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1. Introduction

The liquid crystalline state of matter exists, for certain materials, in a temperature
range between the solid crystalline phase and the isotropic liquid phase. Materials
that exhibit such a phase usually consist of rod-like (or disc-like) molecules. In the
liquid crystal phase a molecular self-organisation occurs to produce orientational
order where the rod or disc-like molecules prefer to lie approximately parallel to
each other. In some materials there may also exist an amount of positional ordering
(i.e. into two-dimensional layers) of the molecules. This orientational/positional
ordering leads to a number of crystal-like properties, whilst the material remains in
the fluid phase, hence the name liquid crystal. The orientational order within the
liquid crystal allows us to define an anisotropic axis, the axis of rotational symmetry.
This anisotropic axis, the average molecular direction at that point in the material,
is a macroscopic variable, called the director n (a unit vector). The director may
vary in space (and change with time) to create director distortion structures which
increase the stored elastic energy of the system. The organic molecules that form
the liquid crystal material may contain permanent or induced electric dipoles. The
director can therefore be influenced by the application of an electric field.

The existence of an anisotropic axis in the system means that the liquid crystal
is birefringent, with light polarised along the long molecular axis travelling at a dif-
ferent speed to light polarised along the short molecular axis. The birefringence and
the consequential phase retardation of light means that liquid crystals can be used
in a display device. By sandwiching the liquid crystal between two glass or plastic
substrates, using optical elements such as polarisers, and an electric field which
changes the orientation of the director, the liquid crystal can be switched so that
the device can allow light to be transmitted through the device or extinguished.
Using patterned electrodes to define pixels and colour filters, a flat (compared to a
cathode ray tube) display system can be produced: a liquid crystal display (LCD).

The versatility, portability and space saving aspects of LCDs means that they
are now ubiquitous. From small simple displays on calculators and electrical appli-
ances to more complex video displays on mobile phones, portable audio and video
devices and televisions, the manufacture of LCDs remains a growth industry.

Most current LCDs are monostable; there is a single stable director configuration
which is changed when an electric field is applied. In these types of displays, to
maintain an image, a voltage needs to be constantly applied. This is not an ideal
situation for portable devices which have a limited battery power supply. In recent
years a number of bistable liquid crystal devices have been developed which have
two stable base states. In this case a voltage need only be applied when a pixel needs
to be changed and a static image needs not drain the power supply. This would
be particularly useful for future applications such as e-paper, a display device onto
which information (i.e. a newspaper) could be downloaded.

A number of bistable liquid crystal devices use a nematic liquid crystal, which
has orientational order (and therefore a director n) but no positional order, and
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a patterned substrate which allows two types of director orientation. This bistable
surface creates two possible director configurations within the bulk of the liquid
crystal. A simple model of two particular bistable LCDs (the ZBD6 and PABN16

displays) has been proposed by Davidson and Mottram.8,9 In the model the com-
plicated structured bistable substrate is replaced by a simpler planar substrate
which exhibits two preferred director orientations. In this way the intrinsically 2D
or 3D nature of the ZBD and PABN devices is replaced by a 1D mathematical
model.

In this paper we investigate various mathematical issues relating to such a
bistable display. The plan of this paper is as follows. After a brief derivation of the
equations in Sec. 2, we deal with issues of well-posedness and long-time behaviour
of solutions in Sec. 3. Problems of multiplicity and stability of stationary solutions
which have direct bearing on the ability of device to be bistable and to switch
between the stable states are investigated in Sec. 4. It turns out that there are
two different cases to consider, based on the sign of the dielectric anisotropy of the
material. In both cases it is shown that the ability to switch is crucially dependent
on the flexoelectric properties of the material. Finally, in Sec. 5 we consider the
behaviour of the device under the influence of rapidly oscillating electric field using
methods of averaging theory.

In order to model the director dynamics within this device we will use the
Ericksen–Leslie formulation23 which considers the balances of mass, linear momen-
tum and angular momentum together with constitutive equations for the free energy
and dissipation which are assumed to be functions of the director and gradients in
the director. Such an approach is only one of the many possible theories which
have been used to model liquid crystal materials. For instance, other theories have
considered the molecular order as a dependent variable and the dissipation and free
energy is then written in terms of an order parameter (see, for instance, Ref. 22). An
alternative approach, which determines the evolution of the director configuration
through a maximal rate of dissipation,20 has also been formulated which removes
the need to prescribe the director at the substrates. In our system the physical sur-
face alignments (through surface layer treatment and substrate morphology) lead to
physically realistic boundary conditions and we can therefore utilise the Ericksen–
Leslie equations. For more details on the physics of the device and a numerical
investigation of its behaviour, see Refs. 9 and 8.

2. Derivation of the Model

The model proposed by Davidson and Mottram assumes that the system is invariant
in any direction parallel to the substrates. The director therefore only varies across
the liquid crystal layer, in the z-direction. The director is therefore a variable of z

and time t. Since the liquid crystal is restricted by the substrates in the z-direction
and we assume invariance in the xy-plane, there will be no fluid flow. The nematic
molecules, and therefore the director, will simply rotate with no bulk movement of
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the fluid. These simplifications are equivalent to assuming that the only dissipative
process within the liquid crystal is due to the director rotation and not to viscous
dissipation. This assumption is not always valid but in the present situation a
number of studies have shown that the director reorientation due to fluid flow is a
transient effect which essentially renormalises the relaxation coefficient of the liquid
crystal.23

To model this type of bistable device, it is appropriate to fix the director at
the top substrate to be vertical (in the z-direction) and allow the lower substrate
to attain a minimum energy configuration when the director is either parallel or
perpendicular to the substrate. The rigid anchoring at the top substrate can be
achieved with the use of a surfactant and the strength of this anchoring has been
shown to be sufficient to assume that the director remains perpendicular to the
substrate for all reasonable electric field strengths.21 The bistable nature of the
lower substrate is particular to the device we are considering. Whilst the exact
orientations of the director at the substrate may not be parallel and perpendicular
in the real devices, we use this example of bistability to build up a qualitative
picture of the switching effects. As shown in Fig. 1, this type of anchoring creates
the possibility of two different configurations of the liquid crystal layer, the vertical
(V) state and the hybrid aligned nematic (HAN) state. It is the ability of the device
to switch between these two stable states that we are interested in investigating.
Figure 1 also shows the director angle θ which defines the director as n(z, t) =
(cos θ(z, t), 0, sin θ(z, t)).

