A generalized Clark-Ocone formula

Margarida de FARIA¹, Maria João OLIVEIRA² and Ludwig STREIT^{1,3}

Received for ROSE November 24, 1998

Abstract— We extend the Clark-Ocone formula to a suitable class of generalized Brownian functionals. As an example we derive a representation of Donsker's delta function as (limit of) a stochastic integral.

1. INTRODUCTION

For suitable functionals φ of Brownian motion, expressed in terms of Itô integrals

$$\varphi = \mathbf{E} (\varphi) + \int m(\tau) \, \mathrm{d}B(\tau) \tag{1}$$

the Clark-Ocone formula [5], [14] provides us with an explicit formula for the integrand $m(\cdot)$, given φ . It has become clear that such an expression should be useful in the determination of hedging portfolios, see e.g., [1], [3], [15]. Another application is in the context of determining the quadratic variation process of Brownian martingales, see e.g., [7] for a recent example.

On the other hand it was pointed out in [2] that the conditions on φ are restrictive. It seems desirable to extend the validity of (1) and of the Clark-Ocone formula. A possible setting is that of generalized functionals of white noise as described, e.g., in [8]–[13], [16]. In particular the generalized function space elaborated in [16], or the larger one of [8], retain the probabilistic properties that are required for such a generalization. In [3] one finds an announcement of results in terms of the Potthoff-Timpel [4], [16] space (in the meantime elaborated in [1]), for related results in the space D' of Malliavin calculus see [17]. Here we use the space of [8], which we present in the following section together with extensions of the Skorohod and Itô integrals, the gradient and some further auxiliary notions. Section 3 has our generalization of the Clark-Ocone formula, in Section 4 we translate the result into the language, often useful in practical calculations, of the S-transform. A case in point is Donsker's δ -function for which we elaborate the generalized Clark-Ocone formula in Section 5.

2. REGULAR GENERALIZED FUNCTIONS OF WHITE NOISE

2.1. Regular generalized functions

We will recall the definition and some properties of the space \mathcal{G}^{-1} of regular generalized functions of White Noise [8], [9].

¹CCM, Universidade da Madeira, P 9000 Funchal

² Univ. Aberta/Grupo de Física Matemática, Av. Prof. Gama Pinto, 2, P 1649-003 Lisboa

³BiBoS, Universität Bielefeld, D 33501 Bielefeld

Within the Hilbert space $L^2_d(\mathbb{R}) \equiv L^2(\mathbb{R}, \mathbb{R}^d)$, $d \in \mathbb{N}$, of vector valued square integrable functions we consider the space $S_d(\mathbb{R})$ of vector valued Schwartz test functions. The topology on $S_d(\mathbb{R})$ may be given in terms of a system of increasing Hilbertian norms

$$\left|\vec{\xi}\right|_{p}^{2} = \sum_{i=1}^{d} \left|\xi_{i}\right|_{p}^{2}, \vec{\xi} = (\xi_{1}, ..., \xi_{d}) \in S_{d}(\mathbb{R}), \xi_{i} \in S(\mathbb{R}), i = 1, ..., d, p \in \mathbb{N}_{0}.$$

The basic nuclear triple is thus

$$S_d(\mathbb{R}) \subset L_d^2(\mathbb{R}) \subset S_d'(\mathbb{R}).$$

On $S_d'(\mathbb{R})$ we fix the canonical Gaussian measure μ_d which is determined by the characteristic function

$$C\left(\vec{\xi}\right) \equiv \exp\left(-\frac{1}{2}\sum_{i=1}^{d}\int_{\mathbb{R}}\xi_{i}^{2}(t)\,\mathrm{d}t\right), \ \vec{\xi} \in S_{d}(\mathbb{R}).$$

The space $L^2(S'_d(\mathbb{R}), \mu_d)$ will be briefly denoted by (L^2) .

We will denote by \vec{n} the d-tuple $(n_1,...,n_d)$, $n_i \in \mathbb{N}_0$, and write

$$n = \sum_{i=1}^{d} n_i,$$

$$\vec{n}! = \prod_{i=1}^{d} n_i!.$$

The norm and the inner product in $L^2(\mathbb{R}^n)$ will be denote by $|\cdot|_n$ and $(\cdot, \cdot)_n$, respectively. Considering square integrable white noise functionals φ for which the chaos expansion

$$\begin{split} \varphi(\vec{\omega}) &=& \sum_{\vec{n}} <: \vec{\omega}^{\otimes \vec{n}}:, \varphi_{\vec{n}}> \\ &\equiv& \sum_{\vec{n}} \int_{\mathbb{R}^n} d^n t \varphi_{\vec{n}}(t_1^1,...,t_n^d) \prod_{i=1}^d: \omega_i^{\otimes n_i}: (t_1^i,...,t_{n_i}^i) \end{split}$$

converges rapidly, i.e.,

$$\left\|\varphi\right\|_{q}^{2}\equiv\sum_{\vec{n}}(\vec{n}!)^{2}2^{qn}\left|\varphi_{\vec{n}}\right|_{n}^{2}<\infty,$$

we define the Hilbert space G_q^1 as

$$G_q^1 = \left\{ \varphi \in (L^2) : \left\| \varphi \right\|_q^2 < \infty \right\}.$$

