that θ\ψ G L2 (E.) <g) Gl
q for every non negative integer number q and,

moreover, the continuity of the linear operators 9* : G^-^L2 (E) 0 G* :

for every q 6 NQ. Hence,

which proves that the linear operator V : Gj->Rd Θ L2 (R) <8> G^ is continuous.
We extend the operator gradient from test functions on Q1 (introduced above) to

distributions on Q~l .
Given a regular generalized function Φ from C/"1, Φ € GlJ for some g 6 NO, charac-

terized by the sequence (Φ^), η G NO, Φη € L2(Rn), consider the functional character-
ized by the sequence

N0.

Using the inequality 2~kk2 < 2 for k = (p - q)n > 0, we have
2

Φ
η + <£ (·,*,·) Φt

n + o i

-^η+1)2"(ρ-<7^η+1)(ηί 4-1) Φ
n + i n+l (3)

Φ
n + Ji n+l

• Σ 2-^|Φη|2,
η,η>1
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where the above sum is convergent because Φ G G_J. Hence, the sequence (Φ^),
n G NO, defines a functional from L2(R) <g> Gl*. Keeping the terminology and the
notation introduced above, we will denote this functional by 91Φ and the operator
(οιΦ)ι<»<<* will be called the gradient of Φ, denoted by νΦ. Using this notation, it
follows from (3) that

for every pair ρ > q > 0, which proves that the gradient is a bounded linear operator
from GlJ into Rd ® L2(R) 0 GlJ if ρ > 9.
2.3. An extension of the Skorohod and Ito integrals
In [10] the Skorohod integral was discussed in a white noise setting. An extension to
certain generalized white noise integrands can be found in [6].

Considering an element Φ from L2 (R) <8> GlJ, for some q € NO, characterized by the
sequence Φ^(·; ·) 6 L2 (R)0L2(Rn), n G NO, let us consider the functional characterized
by the sequence

Φΐ? = i^
where Φ denotes the symmetrization of Φ

η - di η -
Since, for each 1 < i < d,

in the variables

Σ
η,η>1

Φ
η - n,n>l

Φ
η —

(4)
L2

H.

the sequence (Φ^), η € NO, defines a distribution from G_J. We denote it by /ί(Φ).
For every test function ·φ from Q1 with kernel functions
1 < t < d,

), η € N0, we have for each

= /Rdi

it « Φ(ί; Ο,^Υ »=« Φ,οψ »,
„_!

and /ί(Φ) is the unique functional from "1 for which the above equality holds for every
test function ψ £ Q1; if /'(Φ) is another functional in such conditions, it turns out that
<£ 7j(f) - /'(Φ), · » is identically equal to zero on Q1.
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We may now formulate the

Definition. Given Φ an element from Rd <8> L2 (R) <g> GlJ, for some q G N0, we call
generalized Skorohod integral of Φ the distribution on Q~l, /(Φ), defined by the sum

d
/(Φ) = ^Λ·(ΦΟ,

i=l

where, for each i = 1, ...,d, /»(Φ;) is the unique regular generalized function from Q~l

for which the following equality

holds for every test function ψ from Q1.

This definition generalizes the notion of Skorohod integral. In fact, in the particular
situation Φ e Rd <8> L2 (R) <S> D,

00

the generalized Skorohod integral /(Φ) coincides with the Skorohod integral. In view of
the relation between the Skorohod and It integral we may add the following remark.

Remark 1. For t G R, let T t denote the σ-algebra generated by the random vari-
ables {B(s), s < t}, where (#t)t€ is a d-dimensional Brownian motion. If F G
Rd <8> L2(R)<8>(L2) and it is adapted to the filtration (^t)t€]j, then the generalized
Skorohod integral I(F) is equal to the It integral of F. Without the first condition we
speak of a generalized It integral.

Before ending this subsection, we return to the sequence of inequalities (4) which
imply

i.e., / is a bounded linear operator from Rd<8> L2(R)<g)Glq into Glq, q G N0.

2.4. Some notations and definitions

For the next sections it is useful to introduce some notations and recall some definitions.
We shall denote by Qt the Heaviside function

n f * ί I if s < t
Q^ = \Vifs>t

and also the linear operator given by

Θ, :/(·)->©, (-) /( · ) ·

The functional derivatives jm\> for suitable G, are defined as

«Ao ε J 'uw Sf(t)
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In particular for cylinder functions G(f) = g (fh(t)f(t)dt) where g is a differentiable
function, then

(r). (5)

For what follows it is also helpful to define the notion of second quantization of Qt,
t G R, defined on the space G~°°. Recall:

For bounded linear operators A on L2 (R) the linear map which transforms each
sequence (φ.), n G NO, φα € L2 (Rn), to the sequence (ΑΘη</?^), n G NO, is called the
second quantization of A. It is denoted by Γ(Α).

LEMMA 2.1 For bounded linear operators A on L2 (R), T(A) is a continuous operator
onQ~l.

Proof. Given a bounded linear operator A on I/2(R), for every element Φ € G~l

(belonging to GlJ, for some ς), we have,

2~pn

for every non negative integer number p. If || A\\2 <2P q for some ρ € NO the above sum
is majorized by | |Φ| |*ι and the second quantization of A is a bounded linear operator

from GlJ into Gl*. In particular, if \\A\\ < l, T (A) is a bounded linear operator from
G~l into itself. The lemma is proved.

