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Motivated by a recent investigation of Millar and McKay [Director orientation of a twis-

ted nematic under the influence of an in-plane magnetic field. Mol. Cryst. Liq. Cryst 435,

277/[937]–286/[946] (2005)], we study the magnetic field twist-Fréedericksz transition for a

nematic liquid crystal of positive diamagnetic anisotropy with strong anchoring and pre-twist

boundary conditions. Despite the pre-twist, the system still possesses �2 symmetry and a

symmetry-breaking pitchfork bifurcation, which occurs at a critical magnetic-field strength

that, as we prove, is above the threshold for the classical twist-Fréedericksz transition (which

has no pre-twist). It was observed numerically by Millar and McKay that this instability

occurs precisely at the point at which the ground-state solution loses its monotonicity (with

respect to the position coordinate across the cell gap). We explain this surprising observation

using a rigorous phase-space analysis.

1 Introduction

Liquid crystals are materials that exhibit partially ordered fluid phases under certain

conditions (usually dependent on temperature or relative concentration, in the case of

mixtures). The simplest liquid-crystal phase is the nematic, which possesses orientational

order but no positional order. This phase is often associated with long rod-like molecules,

and the orientational order is typically modelled by a unit length vector field, the director

field, which represents the average orientation of the long axes of the molecules in a

volume element at a point. Standard references on liquid crystals include Chandrasekhar
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[2], deGennes and Prost [5] (for the physics of liquid crystals), Stewart [12] and Virga

[13] (from the point of view of applied mathematics).

The configuration of the director field in a confined system is influenced by several

factors, including the intrinsic elasticity of the material (the preference of the molecules

to orient themselves parallel to each other), externally applied electric or magnetic fields

(which can encourage the director to align either parallel to the field or perpendicular to

it, depending on the material), boundary conditions imposed by confining substrates, and

viscous torques arising from fluid flow. The local orientation of the director influences the

stress tensors that govern the fluid velocity variables. A full, coupled, macroscopic model

of the hydrodynamics of a liquid crystal (valid in certain parameter regimes) is given by

the Ericksen–Leslie equations, which contain the Oseen–Frank elastic theory governing the

steady state, equilibrium solutions.

In some systems, the coupling between director re-orientation and fluid flow can be

neglected (to leading order). The simplest model for the dissipative dynamics of the

director field in the absence of flow can be expressed as a gradient flow of the free energy

of the system and takes the general form:

γ1
∂n

∂τ
= div

(
∂w

∂∇n

)
− ∂w

∂n
− λn,

or, in terms of components,

γ1
∂nα
∂τ

=
∂

∂xβ

(
∂w

∂nα,β

)
− ∂w

∂nα
− λnα,

where nα,β := ∂nα
∂xβ
. Here γ1 is a single rotational viscosity, n is the director field, τ is time,

w is the free-energy density, λ is a Lagrange-multiplier field to enforce the pointwise

unit-vector constraint |n| = 1, and summation over repeated indices is implied in the

component form. For a system with strong anchoring, occupying a region Ω, and in the

presence of a magnetic field, an appropriate form for the total free energy of a given

director field, ∫
Ω

w(n,∇n),

is provided by the free-energy density:

2w = K1 (div n)2 +K2 (n · curl n)2 +K3 |n × curl n|2 − μ0Δχ(H · n)2,

where K1, K2 and K3 are phenomenological elastic constants, μ0 is the free-space magnetic

permeability, Δχ = χ‖−χ⊥ is the difference between the diamagnetic susceptibilities parallel

to versus perpendicular to the director and H is the magnetic field (assumed to be

constant in Ω). The free-energy density embodies the competition between the energy cost

of distortions of the director field versus the energy reduction associated with aligning

parallel to the magnetic field (if Δχ is positive). For example, see [12].

A common geometry for liquid-crystal devices and experiments is that of a thin film, with

the confining substrates treated to coerce a particular orientation of the director. Under

the influence of a sufficiently strong electric or magnetic field, the equilibrium ground

state of the director field (which is typically uniform and undistorted) becomes unstable
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Figure 1. Geometry of the liquid-crystal cell.

to a solution more aligned with the applied field. This is called a Fréedericksz transition.

It is the most basic and fundamental instability in liquid crystals and is discussed in all

of the standard references on the subject. From a practical point of view, such transitions

can be used in experiments to determine values for the elastic constants of different

materials. Also, it is typically the case that the equilibrium director fields on either side of

a Fréedericksz threshold give the ‘on’ and ‘off’ states for various liquid-crystal devices.

We consider the geometry of the twist-Fréedericksz transition, with an antisymmetric

pre-twist. Thus we consider a slab of nematic material bounded by two parallel planes a

distance d apart from each other, unbounded and extending to infinity in any direction

parallel to these planes. Define a positively oriented orthogonal coordinate system (x, y, z)

such that z is perpendicular to the bounding planes. Let the director field be represented

by

n = (cosφ(τ, z), sinφ(τ, z), 0), (1.1)

where φ denotes the (twist) angle of the director. We will assume that in the liquid-crystal

cell the director is fixed in opposing orientations −φp and φp at the two opposing planes

bounding the device in the z direction. This induces a net twist of the director vector field

across the cell (see Figure 1). We will consider a magnetic vector field H applied along the

constant direction (0, 1, 0) with varying intensity H = ‖H‖ and are interested in studying

the effect it induces in the stationary director distribution, according to Ericksen–Leslie

theory.