The space of test functions \mathcal{G}^1 is defined as the projective limit of the spaces G_q^1 , $q \in \mathbb{N}_0$,

$$\mathcal{G}^1 = pr - \lim_q G_q^1.$$

Let G_{-q}^{-1} be the dual with respect to (L^2) of G_q^1 and \mathcal{G}^{-1} the dual space of \mathcal{G}^1 with respect to (L^2) . The corresponding bilinear dual pairing $\ll \cdot, \cdot \gg$ is connected to the sesquilinear inner product on (L^2) by

$$\ll F, \varphi \gg = (\tilde{F}, \varphi)_{(L^2)}, \text{ if } F \in (L^2).$$

(We shall use the same notation $\ll \cdot, \cdot \gg$ for dual pairings in more general settings such as, e.g., for $L^2(\mathbb{R}) \otimes \mathcal{G}^{\pm 1}$). Since the constant function 1 is in \mathcal{G}^1 we may extend the definition of the expectation $\mathbf{E}(\cdot)$ from integrable functions to distributions $\Phi \in \mathcal{G}^{-1}$:

$$\mathbf{E}(\Phi) = \ll \Phi, 1 \gg .$$

From general duality theory it follows that

$$\mathcal{G}^{-1} = \bigcup_{q \ge 0} G_{-q}^{-1};$$

therefore, every distribution is of finite order, *i.e.*, for every $\Phi \in \mathcal{G}^{-1}$ there exists $q \in \mathbb{N}_0$ such that $\Phi \in G_{-q}^{-1}$. It turns out from the definition that the Hilbert space G_{-q}^{-1} can be described as follows:

$$G_{-q}^{-1} = \left\{ \Phi(\vec{\omega}) = \sum_{\vec{n}} <: \vec{\omega}^{\otimes \vec{n}} :, \Phi_{\vec{n}} >, \|\Phi\|_{-q}^2 \equiv \sum_{\vec{n}} 2^{-qn} |\Phi_{\vec{n}}|_n^2 < \infty \right\}.$$

Given $\vec{\xi} \in S_d(\mathbb{R})$, let us consider the Wick exponential

$$\begin{split} :& \exp < \vec{\omega}, \vec{\xi} > : \quad \equiv \exp \left(< \vec{\omega}, \vec{\xi} > -\tfrac{1}{2} \sum\limits_{i=1}^d \int \xi_i^2(t) \mathrm{d}t \right) \\ &= \sum\limits_{\vec{n}} \tfrac{1}{\vec{n}!} < : \vec{\omega}^{\otimes \vec{n}} :, \vec{\xi}^{\otimes \vec{n}} >, \; \vec{\omega} \in S_d'(\mathbb{R}). \end{split}$$

Since the sum

$$\sum_{\vec{n}} (\vec{n}!)^2 2^{qn} \left| \frac{1}{\vec{n}!} \vec{\xi}^{\otimes \vec{n}} \right|^2_{L^2_d(\mathbb{R}^n)} = \sum_{\vec{n}} 2^{qn} \left| \vec{\xi} \right|^{2n}_{L^2_d(\mathbb{R})}$$

converges if and only if $2^q \left| \vec{\xi} \right|_{L^2_d(\mathbb{R})}^2 < 1$, the Wick exponentials are not test functions in \mathcal{G}^1 , but they are in those G_q^1 for which $2^q \left| \vec{\xi} \right|_{L^2_d(\mathbb{R})}^2 < 1$. Thus it is still possible to define an S-transform in the space \mathcal{G}^{-1} because every distribution is of finite order. Given $\Phi \in \mathcal{G}^{-1}$, there exists $q \in \mathbb{N}_0$ such that $\Phi \in G_{-q}^{-1}$. For all $\vec{\xi} \in S_d(\mathbb{R})$ with $2^q \left| \vec{\xi} \right|_{L^2_d(\mathbb{R})}^2 < 1$ we define the S-transform of Φ as

$$S\Phi(\vec{\xi}) \equiv \ll \Phi, : \exp <\cdot, \vec{\xi}>: \gg = \sum_{\vec{n}} \left(\Phi_{\vec{n}}, \vec{\xi}^{\boxtimes \vec{n}}\right)_n.$$

This definition extends to complex vectors $\vec{\eta} \in S_{d,c}(\mathbb{R})$ such that $2^q |\vec{\eta}|_{L^2(\mathbb{R})}^2 < 1$,

$$S\Phi(\vec{\eta}) \equiv \ll \Phi, : \exp \langle \cdot, \vec{\eta} \rangle : \gg = \sum_{\vec{n}} (\Phi_{\vec{n}}, \vec{\eta}^{\otimes \vec{n}})_n.$$
 (2)

Therefore, for $\Phi \in G_{-q}^{-1}$, (2) defines the S-transform for every $\vec{\eta}$ from the open neighborhood of zero, $U_q \equiv \{\vec{\eta} \in S_{d,c}(\mathbb{R}) : 2^q |\vec{\eta}|_{L^2(\mathbb{R})}^2 < 1\}, q \in \mathbb{N}_0$.

2.2. Generalization of the gradient operator

We begin with the observation that the Hida derivative ∂_t fails to be pointwise defined on the spaces $G_{\pm a}^{\pm 1}$. However we still may consider the gradient $(\partial^i \cdot)_{1 \leq i \leq d}$ as an operator

$$(\partial^{i}\cdot)_{1\leq i\leq d}:G_{\pm q}^{\pm 1}{\rightarrow}\mathbb{R}^{d}\otimes L^{2}\left(\mathbb{R}\right)\otimes G_{\pm p}^{\pm 1}.$$

Given ψ a test function from \mathcal{G}^1 with kernel functions $\psi_{\vec{n}}$, $n \in \mathbb{N}_0$, we define the operator gradient of ψ , $\nabla \psi \equiv (\partial^i \cdot \psi)_{1 \leq i \leq d}$, where, for each $1 \leq i \leq d$, $\partial^i \cdot \psi$ is the functional from $L^{2}\left(\mathbb{R}\right)\otimes G_{q}^{1},\,q\in\mathbb{N}_{0},\,$ characterized by the sequence

$$\begin{split} \psi_{\vec{n}}^i(t,s) & \equiv (n_i+1) \psi_{\overrightarrow{n+\delta_i}}(s_1^1,...,s_{n_1}^1;...;s_1^i,...,s_{n_i}^i,t;...;s_1^d,...,s_{n_d}^d) & \in L^2\left(\mathbb{R}\right) \otimes L^2(\mathbb{R}^n), \\ & \vec{n} = (n_1,...,n_d). \end{split}$$