The interaction between liquid crystal molecules and an electric field in stan-
dard liquid crystal displays occurs through the dielectric effect. When an electric
field is applied, a molecular dipole is induced along the molecular axis with the
largest dielectric susceptibility. This induced dipole then orients with the electric
field direction. In a material with a positive dielectric anisotropy, the largest suscep-
tibility is along the long molecular axis and therefore the director prefers to align
parallel to an electric field. For such materials this would mean that we should
expect a HAN to V switch to be relatively easy. For a material with a negative
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Fig. 1. Possible states of the bistable nematic device.
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dielectric anisotropy, the largest susceptibility occurs along the short molecular
axis and therefore the director would align in a direction perpendicular to that of
the electric field and would make a V to HAN switching relatively easy. However, a
material has either a positive or a negative dielectric anisotropy. For any material
only switching one way can be achieved with this dielectric effect.

To enable both switches to be possible, we need a material which differentiates
between positive and negative E. One possibility is flexoelectricity. Such an effect
occurs in materials which consists of molecules containing both a permanent dipole
and a shape anisotropy such as the pear-shaped molecules in Fig. 2. In this case
an electric field will align the permanent dipoles and induce a splay distortion in
the molecular configuration. The crucial point is that electric fields in opposite
directions cause different distortions and may therefore be able to enable switching
between two stable states.

In order to model the director dynamics within this device we will use the
Ericksen–Leslie equation for the rotation of the director, neglecting flow effects.23

As mentioned above this assumption implies that we only consider the dissipation
due to director rotation and not from viscous effects. This will be equivalent to a
gradient flow approach where the free energy is

F =
∫ d

0

(Fe + Fd + Ff ) dz + Fs, (2.1)

and the free energy densities Fe, Fd and Ff represent contribution from elastic
distortions, the dielectric effect, and the flexoelectric coupling. The energy Fs is the
surface free energy at the bistable surface z = 0. Standard expressions for the free
energy densities are used,

Fe =
K

2
((∇ · n)2 + |∇ × n|2), (2.2)

Fd = − ε0∆ε

2
(E · n)2, (2.3)

Ff = −(e11(∇ · n)n + e33((∇× n) × n)) · E, (2.4)

+E -E

Fig. 2. The flexoelectric effect.
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where K is the isotropic elastic constant; ∆ε is the dielectric anisotropy coefficient
which may be positive or negative (as mentioned above), ε0 is the permittivity of
free space; E is the electric field; e11 and e33 are flexoelectric coefficients.

We will assume that the surface energy due to the lower substrate morphology is

Fs = 4W0(n · ns)2|n× ns|2, (2.5)

where W0 > 0 is the anchoring strength and ns = (0, 0, 1) is the surface normal,
so that there are minima of the energy when the director is parallel to ns and
perpendicular to ns. The upper surface will assume to induce infinitely strong
anchoring of the director so that θ = π/2 at z = d.

In this paper we will assume that the director remains in the xz-plane so that
n(z, t) = (cos θ(z, t), 0, sin θ(z, t)) and that the electric field E = (0, 0, E) is
related to the voltage across the plates V by E = −V/d rather than being found
from Maxwell’s equations. This means that the free energy reduces to

F =
∫ d

0

1
2
{K(θz)2 − ε0∆εE2 sin2 θ − 2E13E sin(2θ)θz} dz + W0 sin2(2θ(0, t)),

(2.6)

where E13 = (e11+e33)/2 is the average flexoelectric coefficient. For the subsequent
analysis we will assume that E13 > 0 for simplicity, although the case E13 < 0 is
simple to consider by exchanging the sign of V , since the transformation E13 →
−E13, V → −V leaves the system of equations unchanged. It should also be noted
that since the flexoelectric term in (2.6) can be integrated to give a surface term,
−E13E cos(2θ(0, t))/2, then for E > 0, this contribution is minimised by θ(0, t) = 0
and for E < 0, by θ(0, t) = π/2. The difference in behaviour of the surface anchoring
for positive and negative voltages will enable the bistable device to be switched
backwards and forwards between the two stable states.

With the free energy in (2.6) the dynamic equations are derived from the balance
of the rate of dissipation and the gradient of the free energy:

γ1θt = Kθzz +
1
2
ε0∆εE2 sin(2θ), for (t, z) ∈ R

+ × (0, d),

γsθt = Kθz − 2W0 sin(4θ) − E13E sin(2θ), when (t, z) ∈ R
+ × {0},

θ =
π

2
, when (t, z) ∈ R

+ × {d}.

(2.7)

Here γ1 is the director rotation viscosity and γs is the surface relaxation coefficient
related to a surface dissipation effect. The thermodynamic restrictions on material
parameters which ensure the non-negativity of the free energy and the dissipation
are K > 0, γ1 > 0 and γs > 0.23 In this system it is important to add such
a surface dissipation term because the substrate at z = 0 is actually mimicking
a complicated structured morphology which involves both the surface anchoring
effects and the dissipative liquid crystal material in the vicinity of the substructure.
It is clearly the dynamical (nonlinear) boundary condition in (2.7) that makes this
into a mathematically nontrivial problem.
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As discussed in the Introduction, we shall consider the situation for both con-
stant E (changing it adiabatically) and for E a fast-oscillating periodic function of
time.

In order to bring out the mathematical structure of the problem in a clearer
way we non-dimensionalise the system by considering the following variables

x :=
z

d
, τ :=

K

γ1d2
t, u(τ, x) := θ

(
τ

γ1d
2

K
, xd

)
,

and introducing the parameters

ν =
γs

γ1d
, β =

2W0d

K
, σ = sgn(∆ε),

κ =
E13√

ε0|∆ε|
2 K

, η =

√
ε0|∆ε|

2
d2

K
E.

With these definitions, system (2.7) is transformed into
uτ = uxx + ση2 sin(2u), for (τ, x) ∈ R

+ × (0, 1),

νuτ = ux − β sin(4u) − κη sin(2u), when (τ, x) ∈ R
+ × {0},

u =
π

2
, when (τ, x) ∈ R

+ × {1}.
(2.8)

3. Well-Posedness and Asymptotic Behavior

Problems with boundary conditions such as (2.8) have been discussed in the litera-
ture in the last 15 years.1,3,10–12,18 The main scheme of proving global existence for
parabolic problems with nonlinear boundary conditions follows;1 see also Ref. 17 for
an accessible introduction to Amann’s theory. A specific application of this theory
to parabolic problems with dynamical boundary conditions was given in Refs. 10
and 11. In Ref. 12, also based on the same functional approach, further results on
the large time behavior of solutions are obtained for a specific type of semilinear
problem. Since in our case we impose a Dirichlet type boundary condition on a part
of the boundary, which is not considered in Refs. 10–12, the results in these works
cannot be directly applied to our case. However, we use its framework to extend
those results to our type of boundary conditions. In this section we give an outline
of that approach.