The angle representation (1.1) guarantees satisfaction at all points and times of the

unit-vector constraint |n| = 1. In terms of this representation, the free-energy density and

director dynamics equation become

2w(φ,φz) = K2φ
2
z − μ0ΔχH

2 sin2 φ, φz :=
∂φ

∂z
,

and

γ1
∂φ

∂τ
=

∂

∂z

(
∂w

∂φz

)
− ∂w

∂φ
= K2

∂2φ

∂z2
+ μ0ΔχH

2 sinφ cosφ.
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In dimensionless form, the initial-boundary value problem governing the behaviour of the

director field is then

∂φ

∂s
=

∂2φ

∂ζ2
+ λ sinφ cosφ, (s, ζ) ∈ �+ × (0, 1), (1.2)

φ(·, 0) = −φp, φ(·, 1) = φp, (1.3)

φ(0, ·) = φ0, (1.4)

where

s :=
K2

γ1d2
τ, ζ :=

z

d
, λ :=

μ0ΔχH
2d2

K2
. (1.5)

All the material parameters are positive for our system of interest. Observe that the

dimensionless control parameter λ is proportional to the square of the magnetic field

strength.

The associated equilibrium problem is given by

d2φ
dζ2 + λ sinφ cosφ = 0, 0 < ζ < 1, (1.6)

φ(0) = −φp, φ(1) = φp. (1.7)

In the classical twist-Fréedericksz transition problem, we have φp = 0; the system possesses

a simple mirror symmetry, φ(ζ) ↔ −φ(ζ); and the ground-state solution (φ = 0, which

is invariant under this symmetry) loses stability to a pair of mirror-symmetric, distorted

solutions at a pitchfork bifurcation at the critical threshold value λc of the parameter

λ = λ(φp) given by,

λc := λc(0) = π2 ⇔ Hc :=
π

d

√
K2

μ0Δχ
.

In a system with pre-twist (φp � 0), we no longer have the simple reflection symmetry

above. The problem still possesses �2 symmetry, however, it is now of the form φ(ζ) ↔
−φ(1 − ζ). The ground-state solution (which is invariant under this symmetry) is no

longer uniform, but undergoes a net twist from ζ = 0 to ζ = 1. For λ = 0, it is

simply the linear profile φ(ζ) = (2ζ − 1)φp. The problem still has a classical pitchfork

bifurcation diagram, with the symmetric solution branch bifurcating at a value λc(φp),

which is necessarily greater than π2, as we show below, to a pair of symmetry-related non-

symmetric solutions. We note that the antisymmetric nature of the boundary conditions

is crucial to this scenario.

This system was carefully studied numerically by Millar and McKay in [8, 9]. They

found that the ground-state solution is a strictly monotone increasing function of ζ for

0 � λ � λc(φp). At λ = λc(φp), this solution satisfies homogeneous Neumann boundary

conditions φ′(0) = φ′(1) = 0, in addition to the Dirichlet (‘strong anchoring’) conditions

φ(0) = −φp and φ(1) = φp. For λ > λc(φp), this solution is no longer monotone and

possesses a unique interior minimum and maximum (see Figure 2). Thus, Millar and

McKay observed the surprising fact that the symmetry-breaking bifurcation coincided

with the loss of monotonicity of the ground-state solution. Here we shall use a rigorous

phase-plane analysis to explain this fact.
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Figure 2. Twist-angle profiles of the symmetric ground-state solution with φp = π
6

and for (a)

λ = 1
2
λc(φp), (b) λ = λc(φp) and (c) λ = 2λc(φp), and the concomitant loss of symmetry and

monotonicity and simultaneous satisfaction of both Dirichlet and homogeneous Neumann boundary

conditions at λ = λc(φp).

2 Time maps

In this section, we shall be concerned only with the stationary solutions to (1.2)–(1.4), i.e.

with the solutions of (1.6)–(1.7). Consider the change of variables t = t(ζ) :=
√

λ
2
(ζ − 1

2
),

and let ζ(t) be its inverse function. Let

L :=

√
λ

8
. (2.1)

Then, φ(ζ) is a solution of (1.6)–(1.7) if and only if x(t) := φ(ζ(t)) is a solution of

{
x′ = y

y′ = − sin 2x
, (2.2)

x(−L) = −φp, x(L) = φp. (2.3)

The bifurcation parameter is now L. Note that L ∝ H. We shall treat the independent

variable t in (2.2)–(2.3) as the ‘time’ of the dynamical system associated with (2.3). Note

that this ‘time’ corresponds to the original spacial variable ζ and not to the original time s.