In fact,

$$\int_{\mathbb{R}} dt \sum_{\vec{n}} (\vec{n}!)^2 2^{qn} \left| \psi_{\vec{n}}^i(t, \cdot) \right|_n^2 = \sum_{\vec{n}} ((\vec{n} + \vec{\delta_i})!)^2 2^{qn} \left| \psi_{\vec{n} + \vec{\delta_i}} \right|_{n+1}^2$$

$$= 2^{-q} \sum_{\vec{n}, n \ge 1} (\vec{n}!)^2 2^{qn} \left| \psi_{\vec{n}} \right|_n^2,$$

which proves that $\partial^i \cdot \psi \in L^2(\mathbb{R}) \otimes G^1_q$ for every non negative integer number q and, moreover, the continuity of the linear operators $\partial^i: G_q^1 \to L^2(\mathbb{R}) \otimes G_q^1$:

$$\left\|\partial_{.}^{i}\psi\right\|_{L^{2}(\mathbb{R})\otimes G_{q}^{1}}^{2}\leq 2^{-q}\left\|\psi\right\|_{G_{q}^{1}}^{2},\psi\in\mathcal{G}^{1},$$

for every $q \in \mathbb{N}_0$. Hence,

$$\sum_{i=1}^{d} \left\| \partial_{\cdot}^{i} \psi \right\|_{L^{2}(\mathbb{R}) \otimes G_{q}^{1}}^{2} \leq d \cdot 2^{-q} \left\| \psi \right\|_{G_{q}^{1}}^{2}, \psi \in \mathcal{G}^{1},$$

which proves that the linear operator $\nabla:G_q^1\to\mathbb{R}^d\otimes L^2\left(\mathbb{R}\right)\otimes G_q^1$ is continuous. We extend the operator gradient from test functions on \mathcal{G}^1 (introduced above) to distributions on \mathcal{G}^{-1} .

Given a regular generalized function Φ from \mathcal{G}^{-1} , $\Phi \in G_{-q}^{-1}$ for some $q \in \mathbb{N}_0$, characterized by the sequence $(\Phi_{\vec{n}})$, $n \in \mathbb{N}_0$, $\Phi_{\vec{n}} \in L^2(\mathbb{R}^n)$, consider the functional characterized by the sequence

$$\begin{split} &\Phi_{\vec{n}}^{i}(t,s) \equiv (n_{i}+1) \Phi_{\overrightarrow{n+\delta_{i}}}(s_{1}^{1},...,s_{n_{1}}^{1};...;s_{1}^{i},...,s_{n_{i}}^{i},t;...;s_{1}^{d},...,s_{n_{d}}^{d}) \in L^{2}(\mathbb{R}) \otimes L^{2}(\mathbb{R}^{n}), \\ &n \in \mathbb{N}_{0}. \end{split}$$

Using the inequality $2^{-k}k^2 < 2$ for $k = (p-q)n \ge 0$, we have

$$\int_{\mathbb{R}} dt \sum_{\vec{n}} 2^{-pn} (n_{i} + 1)^{2} \left| \Phi_{\overrightarrow{n} + \overrightarrow{\delta_{i}}} (\cdot, t, \cdot) \right|_{n}^{2} = \sum_{\vec{n}} 2^{-pn} (n_{i} + 1)^{2} \left| \Phi_{\overrightarrow{n} + \overrightarrow{\delta_{i}}} \right|_{n+1}^{2}$$

$$= 2^{p} \sum_{\vec{n}} 2^{-q(n+1)} 2^{-(p-q)(n+1)} (n_{i} + 1)^{2} \left| \Phi_{\overrightarrow{n} + \overrightarrow{\delta_{i}}} \right|_{n+1}^{2}$$

$$\leq \frac{2^{p+1}}{(p-q)^{2}} \sum_{\vec{n}} 2^{-q(n+1)} \left| \Phi_{\overrightarrow{n} + \overrightarrow{\delta_{i}}} \right|_{n+1}^{2}$$

$$= \frac{2^{p+1}}{(p-q)^{2}} \sum_{\vec{n}} 2^{-qn} \left| \Phi_{\vec{n}} \right|_{n}^{2}, \tag{3}$$

where the above sum is convergent because $\Phi \in G_{-q}^{-1}$. Hence, the sequence $(\Phi_{\vec{n}}^i)$, $n \in \mathbb{N}_0$, defines a functional from $L^2(\mathbb{R}) \otimes G_{-p}^{-1}$. Keeping the terminology and the notation introduced above, we will denote this functional by $\partial_{\vec{n}}^i \Phi$ and the operator $(\partial_{\vec{n}}^i \Phi)_{1 \leq i \leq d}$ will be called the *gradient of* Φ , denoted by $\nabla \Phi$. Using this notation, it follows from (3) that

$$\|\nabla \Phi\|_{\mathbb{R}^d \otimes L^2(\mathbb{R}) \otimes G_{-p}^{-1}}^2 \le d \frac{2^{p+1}}{(p-q)^2} \|\Phi\|_{G_{-q}^{-1}}^2,$$

for every pair $p>q\geq 0$, which proves that the gradient is a bounded linear operator from G_{-q}^{-1} into $\mathbb{R}^d\otimes L^2(\mathbb{R})\otimes G_{-p}^{-1}$ if p>q.

2.3. An extension of the Skorohod and Itô integrals

In [10] the Skorohod integral was discussed in a white noise setting. An extension to certain generalized white noise integrands can be found in [6].