Let Ω ⊂ R
n be an open bounded set with smooth boundary Γ0 = Γ1 ∪ Γ2, such

that Γ1 and Γ2 are separated sets. Let µi be the trace operator on Γi, i = 1, 2 and
ν a positive constant. Then the problem we are considering is of the form

∂tu + Au = f(·, u, t) in Ω × (0,∞),
∂tv + B1u = g(·, v, t) on Γ1 × (0,∞),
νµ1u = v on Γ1 × (0,∞),
µ2u = 0 on Γ2 × (0,∞),

(3.1)
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and the (compatible) initial conditions{
u(z, 0) = u0(z) z ∈ Ω,

v(z, 0) = v0(z) = νµ1u(z, 0) z ∈ Γ1.
(3.2)

Here A is a uniformly strongly elliptic operator of the form

Au := −∂i(aij∂ju) + ai∂iu + a0u,

with aij , ai and a0 being smooth functions of x ∈ Ω, and B1 is the boundary
operator given by

B1u := −µ1(∂nau + bu),

where na(y) is the conormal at y ∈ Γ1 and b is a smooth function of y ∈ Γ1. We take
f and g to be sufficiently smooth; e.g. gi ∈ C1,1(R×R+, R). By setting w = (u, v),
we define the following substitution operators:

f̂(w, t)(x) := f(x, u(x), t), for x ∈ Ω,

ĝ(w, t)(y) := g(y, µ1u(y), t), for y ∈ Γ1.

Now, defining G(w, t) := (f̂(w, t), ĝ(w, t)) and Aw := (Au,B1u) for w in a suitable
space that takes into account the boundary condition on Γ2 and the condition
νµ1u = v, we can write (3.1) as the Cauchy problem

wt + Aw = G(w, t), (z, t) ∈ Ω × R+, w(0) = w0, (3.3)

with an appropriate initial condition w0. Here and in the following we do not
mention the dependence on ν in the notation, assuming ν is fixed from the start.

The operator A takes

Ẽ1 := {(u, v) ∈ H2
q,µ2

(Ω) × B2
q (Γ1), v = νµ1u}

into

Ẽ0 := Lq(Ω) × B1
q (Γ1).

Here

H2
q,µ2

(Ω) = {u ∈ H2
q (Ω), µ2u = 0 on Γ1},

H2
q (Ω) is the Bessel potential space and B2

q (Γ1) := B
s−1/q
qq (Γ1) is the appropriate

Besov space required by the trace theorem.
Let us also define, for each ϑ ∈ Iq := (1/2q, 1/2 + 1/2q) ,

Eϑ := {(u, v) ∈ H2ϑ
q,µ2

(Ω) × B2ϑ
q (Γ1), v = νµ1u}

E�
1−ϑ := {(ϕ, ψ) ∈ H2−2ϑ

q′,µ2
(Ω) × B2−2ϑ

q′ (Γ1), v = νµ1u}
Eϑ−1 := [E�

1−ϑ]′, E�
−ϑ := [Eϑ]′ .

(3.4)

Here we are identifying [Lq(Ω) × Lq(Γ1)]′ with Lq′(Ω) × Lq′(Γ1) according to the
duality pairing

〈(ϕ, ψ), (u, v)〉 := 〈ϕ, u〉 + ν−1〈ψ, v〉1,
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for (ϕ, ψ) ∈ Lq′(Ω)×Lq(Γ1) and (u, v) ∈ Lq(Ω)×Lq(Γ1), where 〈·, ·〉 and 〈·, ·〉1 are
the standard duality pairing in Lq′(Ω)×Lq(Ω) and Lq′(Γ1)×Lq(Γ1), respectively.
As in Ref. 11 we can prove that

Ẽ1
d

↪→ Eϑ
d

↪→ Ẽ0
d

↪→ Eϑ−1.

In the next lemma we collect important results concerning the linear operators
we need to consider:

Lemma 3.1. Given ϑ ∈ Iq , A is closable in Eϑ−1 and calling Aϑ−1 to the respective
closure,

(1) dom(Aϑ−1) = Eϑ;
(2) there is ω > 0 such that λ + Aϑ−1 ∈ Iso(Eϑ, Eϑ−1), for all λ ∈ [ Re µ ≥ ω];
(3) the operator −Aϑ−1 generates a strongly continuous analytic semigroup on

Eϑ−1;
(4) if 1/2q < ϑ < η ≤ 1, then,

‖e−tAη−1‖L(Eη−1,Eϑ) ≤ Ctη−ϑ−1.

The proof of these statements follows the same lines of arguments of Refs. 10
and 11 and, for (4), it can be obtained in an interpolation-extrapolation Banach
spaces framework, (see Ref. 10), by using a result in Ref. 2.

Remark. The analyticity of the resulting semigroup will be required in Sec. 5.
Also instrumental for the local existence and uniqueness proof is a “sandwich”

result for the complex interpolation of the spaces introduced above. Let [·; ·]η, η ∈
(0, 1) be the standard complex interpolation functor (for the general theory, see
Ref. 4). Then

Lemma 3.2. If ξ, ϑ ∈ Iq with ξ < ϑ, then setting δ := ϑ − ξ,

[Eϑ−1; Eϑ]1−δ
d

↪→ Eξ
d

↪→ [Eϑ−1; Eϑ]1− δ
1−ϑ

.

It should be noted that a true reiteration result does not hold (see Refs. 10 and
11). For a proof of this result we can consider an easy modification of the case in
Ref. 10.