Let us start by observing that (2.2) is a nonlinear pendulum equation with first integral,

V (x, y) = y2 − cos 2x, (2.4)
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Figure 3. Orbits of (2.2) with the boundary conditions (2.3).

and thus its orbits are contained in the level sets of V . The natural phase space for

(2.2)–(2.3) is the strip [− π
2
, π

2
] × � with the straight lines x = − π

2
and x = π

2
identified;

which is, obviously, the same as a cylindrical phase space (Figure 3). We shall use either

interpretation (as a strip or as a cylinder) as appropriate.

Observing that, for all α ∈ (0, π
2
), the orbit γα that intersects the x-axis at (α, 0) is

periodic, we can associate to each of these values of α the quantity T (α) = 1
4
P (α), where

P (α) is the period of the corresponding orbit γα. By the symmetry properties of (2.2)–(2.3)

under the transformations x �→ −x and y �→ −y, we conclude that T (α) is the time needed

for the point of intersection of γα with the positive-y semi-axis, (0,
√

2 sin α), to travel to

(α, 0). Using (2.2) in (2.4) we get,

T (α) :=

∫ α

0

dx√
cos 2x− cos 2α

. (2.5)

We will also need the time map (α, φp) �→ T1(α, φp) measuring the time needed for the

point of intersection of the orbit γα with the positive-y semi-axis to travel to the straight

line x = φp � α, corresponding to the boundary condition (2.3):

T1(α, φp) :=

∫ φp

0

dx√
cos 2x− cos 2α

. (2.6)

Clearly T1(φp, φp) = T (φp).
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An analogous time map can be defined for orbits that cross the positive-y semi-axis at

a point above the orbit γh joining (− π
2
, 0) to ( π

2
, 0) (note that γh is a heteroclinic orbit if we

do not identify its endpoints as a single point, or a homoclinic orbit when we consider the

cylindrical picture of the phase space). Using the first integral (2.4) we easily conclude that

γh crosses the positive-y semi-axis at the point (0,
√

2). For every β �
√

2 and φp ∈ (0, π
2
)

the time map (β, φp) �→ T2(β, φp) defined by

T2(β, φp) :=

∫ φp

0

dx√
β2 + cos 2x− 1

, (2.7)

measures the time taken by the point (0, β) to reach the line x = φp under the flow

generated by (2.2). By the dominated convergence theorem, we have T2(β, φp) → 0 as

β → +∞.
The time map T2 can be used to compute the periods of the periodic orbits above γh:

if the orbit crosses the positive-y semi-axis at a point (0, β) with β >
√

2, its period is

2T2(β,
π
2
). Observe that, by the symmetry of (2.2) under the transformations x �→ −x and

y �→ −y, the orbits crossing the negative-y semi-axis at a point (0,−β) below the orbit

γ−h connecting ( π
2
, 0) to (− π

2
, 0), have a period given by the same expression.

The function T2 can be continuously extended for values β <
√

2 using the time map

T1: by the phase portrait presented in Figure 3 and the fact that orbits of (2.2) lie on

level sets of the first integral V , we conclude that, for each α ∈ (0, π
2
), there exists a unique

β = β(α) ∈ (0,
√

2) such that the points (0, β) and (α, 0) lie on the same orbit of (2.2), and

the function α �→ β(α) is strictly increasing. Thus, denoting by β∗ the value of β(φp), we

conclude that, for each α ∈ [φp,
π
2
), we have β(α) ∈ [β∗,

√
2). Denoting by β �→ α(β) the

inverse function, we can extend the definition of T2 to β ∈ [β∗,
√

2) as follows:

T2(β, φp) := T1(α(β), φp). (2.8)

Observe that the following equalities hold, T2(β
∗, φp) = T1(φp, φp) = T (φp) = L∗, where,

for later reference, we have defined:

L∗ := T (φp). (2.9)

We also observe that, by continuous dependence of the flow generated by (2.2), we have

β∗ := β(φp) →
√

2 as φp → π
2
.

In order to proceed with the analysis we need the following result about the monotonicity

properties of the time maps T , T1 and T2:

Proposition 1 Let α ∈ (0, π
2
), φp ∈ (0, α), and β � β∗. Then,

(1) the function α �→ T (α) defined by (2.5) is strictly increasing and converges to +∞ as

α ↑ π
2
, and to π

2
√

2
as α ↓ 0.

(2) the functions α �→ T1(α, φp) and β �→ T2(β, φp), defined by (2.6) and (2.7), respectively,

are strictly decreasing. The same holds true for T2(·, π
2
).
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Proof 1 As in [11], we change the integration variable x �→ s := x
α

in (2.5), so that

T (α) =

∫ 1

0

α√
cos 2αs− cos 2α

ds,

and thus

T ′(α) =

∫ 1

0

θ(αs) − θ(α)

(cos 2αs− cos 2α)3/2
ds, (2.10)

where θ(x) := cos 2x + x sin 2x. Since θ is strictly decreasing in (0, π
2
), we conclude that

the integrated function in (2.10) is positive and thus T (·) is strictly increasing. The limit

behaviours are readily obtained from the facts that the orbits approach γh in the first

case, and the flow becomes close to the linearized flow about (0, 0) in the second case.

