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1. Introduction

Let (u, H, X) be the classical Wiener space, nam¥lis the space of continuous
functionsz: [0, 1] — R™ such that:(0) = 0, u the Wiener measure artithe cor-
responding Cameron—Martin space. Considering on a probability $Qad¢e P)

a X-valued semimartingale with respect tXavalued Brownian motioiV;, X,
such that the image measuxe(P) has a density iL.?(;), we prove in paragraph
3 a generalization of Bismut-8t+Kunita formula [1, 2] forF;(X;) whereF is a
Wiener functional

F:[0,T]x X x Q — X

and, for each: € X, F.(x) is another continuous semimartingale. This general-
ization will be essential to establish in section 4 the uniqueness result for Wiener
space valued processes (Theorem 4.2). This theorem allows to establish the path-
wise unigueness for a particular class of Wiener space valued Bernstein processes
(paragraph 5).

We mention that in infinite dimensions not many general results about existence
and uniqueness for stochastic differential equations are available, particularly in
the cases where the drift and diffusion coefficients are not smooth or are time-
dependent. In the framework of Dirichlet forms, the situation where the coefficients
are time-independent has been intensively studied (for example, [3]). To the class
of Bernstein processes treated in the end of this paper these methods do not apply.
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2. Sobolev Spaces for Banach Space Valued Wiener Functionals

In this paper we will work with the Sobolev spaces for Banach space valued
Wiener functionals introduced by [4], which are constructed using the operator
norm for the derivatives instead of the Hilbert—-Schmidt norm. The corresponding
Sobolev norms are strictly weaker than the usual Malliavin Sobolev norms. For the
construction of these weaker Sobolev spaces we refer to [4].

Let B be a Banach space aiig(H; B) the Banach space of boundedinear
B-valued operators defined ¢hwith the norm

[Tllop = sup || T(ha,...,ha)lls-
hi€H, ||hi||=1
Let L?(H; B) be the subspace of finite dimensional linear mappings definéd on
with values inB, and letfo(H; B) be its closure irL1(H; B). The space&. (H; B)
are defined recursively using the canonical identification,

L, (H;B) «— Li(H; L,—1(H;B)).

Namely,Z) (H; B) = To(H; To_,(H; B)).

In order to define thél-derivative of aB-valued functional, we consider the set
W1(X;B) of theB-valued Wiener functionalg such that, for each € H there is
a functionalf;, verifying

() fu(z) = f(2) pae.inz;
(i) The functional f(x + th) is stronglyBx /Bg-measurable and there exists a
L4(H; B)-valued strongly measurable functionalf for which the equality

fn(z+th) = frn(x) + /Ot Df(x+ sh)hds,

is satisfied for every € R andu almost everywhere im.

The Wiener functionaD f will be called theH-derivative of f and is uniquely
defined up to a set of measure zero (cf. [5], Prop. 3.2). This defines thélfirst
derivative of elements ifi’(X; B).

The construction of the higher ordel-derivativesD' is made by recurrence.
For that, the following spaces &fjets are introduced

BQI:B,
Br:=Bx Li(H;B) x--- x Lg(H;B), k>0,

with the norms,

k 1/p
[[(So, S1,- -, Sk, = (HSOHZE; + ||5i\|%p> , 1< p<+oo.
i=1
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WIENER-SPACE VALUED STOCHASTIC DIFFERENTIAL EQUATIONS 79
Given f € W(X;B), the 1-jet off is defined as thé;-valued functional

Ja(f) = (f,Df).
Hence, for anyf ¢ W1(X;B) such thatj;(f) € W(X; B;1) one can define the

second derivative of and, in a recursive way, the higher order derivatives and the
sets

WEX;B) == {f € WFYX;B):jr_1(f) € WHX; Br_1)}.
By definition, givenf € W¥(X; B), D* f istheL,(H; B)-valued functional obtained
by taking theL;(H;B) component ofj1(j,_1(f)). For af ¢ W¥*(X;B), we will

denoteji,(f) = (f.Df,...,D"f).
The weaker Sobolev spacﬁgf(x; B) are defined, for each, p > 1, by

Wp0B) = {7 e WHoGB): [ i, dn < ool

which is a Banach space for the norm

o= ([ 1 0n)

We observe that for eadh p > 1,
WE(X;B) € W(X;B),

whereWW}(X; B) are the Sobolev spaces introduced in [6], provided with the norm
defined in [6] also denote here Hy |1 ,.

3. A Bismut—It6—Kunita Formula in Infinite Dimensions

In this paragraph we generalize the Bismui—Kunita formula [1, 2] for our
Wiener space framework. This formula gives the rule for the composition of Wiener
functionals and semimartingales with values on the Wiener space.