The final result of this approach is a local existence theorem. We present first
some necessary definitions. We need to consider the semilinear problem (3.3) in
a weaker sense. Given q ≥ 2, fixing η, ϑ,∈ Iq, such that ϑ < η, we consider the
following Cauchy problem:

wt + Aϑ−1w = G(w, t), w(0) = w0, (3.5)

where, with the above hypothesis, the nonlinearity G is proved to be a map from
[0, T ] × Eϑ to Eη−1, which is uniformly Lipschitz continuous on bounded sets. A
solution of problem (3.5) in [0, T ], is a function

w ∈ C([0, T ], Eϑ−1) ∩ C1((0, T ], Eϑ−1) ∩ C((0, T ], Eϑ)
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that satisfies (3.5) pointwise. We now introduce the concept of weak solutions for
our semilinear problem. Let ϑ ∈ Iq . We define the Dirichlet form associated to
(A,B1) by

a(ϕ, u) := 〈∂iϕ, aij∂ju〉 + 〈ϕ, ai∂iu + a0u〉 + 〈µ1ϕ, µ1u〉1,
for all (ϕ, u) ∈ H

2(1−ϑ)
q′ (Ω) × H2ϑ

q (Ω). Then,

a ∈ L2(H2(1−ϑ)
q′ (Ω) × H2ϑ

q (Ω), R). (3.6)

Given a subinterval J of [0, T ], with 0 ∈ J , we set J̇ := J \ {0}. Let s = 2ϑ. We
call u a weak Hs

p(Ω)-solution of (3.1)–(3.2) in J , if u ∈ C(J, Hs
p(Ω)) and∫ T ′

0

{
−

〈
d

dt
(ϕ, νµ1ϕ), (u, νµ1u)

〉
+ a(ϕ, u)

}
dt

=
∫ T ′

0

{〈ϕ, f̂(t, u)〉 + 〈µ1ϕ, ĝ(t, u)〉1 dt} + 〈ϕ(0), u0〉 + 〈(µ1ϕ)(0), µ1u0〉1,

for all T ′ ∈ J̇ , ϕ ∈ C([0, T ′], H2−s
q′ (Ω)) satisfying ϕ(T ′) = 0, and (ϕ, µ1ϕ) ∈

C1([0, T ′], E�
−ϑ).

Now define the projection P : Eϑ → H2ϑ
q (Ω), P (u, v) := u. We are now ready

to state our main existence and uniqueness result:

Theorem 3.1. Suppose that ϑ, η ∈ Iq satisfy η < ϑ. Set ξ := 1 − (ϑ − η). Then,

given any u0 ∈ H2ϑ
q (Ω), setting w0 := (u0, µ1u0),

(1) problem (3.5) has a unique maximal solution w := w(·, w0) satisfying

w ∈ C(J, Eϑ) ∩ C1−ξ(J, Eη),

and this solution, for all t ∈ J, satisfies the variation of constants formula

w(t) = e−Aϑ−1tw0 +
∫ t

0

e−Aη−1(t−τ)G(w(τ), τ)dτ,

(2) if u := Pw, then u is the unique maximal weak Hs
q (Ω)-solution of (3.1),

(3) the maximal interval of existence J := J(u0) is open in [0, T ], and u(·, u0) exists
globally, provided u(J, u0) is bounded in Hs

q (Ω),
(4) in the autonomous case, i.e., in the case that f and g are independent of t, u(·, ·)

defines a local semiflow on the phase space Hs
q (Ω), such that, t 
→ u(t, x) is a

mapping from J into Hs
q (Ω). Furthermore, that semiflow is such that bounded

orbits are relatively compact.

For our problem (2.8), we can prove a global existence result, say, choosing
q = 2.

Theorem 3.2. For all ϑ0 ∈ H1
2,µ2

such that 0 ≤ ϑ0(z) ≤ π/2, the solution of (2.8)
ϑ(·, ϑ0) ∈ H1

2,µ2
is defined for all t > 0.
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We outline the proof: Since in this case we are working in the classical Sobolev
space W 1,2

µ2
, the fact that all nonlinearities are globally bounded ensures that the

free energy (2.6) immediately provides the required a priori W 1,2 estimates on the
solutions.

4. Multiplicity and Stability of Steady States

4.1. Linearisation around the vertical state

Consider an equilibrium solution ũ(x). The linearised problem about the solution
ũ is 

vτ = vxx + 2ση2 cos(2ũ)v, for (τ, x) ∈ R
+ × (0, 1),

νvτ = vx − (4β cos(4ũ) + 2κη cos(2ũ))v, for (τ, x) ∈ R
+ × {0},

v = 0, for (τ, x) ∈ R
+ × {1},

v = v0, for (τ, x) ∈ {0} × (0, 1).

(4.1)

This can be taken as the linear Cauchy problem

vt + A0v = 0, v(0) = v0,

where A0v := (−vxx + ω1v, −ν−1vx(0) + ω2v(0)), for obvious definitions of ω1 and
ω2, with D(A0) = {(v, v(0)) : v ∈ C2(0, 1) ∩ C1[0, 1) ∩ C[0, 1], v(1) = 0}.

The corresponding eigenvalue problem (A0 + λ)ψ = 0, is thus
−ψxx + (−2ση2 cos(2ũ) + λ)ψ = 0, for x ∈ (0, 1)

−ψx(0) + (4β cos(4ũ(0)) + 2κη cos(2ũ(0)) + νλ) ψ(0) = 0,

ψ(1) = 0.

(4.2)

After making an obvious change of the dependent variable, this problem can be
brought to a form so that we can apply the results in Ref. 5, taking into account
that, in that work, the parameter λ should be identified with our −λ. Therefore,
(4.2) has infinitely many eigenvalues λn, n = 0, 1, . . . which are interlaced with
the eigenvalues λD

n of the Dirichlet problem obtained by taking ψ(0) = 0. More
explicitly: λ0 > λD

0 and λn ∈ (λD
n , λD

n−1), for n = 1, 2, . . .. Furthermore, each
eigenvalue λn is simple and its corresponding eigenfunction has exactly n zeros in
(0, 1). Reference 5 also provides some asymptotic estimates for λn, as n → ∞ (see
theorems and corollaries in Secs. 2, 3 as well as the remarks and results in Sec. 5
there).

We turn now our attention to the particular stationary solution ψ(z) ≡ π
2 . The

corresponding eigenvalue problem is
−ψxx + (2ση2 + λ)ψ = 0, for x ∈ (0, 1)

−ψx(0) + (4β − 2κη + νλ) ψ(0) = 0,

ψ(1) = 0.

(4.3)
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For this case, we can explicitly compute λD
n = λ∗ − (n + 1)2π2, n = 0, 1, . . . ,

where λ∗ = −2ση2. We thus have:

Lemma 4.1. For the case σ = +1:

If κ ≤ 1/
√

2, then λ0 < 0;
If κ > 1/

√
2, then there is η0 > 0 such that

η < η0 ⇒ λ0 < 0, η = η0 ⇒ λ0 = 0, η > η0 ⇒ λ0 > 0.