Proof 2 Differentiating T1 with respect to α, we get,

∂T1

∂α
= −

∫ φp

0

sin 2α

(cos 2x− cos 2α)3/2
dx < 0. (2.11)

For β >
√

2 we use (2.7) to get

∂T2

∂β
= −

∫ φp

0

β

(β2 + cos 2x− 1)3/2
dx < 0,

which is valid for all φp ∈ (0, π
2
]. With β ∈ (β∗,

√
2), using (2.8), the fact that β �→ α(β) is

strictly increasing, and the above computation of ∂T1

∂α
, we conclude that

∂T2

∂β
=

∂T1

∂α

dα

dβ
< 0.

The result now follows from these inequalities and the continuity of T2(·, φp) at β∗

and
√

2. �

3 Phase-space analysis

With recourse to the time-maps’ properties established in the previous section, we can

now start our bifurcation analysis of (2.2)–(2.3). At this point it is important to separate

the study of orbits bounded by the homoclinic loops γh and γ−h, from those existing in

the unbounded regions of the cylindrical phase plane. We will deal with the first ones in

Sections 3.1–3.3 and with the last ones in Section 3.4.

For the study of the orbits in the bounded region we can consider the system as living

in the strip (− π
2
, π

2
) × � of �2. Naturally, for the study of the solutions in the unbounded

regions the consideration of the cylindrical nature of the phase plane is mandatory. For

all Sections 3.1–3.3 below, remember that we have defined L∗, in (2.9), as the value of

T (·) at φp.
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Figure 4. The orbit γ∗ of the solution (x∗, y∗) of (2.2)–(2.3) when L is the critical value L∗.

3.1 The critical case L = L∗

A first and easy consequence of last section’s results is that, for every φp ∈ (0, π/2),

there exists a unique solution (x∗, y∗), to the boundary value problem (2.2)–(2.3) with

L = L∗. In fact, if we fix φp ∈ (0, π/2), the monotone increasing behaviour of T (·) given

by Proposition 1 implies that there exists a unique value of α, namely φp, such that

T (α) = L∗. Observe that the x-component of this unique solution is strictly increasing

and satisfies both Dirichlet and homogeneous Neumann boundary conditions (Figure 4).

3.2 The subcritical case L < L∗

Another equally easy consequence of the monotonicity of the time maps is that, for each

fixed valued of φp ∈ (0, π/2) and each L ∈ (0, L∗), there exists one and only one solution

to (2.2)–(2.3). Furthermore, all these solutions have a monotone increasing x-component.

To establish this, let us start by fixing φp ∈ (0, π/2). For this φp, compute L∗ by (2.9)

and choose an arbitrary L ∈ (0, L∗). From the definition and properties of T2 in Section 2,

we conclude that there exists a unique βL > β∗ such that T2(βL, φp) = L.

Consider the orbit γβL of (2.2) that contains the point (0, βL). By construction, the arc of

γβL between the lines x = −φp and x = φp satisfies the boundary condition (2.3). By the

monotonicity of T2 it follows that L �→ βL is strictly decreasing, and the uniqueness of βL
implies the uniqueness of the solution to (2.2)–(2.3). The monotonicity of the x-component

of the solution as a function of t is obvious from the phase portrait in Figure 3.

3.3 The supercritical case L > L∗

Finally, again using the monotonicity of the time maps, we can establish the existence, for

all L > L∗, of several branches of solutions, three of them bifurcating from the critical

solution (x∗, y∗) at L = L∗.

3.3.1 Asymmetric solutions bifurcating from γ∗

Fix any L > L∗. By Proposition 1, there exists a unique α = α(L) ∈ (φp,
π
2
), such that

T (α) = L. Hence, there exists a unique solution of (2.2) satisfying the boundary condition
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Figure 5. The orbit γα of (2.2) with period 4L, with L > L∗, and the arc of γα that satisfies the

boundary condition x(−L) = −α and x(L) = α.

Figure 6. The orbits γ+
α and γ−

α of (2.2) that satisfy the boundary condition (2.3) where α is the

unique solution of T (α) = L, for L > L∗.

x(−L) = −α and x(L) = α and with strictly increasing x-component; corresponding to

this solution is the arc between the points (−α, 0) and (α, 0) of the periodic orbit γα of

(2.2) plotted in Figure 5.

By construction, γα has period 4L, and by the invariance of the vector field of (2.2)

under the transformations x �→ −x and y �→ −y, one concludes that, in any one period,

the orbit spends exactly 2L units of time in every half-strip. This implies that there exists

exactly two solutions of (2.2)–(2.3) whose orbits, denoted by γ+
α and γ−

α , coincide with

part of γα and lie entirely in a half-space, as presented in Figures 6(a) and (b).

