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We present a theoretical and numerical investigation of correlated multi-electron states of

hexagonal semiconductor rings. Both single-particle and correlated states show localization

patterns in the six corners and energy spectra degeneracies corresponding to a hexagonal benzene

ring. Thus, our results can aid the interpretation of energy-loss or near-field experiments that, in

turn, shed light on the nature of molecular few-particle orbitals of artificial benzene. Surprisingly,

we find that charges get more localized in the corners as the number of electrons increases, up to

six, this indicating the deficiency of a picture based on orbitals delocalized on the whole ring. We

also expose the presence of several spin-correlated states and the effect of an asymmetry of the

system. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4766444]

I. INTRODUCTION

Hexagonal shape is rather common in semiconductor

nanowires (NWs) due to the crystal structure of the compos-

ing material.1–4 Furthermore, a modulation in the NWs com-

position along the axis can lead to a further confinement of

the free carriers and form a disk-shaped quantum dot whose

effective two-dimensional (2D) potential results to be har-

monic.5 This essentially hides the real shape of the semicon-

ductor pillar, i.e., the NW, from which the zero-dimensional

confinement is obtained. Deep insight has been achieved on

this type of nanostructures, including the nature of correlated

few-particle states,6,7 their relaxation rates,8,9 and optical

properties.10,11

Recently, a new kind of quasi-1D nanostructure, namely

semiconductor core-multishell nanowires (CSNWs), has

been realized,12 where the carrier confinement is not limited

to the center of the NW. This leads to additional degrees of

freedom and interesting properties for applications in opto-

and nano-electronic devices.13

In analogy with the fabrication of vertical or disk-

shaped quantum dots from a NW, a proper material modula-

tion along a CSNW axis should be able to generate a strong

confinement of the carriers in that direction, leading to an

effective 2D system. However, now the confinement in the

orthogonal plane is not harmonic, and the shape of the

CSNW section cannot be considered circular anymore.

Rather, the carriers will be confined in a polygonal flat quan-

tum ring. Our study addresses few-interacting-carrier states

of semiconductor hexagonal rings. Due to the qualitative

similarity of the system shape and symmetry with a benzene

hexagonal ring, we term it artificial benzene. As we shall

see, the few-electron density localization and the states

degeneracies reflect the hexagonal symmetry as in benzene.

We focus on structures where electrons are localized on

a square-well type potential in the radial direction, rather

than being confined at the heterointerface by the triangular

well generated by the band bending.14,15 In fact, in the latter

case, a large carrier density is needed in order to create a sta-

ble electron gas, thus concealing the correlation effects

proper of the few-electron regime. We adopt an envelope

function approximation for the single-particle wave func-

tions and a full configuration interaction (FCI) approach to

compute the correlated states. The FCI method provides both

ground and excited states with comparable accuracy, this

being essential in the calculation of electron-phonon interac-

tions, response functions, and optical properties.16,17

This paper is organized as follows. In Sec. II, we

describe the model of our physical system and in Sec. III, we

outline the numerical approach adopted. In Sec. IV, the

single-electron states are reported and in Sec. V, the corre-

lated few-electron states are described with particular em-

phasis to their spin configuration and charge-density

distribution. In Sec. VI, we address a system where the hex-

agonal symmetry is lifted by a thicker layer in one of the fac-

ets. Finally, in Sec. VII, we draw our conclusion.

II. THE PHYSICAL SYSTEM

The system we consider is constituted by a three-layer

AlAs-GaAs-AlAs CSNWs with hexagonal cross section,

where an additional strong confinement has been introduced

in the growth direction. This gives an effective 2D system,

where an hexagonal GaAs quantum well is wrapped around

the AlAs core, as depicted in Figure 1. Since an excitation in

the axial direction has an energy much larger than the energy

scales involved in our simulations, we can neglect the

motion in the (confined) axial direction and adopt an effec-

tive 2D model. To be specific, we consider a regular-

hexagon domain with edges 66.5 nm long. The GaAs well is

6.8 nm wide. Its thickness is uniform all around the 37.3 nm

AlAs core. This symmetry will be lifted in Sec. VI, where

different thicknesses of one of the edges will be considered.

The GaAs well is covered by a 13.5 nm AlAs capping layer.