Considering an element Φ from $L^2(\mathbb{R}) \otimes G_{-q}^{-1}$, for some $q \in \mathbb{N}_0$, characterized by the sequence $\Phi_{\vec{n}}(\cdot;\cdot) \in L^2(\mathbb{R}) \otimes L^2(\mathbb{R}^n)$, $n \in \mathbb{N}_0$, let us consider the functional characterized by the sequence

$$\begin{array}{rcl} \Psi^i_0 & \equiv & 0 \\ \Psi^i_{\vec{n}} & \equiv & \widetilde{\Phi}_{\overbrace{n-\vec{b}}} \in L^2(\mathbb{R}^n), \vec{n} = (n_1,...,n_d), n \in N, \end{array}$$

where $\stackrel{\sim}{\Phi}$ denotes the symmetrization of Φ in the variables $t, s_1^i, ..., s_{n_i-1}^i$. Since, for each $1 \le i \le d$,

$$\sum_{\vec{n},n\geq 1} 2^{-qn} \left| \stackrel{\sim}{\Phi}_{n-\vec{\delta}_{i}} \right|_{n}^{2} \leq \sum_{\vec{n},n\geq 1} 2^{-qn} \left| \Phi_{n-\vec{\delta}_{i}} \right|_{L^{2}(\mathbb{R})\otimes L^{2}(\mathbb{R}^{n-1})}^{2}$$

$$= 2^{-q} \int_{\mathbb{R}} dt \sum_{\vec{n}} 2^{-qn} \left| \Phi_{\vec{n}}(t;\cdot) \right|_{n}^{2}$$

$$= 2^{-q} \left\| \Phi \right\|_{L^{2}(\mathbb{R})\otimes \mathbb{G}_{-n}^{-1}}^{2},$$

$$(4)$$

the sequence $(\Psi_{\vec{n}}^i)$, $n \in \mathbb{N}_0$, defines a distribution from G_{-q}^{-1} . We denote it by $I_i(\Phi)$. For every test function ψ from \mathcal{G}^1 with kernel functions $(\psi_{\vec{n}})$, $n \in \mathbb{N}_0$, we have for each $1 \leq i \leq d$,

$$\begin{split} \ll I_{i}(\Phi), \psi \gg & = \sum_{\vec{n}, n \geq 1} \vec{n}! \left(\stackrel{\sim}{\Phi}_{\overrightarrow{n - \delta_{i}}}, \psi_{\vec{n}} \right)_{n} \\ & = \sum_{\vec{n}, n \geq 1} \vec{n}! \left(\Phi_{\overrightarrow{n - \delta_{i}}}, \psi_{\vec{n}} \right)_{L^{2}(\mathbb{R}) \otimes L^{2}(\mathbb{R}^{n-1})} \\ & = \int_{\mathbb{R}} \mathrm{d}t \sum_{\vec{n}, n \geq 1} (\overrightarrow{n - \delta_{i}})! \left(\Phi_{\overrightarrow{n - \delta_{i}}}(t; \cdot), n_{i} \psi_{\vec{n}}(\cdot, t, \cdot) \right)_{n-1} \\ & = \int_{\mathbb{R}} \mathrm{d}t \ll \Phi(t; \cdot), \partial_{t}^{i} \psi \gg = \ll \Phi, \partial_{i}^{i} \psi \gg, \end{split}$$

and $I_i(\Phi)$ is the unique functional from \mathcal{G}^{-1} for which the above equality holds for every test function $\psi \in \mathcal{G}^1$; if $I'(\Phi)$ is another functional in such conditions, it turns out that $\ll I_i(\Phi) - I'(\Phi)$, \gg is identically equal to zero on \mathcal{G}^1 .

We may now formulate the

Definition. Given Φ an element from $\mathbb{R}^d \otimes L^2(\mathbb{R}) \otimes G_{-q}^{-1}$, for some $q \in \mathbb{N}_0$, we call generalized Skorohod integral of Φ the distribution on \mathcal{G}^{-1} , $I(\Phi)$, defined by the sum

$$I(\Phi) \equiv \sum_{i=1}^{d} I_i(\Phi_i),$$

where, for each i=1,...,d, $I_i(\Phi_i)$ is the unique regular generalized function from \mathcal{G}^{-1} for which the following equality

$$\langle\langle I_i(\Phi_i), \psi \rangle\rangle = \langle\langle \Phi_i, \partial_\cdot^i \psi \rangle\rangle$$

holds for every test function ψ from \mathcal{G}^1 .

This definition generalizes the notion of Skorohod integral. In fact, in the particular situation $\Phi \in \mathbb{R}^d \otimes L^2(\mathbb{R}) \otimes D$,

$$D \equiv \left\{ F \in (L^2) : F(\omega) = \sum_{\vec{n}} <: \omega^{\otimes \vec{n}} :, F_{\vec{n}} >, \ \sum_{\vec{n}} \vec{n}! n \left| F_{\vec{n}} \right|_n^2 < \infty \right\},$$

the generalized Skorohod integral $I(\Phi)$ coincides with the Skorohod integral. In view of the relation between the Skorohod and Itô integral we may add the following remark.

Remark 1. For $t \in \mathbb{R}$, let \mathcal{F}_t denote the σ -algebra generated by the random variables $\{B(s), s \leq t\}$, where $(B_t)_{t \in \mathbb{R}}$ is a d-dimensional Brownian motion. If $F \in \mathbb{R}^d \otimes L^2(\mathbb{R}) \otimes (L^2)$ and it is adapted to the filtration $(\mathcal{F}_t)_{t \in \mathbb{R}}$, then the generalized Skorohod integral I(F) is equal to the Itô integral of F. Without the first condition we speak of a generalized Itô integral.

Before ending this subsection, we return to the sequence of inequalities (4) which imply

$$||I_i(\Phi_i)||_{G_{-q}^{-1}}^2 \le 2^{-q} ||\Phi_i||_{L^2(\mathbb{R}) \otimes G_{-q}^{-1}}^2$$

i.e., I is a bounded linear operator from $\mathbb{R}^d \otimes L^2(\mathbb{R}) \otimes G_{-q}^{-1}$ into G_{-q}^{-1} , $q \in \mathbb{N}_0$.