On a probability spacé?, F, P) provided with a complete right continuous
filtration, consider a semimartingale on the Wiener spaoé the form

t t
Xt:X0+/ Asds+/ (I + B,)dW.,,
0 0

wherelV is aX-valued Brownian motion and € L4([0, T xQ; X), B € L8(]0, T] x
Q; L s.(H;H)) are progressively measurable processes.
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80 M. J. OLIVEIRA

We shall assume the existence, for eaeh0, 7], of a functionK;: X — R
such thatkK™ as function oft andz € X is square integrable and

Ef(X)) = /X £ (@) K@) du(x), (3.1)

for all functionalsf for which both sides of the last equality make sense. Assume
that Ko belongs to thd.?(X) space.
Under these conditions we derive the following result.

THEOREM 3.1Let F:[0,T] x X x © — X be a Wiener functional such that for
eachz € X F.(z) is a continuous semimartingale of the form

Fie) = Fole) + [ asla)ds+ [ (7+0.(0) s, (3.2)

where

() W is aX-valued Brownian motian
(i) For u —aexin X, a(z):[0,T] x @ — X, b(x):[0,T] x Q@ — Ly s (H;H)
are progressively measurable processes
(i) For P —aew, t€(0,T], ai(w) € WE(X;X), by(w) €e WE(X; Lu.s.(H;H))
and the integrals

T T
B[ lag B[,

are finite for eacl2 < p < oo. If

(iv) for eacht andz, a;(x) — x € H;

(v) foreach0< ¢t < T,1=1,2,3, Dlay(z) € f?(H;X), p-a.e.in .

(vi) Almost surelyfy € ﬂpW:f(X;X) andFp € L3(%; Wf) for everyp > 2.

(vii) VFypisthe form/ + Howith Hoa Ly s.(H; H)-valued functionalD™ Fy(z) €
fg(H;X) forn = 1,2,3, p-a.e.in z,

thenF;(X;) is a stochastic process with an almost surely continuous version given
by the following equation

R(X) = Fo(Xo) + [ (I+bu(X.)) diF,
+/Otas(Xs)ds+/Ot(VFs(XS),AS)ds
+ /0 (VE(X). (I + Bl diwy)

‘- /Ot Tr(I + BJ)"V2E,(X,)(I + B.))ds
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WIENER-SPACE VALUED STOCHASTIC DIFFERENTIAL EQUATIONS 81

+ /Ot vbs(Xs)(I + Bs) d<VV’ W>S (3.3)

REMARK 3.2. This theorem generalizes thé formula shown in [7] for non
random Wiener functionalg'.

Proof.Let {e; }22, be an Hilbertian basis fdi. For eachn we denote bye" "
the conditional expectation dr,, whereV/, is the finite dimensional subspace of
H generated byey, ..., e, }, byII": X — R" the extension t&X of the orthogonal
projection oH — R"™, and byiIl,,- the orthogonal projection of the separable Hilbert
spacely.s.(H;H) toR™ x R™.

For simplicity, denote byF,,, a,:, bn:, respectively, the approximations
O(EV» Fy), I"(EYray), I1,,(EV2b;), t € [0, T). It follows from (3.2) that

Furle) = Faole) + [ any(a)ds [ (14 by () 0% (3.4)

Assuming the assumptions (i)—(vi), it follows that, for eactalmost surelyF;
belongs to all spacé®? (X; X), p > 2. Thus, by [8] and [4], we may conclude that

Foty ang € (\WEVii Va)y by € (YW (Vi R x R™). (3.5)
p p

Furthermore, denoting generically or a; by f;, t € [0, T1, it holds by [8] and
[4],

™ (B fo) 13
L (Y1) 3,

).

1fell3ps

3.6
llbellzp, VR eN, tel0,T], (36

<
<

and the sequend@I™(E"" f;)},, (resp.{IL,(E""b;)},) converges tq'; (resp.b;)
in Wé’ (resp.,W?¥) for all integerp > 2.

Conditions (3.5) and the Sobolev imersion theorem enables us to rewrite each
function F,;, a4, bne, t € [0,T], on the form, respectively

Fnt(x) = fnt('xla .. axn)a
an(T) = ang(z1, ..., Tp), 3.7)
bnt(x) :ﬁnt('xla"')xn)a Ty = (:Cael')H) x exa te [O)T]a

for P-almost everywher«é]2 functions onR"”, f,;, ap;:R" — R", 3, :R" —
R™ x R™. Consequently, we are in conditions to apply the BismotHiunita
formula ([1, 2]) to the process (3.4). We obtain

FuX0) = Fao(X0) + [ (1 buy(X) AW, + [ an (X

4 [(VF(X0), 4 ds 4 [ (VEL(X), (5 + B W)
0 0
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82 M. J. OLIVEIRA

+% /t Tr((I + Bs)"V2Fs(Xs)(I + By)) ds

+/ Vbns(X) (I + Bs) d(W, W),.

