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Abstract. In this paper we find topological conditions for the non
existence of heteroclinic trajectories connecting saddle orbits in non singular
Morse-Smale flows on S3.
We obtain the non singular Morse-Smale flows that can be decomposed as

connected sum of flows and we show that these flows are those who have no
heteroclinic trajectories connecting saddle orbits. Moreover, we characterize
these flows in terms of links of periodic orbits.
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1. Introduction
Morse-Smale flows are structurally stable flows in the set of C1−vector fields on
compact connected manifolds. In dimension three, only the set of periodic orbits
of non singular Morse-Smale systems (NMS) on S3 (M. Wada [8], K. Yano [9]) and
S2×S1 (A. Cordero, J. Martínez Alfaro and P. Vindel [5]) have been characterized in
terms of links. These characterizations are based on the round handle decomposition
(RHD) introduced by Asimov [1] and Morgan [6].
M. Wada [8, Theorem 1] characterizes the links of periodic orbits of NMS flows

on S3 in terms of six operations and a generator, the hopf link. He states that every
link obtained by applying these operations corresponds to the set of periodic orbits
of a NMS flow on S3.
The link of periodic orbits of a NMS flow on S3 is defined by the cores of the

round-handles in the round handle decomposition of the manifold. Although there
is a 1-1 correspondence between the flow and the round handle decomposition, this
is not the case for the link of periodic orbits. Different round handle decompositions
can yield the same link (B. Campos, J. Martínez Alfaro and P. Vindel [2]), but the
corresponding flows are not topologically equivalent (B. Campos and P. Vindel [3]).
So, the link of periodic orbits does not describe completely the flow. Nevertheless,
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we can obtain some relevant information from the link such as the presence or not of
heteroclinic trajectories connecting saddle orbits.
Next, we see how this paper is organized and the most significant results obtained

in the different sections.
In section 3 we carry out iterated sum of tori and we characterize the 3-manifold

obtained.
In section 4 we define and characterize the set of the links coming from iterated

sum of tori. This set is formed by the NMS links of periodic orbits on S3 associated
to round 1-handles that are iterated sum of tori (lemma 6).
In section 5 we obtain a correspondence between flows characterized by links

coming from iterated sum of tori and NMS flows on S3 that are connected sum of
flows (theorem 13).
Finally, in section 5.2, we show that such flows have no heteroclinic trajectories

connecting saddle orbits (proposition 14). Moreover, we characterize a kind of flows
that necessarily have these type of trajectories (proposition 14).
In fact, we divide the set of the flows with unknotted and unlinked saddle orbits

in two complementary sets: the set of flows FI (S
3) , having no heteroclinic orbits

and its complement F̄I (S
3) , the flows containing these type of trajectories.

2. Previous results
In this section we collect some previous results that are necessary for the development
of the subsequent sections.

2.1. Non Singular Morse Smale flows.

Definition 1. A non singular Morse-Smale flow (or NMS for short) on (W,∂−W ) is
a flow without fixed points in W which is transverse to ∂W, pointing inward on ∂−W
and outward on ∂+W = ∂W − ∂−W, satisfying the following properties:
(1) The non-wandering set consists entirely of closed orbits.
(2)The Poincaré map of each closed orbit is hyperbolic.
(3) The stable and unstable manifolds of the closed orbits have transversal inter-

section with each other.

2.2. Round handle decompositions. The notion of the round handle decom-
position was introduced by Asimov [1] and modified by Morgan [6]; it establish a
correspondence between NMS flows and round handle decompositions.

Definition 2. Let X and Y be two n-dimensional manifolds. The manifold X is
obtained from Y by attaching a round k-handle if there are disk bundles over S1, Dk

s

and Dn−k−1
u , and an embedding ϕ : (∂Dk

s ×
S1
Dn−k−1

u )→ ∂Y such that

X ∼= Y
S
ϕ

¡
Dk

s ⊕Dn−k−1
u

¢
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Definition 3. A round handle decomposition for (X, ∂−X) is a filtration

∂−X × I = X0 ⊂ X1 ⊂ · · · ⊂ Xi ⊂ Xi+1 ⊂ · · · ⊂ XN = X (1)

where each Xi is obtained from Xi−1 by attaching a round handle.