2.4. Some notations and definitions

For the next sections it is useful to introduce some notations and recall some definitions. We shall denote by Θ_t the Heaviside function

$$\Theta_t(s) \equiv \left\{ \begin{array}{l} 1 \text{ if } s \leq t \\ 0 \text{ if } s > t \end{array} \right.$$

and also the linear operator given by

$$\Theta_t: f(\cdot) \to \Theta_t(\cdot) f(\cdot)$$
.

The functional derivatives $\frac{\delta}{\delta f(t)}$, for suitable G, are defined as

$$\lim_{\varepsilon \to 0} \frac{G(f + \varepsilon f_0) - G(f)}{\varepsilon} = \int f_0(t) \frac{\delta G(f)}{\delta f(t)} dt.$$

In particular for cylinder functions $G(f) = g(\int h(t)f(t) dt)$ where g is a differentiable function, then

$$\frac{\delta G(f)}{\delta f(\tau)} = g' \left(\int h(t) f(t) dt \right) h(\tau). \tag{5}$$

For what follows it is also helpful to define the notion of second quantization of Θ_t , $t \in \mathbb{R}$, defined on the space $\mathcal{G}^{-\infty}$. Recall:

For bounded linear operators A on $L^2(\mathbb{R})$ the linear map which transforms each sequence $(\varphi_{\bar{n}})$, $n \in \mathbb{N}_0$, $\varphi_{\bar{n}} \in L^2(\mathbb{R}^n)$, to the sequence $(A^{\otimes n}\varphi_{\bar{n}})$, $n \in \mathbb{N}_0$, is called the second quantization of A. It is denoted by $\Gamma(A)$.

LEMMA 2.1 For bounded linear operators A on $L^{2}(\mathbb{R})$, $\Gamma(A)$ is a continuous operator on \mathcal{G}^{-1} .

Proof. Given a bounded linear operator A on $L^2(\mathbb{R})$, for every element $\Phi \in \mathcal{G}^{-1}$ (belonging to G_{-q}^{-1} , for some q), we have,

$$\sum_{\vec{n}} 2^{-pn} |A^{\otimes n} \Phi_{\vec{n}}|_n^2 \le \sum_{\vec{n}} 2^{-pn} ||A||^{2n} |\Phi_{\vec{n}}|_n^2,$$

for every non negative integer number p. If $\|A\|^2 \leq 2^{p-q}$ for some $p \in \mathbb{N}_0$ the above sum is majorized by $\|\Phi\|_{G_{-q}^{-1}}^2$ and the second quantization of A is a bounded linear operator from G_{-q}^{-1} into G_{-p}^{-1} . In particular, if $\|A\| \leq 1$, $\Gamma(A)$ is a bounded linear operator from G_{-p}^{-1} into itself. The lemma is proved.

In particular, for $A = \Theta_t$, for some $t \in \mathbb{R}$, it follows that

$$\left\|\Gamma(\Theta_t)\Phi\right\|_{G_{-q}^{-1}}^2 \leq \sum_{\vec{\boldsymbol{\pi}}} 2^{-qn} \left|\Theta_t^{\otimes n} \Phi_{\vec{\boldsymbol{n}}}\right|_n^2 \leq \left\|\Phi\right\|_{G_{-q}^{-1}}^2,$$

for every $q \in \mathbb{N}_0$. Hence $\Gamma(\Theta_t)$ is a bounded linear operator from the space of regular generalized functions \mathcal{G}^{-1} into itself.

Remark 2. Consider the σ -algebra \mathcal{F}_t generated by the random variables $\{B(s), s \leq t\}$. $\Gamma(\Theta_t)\Phi$ coincides with the conditional expectation for elements Φ from \mathcal{G}^{-1} with respect to \mathcal{F}_t , as introduced in [8].

3. THE GENERALIZED CLARK-OCONE FORMULA

Now we are prepared to present the main result of this note. It generalizes the well known Clark-Ocone formula to regular generalized functions of white noise, *i.e.*, to the space \mathcal{G}^{-1} .

THEOREM 3.1 (Generalized Clark-Ocone Formula) Let Φ be a regular generalized function, $\Phi \in \mathcal{G}^{-1}$. Then it can be written as a generalized Itô integral

$$\Phi = \mathbf{E}\left(\Phi\right) + I(m)$$

with

$$m_i(t) = \Gamma(\Theta_t) \partial_t^i \Phi$$

Proof. We begin by noting that the integrand m is non-anticipating. Let Φ be an arbitrary element from \mathcal{G}^{-1} , *i.e.*, $\Phi \in G_{-q}^{-1}$ for some q, characterized by the sequence $(\Phi_{\vec{n}})$, $n \in \mathbb{N}_0$. Hence, for every test function $\psi \in \mathcal{G}^1$ with kernel functions given by $(\psi_{\vec{n}})$, $n \in \mathbb{N}_0$, we have

$$\ll\Phi,\psi\gg=\mathbf{E}\left(\Phi\right)\mathbf{E}\left(\psi\right)+\sum_{\vec{n},n\geq1}\vec{n}!\left(\Phi_{\vec{n}},\psi_{\vec{n}}\right)_{n},$$

where, for each n-tuple $\vec{n} = (n_1, \dots, n_d)$ such that $n \geq 1$,

$$(\Phi_{\vec{n}}, \psi_{\vec{n}})_n = \int_{\mathbb{R}^n} d^n s \, \Phi_{\vec{n}}(\ldots; s_1^i, \ldots, s_{n_i}^i; \ldots) \psi_{\vec{n}}(\ldots; s_1^i, \ldots, s_{n_i}^i; \ldots).$$