Hence, from (3.8), we can deduce,

4
<E l sup HFnt(Xt) - Fmt(Xt)Hg(]>

o<t<T

<k {(E\|Fn0(Xo) — Frno(Xo)[1%)*
271\ 4
)
27\ 4
)

( sup /(VFM( ) = VEna(X,), Ay) ds
otT 0

+<E sup /Ot(bns(Xs)—bms(Xs))dWS

10<t<T

+
S|

< Oi‘i%“ /0 (ans(XS) B ams(Xs)) ds

+
S|

"
)
T

+
&=

t
( sup | [ (VEwL(X) ~ VEu(X,),d7,)
o<t<T 110

+<E_sup /O(VFnS( J) = VEna(X,), B, W)

lo<t<T
1 sup
2 0<t<T

_szms(Xs))(I + BS)] dS

/ TH(I + Bo)* (V2Fp,y(X,)

)

t
+<E[sup / (Vbns(X,)
o<t<T 1o

_mes(Xs))(I + BS) d<W7 MN/>8

I}

wherek is a positive constant.
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WIENER-SPACE VALUED STOCHASTIC DIFFERENTIAL EQUATIONS 83

Next, we will estimate the norms envolved in the right-hand side of the inequality
(3.9). For example, considering the first, the second and the penultimate terms of
the right-hand side of (3.9) we have, respectively,

E||Fao(Xo) — Fmo(Xo) 1%

< ([ usotezan) - ([ BlFole) - Fuotr)l tuie))

< ||K0||L2(X (Bl Fao = FolFsxx) ™

A (E||Fpo — moHWg . X))l/4 (¢! independent of. andm);
’ 2
E [ sup / (bns(Xs) - bms(Xs))dWS ]
o<t<T 0 H

T
< 4B /0 bt (Xe) = bg(Xe) 12, & i) Ot

T

_4 /0 /x Ellbus(®) = bua(@)|2,, . a0y () dpa() i

T 1/2
4 </0 /XEant(x) — bmt(x)HiHASA(H;H) du(x) dt) )
1/2
</ / (K(z dt)

T 1/4

<d </0 Eant - bth%S(XIH_S‘(H;H)) dt)

. 1/4
17 8
<t () Bl =l s e )

(¢! independent of. andm),

by the Doob and Elder inequalities; and

E l sup /OtTr[(I+3) (V2Fns(Xs) = V2Fns(Xs))( + By)] ds

o<t<T

21

T
< 4TE/0 (IBell* + 4 Bel? + DI V2 Fp(Xy) — V2 Fyy (X || it
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T
< 4T/ E|V2F,(Xy) — V2Fpi(X0) |2 ol
0

T 1/2
44T < / E||V?F,,(X;) — VZFmt(Xt)\\A'dt) :
0

T 1/2 T 1/2
{<E/ ||Bt||8dt> +4<E/ ||Bt||4dt> }
0 0

< [ [ BIVE(e) — V2 Fn )P Kol) )
T 1/2
e ( | BIT2Fa@) = P2 Fe) [ Ko(a) () dt)

T 1/2
/ 2 2 4
<c {( /0 /X E|V2E, () — V2Ey(2)]|* dps(z) dt)

T 1/4
2 2 8
+ ( /0 /X E|V2E, (x) — V2Eyy(2)| du(w)dt> }

T 1/4
117 8
<e (/0 E\\Fm—Fmtuwg(x;x)dt)

(c"T independent of, andm),

applying the Hlder inequality.
The remaining terms of (3.9) can be estimated analogously. Thus we conclude
from (3.9) that

4
<E [ sup HFnt(Xt) - Fmt(Xt)||§]>

o<t<T

T
8
< C{E/o ||ant —a/thf/f/:?(x;x) dt
4B [ owy = b8 d
o N0t T OmtiwE(XiLps.(HiH))

T
B [ 1B = Pl S,
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for a positive real numberindependent of andm.
Since F,,; (= I"(EY" F})) converges taF; in WE(X; X), t € [0,7], and by
(3.6) it holds

|0 (B Fy) - R8s < clI(E"F) 85 + el Bl
< 2||Fi|j§s. ¥neN,

for a positive constant, with

T 8
B[ IFed

T T
< k{E||Fo||§,8+E/O Hat||§,8dt+E/0 \|I+bt||§,8dt},

we may conclude by the Lebesgue dominated convergence theorem that

T
. 8 .