Proposition 1. [1], [6] If a manifold X admits a round handle decomposition, then
there is a NMS flow on X whose closed orbits coincide with the cores of the round
handles and the flow is pointing outward on ∂Xi. Conversely, if X has a NMS flow,
X admits a round handle decomposition whose core circles are the closed orbits of
the flow.

Theorem 2. [6] Let X be a compact, orientable and irreducible manifold with ∂X
either empty or disjoint union of tori. If X admits a round handle decomposition
then ∂Xi is formed by tori.

For the case of dimension 3, the round handles are diffeomorphic to tori and
correspond to 0-handles when there is a repulsive periodic orbit in the core, to 2-
handles if there is an attractive periodic orbit in the core and to 1-handles if the orbit
in the core is a saddle.
For the study of the round handle decomposition of a compact, orientable 3-

manifoldM is more convenient to use the fat round handle decomposition introduced
by Morgan [6]:

∅ =M0 ⊂M1 ⊂ · · · ⊂Mi ⊂Mi+1 ⊂ · · · ⊂MN =M

where

Mi =
iS

j=1

Cj i = 1, 2, ..., N

and Cj is, either a 0 or 2-handle, or a fat round handle of the form:

Cj = A× [0, 1]
S
ϕ

Ds ⊕Du

where A is a union of components of ∂Mi−1, Ds ⊕ Du is the Whitney sum of disk
bundles Ds and Du over S1 and the image of ϕ : (∂Ds)⊕Du → A×{1} meets every
component of A× {1}.
The fat round handle is obtained from the manifold A by attaching a round 1-

handle by means of one or two attaching circles depending on whether the 1-handle
is twisted or untwisted, let c1 = ϕ ({−1} × {0} × S1) and c2 = ϕ ({+1} × {0} × S1)
denote these circles. So, while round 1-handles are always disk bundles over S1, the
fat round 1-handles can be different types of manifolds depending on the way the
1-handles are attached.
The attachment of MN−1 with the last 2-handle gives the 3-manifold M .
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2.3. Links of periodic orbits in S3. In order to classify the set of closed orbits
of a NMS flow on S3, M. Wada [8] describes the different types of fat round 1-handles
for the manifold S3 . This result, was independently obtained in a different way by
K. Yano [9].
Consider C together with ∂−C = A × {0} and the core γ which is the 0-section

of Ds ⊕Du, i.e., the core of Ds ⊕Du. The component C associated to a round 0 or
2-handle is just a solid torus. For 1-handles we have the following result:

Lemma 3. [8, Lemma 1] The triple (C, ∂−C, γ) associated to a round 1-handle is
one of the following types:

(a) C ∼= T1× [0, 1]#T2× [0, 1], where T1 and T2 are tori, ∂−C = T1×{0}∪T2×{0}
and γ is an unknot in C.

(b) C ∼= T 2 × [0, 1]#τ 1, ∂−C = T 2 × {0} or ∂−C = T 2 × {0} ∪ ∂τ 1 and γ is an
unknot in C.

(c) C ∼= τ 1#τ 2, where τ 1 and τ 2 are solid tori, ∂−C = ∂τ 1 and γ is an unknot in C.

(d) C ∼= F ×S1 where F is a disk with two holes, ∂−C is a component or a union of
two components of ∂C and γ = ∗× S1 for some point ∗ in IntF.

(e) C ∼= D2 × S1 r IntW where W is a tubular neighborhood of the (2, 1)-cable of
{0} × S1 in D2 × S1, ∂−C = ∂W and γ = {0} × S1.

The set of periodic orbits of a NMS flow in S3 is characterized by Wada in terms
of indexed links and six operations:

Theorem 4. [8] Every indexed link which consists of all the closed orbits of a non-
singular Morse-Smale flow on S3 is obtained from (0, 2)-hopf links by applying the
following six operations. Conversely, every indexed link obtained from (0, 2)−links
by applying the operations is the set of all the closed orbits of some non-singular
Morse-Smale flow on S3.