Taking each variable s_j^i , $j=1,\ldots,n_i$, $i=1,\ldots,d$, in term, in the range $s_j^i \ge \sup_{l} s_k^l$, the above integral can be written as $(l,k)\neq (i,j)$

$$\sum_{i=1}^{d} \sum_{j=1}^{n_i} \int_{\mathbb{R}} \mathrm{d}s_j^i \int_{-\infty}^{s_j^i} \mathrm{d}^{n-1} s \, \Phi_{\vec{n}}(\dots; s_1^i, \dots, s_j^i, \dots, s_{n_i}^i; \dots) \psi_{\vec{n}}(\dots; s_1^i, \dots, s_j^i, \dots, s_{n_i}^i; \dots),$$

which is equal to

$$\sum_{i=1}^d n_i \int_{\mathbb{R}} d\tau \int_{-\infty}^{\tau} d^{n-1}s \, \Phi_{\vec{n}}(\ldots;\tau,s_1^i,\ldots,s_{n_i-1}^i;\ldots) \psi_{\vec{n}}(\ldots;\tau,s_1^i,\ldots,s_{n_i-1}^i;\ldots),$$

by the symmetry of $\Phi_{\vec{n}}$ and the kernel function $\psi_{\vec{n}}$ with respect to each n_i -tuple of variables $(s_1^i, \ldots, s_{n_i}^i)$, $i = 1, \ldots, d$. This means,

$$\ll \Phi, \psi \gg -\mathbf{E}(\Phi)\mathbf{E}(\psi) = \sum_{\vec{n}, n \geq 1} \vec{n}! \sum_{i=1}^{d} n_i \int_{\mathbb{R}} d\tau \left(\Theta_{\tau}^{\otimes (n-1)} \Phi_{\vec{n}}(\cdot, \tau, \cdot), \psi_{\vec{n}}(\cdot, \tau, \cdot)\right)_{n-1} \\
= \sum_{i=1}^{d} \int_{\mathbb{R}} d\tau \sum_{\vec{n}, n_i \geq 1} \vec{n}! n_i \left(\Theta_{\tau}^{\otimes (n-1)} \Phi_{\vec{n}}(\cdot, \tau, \cdot), \psi_{\vec{n}}(\cdot, \tau, \cdot)\right)_{n-1} \\
= \sum_{i=1}^{d} \int_{\mathbb{R}} d\tau \sum_{\vec{n}, n_i \geq 1} (\overrightarrow{n - \delta_i})! \left(\Theta_{\tau}^{\otimes (n-1)} n_i \Phi_{\vec{n}}(\cdot, \tau, \cdot), n_i \psi_{\vec{n}}(\cdot, \tau, \cdot)\right)_{n-1} \\
= \sum_{i=1}^{d} \int_{\mathbb{R}} d\tau \sum_{\vec{n}} \vec{n}! \left(\Theta_{\tau}^{\otimes n}(n_i + 1) \Phi_{\overrightarrow{n + \delta_i}}(\cdot, \tau, \cdot), (n_i + 1) \psi_{\overrightarrow{n + \delta_i}}(\cdot, \tau, \cdot)\right)_{n} \\
= \sum_{i=1}^{d} \ll \Gamma(\Theta_i) \partial_i \Phi, \partial_i \psi \gg .$$

Therefore,

$$\ll \Phi, \psi \gg = \mathbf{E}(\Phi)\mathbf{E}(\psi) + \sum_{i=1}^{d} \ll I_i(\Gamma(\Theta_i)\partial_i^i\Phi), \psi \gg,$$

for every ψ belongs to \mathcal{G}^1 , which implies the result. Theorem 3.1 is proved.

4. S-TRANSFORM

In this section, we find an expression to the S-transform of a regular generalized function $\Phi \in \mathcal{G}^{-1}$ which corresponds to the Clark-Ocone formula established above.

THEOREM 4.1 Given a regular generalized function Φ from \mathcal{G}^{-1} and $q \in \mathbb{N}_0$ such that $\Phi \in \mathcal{G}_{-q}^{-1}$, its S-transform is equal to

$$S\Phi(\vec{\eta}) = \mathbf{E}(\Phi) + \sum_{i=1}^{d} \int_{\mathbb{R}} d\tau \, \eta_i(\tau) \frac{\delta}{\delta \eta_i(\tau)} S(\Phi)(\Theta_{\tau} \vec{\eta}),$$

for every $\vec{\eta} = (\eta_1, ..., \eta_d) \in U_q$.

Proof. Taking $\Phi \in \mathcal{G}^{-1}$ characterized by the sequence $(\Phi_{\vec{n}})$, $n \in \mathbb{N}_0$, such that $\Phi \in G_{-q}^{-1}$ for some $q \in \mathbb{N}_0$, for every test function $\vec{\eta} = (\eta_1, ..., \eta_d) \in S_{d,c}(\mathbb{R})$ with $2^q |\vec{\eta}|_{L_d^2(\mathbb{R})}^2 < 1$ we have

$$S\Phi(\vec{\eta}) = \mathbf{E}(\Phi) + \sum_{i=1}^{d} \ll I_{i}(\Gamma(\Theta_{\cdot})\partial_{\cdot}^{i}\Phi), : \exp \langle \cdot, \vec{\eta} \rangle : \gg .$$
 (6)

Here,

$$\sum_{i=1}^d \ll I_i(\Gamma(\Theta_{\cdot})\partial_{\cdot}^i\Phi), : \exp <\cdot, \vec{\eta}>: \gg = \sum_{\vec{n}, n \geq 1} \left(\Phi_{\vec{n}}, \vec{\eta}^{\otimes \vec{n}}\right)_n.$$