Therefore F,,, n €N, is a Cauchy sequence Iif (2 x [0, T]; W8(X; X)), i.e,,
T
. 8 o
n’TI:LrEOOE A | Fre — Fmt”ﬁfg(x;X) dt =0. (3.11)

Analogously, we derive the following equalities
T

im E ||ant

8
— am||> dt=0
n,m— 00 0 thW;(X;X) ’

T
: 8 i 3.12
odm B [ e = b iz o iy 9 = O, (312)

n,LierooEHFno B FmOHIS/T/sS(X;X) =0
Thus, by (3.10), (3.11) and (3.12) we obtain

im E l SUp || Fny(X:) — Fr(X1) 4| = O,

n,m— oo o<t<T
which implies the existence of a subsequencg pfstill denoted byF},), such that

lim  sup ||[Fn (X)) — Fne(Xe)|lx =0 gs. P;

n,M—00 gy
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86 M. J. OLIVEIRA

these means, by Cauchy criteria, almost everywhere the seqHgicg ), n € N,
converges uniformly in the intervid, T').

Finally, sinceX is a stochastic process with continuous sample pathsgnd
is a continuous semimartingale — (3.4) — which admits a representatiolC’as a
function (as we observed on (3.7)), it follows that the applicatien F,,;(X})
is continuous, which enables us to conclude (by the uniform convergence) the
continuity almost everywhere of the applicatior> F;(X;). O

REMARK 3.3. The estimates we obtained for each term of the right-hand side of
(3.9) also enable us to conclude that each term of (3.9) converges uniformly on
[0, T'] to the correspondent term of the right-hand side of (3.3).

4. An Uniqueness Result

We shall use the theorem obtained in last paragraph to derive an uniqueness result
for solutions of Wiener space valued stochastic differential equations. This will be
useful to study the Bernstein processes in next section.

Givena:[0,7] x X — X, b:[0,T] x X — Lg.s.(H;H) such that, for each
t€[0,T1,

ar € (YWEX;X), b € (\WE(X; Las.(HH)), (4.1)
p p
and, for every X p < oo, the integrals
T T

el a [, o 42)
are finite, consider the following stochastic differential equation
We assume thapi-a.e.x € X, exists a weak solution,

(X1e(2), W), (@, F, P). {F}'}), (4.4)

of (4.3) for the initial conditionX (0) = x. We also assume the existence, for each
t €[0,T], of a functionKy;: X — R such that

Ki.(-) € LA([0,T] x X;R), (4.5)

and
/Ef&t>w /f ) K(z) dpa(x), (4.6)

for all functionalsf for which both sides of (4.6) make sense. With respect to (4.4)
we also shall assume the existence of two subsexs 6fand D, of measure one,
such that

P gs w,C >z~ Xy (z) € Disabijection, foreach € [0,7].  (4.7)

145256.tex; 27/05/1999; 13:44; v.7; p.10



WIENER-SPACE VALUED STOCHASTIC DIFFERENTIAL EQUATIONS 87

We remark that this assumption enables us to think about the inverse stochastic
procesle‘tl(x). About this one assumes

X, }(x) is a diffusion process, say¥d,*(z)

(4.8)
= A(t,x)dt + B(t, z) dW;;
with,
A € N,W2(X;X) P ae, and
T 4.9
E/ | 4413, dt < oo for every 2< p < oo;
0 9.
Vte [0,T], n=1,2,3, D"A, € L°(H;X); (4.10)
Bis the formB = I + B’ with
B, P(X; Lo (HiH)P ae,
f eTmpW3( ' Lrps.(H;H))P ae, and (4.11)
E/ |BIZ, dt < oo for every 2< p < oc;
0 9.
For eacht, VX, b is the formI + L;, with (4.12)

L, aLly s (H;H)-valued functional;

For each, exists a real functior; square integrable 0j0, 7] x X such that

[ BFOGH@) dule) = [ (@)K @) dula), (4.13)
for every functionalf for which this equality make sense.
PROPOSITION 4.1Under the condition$4.1)—(4.2), (4.5)—(4.13)-a.e.xz € X,
(X5 (@), W), (2, F, P), {F})
is the unique weak solution of the stochastic differential equation
dYi(z) = —(VYi(x),a(t,2)) dt + (VYy(x), VO(t,2)(I + b(t, x))) dt
+3Tr((I +b)*(t, 2)V3Y(2)(I + b)(t,z)) dt

for the initial conditionY (0)(x) = .