For the case σ = −1, there are η− ∈ (−π/
√

2, 0), η+ ∈ (
0, π/

√
2
)
, such that

η ∈ (η−, η+) ⇒ λ0 < 0, η ∈ {η−, η+} ⇒ λ0 = 0,

and λ0 > 0, otherwise.

Proof. By writing a(λ) = 2ση2 +λ and b(λ) = 4β−2κη+νλ, (4.3) takes the form
ψxx(x) − a(λ)ψ(x) = 0 for x ∈ (0, 1),

ψx(0) − b(λ)ψ(0) = 0

ψ(1) = 0.

We now look for the relation between a(λ) and b(λ) for which this system
has nontrivial solutions. By explicitly solving the differential equation with the
condition at x = 1 we find that, if a(λ) > 0 then ψ(x) = c sinh

(√
a(λ)(x − 1)

)
, if

a(λ) < 0 then ψ(x) = c sin
(√−a(λ)(x− 1)

)
, and if a(λ) = 0 then ψ(x) = c(x− 1),

where, in each case, c ∈ R is an arbitrary constant. Now we observe that conditions
a(λ) > 0, a(λ) < 0 and a(λ) = 0 are fulfilled if λ > λ∗, λ < λ∗ and λ = λ∗,
respectively. Therefore, by imposing the boundary condition at x = 0, there can
only be a non-identically zero solution φ if and only if b(λ) = g(λ) where

g(λ) =


−√

a(λ) coth
√

a(λ), if λ > λ∗

−1, if λ = λ∗

−√−a(λ) cot
√−a(λ), if λ < λ∗, λ /∈ {λD

0 , λD
1 , . . .}.

This function has vertical asymptotes at λ = λD
n , n = 0, 1, 2, . . . , is continuous and

strictly decreasing in each interval contained in its domain, and limλ→+∞ g(λ) =
−∞ (see Fig. 3).

An easy consequence of the definitions of g and b is the following:

(i) if λD
0 < 0, then

b(0) > g(0) ⇒ λ0 < 0, b(0) = g(0) ⇒ λ0 = 0,

b(0) < g(0) ⇒ λ0 > 0;

(ii) if λD
0 ≥ 0 then λ0 > 0.



December 12, 2007 11:37 WSPC/103-M3AS 00254

A Mathematical Study of a Bistable Nematic Liquid Crystal Device 2021

Fig. 3. Typical graphs of b(λ) (dashed line) and of g(λ) when λD
0 < 0.

Based on these results, we now study the sign of λ0. Suppose first that σ = +1.
Then, (i) occurs. Since a(0) = 2η2 ≥ 0, then g(0) = −√

2|η| coth(
√

2|η|). This
expression defines a function G(η) which is continuous for η �= 0, has limη→0 G(η) =
−1, is even, strictly concave, strictly decreasing for η > 0 and has asymptotes
η 
→ ±√

2η. Since b(0) = 4β − 2κη, we conclude that if κ ≤ 1/
√

2 then b(0) > g(0)
and therefore, λ0 < 0, for all η ∈ R. Otherwise κ > 1/

√
2, then there is η0 > 0 such

that, if η = η0 then λ0 = 0, if η < η0 then λ0 < 0, and if η > η0 then λ0 > 0.

Now take σ = −1. If |η| ≥ π/
√

2 then case (ii) is observed and hence λ0 >

0. If |η| < π/
√

2, we are again in case (i) with g(0) = −√
2|η| cot(

√
2|η|). This

expression defines a function H(η) for |η| < π/
√

2 which is continuous for η �= 0,
has limη→0 H(η) = −1, is even, strictly convex, strictly increasing for η > 0 and
has vertical asymptotes in η = ±π/

√
2. Therefore, there are η− ∈ (−π/

√
2, 0

)
and

η+ ∈ (
0, π/

√
2
)

such that if η ∈ (η−, η+), then b(0) > g(0) and therefore λ0 < 0;
if η ∈ (−π/

√
2, η−

) ∪ (
η+, π/

√
2
)
, then b(0) < g(0), and therefore λ0 > 0, and if

η ∈ {η−, η+}, then λ0 = 0.

4.2. Phase-plane analysis of the non-linear system

We consider the following stationary problem, associated with the dynamic prob-
lem (2.8), 

uxx + ση2 sin(2u) = 0 for x ∈ (0, 1),

ux(0) − β sin(4u(0)) − κη sin(2u(0)) = 0,

u(1) =
π

2
.

(4.4)

We want to understand how the solution set of (4.4) changes as we change the
applied electric field η. An immediate difficulty arises from the fact that η enters
both the differential equation of (4.4) and the boundary condition at x = 0. To
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overcome this problem it is convenient to change variables x 
→ y := |η|x, so that
the phase portrait becomes independent of E. But this requires the case η = 0 to
be treated separately.

Actually, the case η = 0 has already been treated in Ref. 8, and can be com-
pletely and easily studied due to its linear character. For the sake of completeness
we briefly present it here using the same kind of analysis we will use for the η �= 0
cases.

Writing v := ux, the differential equation in (4.4), with η = 0, becomes

{
ux = v,

vx = 0,
(4.5)

whose orbits are straight lines parallel to the u-axis. Treating x as a time-like
variable, we see that the solutions to (4.4) are obtained by checking the points in
the phase plane that lie on the “initial” manifold

Λ̃0 := {(u, v) : v = β sin(4u)}, (4.6)

and for which a solution u(x; 0, u0, v0) of (4.5) with condition (u0, v0) ∈ Λ̃0 at x = 0
takes the value π

2 when x = 1. To this end, define the isochrone Ξ0 as the set of
points (u0, v0) for which solutions u(x; 0, u0, v0) of (4.5) satisfy u(1; 0, u0, v0) = π

2 .