Using the symmetry of $\Phi_{\vec{n}}$ in each n_i -tuple of variables $(s_1^i, \ldots, s_{n_i}^i)$, $i = 1, \ldots, d$, it follows that

$$\begin{split} \left(\Phi_{\vec{n}}, \vec{\eta}^{\otimes \vec{n}}\right)_n &= \int_{\mathbb{R}^n} \mathrm{d}^n s \Phi_{\vec{n}} \left(\dots; s_1^i, \dots, s_{n_i}^i; \dots\right) \prod_{k=1}^d \eta_k(s_1^k) \cdots \eta_k(s_{n_k}^k) \\ &= \sum_{i=1}^d \sum_{j=1}^{n_i} \int_{\mathbb{R}} \mathrm{d} s_j^i \int_{-\infty}^{s_j^i} \mathrm{d}^{n-1} s \Phi_{\vec{n}} \left(\dots; s_1^i, \dots, s_{n_i}^i; \dots\right) \prod_{k=1}^d \eta_k(s_1^k) \cdots \eta_k(s_{n_k}^k) \\ &= \sum_{i=1}^d n_i \int_{\mathbb{R}} \mathrm{d} \tau \int_{-\infty}^\tau \mathrm{d}^{n-1} s \Phi_{\vec{n}} \left(\dots; \tau, s_1^i, \dots, s_{n_i-1}^i; \dots\right) \cdot \\ &\times \eta_i(\tau) \eta_i(s_1^i) \cdots \eta_i(s_{n_i-1}^i) \prod_{k=1, k \neq i}^d \eta_k(s_1^k) \cdots \eta_k(s_{n_k}^k) \\ &= \sum_{i=1}^d \int_{\mathbb{R}} \mathrm{d} \tau \, \eta_i(\tau) \left(n_i \int_{-\infty}^\tau \mathrm{d}^{n-1} s \Phi_{\vec{n}} \left(\cdot, \tau, \cdot\right) \vec{\eta}^{\otimes \overrightarrow{n} - \overrightarrow{\delta_i}} \right). \end{split}$$

Thus

$$\sum_{\vec{n}, n > 1} (\Phi_{\vec{n}}, \vec{\eta}^{\otimes \vec{n}})_n = \sum_{i=1}^d \int_{\mathbb{R}} d\tau \, \eta_i(\tau) \mu_i(\tau),$$

where

$$\mu_i(\tau) \equiv \sum_{\vec{n}, n_i \ge 1} n_i \int_{-\infty}^{\tau} d^{n-1} s \Phi_{\vec{n}}(\cdot, \tau, \cdot) \vec{\eta}^{\otimes n - \delta_i}, \ \tau \in \mathbb{R}.$$

But, for each τ ,

$$\begin{array}{lcl} \mu_i(\tau) & = & \displaystyle\sum_{\vec{n},n_i\geq 1} \left(n_i \Theta_{\tau}^{\otimes n-1} \Phi_{\vec{n}}(\cdot,\tau,\cdot), \vec{\eta}^{\otimes \overrightarrow{n-\delta_i}}\right)_{n-1} \\ & = & S\Big(\Gamma(\Theta_{\tau}) \partial_{\tau}^i \Phi\Big)(\vec{\eta}). \end{array}$$

Hence, (6) can be written as

$$S\Phi(\vec{\eta}) = \mathbf{E}(\Phi) + \sum_{i=1}^{d} \int_{\mathbb{R}} d\tau \, \eta_{i}(\tau) S\Big(\Gamma(\Theta_{\tau})\partial_{\tau}^{i} \Phi\Big)(\vec{\eta}).$$

Observing that, for each τ ,

$$S\left(\Gamma(\Theta_{\tau})\partial_{\tau}^{i}\Phi\right)(\vec{\eta}) = \sum_{\vec{n}}(n_{i}+1)\int_{\mathbb{R}^{n}}d^{n}s\,\Phi_{\overrightarrow{n+\delta_{i}}}(\cdot,\tau,\cdot)(\Theta_{\tau}\vec{\eta})^{\otimes\vec{n}}$$
$$= \frac{\delta}{\delta\eta_{i}(\tau)}S(\Phi)(\Theta_{\tau}\vec{\eta}),$$

there follows the required equality

$$S\Phi(\vec{\eta}) = \mathbf{E}(\Phi) + \sum_{i=1}^{d} \int_{\mathbb{R}} d\tau \, \eta_i(\tau) \frac{\delta}{\delta \eta_i(\tau)} S(\Phi)(\Theta_{\tau} \vec{\eta}).$$

Theorem 4.1 is proved.

5. AN EXAMPLE

As an application of the above let us consider Φ equal to the Donsker delta function which we may consider defined as a Fourier (Bochner) integral [10]

$$\delta(B(t) - a) = \frac{1}{2\pi} \int_{\mathbb{R}} d\lambda \, e^{i\lambda(B(t) - a)},$$

with S-transform

$$(S\delta(B(t)-a))(f) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{\left(\int_0^t f(s) \, \mathrm{d}s - a\right)^2}{2t}\right), \ f \in S_c(\mathbb{R}). \tag{7}$$

It is well known that $\delta(B(t)-a)$ is in \mathcal{G}^{-1} . From Theorems 3.1 and 4.1 it follows that

$$\delta(B(t) - a) = \mathbf{E} \left(\delta(B(t) - a)\right) + \int dB(\tau)m(\tau)$$

with

$$Sm(\tau)(f) = \frac{\delta}{\delta f(\tau)} S(\Phi)(\Theta_{\tau} f).$$

The functional derivative of (7) is calculated straightforwardly using (5)

$$\left(\frac{\delta}{\delta f(\tau)}S(\Phi)\right)(f) = -\frac{1_{[0,t]}(\tau)}{\sqrt{2\pi t^3}}\left(\int_0^t f(s)\,\mathrm{d}s - a\right)\exp\left(-\frac{\left(\int_0^t f(s)\,\mathrm{d}s - a\right)^2}{2t}\right)$$

(here, $1_{[0,t]}$ denotes the indicator function of the interval [0,t]), so that, projecting the f with Θ_{τ} , we obtain

$$(Sm(\tau))(f) = -\frac{1_{[0,t]}(\tau)}{\sqrt{2\pi t^3}} \left(\int_0^{\tau} f(s) \, \mathrm{d}s - a \right) \exp\left(-\frac{\left(\int_0^{\tau} f(s) \, \mathrm{d}s - a \right)^2}{2t} \right).$$