Proof. y-almost everyr € X, let ((Z;(x), W), (Q,F, P),{F}}), be a weak
solution of (4.14) for the initial conditiol (0)(z) = z. As usually, we denote this
solution briefly byZ;(x).
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Suppos€Z;(x) satisfy all the hypothesis of the Theorem 3.1 with the condition
(3.1) replaced by (4.6). Thus, by application of the Theorem 3.1 we get

d(Zi(Xu(2)))

= —(VZ(Xwu(2)), at, X (2))) dt
+(VZy (X1 (x)), Vb(t, X1p(z)) (I + b)(t, Xt (x))) dt
+%Tr(([ + b)*(t, X14(2))V2Z (X1 () (I + b)(t, X1 (2))) ot
—(VZi( X1 (), (I +0)(t, Xy (2)) W)
+(VZ(X(x)), a(t, X1 (x))) dt
+(VZi(Xu(z)), (I + b)(t, X1e(x)) dW;)
F3Tr((1 4 b)*(t, X10(2)) V2 Zy (X1 (2)) (I + b) (£, Xs())) ot
=Tr((I +0)* (¢, X16(2)) V2 Z(X1s () (1 + b) (¢, X1 ())) dlt
—(VZi(X1()), Vb(t, X1 (2)) (I + b) (¢, X1e())) dt

=0, pae.x;

which enables us to conclude

vVt € [0,T], paex,Z;oXy(x) =1z, ae P. (4.15)

since Zo(X10(z)) = =, pae.x € X. Hence, given the existence of the inverse
processX,*(x), it follows from (4.15)

Vt € [0,T], paex, Z(x) = X5 (z), ae P.

Summarizing what we have been proved we concjude. x in X there exists
at most one weak solution of (4.14) for the initial conditlof0)(x) = x. Further-
more, if such solution exists, then necessarilly it willlo& 1, (), W), (2, F, P),

{F}). Thus, it remains to prove thasfl‘tl(x) satisfy the Equation (4.14) to com-
plete this proof.
Applying once more the Theorem 3.1 we will get

0 = d(X;;'(X1(2)))
= A(t, Xy () dt + B(t, Xy ()) dW;
VX (Xui(@), (I +b)(¢, Xu(2)) dW,)
+(VX3, (X1 (), alt, Xue(w))) ot
3T+ b)*(t, Xup(2)) V2X 3 (Xg () (T + b)(t, Xne(2))) Ot
+(VB(t, X1¢(x)) (I + b)(t, X1e(x))) dt,
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which enables us to conclude, by the nullity of the coefficients drift and dispersion
of the stochastic differential equation on the right-hand side of the above sequence
of equalities,

A(t,x) = —(VX; ), a(t, x) + (VX5 (), Vb(t, ) (I + b(t, x)))
+ %Tr((I + b)*(t,x)VZXl*tl(x)(I +b)(t,x)),
B(t,x)(h) = —(VXl;l(x), (I +b)(t,x)(h)), heH,
ie, Xl‘tl(x) is a solution of the Equation (4.14). O

With this result we can now prove the above mentioned uniqueness result.

THEOREM 4.2 Givena, b satisfying(4.1)—(4.2) consider the stochastic differen-
tial equation

For almost every: € X, let (Xy(z), W), (Q, F, P), {F}}) be a weak solution
of the equatior{4.16)for the initial conditionX (0) = x on the conditiong4.5)—
(4.13).If pae x € X, (Xz(x), W), (Q, F, P),{F?}) is another solution of the
Equation(4.16)for the same initial condition such that for eatke [0, T'] there
exists a functior{,;: X — R square integrable ofD, 7] x X in such a way that

/ Ef(Xa(x)) du(z / f(x) Kot (x) du(z),
for all functionalsf for which both sides of this equality make sense, then
P[Xy(z) = Xo(z), VLt €]0,T]] =1,

i.e., the pathwise uniqueness holds for the Equat@ioh6).
Proof. By the proposition above and by application of the Theorem 3.1 we have

d(X 5 (Xz(2)))
—(VX5 (Xa(x)), alt, Xz (x))) dt
(VX3 (Xae(2)), Vb(t, Xou () (1 + b)(t, Xt ())) dlt
HLTH(( + b)* (£, Xa1(2)) V2X 3 (X () (1 + b) (£, Xa(2)))
— (VXM (Xai(2)), (I + b)(t, Xai()) dW7)
(VX3 (Xa()), alt, Xz () dt

(VX (X2 (2)), (I +b)(t, X2 (2)) dW;)

+

+ o+
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90 M. J. OLIVEIRA
AT+ b)" (8, Xau(2) V2X 3 (X () (T + b) (8, Xae ()
=Tr((1 +0)" (t, Xo0(2)) V2 X3, (X2 () (I + 0) (1, Xu())) ot
—(VX5 (Xa(2)), Vb(t, Xo(2)) (I + b)(t, Xz (2))) ot

=0, paex,
which enables us to conclude, By (X20()) = = 1 almost everywhere im,
vVt € [0,T], paex, Xi(r)= Xy(x)ae P.

Thus, for allt € [0, T7,

| BllXu(@) = Xan(a) x cha(w) = 0.

which implies,
Vt € [0,T13A; C X, By € Q: u(X\A4) = P(Q\B;) =0 and
Xu(2)(w) = Xot(x)(w), Vo€ Ay, we By.