It is clear from the limit behaviour of T at π
2

stated in Proposition 1, that the branches

of solutions corresponding to the orbits γ+
α and γ−

α exist globaly as L → +∞ and remain

bounded. Clearly, since α ↓ φp as L ↓ L∗, the two orbits converge to the orbit γ∗ of the

critical solution (x∗, y∗) as L → L∗. Note that each of these solutions exhibit a single

extremum in the interval (−L,L): the solution whose orbit is γ+
α has a maximum, and the

one correspondent to γ−
α has a minimum. Note that these are the asymmetric solutions

presented in Figure 2(c).

3.3.2 Symmetric solutions bifurcating from γ∗

For L > L∗ there is an easily obtained further solution of (2.2)–(2.3) that corresponds

to the bifurcating symmetric solution shown in Figure 2(c). To reach this conclusion,
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Figure 7. The orbit γα of (2.2) that satisfies the boundary condition x(0) = 0 and

x(L) = φp referred to in the text.

observe first that the point in the y-axis of an orbit like the one plotted in Figure 7 takes

2T (α) − T1(α, φp) units of time to cover its full length.

From Proposition 1, T (·) and T1(·, φp) are both continuous and monotone functions of

α for α ∈ (φp,
π
2
), the first one increasing and converging to +∞ as α → π

2
, the second one

strictly decreasing. Also, remember that T (φp) = T1(φp, φp) = L∗. From this it follows

that 2T (φp) − T1(φp, φp) = L∗ < L and limα→π/2(2T (α) − T1(α, φp)) = +∞ > L. Thus,

there exists a unique value of α ∈ (φp,
π
2
) such that the orbit γα plotted in Figure 7 is

travelled in L units of time. Observe that, as α ↓ φp, we have 2T (α) − T1(α, φp) → L∗

and γα → γ∗. By the symmetry x ↔ −x, this construction allows us to conclude that,

for each L > L∗, there is a single solution of (2.2)–(2.3) with exactly one maximum and

one minimum in (−L,L), and it bifurcates from the critical solution (x∗, y∗). This is the

symmetric solution in Figure 2(c).

3.3.3 Other bifurcating solutions

In this section, we apply the approach used above, based on the interplay of phase-

space analysis and the behaviour of the time maps, in order to obtain the existence, at

values L = L∗
k := (2k + 1)L∗, ∀k ∈ �+, of a supercritical pitchfork bifurcation from

non-monotonic solutions γ∗k whose orbits are akin to γ∗ but wind a full k times around

the origin. With this notation, γ∗ can be seen as the member k = 0 of this family γ∗0, since

it does not wind around the origin.

We shall also conclude that, for each k ∈ �+, the branch of symmetric solutions

impinging on the pitchfork bifurcation point with L < L∗
k is one of the branches of

solutions arising from a saddle-node point at some L
sn,k ∈ [L∗, L∗

k), and no other saddle-

node points occur along either of the resulting branches. We start by noting the existence

of the five different types of solutions to the boundary value problem (2.2)–(2.3), described

in the Table 1 by the letters A–D.

Note that, by the same argument used in sections 3.2, 3.3.1 and 3.3.2, all those solutions

converge to the critical one γ∗k (solution B) as α ↓ φp, and the time taken by each

orbit converges to the corresponding time SB(φp) := 2(2k + 1)T (φp) = 2L∗
k . Also by the

monotonicity properties of the time maps (Proposition 1), we conclude that, for each fixed
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Table 1. Solutions of (2.2)–(2.3), with α close to φp, winding k times around 0. The

symmetry classification of the orbits refers to their behaviour under the reflection x ↔ −x

Symmetry

L Orbit γα,k (winds k times around 0) of γα,k Time taken by the orbit γα,k

L < L∗
k Symmetric SA(α) := 2(2kT (α) + T1(α, φp))

L = L∗
k Symmetric SB(φp) := 2(2k + 1)T (φp)

L > L∗
k Asymmetric SC (α) := 2(2k + 1)T (α)

L > L∗
k Symmetric SD(α) := 2((2k + 2)T (α) − T1(α, φp))

α > φp close to φp, the time taken by the orbits of type C and D satisfies

SD(α) = SC (α) + 2
(
T (α) − T1(α, φp)

)
> SC (α) > SB(φp) = 2L∗

k,

and hence the corresponding branches of solutions occurs supercritically (i.e. at L > L∗
k).

Analogously, since by (2.10) and (2.11) we have, as α ↓ φp,

T ′(α) → T ′(φp) ∈ (0,∞), and
∂T1

∂α
→ −∞, (3.1)

the time spent by orbits of type A (with α sufficiently close to φp) satisfy

SA(α) = 2
(
(2k + 1)T (α) + T1(α, φp) − T (α)

)
< 2L∗

k,

and thus the corresponding branch of solutions occur subcritically (i.e. at L < L∗
k). Hence,

this concludes the existence of the pitchfork bifurcations alluded to above.

One clear problem arising from the above bifurcation result is that, by the results in

Section 3.2, the branch of solutions of type A cannot continue for values of L below L∗.