It is easy to conclude that Ξ0 is the straight line

Ξ0 :=
{
(u0, v0) : v0 =

π

2
− u0

}
, (4.7)

and the sought for solutions are those whose initial data lie in Λ̃0 ∩ Ξ0 with 0 < u0 <
π
2 . (If the anchoring on the bistable surface is sufficiently strong, it is also possible
to obtain “super-tilted” states where a rotation of the director of greater than π/2
occurs within the cell, say with u0 ∼ π/2. However, since such states will always
be of higher energy than the basic states, we will always choose 0 < u0 < π

2 .) This
intersection is always nonempty provided β ≥ β̂, where β̂ > 1

4 is the unique solution
of π + arccos 1

4β =
√

(4β)2 − 1, which is the equation obtained when the curves Λ̃0

and Ξ0 intersect at a single point. If β > β̂ we have exactly two intersection points,
the one with smaller value of u0 is the initial value for the HAN solution.

We gather this information in the following lemma:

Lemma 4.2. If η = 0 and β is sufficiently large, the system of equations (4.4) has
three stationary solutions in the order interval [0, π/2].

Consider now the cases with η �= 0. As pointed out above, an analogous phase
plane analysis requires the change of variables x 
→ y = |η|x in order to fix the
phase portrait independently of η. With this new independent variable, system
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Fig. 4. Phase portrait in the case η = 0.

(4.4) becomes
uyy + σ sin(2u) = 0, y ∈ (0, |η|),
uy(0) − β

|η| sin(4u(0)) − κsgn(η) sin(2u(0)) = 0,

u(|η|) =
π

2
.

(4.8)

Define the isochrone Ξη for (4.8) analogously to what was done for Ξ0. Now,
of course, Ξη will not be a straight line (see below). Let Λη be the initial (y = 0)
manifold defined by

Λη :=
{

(u, v) : v =
β

|η| sin(4u) + κsgn(η) sin(2u)
}

. (4.9)

Again, our analysis will be based on the study of the intersections between Ξη

and Λη. The geometry of the problem is distinctly different in the cases of positive
and negative dielectric anisotropies and hence we must consider separately the
situations of σ = 1 and σ = −1.
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Case I: Let σ = +1. The first-order system equivalent to the differential equation
in (4.8) is {

uy = v,

vy = − sin 2u.
(4.10)

This is the nonlinear pendulum equation with first integral W (u, v) = v2−cos 2u.

Hence, the isochrone Ξη is the set of points (u0, v0) of the phase plane satisfying∫ π/2

u0

dξ√
W (u0, v0) + cos 2ξ

= |η|. (4.11)

It is clear from the phase plane analysis that the geometry of Ξη is as shown
in Fig. 5.

Also, for a fixed energy W , if |η| increases u0 must decrease, which implies that,
as |η| → +∞, Ξη converges (say in the Hausdorff metric) to the union of heteroclinic
orbits connecting the saddle points

(
2n−1

2 π, 0
)

to
(

2n+1
2 π, 0

)
, for n ≤ 0. Call Ξ∞

the part of the heteroclinic from
(−π

2 , 0
)

to
(

π
2 , 0

)
that lies in the first quadrant.

As in the case η = 0, the solutions to (4.8) are in one-to-one correspondence
with the points of Λη ∩ Ξη.

Fig. 5. Phase portrait and isochrone for σ = +1.
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There are essentially two distinct cases, namely κ > 1√
2

and κ < 1√
2
, and the

borderline case κ = 1√
2
. These situations match the linear stability analysis of

the Vertical State solution, u = π
2 , performed in Sec. 4 (see Lemma 4.1). From a

geometrical point of view these two cases correspond to the possible distinct relative
positions of Ξη and Λη when η → +∞.

Define Λ+∞ := {(u, v) : v = κ sin 2u}, Λ−∞ := {(u, v) : v = −κ sin 2u}. Observe
that these curves are symmetric upon reflection in the u axis.

By linearisation of (4.10), the slope of Ξ∞ at
(

π
2 , 0

)
can be easily concluded to

be −√
2. Furthermore, observe that the slope of Λ+∞ at the same point is equal

to −2κ.

Let us consider first κ > 1√
2
. In this case, at

(
π
2 , 0

)
the absolute value of the slope

of Ξ∞ is smaller than that of Λ+∞. Hence, close to
(

π
2 , 0

)
, the curve Ξ∞ is below

Λ+∞. This implies the existence of a unique point in Λ+∞ ∩ Ξ∞ with 0 < u < π
2

and thus the same uniqueness result for Λη ∩Ξη holds for all η sufficiently large. By
decreasing η we thus obtain the situation depicted in Fig. 6 if β > β̂. If β < β̂ the
only difference is that the turning point case occurring at η = b < 0 now happens
at a positive value of η, since in this situation the analysis of the case η = 0 gives
the single solution u = π

2 .
The bifurcation point from the V solution is a pitchfork bifurcation; the other

branch of (unstable) solutions, where u > π/2, is not drawn: they correspond to
decreasing solutions (v < 0) with u0 > π

2 and are located in the phase diagrams,
relative to the equilibrium point (π

2 , 0), in a symmetric position to that of the branch
shown in Fig. 6. The bifurcation point is at the value of η for which the curves Λη

Fig. 6. Phase portraits and bifurcation diagram for σ = +1 and κ > 1√
2
.
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and Ξη have equal slopes at (π
2 , 0). This value should obviously coincide with the

value of η for which the V solution loses stability, which was shown in Sec. 4.1 to
be the unique positive solution η0 of the equation

4β − 2κη = −
√

2η coth(
√

2η). (4.12)

From this equation, by plotting η 
→ 4β
η − 2κ and η 
→ −√

2 coth(
√

2η), we imme-
diately observe that η0 = η0(κ) ↑ +∞ as κ ↓ 1√

2
. The limit case, when κ = 1√

2
,

correspond geometrically to the situation when the slopes of Ξ∞ and Λ+∞ at the
V solution are equal. The analysis, following the same pattern as in the previous
case, results in the bifurcation diagram presented in Fig. 7.

Let us now consider the case κ < 1√
2
. Since now, at the V solution, the absolute

value of the slope of Ξ∞ is larger than that of Λ+∞ we conclude that Ξ∞ is above
Λ+∞ for the whole region 0 < u < π

2 , and so no solution exist for all η sufficiently
large. Decreasing the value of η we conclude that, in this region of u, Λη ∩ Ξη is
nonempty provided β is sufficiently large. Thus we obtain the situation depicted in
Fig. 8.

It is geometrically clear that the turning points in the bifurcation diagram in
this figure occur at those values of η for which there is a single intersection between
Λη and Ξη (both curves with the same slope at the intersection point). Observe
that in this case the V solution does not lose stability, and no switching hap-
pens from V to HAN, although a HAN state does exist for a bounded range of
values of η.