In particular,

Ve [0,7T]NQ, Xu(x)(w) = Xp(x)(w),

Vx € ﬂ Ay, weE ﬂ
t€[0,71NQ €[0,77]

following by the continuity of the processég, (z), Xz (z),

By,
nQ

paex e X, PXy(x)=Xx(zx), Vt€[0,T]] =1,
as we wanted to prove. O

5. Bernstein Processes

In this section we shall apply an adaptation of Theorem 4.2 to prove the uniqueness
of some Bernstein processes taking values on the Wiener space. These are processes
Zy, t € [—1,1], which are weak solutions of the forwar® Istochastic differential
equation,

dZ, = dW, — (Z, — Vlogn(Z)) dt, t € [0,1], (5.1)

for the initial probability distribution

P(ZoeT) = [ monsdu, T X,
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wherelV is a X-valued Brownian motion adapted to the increasing filtration of
the past event®,, andn, = e~ =DH g with ¢t < 1, is a solution of the infinite
dimensional forward heat equatiéw, /0t = Hn, associated to the Hamiltonian

H = —-L+V, L being the Ornstein—Uhlenbeck operator on the Wiener space (cf.
[6], [9]) and V' a functional potential. The probability density Bfat a fixed time

t € [0,1] is given byn;n; du. In [10] the existence of such processes, of weak
solutions of (5.1), was proved. The conditions assumed in [10] were

(A.1) V is a positive Wiener functional belonging to the spWép(X;R), for
some 2< p < +o0;
(A.2) 0 is a bounded positive functional beIongingI&ifp(X;R) and such that
log € L3(X).
Applying to the time-reversible property of the Bernstein processes (cf. [10],
[11]), these are also solutions of the backwagddtochastic differential equation

d*Zt = d*VV;< + (Zt -V |0977;K(Zt)) dt’ te [_1’ O]a (52)

wherelW* is a Brownian motion adapted to the decreasing filtration of the future
eventsF;, d, denotes the backward differentiation, anjd = e~ ¢+ g* with

t > —1,isasolution of the infinite dimensional backward heat equationj /0t =
Hnj. An additional condition is assumed in [10]

(A.3) 0* is a bounded positive functional belongingwfp(X;R) and such that
log6* € L?(X).

In this case, we are dealing with a process defined as a weak solution of a
stochastic differential equation for a initial distribution which is not concentrated
on a given point ofX. So, in order to apply Theorem4.2, we must consider a
more general notion of inverse process. Let us denot&fly) the probability
distribution of a procesX at timet with initial probability densityp. A process
X, is defined as inverse of the Bernstein procgsd# for each fixed timet, the
probability distribution ofX at timet is nong dr having as initial probability
distributionn;n; du.. Using the notation introduced above, this means,

Xi(Zi(nong dp)) = Xy (nemy dp) = nomg dp

or, in an equivalent way and using the same notatigriZ;) = I in law.
With this definition, we have the following result.

LEMMA 5.1. The inverse of the Bernstein procégst € [—1, 1] exists and is a
solution of the backward stochastic differential equation

d.X; = d*Wt* + (Xt -V IOggO:(Xt)) dt, te [—1, 0],
and the forward stochastic differential equation

dX; = dW; — (X; — Viogep(Xy)) dt, ¢ € [0,1],
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for the initial probability densitypowg du, wherep; = e~ H0H witht > —1,
andy; = e~ A-OHg* witht < 1. In particular, Z; 1 = Z_,.

Proof. The result follows from the time-reversible property of the Bernstein
processes. O

We observe thatin the case of Bernstein processes, if conditions (4.1), (4.2), (4.9)
and (4.11) are verified, the proof of Theorem 4.2 (adapted to this case) enables us
to conclude that gived;, t € [0, 1], another solution of (5.1) for the initial density
nomp du, then

w2z = 7, vt € 0,1]] = 1,

that is, the pathwise uniqueness for the Equation (5.1) holds. Hence, to be able
to apply this result it remains to prove that the assumptions (4.1)—(4.2), (4.9) and
(4.11) are satisfied. We devote the rest of this section to verify (4.1)—(4.2), (4.9)

and (4.11), namely to prove that the integral

/ ||V|Og77tHWPXH dt

is finite, for each 2< p < oo, which is enough for our purpose. In order to show
this, we recall the Feynman—Kac formula on the Wiener space proved in [10]. Let
X; be the Ornstein—Uhlenbeck process havih@s its generator (cf. [9]). One
possible way to describe this process is by the expression

Xi(s) = e ta(s) + /0 fem (-0 dWe(s), (5.3)

for s € [0, 1]. Under the conditions (A.1) and (A.2) the following Feynman—Kac
representation in terms of the Ornstein—Uhlenbeck pro&esmlds