In particular, for A = Qt, for some t € R, it follows that

for every g G NQ. Hence Γ(Θ^) is a bounded linear operator from the space of regular
generalized functions G~l into itself.

Remark 2. Consider the cr-algebra T t generated by the random variables {B(s), $ < t}.
Γ(Θ*)Φ coincides with the conditional expectation for elements Φ from Q~l with respect
to Ft, as introduced in [8].

3. THE GENERALIZED CLARK-OCONE FORMULA

Now we are prepared to present the main result of this note. It generalizes the well
known Clark-Ocone formula to regular generalized functions of white noise, i.e., to the
space G~l.

THEOREM 3.1 (Generalized Clark-Ocone Formula) Let Φ be a regular generalized
function, Φ € Q~l. Then it can be written as a generalized ltd integral

Φ = Ε(Φ)+/(τη)

with
mi(t) =



170 A generalized Clark-Ocone formula

Proof. We begin by noting that the integrand m is non-anticipating. Let Φ be an
arbitrary element from C/"1, i.e., Φ € GlJ for some q, characterized by the sequence
(Φ^), η G N0. Hence, for every test function ψ € Gl with kernel functions given by
(Ψη)> η € NO, we have

« Φ, </;»= Ε (Φ)Ε (ψ) +
η,η>1

where, for each η-tuple η = (ni, . . . ,η^) such that η > l,

Taking each variable s*·, j = l , . . . ,n i , i = l , . . . ,d, in term, in the range s} >
sup 4, the above integral can be written as

ΣΣ L dsi> Γ dn"l
i=l j=l J^ J-<*>

which is equal to

d ί ΓΣη* dr Ι ^η~1
i=:1 JK J—oo

by the symmetry of Φ^ and the kernel function ψχ with respect to each n^-tuple of
variables (s\ , . . . , s*ni ), i = 1, . . . , d. This means,

Σ η\Σ
ή,η>1 =l

t=l n,ni>l
d ( \

= Σ /RdrEn! θ?»^ + 1)Φ _ (-,τ,·),^ + 1)^ _ . (·,τ,-)
<=1 Λ V nTJi n + (5i / n

= Σ <Γ(θ.)ο.*Φ,ο.ν».
i=l

Therefore,
<ί

« φ, ψ »= Ε(Φ)Ε(ι/;) + ̂  « ̂ (ΓίθΟοίΦ)^ »,
ί=1

for every ψ belongs to C/1, which implies the result. Theorem 3.1 is proved.

4. S-TRANSFORM

In this section, we find an expression to the 5-transform of a regular generalized function
Φ € Q~l which corresponds to the Clark-Ocone formula established above.
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THEOREM 4.1 Given α regular generalized function Φ from Q~l and g G NO such that
Φ G Gli, its S-transform is equal to

for every ή= (ηι,...,ηα) G Uq.

Proof. Taking Φ G "1 characterized by the sequence (Φη), η G NO, such that Φ G GlJ
for some q G NO, for every test function ή = (τ/ι,...,^) G Sd,cW with 29 IT?]^/]^ < 1
we have

d
3Φ(η) = Ε (Φ) + « /i(r(0.) ^),: exp < ·,τ/>:>> . (6)

Here,

£ « /ί(Γ(θ.)β.'Φ), : exp < ·,η >:»=
ι=1 η,η>1

Using the symmetry of Φ/ϊ in each n^tuple of variables (s j , . . . ,«^.) , i = l,. . . ,d, it
follows that

i(^i(s\) · · · r?i(4,-i) Π
k=l,k

«(r) fn« Γ d^'
^ « / — oo

d

= Σ
ί=1

Thus d
Σ ίΦ-* fi®^} =V n > ' /η

η,η>1

where
V^ Γ n~l

n^^J-oo S n(

But, for each r,

μι(τ) =
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Hence, (6) can be written as

5Φ(ττ) = Ε (Φ) +
i=i

Observing that, for each r,

ftfc(T)

there follows the required equality

_
n n -f <5ί

5(Φ)(ΘΓ7/),

Theorem 4.1 is proved.

5. AN EXAMPLE
As an application of the above let us consider Φ equal to the Donsker delta function
which we may consider defined as a Fourier (Bochner) integral [10]

_ a) = -L /

with S-transform

(SS(B(t) - «

It is well known that δ(Β(ί) — α) is in Q~l . From Theorems 3.1 and 4.1 it follows that

6(B(t) - o) = Ε (i(B(t) - a)) 4- / άΒ(τ)τη(τ)

with

The functional derivative of (7) is calculated straightforwardly using (5)

(here, l[0,t] denotes the indicator function of the interval [0,£]), so that, projecting the
/ with θ τ , we obtain
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Note that the rhs depends only on

X = f ( S ) e ( s ) d s

where e = ^l[o,r] is a unit vector in L2 (E). Consequently, m depends only on the
normal random variable

χ=<ω,β>= -j=B(r)
vr

and

with 5-transform

- - . «Ρ -

To obtain m itself we must thus calculate the inverse Laplace transform of

which gives

3/2Ifn m^) / t \h(x) = — — l l (y/rx — a)exp

Substituting

we finally obtain

One notes that m(r) is an adapted random variable in (L2) as long as r < t, and it
permits conventional It integration. It is thus not hard to show that, as a limit in Q~l,

S(B(t) - a) = - r r e - + lim dB(r)m(r).
ν/2πί v ; v J
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