Fig. 7. Phase portraits and bifurcation diagram for σ = +1 and κ = 1√
2
.
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Fig. 8. Phase portraits and bifurcation diagram for σ = +1 and κ < 1√
2
.

Considering the above results in terms of the physical parameters of the system,
we formulate the following theorem:

Theorem 4.1. For sufficiently large anchoring strength W0 and average flexoelec-
tric coefficient E13, as is the case in Fig. 6, there are values E < 0 < E such that
in the order interval u ∈ [0, π/2] the V solution is locally asymptotically stable for
all E < E while the HAN solution is locally asymptotically stable for all E > E.

Therefore, if we are on the V solution branch and increase the strength of the
electric field beyond E and return it to zero (slowly enough), we will effect the jump
from V to HAN; decreasing it beyond E and returning to zero will cause the device
to switch from HAN to V.

Proof. By Lemma 4.1, for sufficiently large E13 we are in the case κ > 1/
√

2 and
the V solution will be linearly stable for all values of η smaller than some η > 0,
that is, for all E smaller than some value E > 0. If β is large enough, that is, if the
anchoring strength W0 is large enough, we have shown above that the HAN solution
exists for values of η > η, where η < 0; in other words, the HAN solution exists for
all values of E larger than some value E < 0. This disposes of the multiplicity part
of the proof; it remains to deal with the stability of the HAN solution.

First, we can appeal to a principle of linearised stability for problems of the
form of (3.1) proved by Merino.17 Finally, we employ a Conley index argument to
show that the HAN solution is l.a.s for E > E. For general background on the
Conley index, see Ref. 19; arguments similar to the ones used here can also be
found also in Ref. 13. We compute the (homology) Conley index of HAN as follows:
Let S = inv([0, π/2]). Then M1 (the V solution) and M2 (see Fig. 9) are adjacent
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M
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1

2

3

Fig. 9. The Morse decomposition.

under the flow defined order. Since M1 is an attractor by Lemma 4.1 and since
by analysing a neighbourhood of the pitchfork bifurcation from the V solution, it
can be shown that h(M2) = Σ1, the connection matrix corresponding to the Morse
decomposition (M1, M2), M1 < M2 is

C1 =
(

0 1
0 0

)
.

Now, since the interval (M2, M3) continues to the empty set and since the system
is dissipative, we have either (A) (M2, M3) is a Morse decomposition with M2 < M3

having the connection matrix

C2 =
(

0 1
0 0

)
or (B) (M3, M2) is a Morse decomposition with M3 < M2 and the connection
matrix

C3 =
(

0 1
0 0

)
.

Case (A) would mean that h(M3) = Σ2 (and we would have for free a hetero-
clinic connection from M3 to M2; in case (B) we would have h(M3) = 1 (and a
heteroclinic connection from M2 to M3).

Let us show that case (A) is not possible. If it were, the connection matrix for
the Morse decomposition (M1, M2, M3), M1 < M2 < M3, would have been

C =

0 1 0
0 0 1
0 0 0

 .

But this is not a connection matrix, since C ◦ C �= 0 (it is also rank 2, while we
need rank 1). Note that in case (B) for the Morse decomposition (M1, M3, M2),
M1 < M2, M3 < M2 we get

C =

0 0 1
0 0 1
0 0 0

 ,

which indeed squares to zero and has rank 1.
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Thus h(M3) = 1, i.e. it is an attractor in S (and it remains so for all E > 0 by
remaining isolated and the invariance of the index).

Case II. Now let us consider the case σ = −1. A complete analysis, such as that
given for σ = +1 is not possible here for the reasons we explain below, but one can
still prove a switching theorem similar to Theorem 4.1. More precisely, we have

Theorem 4.2. For sufficiently large W0 and E13, in the order interval u ∈ [0, π/2]
we have that:

(a) The V (constant) solution is locally asymptotically stable for E ∈ (E1, E), where
E1 < 0 < E; at E it loses stability in a subcritical pitchfork bifurcation; at E1

it exchanges stability in a supercritical pitchfork bifurcation to a non-monotone
stationary solution which we will denote by unm.

(b) There is a value of E, E < 0 such that for all E > E there exists a locally
asymptotically stable HAN solution of (2.7).

(c) For each value of E, there are at most two l.a.s. stationary solutions.

Before we prove this theorem, let us make a number of relevant remarks.
1. It is difficult to establish the exact ordering between E and E1. If E1 < E,

the switch as E is decreased is between the HAN and the V solutions; however, if
E1 > E the switch is from the HAN to the non-monotone solution unm; see Fig. 11
for clarification and Fig. 5 of Ref. 8 for pictures of unm. In both cases we would
expect the system to return along the V solution branch as E is returned to zero,
provided E is reduced sufficiently slowly.

2. The supercritical pitchfork alluded to in part (a) of the theorem is the first
one in an infinite series of such bifurcations as we decrease E; however, beyond the
first one, none of the bifurcations creates a stationary solution in the order interval
[0, π/2].

Proof. Going back to the non-dimensionalised system (2.8), we note that the diffi-
culty in this case stems from the fact that the isochrones corresponding to different
values of η do not admit a simple ordering; furthermore, these curves cannot be
represented for large enough |η| as graphs of v over u. The reason is clear if we
realise that now the phase-portrait of (4.8) is that of a nonlinear pendulum shifted
by π/2, so that the rest point (0, 0) is now a saddle-point while (π/2, 0) is a cen-
tre. If we make the change of variables as in the derivation of (4.8), we see that the
isochrones start to wind around the point (π/2, 0). However, since we are interested
only in the stationary solutions in the order interval [0, π/2], we restrict ourselves to
a portion of the isochrone Ξη, Ξ′

η defined as follows: if we parametrise the isochrone
by the parameter s, so that (u(0), v(0)) = (π/2, 0), and s0(η) is the value of the
parameter for which the isochrone intersects the line u = π/2 for the last time (note
that v(s0) ≤ 0 necessarily), then

Ξ′
η = {(u(s), v(s)) | s ≥ s0(η)}.
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Then it is clear that Ξ′
η defines again v as a function of u, and that the graphs of

these functions, again defined on the domain (−∞, π/2) are ordered in |η|.
Now, if we consider situation for η large, the geometry of Ξ′

η is easily described.
Inside the region bounded by heteroclinic orbits, it lies close to the one correspond-
ing to v < 0 and intersects the one corresponding to v > 0 once. It is monotone
for all values of s > s1(η), where v(s1(η)) = 0 (there is only one such value); see
Fig. 11.