(@) = Eay (e(xl) exp— /t lV(XS)ds> , (5.4)

for all ¢t <1, p-almost everywhere ix; where £, ; denotes &P, conditional
expectation given thaX,(-) is the pathr € X. Using this representation and the
Jensen inequality one gets the following estimation

1
m(x) > expEy, <Iog 0(X1) — / V(X)) ds> . (5.5)
t
LEMMA.2. LetV andf be two Wiener functionals under the conditions, respect-

ively, (A.1) and(A.2). If, in addition,
(i) V andé belong to every¥} (X; R);
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(i) o~ andexp(V') are L? integrables, for alll < p < oo, then

1
[1 |V log 77t”€[/3§’(x;|_|) dt < oo,

for each2 < p < o0.

REMARK 5.3. The assumptio,, exp(pV') < oo for all 1 < p < oo could be
relaxed so that potentials with quadratic growth could be considered.
Proof. For the framework of this proof we refer [10].

Step 1 We start by proving

1
| Eull v ognlf di < o,
-1

for each 2< p < 0.
Observing that

Vi |[”

E,||Vlogmn|P = E, < (EuIVne)Y2(Eu |~ 2)2, (5.6)

it follows by the estimation (5.5) that

1
Euynt]‘zi’ < E, expEy <—2plogH(X1) + Zp/t V(Xs) ds);
where, by the Jensen inequality (J.1.), the properties of the conditional expectation
(C.E.P.), the positivity oftV (P.) and the invariance of the measurefor the

Ornstein—Uhlenbeck process; (I.M.), we get the following estimation for the
right-hand side of the above inequality

E, expE, <—2p logf(X1) + 2p /t V) ds) (by J.1)
< EEpy exp<—2p logd(X1) + 2p /l V(Xs) ds) (by C.E.P.)
t
1
- B, [<0<Xl>>—2p e [ V(X) ds] (by P)

1 ds 1/2
< (EH(Q(Xl))*4p)l/2 <Eu expé?p/_1 V(Xs)?> (by J.1.)

11 1/2
< (B, (0(Xy))~%)Y2 (Eué/lexp(SpV(Xs))ds

(by I.M.)
< (B 0~P)Y2(E, exp8pV))Y2.
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Consequently, taking the expectations on (5.6) we obtain

1
[ Bl ¥ togn|”
1
< [ BV E )2
-1

1
< [ BInlP) V2,07 E, expiapy )

1 1/2
< (B0 (B, exp8pV))M* ( / lEMyyvntyyzp dt) .

It remains to prove the implication
0,V e W#(X;R) = a; € WP(X;R), te[-1,1], (5.7)

analogous to another one of the same kind obtained on [10]. Indeed, using the
representations (5.3) and (5.4) we have

1
Vini(e) = ¢ By <ve<xl> exp— | v<Xs>ds>

1 1
_E,, <9(X1) /t VV(Xs)e ™ ds exp— /t V(Xs)ds>, (5.8)

which implies, by the positivity ol and by the invariance of the measurédor
the processy;, an estimation of the type

EuHVme < By

1
{6_1V0(X1) —0(Xy) /t TV (Xy)e™ ds}

p

1
xexp—/ V(Xs)ds
t

1
< c(p){epEunvequu 6(X1) / YV (Xy)e* ds
t

)

for a positive constant(p) (depending only op); where
p

1
E, [0(x) /t VV(X,)e ™ ds

L 2\ 1/2
< (E,67)Y2 (E ( L IvvEfe ds> )
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1/2
< (V2)21er(E,0%)Y/2 ( / IV (X2 ds)

= (20)P(E,0%)Y2(E,|VV|[>)"/2.
Hence, taking the expectations we get
1
/_1EMHV77th dt < c(p{ B VO + (B.0%)Y2(E,|VV|[2)7?),

which valid the implication (5.7).
Step 2Next, we prove that

1
[ Bl V21000, iy o < .

for each 2< p < .

We need thel? norms estimations of F, with F € W (X;R), in terms of
Sobolev norms introduced in [6] by means of Poilketype inequalities due to
Krée and Meyer,

AllLF || < ||V?F|1r < 2| LF | o, (5.9)

wherec; andc; are positive constants,<d p < +oo.
Since we have

Ly
Llogn; = ? - —!!Vlogntﬁ (5.10)

then, twice applying (5.9) we get

1
| Bull v ogn|”
1

1
<cg/ E,|Clogn, P dt
-1

1
< c(p) {/_lEu
1 12 , 4 1/2

< clp) { ( / 1Euuv2ntu2pdt> < / 1Eu|m|2pdt>

1
+/1EHHVIognt||2pdt}.