Note that the rhs depends only on

$$\lambda \equiv \int f(s)e(s)\,\mathrm{d}s$$

where $e = \frac{1}{\sqrt{\tau}} 1_{[0,\tau]}$ is a unit vector in $L^2(\mathbb{R})$. Consequently, m depends only on the normal random variable

$$x = <\omega, e> = \frac{1}{\sqrt{\tau}}B(\tau)$$

and

$$m(\tau) = h\left(\frac{1}{\sqrt{\tau}}B(\tau)\right)$$

with S-transform

$$\int \frac{\mathrm{d}x}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} h(x) \mathrm{e}^{\lambda x} \mathrm{e}^{-\frac{1}{2}\lambda^2} = -\frac{1_{[0,t]}(\tau)}{\sqrt{2\pi t^3}} \left(\sqrt{\tau}\lambda - a\right) \exp\left(-\frac{\left(\sqrt{\tau}\lambda - a\right)^2}{2t}\right).$$

To obtain m itself we must thus calculate the inverse Laplace transform of

$$q(\lambda) = -\frac{1_{[0,t]}(\tau)}{\sqrt{t^3}} \left(\sqrt{\tau}\lambda - a\right) e^{-\frac{\left(\sqrt{\tau}\lambda - a\right)^2}{2t}} e^{\frac{1}{2}\lambda^2}$$

which gives

$$h(x) = -\frac{1_{[0,t]}(\tau)}{\sqrt{t^3}} \left(\frac{t}{t-\tau}\right)^{3/2} (\sqrt{\tau}x - a) \exp\left(-\frac{(\sqrt{\tau}x - a)^2}{2(t-\tau)}\right).$$

Substituting

$$x = \frac{1}{\sqrt{\tau}}B(\tau)$$

we finally obtain

$$m(\tau) = -\frac{1_{[0,t]}(\tau)}{\sqrt{(t-\tau)^3}} (B(\tau) - a) \exp\left(-\frac{(B(\tau) - a)^2}{2(t-\tau)}\right).$$

One notes that $m(\tau)$ is an adapted random variable in (L^2) as long as $\tau < t$, and it permits conventional Itô integration. It is thus not hard to show that, as a limit in \mathcal{G}^{-1} ,

$$\delta(B(t) - a) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{a^2}{2t}} + \lim_{\epsilon \to +0} \int_0^{t-\epsilon} dB(\tau) m(\tau).$$

Acknowledgments

This work has had partial support from PRAXIS XXI and FEDER. M. J. O. is grateful for an encouraging discussion with Prof. B. Øksendal, and for hospitality at CCM; L. S. would like to express his gratitude for the generous hospitality of the Grupo de Física Matemática da Universidade de Lisboa, under the auspices of a "Marie Curie" fellowship (ERBFMBICT 971949). Prof. Yu. Kondratiev improved the manuscript by many helpful comments.

REFERENCES

- K. Aase, B. Øksendal, J. Ubøe. White noise generalizations of the Clark-Ocone theorem with application to mathematical finance. MaPhySto Research Report no 30, University of Aarhus (1998).
- 2. K. Aase, B. Øksendal, J. Ubøe. Using the Donsker delta function to compute hedging strategies. Preprint University of Oslo nº 6 (1998).
- 3. F. E. Benth. An Addendum to 'An Introduction to Malliavin Calculus with Applications to Economics'. MaPhySto Miscellanea no 1, University of Aarhus (1998).
- 4. F. E. Benth, J. Potthoff. On the martingale property for generalized stochastic processes, *Stochastics Stochastics Rep.* **58** (3-4), 349-367 (1996).
- 5. J. M. C. Clark. The representation of functionals of Brownian motion by stochastic integrals, *Ann. Math. Stat.* 41 1282–1295 (1970) and 42, 1778 (1971).
- 6. Th. Deck, J. Potthoff, G. Vage. A review of white noise analysis from a probabilistic standpoint. *Acta Appl. Math.* 48, 91–112 (1997).
- 7. M. de Faria, C. Drumond, L. Streit. The renormalization of self intersection local times. I: The chaos expansion. Preprint IFM 1/98, Grupo de Física Matemática da Universidade de Lisboa (1998).
- 8. M. Grothaus, Yu. G. Kondratiev, L. Streit. Regular generalized functions in Gaussian analysis. Preprint 23/97, Universidade da Madeira, 1997. To appear in *Infinite Dim. Anal. Quantum Prob.* 2 (1)(1999).
- 9. M. Grothaus, Yu. G. Kondratiev, G. F. Us. Wick calculus for regular generalized stochastic functionals, *Random Oper. Stochastic Equations* 7, 3, 263-290, (1999).
- 10. T. Hida, H. H. Kuo, J. Potthoff, L. Streit. White Noise. An Infinite Dimensional Calculus. Kluwer, Dordrecht (1993).
- 11. Yu. G. Kondratiev, P. Leukert, L. Streit. Wick calculus in Gaussian analysis. *Acta Appl. Math.* 44, 269–294 (1996).
- 12. H. H. Kuo. White Noise Distribution Theory. CRC Press, Boca Raton (1996).
- 13. N. Obata. White Noise Calculus and Fock Space. Lecture Notes in Math. 1577, Springer-Verlag (1994).
- 14. D. Ocone. Malliavin's calculus and stochastic integral representations of functionals of diffusion processes, *Stochastics* 12, 161–185 (1984).
- 15. B. Øksendal. An introduction to Malliavin calculus with applications to economics. Working Paper n° 3/96, Norwegian School of Economics and Business Administration (1996).
- 16. J. Potthoff, M. Timpel. On a dual pair of spaces of smooth and generalized random variables, *Potential Analysis* 4, 637-654 (1995).
- 17. A. S. Üstünel. Representation of the distributions on Wiener space and stochastic calculus of variations, *JFA* 70, 126–139 (1987).