To understand what happens to these solutions, we study the map α �→ SA(α), where SA(·)
is the time spent by the orbits of type A. For this study, it turns out to be much easier

to consider the parametrization of the orbits by α̃ := sin2 α instead of α. Denote by S̃A(α̃),

T̃ (α̃) and T̃1(α̃) the functions SA, T and T1 in the new variable. By the definition of T in

(2.5), we can write:

T (α) = T̃ (α̃) =
1√
2

∫ π
2

0

dθ√
1 − α̃ sin2 θ

=
1√
2
K(α̃),



Bifurcation of the twist-Fréedericksz transition in a nematic liquid-crystal cell 281

Figure 8. Supercritical pitchfork bifurcation diagram around L = L∗
k where two branches of

asymmetric solutions (C� and Cr) bifurcate from the (symmetric) critical solution B of (2.2)–(2.3)

when L is the critical value L∗
k . The symmetric branch (A) with L < L∗

k disappears in a saddle-node

bifurcation at L = Lsn,k ∈ [L∗, L∗
k). We denote by hp (resp. −hp) the value of the y-component of the

orbit γh (resp. γ−h) at the point of intersection with x = −φp. See Table 1 and the text for further

details.

where K is the complete elliptic integral of the first kind [1, Chapter 17]. From (2.6) we

have

T1(α, φp) = T̃1(α̃, φp) =
1√
2

∫ φp

0

dx√
α̃− sin2 x

.

Thus, we have

S̃ ′′
A(α̃) = 4kT̃ ′′(α̃) + 2

∂2T̃1(α̃, φp)

∂α̃2

=
3k√
2

∫ π
2

0

sin4 θ

(1 − α̃ sin2 θ)5/2
dθ +

3

2
√

2

∫ φp

0

dx

(α̃− sin2 x)5/2
> 0.

From Proposition 1 we infer that S̃A(α̃) → ∞ as α̃ → 1, and from (3.1) we conclude

that S̃ ′
A(α̃) → −∞ as α̃ ↓ sin2 φp. These arguments, together with the above convexity

result, allow us to conclude that the function α̃ �→ S̃A(α̃) has a unique minimum for

some α̃
sn,k ∈ (sin2 φp, 1). We denote by L

sn,k the corresponding minimum value of 1
2
S̃A (the

saddle-node bifurcation point). For all L ∈ (L
sn,k , L

∗
k) there exist exactly two branches

of solutions of type A. Recalling that α = arcsin
√
α̃, the branch corresponding to the

smaller value of α for fixed L converges to the critical orbit γ∗k (solution B) when L ↑ L∗
k ,

while the one corresponding to larger values of α is defined for all L > L∗
k and converges

to the union of the loops γh ∪ γ−h, as L → +∞. The same monotonicity and convexity

arguments, now applied to the map that gives the time spent by the asymmetric orbits

C� and Cr as functions of α̃, allow us to conclude that those solution branches do not

possess turning points.

Collecting this information graphically, we obtain the bifurcation diagram presented in

Figure 8, where the bifurcation parameter is L and the bifurcation variable is the value
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of the y-component of the solution at time t = −L (i.e. is the value of the y-component

of the starting point of the orbit, which, of course, lies in the vertical line x = −φp).
Using the methods of Schaaf [10], it is possible to conclude that all solutions that do

not arise in the pitchfork bifurcation at L∗ are linearly unstable for the semiflow generated

by (1.2)–(1.4).

3.4 Non-bifurcating solutions

We now finish the phase space analysis with a study of the non-bifurcating solutions

to (2.2)–(2.3) that lie in the unbounded regions of the cylindrical phase space, i.e. those

periodic solutions that exist above the homoclinic loop γh, or below γ−h. As a consequence

of this study, we then present the bifurcation diagram that sums up the analysis developed

thus far. Let us start with the periodic solutions above the loop γh.

We already know, from the results in Section 3.2, that the branch of solutions leaving

the bifurcation point L = L∗ for L < L∗ exists down to L = 0. By the analysis in that

section and what was presented in Section 2 on the time map T2, these solutions satisfy

y(−L) → +∞ as L → 0. Remember that the x-component of these solutions is monotone

increasing, so they are not periodic.

The periodic orbits above γh can be indexed by k, the number of times they fully circle

the cylindrical phase space. An orbit of (2.2)–(2.3) that circles k times the phase space

spends in its orbit a time given by 2(kT2(βk,
π
2
)+T2(βk, φp)), where βk is the y-component

of its intersection with the positive y-axis. Note that, from the phase space analysis, for

each orbit, there is a one-to-one correspondence between the values of βk and y(−L), both

converging to +∞ as L → 0, and to the corresponding points in γh when L → +∞. From

this and the results in Section 2, we conclude that, for each k ∈ �, and each L > 0, there

exists a unique solution to (2.2) circling exactly k times the cylindrical phase space, taking

exactly 2L units of time to do so, and its value of y(−L) converges to +∞ as L → 0 and to

hp (defined in the caption of Figure 8) when L → +∞. From the monotonicity properties of

T2 studied in Section 2, we further conclude that y(−L) is monotonically decreasing with L.