L P

1
dt + / E,||V logn:|[* dt}
1
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Therefore, by the first step, we just need to estimated the integral

1
[ B

with 1 < p < 4o0.
Using the representations (5.3) and (5.4) we obtain

1
V2 = e ?Eyy <v29(X1) exp— / V(Xs)ds>
t
1 1
—2¢7 B, <v9(X1) / VV(X,)e * dsexp— / V(Xs)ds>
t t

~Eyy <9(X1) /t ' V2V (X,)e % dsexp— /t ' V(Xs) ds>

2
+E, ¢ (H(Xl) (/t1VV(XS)e—S ds> exp— /tl V(Xs)ds) )
(5.11)

Hence, taking the expectations on both sides of the above equality we get an
estimation of the type

[ Bl a
< cPAELVOIP + (B[ VOI>) 2B,V V([)H?
(B0 (B, V2VI[P)Y2 + (B, VV|[*#)Y2)},
which proves the implication
0 € WP(X;R), VeWsP(X;R) = € WE(X;R), t€[-1,1],

similar to another one proved in [10].
Step 3Now, we will prove that

1
3 P
[1EH||V 1097l (s Al < 00, (5.12)

for each 2< p < oo, whereL%; ¢ (H;H) means the class aflinear Hilbert—
Schmidt operators.
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From the third derivative of log;, and using the same arguments above, we can
deduce

1
| Bull v logn|”
1

1 Y2
c(v) ( / lEuuv%HZpdt) ( / lEM\mr—zpdt)
1/2
1 2, [|%P 1
+ (/1Eu Vi dt) </1Eu‘|V|0977t||2pdt>

Ui

1 12 , 4 1/2
+</ Euuvzlogmuzf?dt) (/ Euuvmgmn@dt) }
-1 -1

Therefore, by the first and second steps it remains to estimate the first integral of
the right-hand side of the above inequality to conclude (5.12). Using once more
the representations (5.3) and (5.4) we have

1/2

N

1/2

1
Vi = e 3E,, <v39(X1) exp— / V(Xs)ds>
t
1
—(142¢72)E,; (VZH(Xl) / VV(X,)e *ds
t
1
X exp—/ V(Xs)ds>
t
1 1
—3¢7 1B, <V0(X1) / V2V (X,)e % ds exp— / V(Xs)ds>
t t
1 2 1
131, [ vo(xy) < / VV(XS)eSds> exp— / V(X,)ds
t t
1 1
—FE,y (0(X1) / V3V (X,)e 3 ds exp— / V(Xs)ds>
t t
1 1
+3E, (0(X1) / V2V (X,)e % ds / VV(X,)e *ds
t t

X exp— /l V(Xy) ds)
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3
By, (e(xl) (/t1VV(XS)e_Sds> exp— [V(Xs)ds).

Hence, taking the expectations and estimatingitheorms of the third derivative
of n;, one can prove, in an analogous way as we have done on the above steps, that
it holds the implication

0 € WZ(X;R), Ve WP(X;R) = 1 € WE(X;R), te[-1,1].

Step 4.To complete the proof, we will prove that

1
4 p
/_1 EHHV Iogntuﬁﬂs(“?“) dt < 0,

for each 2< p < 0.
By computation of the fourth derivative of lag and applying once more the
above arguments, we obtain

1
| Bull v ogn|”
-1

1 Y2 1
c(v) ( / 1Euuv4ntu2pdt) ( / 1Emtr—2pdt)

1/2

N

1 3, |2 1/2
+ /EH M g (/ E||Vlognt\|2pdt>
-1 Mt
1 s 120 1/2
+ /EM VI g (/ E]]VIognt\\“pdt)
-1 Mt
1 s 120 1/2
+ / B Vm”'f d ( EuuvzlogntHdet>

1/2
- ( [ Eaviogn > dt) ( [ Bviogn P dt)
_ -1

1
+/ E, V2 loga, |2 dt }
-1

Hence, from the above steps, it remains to study thentegrability of the
fourth derivative ofn;. To do this, we apply the same scheme used before: from
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the representations (5.3) and (5.4) we get the expression of the deriVetive
and, taking the expectation and estimating#ienorms ofV4,, we prove that the
implication holds

0 e WZ(X;R), Ve WPX;R) = € WI(X;R), te[-1,1],
which complete the proof. O

REMARK 5.4. Givenf* on the conditions (A.3), belonging to every spaces
WZ2(X;R) in such way that* 1 is LP integrable, for all 1< p < oo, we may
conclude, by the same steps of this proof, fidogn; is LP([—1,1]; W2 (X; H))
integrable, with 2< p < cc.

The results of this paragraph and the above mentioned adaptation of Theorem4.2
allow to derive the following theorem of uniqueness to Bernstein processes.

THEOREM 5.5.Under the conditions of Lemn%a2, the pathwise uniqueness for
the Equation5.1) holds
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