OPERATIONS: For given indexed links l1 and l2, the six operations are defined
as follows. Let l1 · l2 denote the split sum of the links l1 and l2 and N(k,M) a regular
neighbourhood of k in M .
1) I(l1, l2) = l1 · l2 · u, where u is an unknot with index 1.
2) II(l1, l2) = l1 · (l2 − k2) · u, where k2 is a component of l2 of index 0 or 2.
3) III(l1, l2) =( l1 − k1) · (l2 − k2) · u, where k1 is a component of l1 of index 0

and k2 is a component of l2 of index 2.
4) IV (l1, l2) = (l1#l2) ∪m. The connected sum (l1#l2) is obtained by composing

a component k1 of l1 and a component k2 of l2, each of which has index 0 or 2. The
index of the composed component k1#k2 is equal to either i(k1) or i(k2). Finally, m
is a meridian of k1#k2 with i = 1.
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5) V (l1) : Choose a component k1 of l1 of index 0 or 2, and replace N(k1,S3) by
D2 × S1 with three indexed circles in it; {0}× S1, k2 and k3. Here, k2 and k3 are
parallel (p, q)-cables on ∂N({0}× S1, D2×S1), where p is the number of longitudinal
turns and q the number of the transverse ones. The indices of {0}× S1 and k2 are
either 0 or 2, and one of them is equal to i(k1). The index of k3 is 1.
6) V I(l1): Choose a component k1 of l1 of index 0 or 2. Replace N(k1, S3) by

D2 × S1 with two indexed circles in it; {0}× S1 and the (2,q)-cable k2 of {0}× S1.
The index of {0}× S1 is 1, and i(k2)=i(k1).
The link of periodic orbits of a NMS flow on S3 is defined by the cores of the

round-handle decomposition of the manifold. We call NMS links on S3 those links
that correspond to the set of periodic orbits of a NMS flow on S3 and denote this set
of links by L (S3) .
The cases (a), (b) and (c) in lemma (3) define operations I, II and III, respec-

tively. We refer to them as type A operations and we denote by LA (S
3) the set of

the links obtained by applying only type A operations. For these links, all the com-
ponents with index 1 are unknotted and unlinked. In these three cases, the round
1-handle C is a connected sum of thick and solid tori and their attachments imply at
least one inessential circle.
On the other hand, operations IV , V and V I imply only essential attachments.

We refer to them as type B operations.
We want to know which links are associated to round 1-handles that are iterated

connected sum of tori. So, we begin by characterizing the 3-manifolds obtained from
successive connected sum of tori.

3. Connected sum of tori
Definition 4. LetM be a 3-dimensional manifold and S a 2-sphere embedded inM
which separates the manifoldM . LetM1 andM2 denote the 3-dimensional manifolds
obtained by cutting M along S. Then, the manifold M is the connected sum of M1

and M2 and it is denoted by M1#M2.

Let us apply this definition in order to make connected sums of thick and solid
tori.
Let τ 1 and τ 2 denote two solid tori D2 × S1. Consider S1 and S2 2-spheres

embedded in τ 1 and τ 2, respectively. In order to make the connected sum, we have
to reverse one of the 2-spheres. Let us assume that S2 is reversed; then, a 3-ball with
a toroidal hole is obtained. The boundary of this 3-ball is identified with S1 and the
torus τ 1 with a toroidal hole is obtained.
Then, τ 1#τ 2 is a solid torus with a toroidal hole (figure 1).
Let (T × I) denote the product of a 2-torus T by an interval I, called a thick

torus.
If we consider a 2-sphere embedded in a thick torus and we reverse it, we obtain

a 3-ball with two linked toroidal holes inside; let us refer to them as a hopf hole (see
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Figure 1: τ 1# τ 2

figure 2). So, the connected sum of two thick tori, (T1× I)#(T2× I), is a thick torus
with a hopf hole.
Finally, the connected sum of a thick torus (T × I) and a solid torus τ is a thick

torus (T × I) with a toroidal hole (see figure 3).
The realization of τ#(T × I) yields to a solid torus with a hopf hole, because

we reverse the 3-ball in the thick torus. When the tori are embedded in S3 both
results are equivalent; so, there is commutativity for the connected sum of tori. The
identity element of the connected sum is S3. These operations verify commutativity
and associativity on S3; so, by iteration, it is easy to prove the following proposition:

Proposition 5. Let T denote a torus (thick or solid) with toroidal or hopf holes.
Then

T
n

#
i=1

τ i
m

#
j=1
(Tj × I) = T with n toroidal holes and m hopf holes (2)

Proof. Suppose that T is a solid torus. We prove by induction that

1. τ
n

#
i=1

τ i = τ with n toroidal holes

By definition, when we make the connected sum of two solid tori τ and τ 1,
we reverse one of them into a 3-ball and identify its boundary with a 2-sphere
embedded in the other torus.