By the symmetry properties of (2.2), exactly the same occurs with the orbits below γ−h,

the only difference being that, now, the time taken by a solution to (2.2)–(2.3) whose orbit

circles k times the cylindrical phase space is 2((k + 1)T2(βk,
π
2
) − T2(βk, φp)).

These results, together with those obtained in the Sections 3.1–3.3, can be joined together

in order to draw the bifurcation diagram in Figure 9.

How all these solutions and bifurcation events are related to what happens as φp → 0+

is an interesting problem in its own right, but we do not address it here. Furthermore, a

thorough understanding of the associated compact global attractor, along the lines of the

work of, say, Fiedler and Rocha (see, for instance, [4] and related work) would require

a knowledge of the Morse indices of the equilibria. It is, however, somewhat outside the

scope of the present study.

4 Stability and monotonicity

We now recall the definitions introduced in Sections 1 and 2 for the re-scaled variables

t and ζ and for the parameter L, and re-scale the original time s �→ s̃ := λ
2
s. Denoting
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Figure 9. Part of the bifurcation diagram of (2.2)–(2.3) showing the pitchfork bifurcation points

at L∗, L∗
1 and L∗

2, as well as four non-bifurcating solutions, two above γh and two below γ−h .

again by φ = φ(̃s, t) the function φ(s(̃s), ζ(t)) where φ(s, ζ) is a solution of (1.2)–(1.4), we

can write the initial-boundary value problem (1.2)–(1.4) in the form,

∂φ

∂s̃
=

∂2φ

∂t2
+ sin 2φ, (̃s, t) ∈ �+ × (−L,L), (4.1)

φ( · ,−L) = −φp, φ( · , L) = φp, (4.2)

φ(0, ·) = φ0. (4.3)

Note the equilibria of (4.1)–(4.3) are the solutions x(t) of (2.2)–(2.3).

Let us fix φp ∈ (0, π/2). Let L∗ be given by (2.9). Denote by x∗(t) the monotone

solution of (2.2)–(2.3) for L = L∗. Remembering Section 3.1, x∗(t) satisfies both Dirichlet

and homogeneous Neumann boundary conditions. In this section, we show that there

is a pitchfork bifurcation of �2-symmetry breaking solutions from x∗(t), which is thus

concomitant with loss of monotonicity. By the principle of exchange of stability, this

implies that the only stable solutions (more precisely, locally asymptotically stable for the

semi-flow generated by (4.1)–(4.3), and hence also by (1.2)–(1.4)) are either monotone (for

L � L∗, the symmetric solution) or have a unique extremum point (the non-symmetric

solutions, for L > L∗). The bifurcation that, as we show, occurs at L∗ has to be a pitchfork

bifurcation by the �2 symmetry of the equations, and it has to be a supercritical pitchfork

bifurcation by the monotonicity results in Proposition 1. We have,

Theorem 1 There is a �2-symmetry breaking bifurcation at L∗ from the solution x∗(t)

defined above. Furthermore, there cannot exist a bifurcation from a monotone solution x(t)

that does not satisfy the Neumann boundary condition.
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Proof Let the operator AL with homogeneous Dirichlet boundary conditions on (−L,L)

be defined by

AL =
d2

dt2
+ 2 cos(2x(t;L)),

where x(t;L) is a solution of (2.2)–(2.3) for some fixed value of the parameter L. Since

(x∗)′(±L∗) = 0, the function ψ(t) = (x∗)′(t) is a zero eigenfunction of AL∗ . Since the

eigenvalue problem for this operator is a standard regular Sturm–Liouville problem with

homogeneous Dirichlet boundary conditions, we know that all its eigenvalues are simple.

Thus, by Krasnoselskii’s theorem [6], L∗ is a bifurcation point.

To prove the second statement of the Theorem, let us proceed by contradiction. Suppose

such a bifurcation occurs. Then, by the Krein–Rutman theorem [7], there is a function

ψ(t) > 0 satisfying homogeneous Dirichlet boundary conditions, such that

ATψ := ψ′′ + 2 cos(2x(t))ψ = 0.

Furthermore, ψ′(−L) > 0, ψ′(L) < 0, because otherwise, by the uniqueness theorem for

linear ODEs, ψ(t) is identically zero. Now let ρ(t) = x′(t). Then

ρ′′ + 2 cos(2x(t))ρ = 0,

and (since x(t) is strictly monotone) ρ(±L) > 0. But then multiplying the equation satisfied

by ψ by ρ, and vice versa, integrating over [−L,L] and subtracting, we have that

ψ′(L)ρ(L) − ψ′(−L)ρ(−L) = 0,

which is impossible, as this expression is necessarily negative. �

Finally, we have the following theorem (which again has been found numerically in

[8, 9]):

Theorem 2 The map φp �→ L∗ is monotone increasing.