Once the geometry of Ξ′
η is established it is easy to conclude that

(i) for large positive η in addition to the V solution, u = π/2, in the order
interval [0, π/2] there is a unique monotone stationary solution; this is the HAN
solution.

(ii) for large negative η in addition to the V solution, in the order interval [0, π/2]
there is a unique stationary solution. Since it corresponds to an intersection of Ξ′

η

and Λη for v < 0, this solution is non-monotone but unimodal; we denote it by
unm,η. See Fig. 10.

To finish the multiplicity proof, we need to connect the information gathered
above with the situation for η = 0 given by Lemma 4.2. Arguing by continuity,
monotonicity of Ξ′

η and the symmetries of the phase plane we conclude that the

Fig. 10. Stationary solutions for large |η|.
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branch of unm,η solutions bifurcates from the V solution in a pitchfork bifurca-
tion for η < 0, while for η > 0 the V solution loses stability through a pitchfork
bifurcation as well, which in view of the situation for large positive η has to be
a subcritical one, giving rise to the unstable monotone solutions. The question is
whether these can be continued to η = 0 to disappear at some value of η < 0 in
a saddle-node collision with the HAN solution branch. In theory it could happen
that the solutions that exist for η = 0 form an isola that does not connect to this
branch. We now show that this cannot happen.

For η > 0, consider (4.9), which defines v as a function of u,

v = V (u) :=
β

|η| sin(4u) + κ sin(2u). (4.13)

Clearly, V (π/8) > β/|η|. Now let us consider the “time” x it takes the point
(π/8, V (π/8)) to reach the line u = π/2 under the flow of (4.8) with σ = −1. This
distance T is given by

T =
∫ π/2

π/8

dξ√
V (π/8)2 + cos(π/4) − cos(2ξ)

.

Now note that

cos(π/4) − cos(2ξ) ≥ 0 for all ξ ∈ (π/8, π/2),

and hence

V (π/8)2 + cos(π/4) − cos(2ξ) >
β2

η2
.

But then

T <
3π|η|
8β

,

or in other words, for β large enough we have that T < |η| and this means that
the point (π/8, V (π/8)) lies strictly above the isochrone Ξ′

η for all η > 0. From the
properties of the isochrone and the graph of V (u), Λη, it follows that these two
curves have to intersect for some value u < π/8. The implicit function theorem and
Lemma 4.2 then ensure that the branches connect.

The stability of the V solution can be derived from Lemma 4.1; as in the case
of σ = +1, this fixes the dimensions of unstable manifolds of all other equilibria
and we have proved part (c) of the theorem. All the information is summarised
in Fig. 11.

Case III. Finally, when σ = 0 the differential equation in (4.4) is equivalent to
(4.5) and so the isochrone Ξ0 is still given by (4.7). The “initial” manifold Λη is now

Λη := {(u, v) : v = β sin(4u) + κη sin(2u)}
and the analysis proceeds as in Case I (σ = +1) with κ > 1/

√
2 (and the phase

portrait changed to the paralel flow shown in Fig. 4 resulting in a bifurcation
diagram similar to that in Fig. 6.
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Fig. 11. Bifurcation diagram for σ = −1, large enough β and κ.

5. High-Frequency Excitation

Another interesting question concerns the states that can be accessed by applying
a high frequency AC voltage. To answer this question, we consider (2.8) with η :=
ηm sin(τ/ε). We have the following result for σ = +1:

Theorem 5.1. Consider (2.8) with η = ηm sin(τ/ε). Then for ε sufficiently small
there is a 2πε-periodic locally asymptotically stable solution in H1 close to the V
solution that never loses stability.

Proof. We are going to appeal to the averaging theorem for parabolic PDEs proved
in Ref. 14. That theorem is applicable, since in view of Lemma 3.1(3), the lin-
ear part of (2.8) generates an analytic semigroup and the nonlinearity is Fréchet-
differentiable on W 1,2. Thus, we need to consider the rest points of the averaged
system corresponding to (2.8) with η = ηm sin(τ/ε). Stable rest-points of the aver-
aged system will correspond to stable 2πε-periodic solutions of the periodically
excited system (2.8). The rest points of the averaged system satisfy

0 = uxx +
1
2
ση2

m sin(2u), x ∈ (0, 1); (5.1)

subject to the averaged boundary conditions,

ux(0) − β sin[4u(0)] = 0, u(1) =
π

2
. (5.2)

Clearly, as the flexoelectric effect has been averaged out, there is no mechanism for
the V solution to lose stability; see Lemma 4.1. The conclusion is that even if a
HAN-like time-periodic solution exists, it is not accessible from a neighbourhood of
the V-like solution.

In the case of σ = −1, a similar argument shows that one cannot switch from a
HAN solution to a Vertical one.
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6. Conclusions

In summary we will revert to dimensional variables in order to examine the signif-
icance of these results.

The successful operation of a bistable liquid crystal device relies, in part, on two
fundamental principles. The first that there are (at least) two locally stable liquid
crystal director configurations which exist without an applied electric field, and the
second that it is possible to switch between these states using an applied electric
field.

The results in this paper show that in order to achieve two stable states when the
electric field E is zero, the bistable surface anchoring strength must be sufficiently
large (Lemma 4.2).

Given that we do indeed have two stable zero electric field states, we have also
shown that for materials with a positive dielectric anisotropy, ∆ε > 0 (σ = +1),
then in order to be able to switch to and from the Vertical and HAN states the
flexoelectric coefficients must be sufficiently large. Specifically e11 + e33 >

√
ε0∆εK

(κ > 1/
√

2) (Theorem 4.1).
For a material with a negative dielectric anisotropy, ∆ε < 0 (σ = −1), it is also

necessary to have sufficiently large flexoelectric cofficients to switch between states.
However, in this case it is possible that a large negative electric field will induce
a non-monotonic solution which will only switch back to the Vertical state if the
electric field is increased from a large negative value to zero sufficiently slowly, since
otherwise it may be possible to jump from the unm solution to the HAN, so that
the V solution is not accessed (Theorem 4.2).

Finally, we have also shown that the application of a high-frequency electric field
severely limits the operation of the device. For both positive and negative dielectric
anisotropies (σ > 0, σ < 0) it will only be possible to switch in one direction
(HAN to Vertical or Vertical to HAN respectively) and the reverse switching will
be impossible to achieve.
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