Let us see that this operation does not depend on the torus chosen. If we reverse
τ 1 we obtain the solid torus τ with one toroidal hole.

τ # τ 1 = τ with 1 toroidal hole

The same occurs if we reverse τ .
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Figure 2: (T × I) # (T × I)

Figure 3: (T × I) # τ

Now, if the connected sum with another solid torus τ 2 is made, reversing τ 2, a
new toroidal hole appears; then, we have a solid torus τ with 2 toroidal holes.

But if we make the connected sum reversing the torus with the toroidal hole,
we have a 3-ball with two toroidal holes; then, when identifying its boundary
with a 2-sphere embedded in τ 2, we also obtain a solid torus with 2 toroidal
holes.

Now, suppose that n − 1 connected sum of solid tori have been made and we
have that

τ # τ 1 #...# τn−1 = τ with n− 1 toroidal holes

If the connected sum with another solid torus τn is made, a new toroidal hole
in τ appears; then:

τ # τ 1 #...# τn = τ with n toroidal holes
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Similarly, it is easy to prove by induction that:

2. τ
n

#
i=1
(Ti × I) = τ with n hopf holes

3. (T × I)
n

#
i=1

τ i = (T × I) with n toroidal holes

4. (T × I)
n

#
i=1
(Ti × I) = (T × I) with n hopf holes

So, these four equalities can be expressed as 2.
Let us remark that, as a consequence of this proposition, each time that the

connected sum is made with a solid torus a new toroidal hole appears. If the connected
sum is made with a thick torus a hopf hole appears.
In the next section we relate iterated connected sum of tori to the first three

operations defined in [8, Theorem 1] .

4. Links coming from iterated sum of tori
As commented before, Wada [8] describes the different types for the triple (C, ∂−C, γ)
associated to a fat round 1-handle on S3. The results obtained in the previous section
allows us to distinguish a special type of links coming from type A operations: the
links on S3 associated to fat round handles that are iterated connected sum of tori.
We remark that in order to obtain a link on S3 the components of the complement of
C must be filled with 2-handles in the last step of the filtration in the round handle
decomposition. This is equivalent to fill the components of the complement of T with
attractive orbits. Moreover, we prove in section 5 that the flow associated to these
links is also a connected sum of flows.
Let us refer to this type of links on S3 as links coming from iterated connected

sum of tori. We include the hopf link in this definition, corresponding to 0 iterations.
Let us denote by LI (S

3) the set of these links and let L̄I (S
3) denote the complement

of the set LI (S
3) into LA (S

3).
In the following, h denotes the (0, 2)-hopf link, d denotes an unknotted and un-

linked periodic orbit with index 0 or 2 and u denotes and unknotted periodic orbit
with index 1. The power cp means the split sum of p components of type c.

Lemma 6. Let l be a NMS link on S3, then l ∈ LI (S
3) if and only if l can be written

as:
l = cp+1 · up (3)

where c is either an unknot d or a hopf link h and p ≥ 0 is the number of iterations.

Proof. As we have proved in the proposition 5, the fat round 1-handle associ-
ated to the iterated connected sum of tori is

T
n

#
i=1

τ i
m

#
j=1
(Tj × I) = T with n toroidal holes and m hopf holes
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We obtain a NMS link on S3 by attaching 0 or 2 handles. So there are attractive
or repulsive orbits just in the core of the toroidal holes and saddle periodic orbits on
the boundary of the 3-balls implied in each connected sum. In the case of hopf holes,
one orbit must be attractive and the other must be repulsive.
Then, after p = n+m connected sums of tori, the corresponding link l on S3 can

be written as:
c

n·
i=1

di
m·
j=1

hj
m+n·
k=1

uk (4)

where c is either a hopf link h or an unknot d. So, the link l is formed by the split
sum of hopfs and components of type d and u with the following ratio:

l = cn+m+1 · un+m

In the following result we characterize the links of the set LI (S
3) in terms of

Wada operations.