Proof Fix φp in (0, π
2
) and consider the critical solution x∗(t). This function gives rise to

a solution X∗(t) of (2.2) with homogeneous Dirichlet boundary conditions as follows:

X∗(t) =

{
x∗(t+ L∗), t ∈ [−L∗, 0)

−x∗(t− L∗), t ∈ [0, L∗]
.

Remembering that in Section 2 we denoted by β∗ := β(φp) the ordinate of the point of

intersection of the critical solution with the y-axis, we immediately conclude, from a brief

inspection of the phase portrait in Figure 3, that the map f1 : φp �→ β∗ is monotone

increasing. On the other hand, by a calculation as in Proposition 1, the (time) map f2

which measures the time it takes for a solution through the point (0, a), a ∈ [0,
√

2), to

hit the point (0,−a) is monotone increasing. Furthermore, f2(β
∗) = 2L∗. Hence 1

2
f2 ◦ f1 is

monotone increasing; but this is the map φp �→ L∗, which concludes the proof. �
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Defining

λc(φp) := 8(L∗)2, (4.4)

we conclude, by (2.1) and the previous results, that λc(φp) is the first bifurcation value

of (1.2)–(1.4) and that the monotonicity, the symmetry and the stability properties of the

bifurcating solutions are as stated in the Introduction.

5 Conclusions

We summarize our results and some consequences. The twist-Fréedericksz geometry (in-

plane field perpendicular to planar-aligned director) is one of the three main Fréedericksz-

transition geometries (the other two being the ‘bend’ and the ‘splay’ [3]). The instabilities

associated with these systems are fundamental in the macroscopic equilibrium theory

of liquid crystals and are of intrinsic interest. We have analysed the twist-Fréedericksz

transition with pre-twist and some of the surprising features discovered numerically

by Millar and McKay [8, 9]. In systems such as these, it is usually the case that

altering the boundary conditions destroys the mirror symmetry and leads to an imperfect

bifurcation and smeared-out transition. For the twist geometry, however, in the presence

of antisymmetric pre-twist boundary conditions (equal absolute value and opposite signs

on the opposing sides of the boundary), the system retains �2 symmetry and a symmetry-

breaking pitchfork bifurcation, albeit at an elevated threshold.

The most distinguishing feature of the transition (with pre-twist) is the coincidence

of the symmetry-breaking bifurcation with the loss of monotonicity of the ground-state

solution (and simultaneous satisfaction of both Dirichlet and homogeneous Neumann

boundary conditions φ′(0) = φ′(1) = 0). A good framework within which to study this is

the phase plane, where the problem coincides with that of a nonlinear pendulum. There,

by analysing appropriate time maps, we have shown that the trajectory of the solution

of the equilibrium boundary value problem at the bifurcation point must coincide with a

segment of an orbit that begins and ends on the horizontal axis, where necessarily φ′ = 0.

From a practical point of view, this transition provides a potential way to measure

experimentally the pre-twist of a twist cell with differently aligned anchoring conditions.

In such an experiment, one would steadily increase or decrease the magnetic field strength

to determine the critical threshold Hc of the onset of the instability. The relationship

between Hc and φp is monotone, hence invertible. It is given (in dimensionless terms) by

(4.4), which can be written as

λc(φp) = 8(L∗)2 = 8(T (φp))
2, 0 � φp <

π

2
. (5.1)

Recalling (1.5), the parameter λ and the magnetic field strength H are related by

λ =
μ0ΔχH

2d2

K2
⇔ H =

1

d

√
K2

μ0Δχ

√
λ.

While an explicit formula for φp in terms of λc or Hc cannot be given, formula (5.1) can

easily be inverted, and Theorem 2 implies that φp �→ λc(φp) is monotone increasing for

the full range of values of φp ∈ (0, π/2). For small values of the pre-twist angle φp, the
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fact that T (α) = 1√
2
K(sin2 α) allows one to obtain the approximation:

λc(φp) ≈ π2

(
1 +

1

2
φ2
p

)
, when φp ≈ 0,

which was found in [8] to give very good agreement with numerical results.

A final result worth noting concerns the characterization of the non-bifurcating periodic

solutions in Section 3.4. In addition to allowing us to complete our phase-space analysis,

these solutions are of some physical interest as well, for it is in these unbounded regions

of the cylindrical phase space above γh and below γ−h that one finds all ‘super-twisted’

solutions, that is, solutions with total twist across the cell greater than π radians. Super-

twisted cells are used in display applications, although they are typically switched by

electric (not magnetic) fields that are aligned perpendicular to (rather than parallel to)

the film plane. STNs (Super-Twisted Nematic cells, 3π
2

radians total twist) are preferred to

standard TNCs (Twisted Nematic Cells, π
2

radians total twist) in some applications because

of their shorter switching time. Our analysis readily guarantees existence and uniqueness

of super-twisted solutions (both clockwise and counter-clockwise) of arbitrarily large total

twist and for all field strengths. Of course, for given orientations of the director on the

substrate boundaries, the solution with smallest total twist would have the least free

energy.
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