Lemma 7. Let l be a NMS link on S3, then l ∈ LI(S
3) if and only if l is obtained

from (0, 2)-hopf links by applying the following operations:

1. l = I(l1, l2) = l1 · l2 · u

2. l = II(l1, h) = l · d · u

3. l = III(h, h) = d · d · u

Proof. As type A operations commute (see [2]), in this proof we refer to
combinations of operations and no matter the order of application of them.
Firstly, let us see that if l ∈ LI(S

3), it can be written in terms of the operations
given above.
If l ∈ LI(S

3), then l is a (0, 2)-hopf link or l it is of the form (4):

l = c · dn · hm · un+m, n+m > 0

• If c is a hopf link, l has the form:

l = h · dn · hm · un+m

This link can be written in terms of n operations II andm operations I applied
on hopf links:

l = I(I(...(II(II(..., h), h), ...h), h)

Then, we have:
l = I(l1, l2)

with l1 and l2 links obtained from operations I and operations II with the hopf
link in the second argument.
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• If c is a component d and m > 1, we can change the order of the components
and then l is expressed as:

l = h · dn+1 · hm−1 · un+m

This link can be written in terms of n+ 1 operations II and m− 1 operations
I on hopf links. As above, we have:

l = I(l1, l2)

with l1 and l2 links obtained from operations I and operations II with the hopf
link in the second argument.

• If c is a component d and m = 1, then l is of the form:

l = h · dn+1 · un+m

In this case l can be written in terms of n+ 1 operations II on hopf links, so l
can be expressed as

l = II(l1, h)

where l1 is a link obtained from operations II on hopfs links in the second
argument.

• If c is a component d and m = 0, then l is of the form:

l = dn+1 · un

In this case, n is different from 0, because for m + n = 0, there has been 0
iterations and the link l corresponds to a hopf link.

— if n = 1, the link l is.
l = III(h, h)

— if n > 1, the link l can be written in terms of one operation III and n− 1
operations II on hopf links. By the commutativity of type A operations,
we have:

l = II(l1, h)

where l1 is a link obtained from operations II on hopfs links in the second
argument and one operation III on two hopfs links.

Conversely, let us see that every link obtained from (0, 2)-hopf links by applying
the operations given above verifies condition (3) and then, the link comes from iterated
sum of tori.
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• If l = III(h, h), then:
l = d · d · u = c2 · u (5)

and verifies condition (3). So, l ∈ LI(S
3).

• If l = II(h, h), then:
l = h · d · u = c2 · u1

and verifies condition (3). So, l ∈ LI(S
3).

If we iterate n times operation II with h in the second argument, each operation
produces one d and one u more, then condition (3) is verified:

l = II(II(..., h), h) = h · dn · un = cn+1 · un (6)

and l ∈ LI(S
3).

If we combine n operations II with h in the second argument and one operation
III on two hopf links, we have

l = II(...II(III(h, h), h), h) = d · d · u · dn · un = dn+2 · un+1 (7)

As condition (3) is verified, l ∈ LI(S
3).

In both cases, l can be written as

l = II(l1, h)

where l1 has been obtained with operations II with h in the second argument or
a combination operations II with h in the second argument and one operation
III on two hopf links.

• Suppose that l = I(l1, l2), where l1 and l2 are of the form given in (5), (6), or
(7). As the links l1 and l2 verify condition (3):

l1 = cp+1 · up

l2 = cq+1 · uq

then l = I(l1, l2) is of the form

l = l1 · l2 · u = cp+1 · up · cq+1 · uq · u = cp+q+2 · up+q+1 (8)

and verifies condition (3). So, l ∈ LI(S
3).

Similarly, if l = I(l1, l2), where l1 and l2 are of the form given in (5), (6), (7) or
(8), then l ∈ LI(S

3).
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Let us remark that operation III can not be iterated to obtain a link in LI(S
3);

that is, we can combine operations III with operations I and II, but operation III
can not appear in the argument of another operation III. In fact, as we see in the
following section, these type of links characterize flows with heteroclinic trajectories
connecting saddle orbits.
In the following lemma, we characterize the links in the complement of LI(S

3):

Lemma 8. Let l be a NMS link on S3, then l ∈ L̄I (S
3) if and only if l can be written

as:
l = l0 · u

where l0 ∈ LA (S
3) .

Proof. (⇒)If l ∈ L̄I (S
3) , l is a link in LA (S

3) and does not verify condition
(3); then, the number of c0s is equal or less than the number of u0s. Therefore

l = cp · up+q

where q ≥ 0 and p ≥ 2. Let us apply induction for showing that l can be written as
l0 · u with l0 ∈ LA (S

3) .
For q = 0 :

l0 = cp · up = cp · up−1 · u = l−1 · u
and l−1 = cp · up−1 ∈ LI (S

3) ⊂ LA (S
3) .

Suppose that it is true for q = n :

ln = cp · up+n = ln−1 · u

with ln−1 ∈ LA (S
3) .

If ln−1 ∈ LA (S
3) then l−1 ·u ∈ LA (S

3) (see [2, Lemma 1]). Therefore, ln ∈ LA (S
3)

and for q = n+ 1 :

ln+1 = cp · up+n+1 = cp · up+n · u = ln · u

with ln ∈ LA (S
3) .

So, the links that do not come from iterated connected sum of tori can be written
as l0 · u, with l0 ∈ LA (S

3) .
(⇐) From [2, Lemma 1], we know that, if l0 ∈ LA (S

3) then the link l = l0.u ∈
LA (S

3). Then, if l contains n orbits of type u, it means that n type A operations
have been applied. In each operation, the number of u components increases in 1
and the number of c components can increase in 1 or does not change. So after n
operations, it contains a number n of u components and a number of c components
equal or less than n+ 1.
Then, l0 · u contains a number of c components equal or less than n+1 and n+1

components of type u. So, l0 · u does not verify the condition (3).
>From [2, Lemma 1], we have the expressions of the links of the set L̄I (S

3) in
terms of Wada operations:
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Lemma 9. Let l be a NMS link on S3, then l ∈ L̄I (S
3) if and only if l can be written

as:

1. l = II(l1, II(l2, h)) = l1 · l2 · u · u

2. l = III(II(l1, h), l2) = l1 · (l2 − k) · u · u

3. l = III(l1, III(l2, h)) = (l1 − k1) · (l2 − k2) · u · u
where l1,l2 ∈ LA (S

3) .

5. Connected sum of NMS flows on S3 and heteroclinic
trajectories

In this section we study the NMS flows on S3 associated with the links coming from
type A operations and we obtain the following important results:

1. These flows are connected sum of NMS flows. Moreover, we see that the flows
associated to links coming from iterated sum of tori can be successively decom-
posed as connected sums of basic flows, that is, flows corresponding to h0s and
d0s.

2. The flows associated to links in LI(S
3) have no heteroclinic trajectories connect-

ing saddle orbits and the flows associated to links in L̄I(S
3) have heteroclinic

trajectories connecting saddle orbits.

5.1. Connected sum of flows. The definition of the connected sum of flows in
3-manifolds given in [4] is a generalization of the connected sum of flows defined for
2-dimensional manifolds (see [7]).
Given two flows ϕ1 and ϕ2 on the 3-dimensional manifolds M1 and M2, respec-

tively, we can form a new flow ϕ1#ϕ2 on the connected sumM1#M2 in the following
way:

Definition 5. Let ϕ1 and ϕ2 be NMS flows on the 3-dimensional manifoldsM1 and
M2, respectively. Let Di ⊂Mi, i = 1, 2 be 3-balls with the boundaries transversal to
ϕi everywhere except at the points of the circles σi on their equator. Let B

+
i

¡
B−i
¢

be the part of the boundary through which the trajectories of ϕi enter (leave) Di. By
putting the circles σi aside we denote the modified flows by ϕ̂i.

M1#M2 is obtained by identifying the boundaries of the manifolds M1\D1 and
M2\D2 with an orientation-reversing homeomorphism h : ∂D1 → ∂D2 such that

h
¡
B+
1

¢
= B−2 , h

¡
B−1
¢
= B+

2 , h (σ1) = σ2

Herewith the flows ϕ̂1 and ϕ̂2 give a flow ϕ onM1#M2 with a saddle orbit at σi. The
flow ϕ is called a connected sum of the flows ϕ1 and ϕ2.
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The boundaries of the 3-balls that appears when connected sum of tori are made,
are transversal to the respective flows except in the points of the circles σi on the
equator (see [4]). We use this result to show that the flow is the connected sum of
flows.
The attaching of a round 1-handle by means of two inessential circles is equivalent

to taking the connected sum of two thick tori. Then, for the case of flows characterized
by operation I we have the following result:

Theorem 10. Let ϕ1 and ϕ2 be NMS flows on S3 characterized by the links l1 and
l2 respectively; let ϕ be a NMS flow on S3 characterized by the link l. Then:

ϕ = ϕ1#ϕ2 ⇔ l = I(l1, l2)

Proof. Suppose that l = I(l1, l2). The fat round 1-handle associated to opera-
tion I is C ∼= T1× [0, 1]#T2× [0, 1] . For i = 1, 2, let Ni− and Ni+ be the components
of the complement of C in S3 which bound Ti × {0} and Ti × {1}, repectively. If we
consider a 2-sphere splitting C as a connected sum of T1 × [0, 1] and T2 × [0, 1] , it
bounds 3-balls on both sides. As Ni−∪Ni+

∼= S3, we have a round handle decomposi-
tion of S3 with li consisting of the cores of the round handles. The flow ϕ associated
to l = I(l1, l2) = l1 · l2 · u is the connected sum of the flow ϕi associated to li, then
ϕ = ϕ1#ϕ2.
Now, suppose that ϕ = ϕ1#ϕ2. Then, we have a 2-sphere splitting S

3 as connected
sum of two 3-spheres with the respective flow transversal to the boundary except in
the points of the circle σi on the equator. The 2-sphere bounds 3-balls on both sides.
The boundaries of the 3-balls are identified by means of an orientation reversing
homeomorphism and a saddle orbit appears in the equator. The link of periodic
orbits of ϕ consists of the set of periodic orbits of ϕ1, the set of the periodic orbits of
ϕ2 and a trivial orbit with index 1 on the circles σi on the equator, then:

l = l1 · l2 · u

Thus, a flow characterized by a link l = I(l1, l2) is always the connected sum of
two flows on S3.
If a flow is characterized by means of operations II or III, it can also be connected

sum of flows.
A link on a solid torus can be completed to a link on S3 by adding a component

k corresponding to an attractive or repulsive orbit in the core of the complement of
this torus in S3, which is another solid torus. Conversely, if l is a link of periodic
orbits of a NMS flow on S3 and k corresponds to an attractive (repulsive) orbit, the
link l − k characterizes the remaining flow on a solid torus.
Therefore, the following results are obtained immediately.
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Corollary 11. Let ϕ and ϕ1 be NMS flows on S3 characterized by the links l and l1
respectively; let ϕ2 be a NMS flow on the solid torus corresponding to a component
d. Then:

ϕ = ϕ1#ϕ2 ⇔ l = II(l1, h) = l1 · d · u

Corollary 12. Let ϕ be a NMS flow on S3 characterized by the link l. Let ϕ1 and
ϕ2 be NMS flows on solid tori corresponding to components d1 and d2, respectively.
Then:

ϕ = ϕ1#ϕ2 ⇔ l = III(h, h) = d1 · d2 · u

Figure 4: Connected sum of flows for the link III (h, h)

As commented before, another significant result is that we characterize those flows
that can be successively decomposed as connected sums of basic flows; for basic flows
we mean flows corresponding to h0s and d0s. In this case, we say that the flow is a
decay of connected sums of flows. These flows are just the flows associated to links
coming from iterated sum of tori.

Theorem 13. Let ϕ be a NMS flow on S3 characterized by the link l. Then:

ϕ is a decay of connected sum of flows⇔ l ∈ LI(S
3)

Proof. (⇐) There exists an equivalence between connected sum of tori and
connected sum of flows; the 3-balls implied in the connected sum of tori correspond
to the 3-balls implied in the connected sum of flows because the boundaries of the
3-balls are transversal to the respective flows except in the points of the circles σi on
the equator and these circles correspond to the saddle orbits.
As a consequence of the proposition 5, each time that a connected sum is made

with a thick torus a hopf hole appears; if the connected sum is made with a solid
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torus a new toroidal hole appears. This is equivalent to the connected sum with a
basic flow (see figure 5).
Let l be a link in LI(S

3) different from the polar flow. Then, from lemma 7, l is
one of the following links:

l = I(l1, l2), l = II(l1, h) = l1 · d · u, l = III(h, h) = d1 · d2 · u

where l1, l2 ∈ LI(S
3) and, from theorem (10) and its corollaries, the flows associated

are the connected sum of the flows associated to l1 and l2, l1 and d, d1 and d2,
respectively.
As l1, l2 ∈ LI(S

3), they can be further decomposed as above until arrive to basic
flows.

Figure 5: Connected sum of flows in a thick torus with one repulsive orbit in its core

(⇒) If a flow ϕ is a connected sum of two flows ϕ1 and ϕ2, the link of periodic
orbits of ϕ is the split sum:

l = l1 · l2 · u
where l1 and l2 are the links of periodic orbits of the flows ϕ1 and ϕ2, respectively, and
u represents the saddle orbit on the equator of the 2-sphere implied in the connected
sum of flows.
If the flow ϕ is a decay of connected sum of flows, l1 and l2 can also be written as

split sums of links and one orbit u:

l = l1 · l2 · u = (l11 · l12 · u) · (l21 · l22 · u) · u

and so on until arrive to basic components h0s and d0s. Each connected sum implies
three components, one of them a u orbit. So, the number of u0s is one less than the
number of h0s and d0s. Then, l verifies the condition (3) and l ∈ LI(S

3).
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5.2. NMS flows with heteroclinic trajectories connecting saddle orbits .
Let FA(S

3) denote the set of NMS flows associated to the links LA(S
3) and let FI(S

3)
denote the set of NMS flows associated to the links LI(S

3). In the following result we
relate the existence of heteroclinic trajectories connecting saddle orbits to the type
of link.

Theorem 14. Let ϕ ∈ FA(S
3). Then, ϕ has no heteroclinic trajectories connecting

saddle orbits if and only if ϕ ∈ FI(S
3).

Proof. (⇒) Let us show that if ϕ ∈ F̄I(S
3) then ϕ has heteroclinic trajectories

connecting saddles.
The link associated to a flow ϕ ∈ F̄I(S

3) does not come from iterated connected
sum of tori. So, the link can not be written as in lemma 7. Therefore, it implies at
least two type A operations and it is obtained by attaching the round 1-handle to
a solid torus by means of one essential circle. This solid torus has toroidal or hopf
holes inside generated by previous attachments.

Figure 6: Iterated connected sum of flows in a torus without any atractive or repulsive
orbit in his core

There are two possibilities:

1. The round 1-handle is attached to the solid torus (with toroidal or hopf holes
inside) by means one essential and one inessential circles (operation III is
made).

2. The round 1-handle is attached to the solid torus (with hopf or toroidal holes
inside) by means one essential circle and to another thick torus (with hopf or
toroidal holes inside) by means of one inessential circle (operation II is made).

In both cases there exists an invariant manifold of one saddle orbit that cuts
the boundary of the torus by means of one transversal circle (see figure 6). The
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essential circle of the attachment of the new round 1-handle is a longitudinal circle
and therefore one invariant manifold of the new saddle cuts the boundary of the solid
torus by means of one longitudinal circle; consequently, both circles intersect and
heteroclinic trajectories between the two saddles appear.
(⇐) As we have proved in theorem 13, the flows characterized by links coming

from iterated sum of tori can be decomposed as a decay of connected sum of basic
flows. Then, each of them can be isolated by a 3-ball and there are no heteroclinic
trajectories connecting saddle orbits (see figures 4, 5 and 6).
The connection between links and flows studied in this paper can be summarized

in the following table:

Links: LA(S
3) = LI(S

3) ∪ L̄I(S
3)

m m
l = cp+1 · up l = l0 · u

m m
Flows: FA(S

3) = FI(S
3) ∪ F̄I(S

3)

m m
No heteroclinic trajectories
connecting saddle orbits

Heteroclinic trajectories
connecting saddle orbits

In [4] we showed that NMS flows with one saddle orbit also "live" in general lens
spaces. Now, from the results of this paper, this statement can be generalized to the
case of flows with more than one saddle orbit.
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