The conduction-band offset between the two materials is

438 meV. We consider an effective mass m� isotropic on the

ring plane, with m� ¼ 0:063 me ðm� ¼ 0:15 meÞ in GaAs

(AlAs), and a dielectric constant e ¼ 12:9 e0 ðe ¼ 10 e0Þ ina)Electronic mail: andrea.bertoni@nano.cnr.it.
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GaAs (AlAs). An effective thickness s ¼ 2 nm of the hexag-

onal ring in the axis direction is introduced in our model by

means of an additional parameter that smooths Coulomb

repulsion at short distance.18,19

III. NUMERICAL APPROACH

In order to find the correlated multi-electron states and

assess the role of Coulomb interaction and correlation, we

perform an exact diagonalization of the multi-particle

Schr€odinger equation via a FCI procedure. As a first step, the

single-particle orbitals wi and energies �i of a conduction-

band electron are computed, for the confining structure

described in Sec. II, through a numerical solution of the

effective-mass Schr€odinger equation

� �h2

2
rr

1

m�ðrÞrr

� �
þ EcðrÞ

� �
wiðrÞ ¼ �iwiðrÞ ; (1)

where r is the 2D coordinate on the hexagonal domain,

m�ðrÞ is the isotropic material-dependent effective mass of

electrons, Ec is the conduction band profile, and i labels the

single-particle state. The above equation is numerically inte-

grated by means of a box integration method20 on a triangu-

lar grid with hexagonal elements. The grid reproduces the

symmetry of the system thus avoiding numerical artifacts

originated by discretization asymmetries of the six domain

boundaries, as would be the case, e.g., using a rectangular

grid. Formally, the partial differential Eq. (1) is integrated on

each hexagonal element. By applying the divergence theo-

rem, the area integral is converted in a linear integral of the

flux along the hexagon boundary. A balance between incom-

ing and outgoing fluxes (obtained through a first-order finite-

differences scheme) of adjacent hexagons connects the

unknowns on different elements. This results in a symmetric

sparse matrix whose dimension corresponds to the number

of grid hexagons, and with seven non-zero elements on each

row. This matrix is diagonalized through an efficient Lanc-

zos library algorithm.21 Our simulations typically use about

8600 hexagonal elements. Single-particle calculations are

essentially irrelevant from the computational effort perspec-

tive. However, the discretization grid of the single-particle

wave functions strongly affects the computational time of

Coulomb integrals, as we detail in the following, and we had

to choose a mesh thickness allowing for the practicable cal-

culation of them, yet leading to a small numerical error (of

the order of 1%) on the single-particle energies.

The next step is the calculation of the so-called

Coulomb integrals

Uijkl ¼
ð

dr

ð
dr0 w�i ðrÞw�j ðr0Þ Uðr � r0Þwkðr0ÞwlðrÞ; (2)

which we perform by exploiting the hexagonal tessellation

of the domain described above. In the equation above,

UðrÞ ¼ e
4p�ðrÞðjrjþsÞ is the Coulomb potential energy between

two electrons at distance jrj. The cutoff parameter s avoids

divergences of the integrand: It mimics the effect of a finite

thickness of the nanostructure in the axial direction as men-

tioned in Sec. II.

The multi-particle Hamiltonian matrix is then built up.

First, we fix a number N of interacting electrons. Then, we

build the Hilbert space by generating all possible Slater

determinants jUni, that is, the multi-particle basis of the Hil-

bert space. For all the calculations presented in the following

sections, we use 24 spin-orbital single-particle states, giving

24

N

� �
Slater determinants. In fact, we found that only the

lowest 12 states, corresponding to the first 6 orbitals, are

populated with a significant probability. We present calcula-

tions up to N¼ 7, which need a basis of about 350� 103 Sla-

ter determinants.

Finally, we compute the Hamiltonian matrix elements

H ¼
X

ir

eie
†
ireir þ

1

2

X
ijkl

X
rr0

Uijkle
†
ire†

jr0ekr0elr; (3)

where eir ðe†
irÞ is the annihilation (creation) operator for an

electron in the orbital state i and with spin r. The Hamilto-

nian matrix is finally diagonalized, leading to the complex

coefficients Cm
n of the mth multi-particle state

jWmi ¼
X

n

Cm
n jUni: (4)

In order to obtain the real-space electron density of

jWmi, we compute

nðrÞ ¼
X
n1;n2

�
ðCm

n1
Þ�Cm

n2

X
r

X
ij

w�i ðrÞwjðrÞ

� hUn1
je†

irejrjUn2
i
�
; (5)

while, for the conditional density, if an electron is found in �r
with spin �r, the density distribution of the remaining elec-

trons with spin r is

nðr; rÞj�r�r ¼
X
n1;n2

�
ðCm

n1
Þ�Cm

n2

X
ij

X
kl

w�i ðrÞw�j ð�rÞwkð�rÞwlðrÞ

� hUn1
je†

ire†
j�rek�relrjUn2

i
�
:

(6)

FIG. 1. Schematics of the system. A GaAs ring is wrapped around an hexag-

onal AlAs core and capped by an additional AlAs shell. The free electrons

are confined in the GaAs region. A strong confinement in the axial direction

leads to a ring-type structure.
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IV. SINGLE-ELECTRON STATES

The hexagonal symmetry of the GaAs quantum well

gives a energy-level structure of the single-particle states

with degeneracies 1-2-2-1, also typical of benzene molecule,

as it is shown in Figure 2. In particular, we report in the fig-

ure, the colormaps of the lowest 12 wave functions with the

corresponding energy reported on the right axis. The origin

of the energy scale is set in the GaAs band gap, 60% of the

gap below the bottom of the conduction band, where the

Fermi level of the undoped structure should lie. As men-

tioned above, these single-particle states are obtained within

the envelope function approximation.

In the FCI calculations reported in the following, we

find that only the lowest 6 orbitals (spin-independent real-

space wave functions) have significant population. Taking

into account all 12 orbitals, we can identify two different

types of shells, namely two groups of orbitals well separated

in energy, having the same degeneracy pattern. They show

different preferential localization of the wave functions. The

first shell, ranging from 942.294 meV to 943.933 meV, con-

tains the first 6 orbitals that accumulate the wave functions

to the wider area around the hexagonal ring, i.e., at the cor-

ners. On the other hand, the second shell from 946.407 meV

to 952.342 meV tends to localize the maxima of the wave

functions along the edges of the hexagonal system, and con-

sequently, has higher localization energy. Also, as expected,

the number of nodes around the ring increases with increas-

ing energy. In particular, we note that the double-degenerate

first and second excited orbitals have one and two nodal

lines, respectively. The following two orbitals have three

nodal lines. However, they are not degenerate, being the last

orbital of the first shell and the first one of the second shell.

In fact, the electron density is modulated, so that six peaks

are formed: in the first case, they are centered on the six

corners, while in the second case, they are on the hexagon

sides.

V. FEW-ELECTRON STATES

Multi-electron states are computed starting from the

single-particle orbitals of Figure 2 by means of the FCI

approach already described. Electron-density profiles up to

N¼ 7 electrons reveal that Coulomb repulsion tends to local-

ize electrons far from each other in order to minimize the

electrostatic energy of the system, and the electron density

for the lower-energy states accumulates on the corners of the

hexagonal ring. This effect adds to the corner localization of

single-particle states due to the wider area available and

lower kinetic energy. In order to pick out the effect of the

Coulomb interaction, in Figure 3, we report the electron den-

sity versus the position along an edge of the hexagon, for the

multi-particle states up to seven electrons. The distribution is

always higher at the corners, but the steepness decreases as

the number of particles increases up to six, with the single-

particle density higher in the middle of the edge than the six-

particle one. In the latter case, the six electrons are highly

localized on the six corners. This trend changes with the

introduction of a seventh electron: since the lower kinetic-

energy spots are all occupied the additional electron is

FIG. 2. Single-electron states WiðrÞ for the hexagonal GaAs quantum well

are represented, with red (blue) color indicating positive (negative) values.

Due to the hexagonal symmetry, the electronic structure reproduces the ben-

zene degeneracies distribution 1-2-2-1. We find two different wave function

localization patterns depending on the energy: the first 6 states (first shell)

stabilize their energy by accumulating the wave functions in peaks close to

the corners of the hexagon, while the second 6 states (second shell) tend to

localize the wave functions maxima along the edges.
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delocalized on the whole ring. On the right part of Figure 3

we show, as an example, the electron density profiles of the

ground multi-particle states with two, three, and five elec-

trons, together with the schematic representation of the lead-

ing Slater determinant(s) jUni in their configuration Eq. (4),

i.e., the ones with largest jCm
n j

2
. To be specific, the short hor-

izontal lines represent the three lower orbitals of Figure 2,

and the arrows represent electrons with up or down spin.

Despite the similar density profiles, with high charge

density on the six corners for all three cases, peculiar elec-

tronic configurations come into play in the correlated ground

states. The 2-electron system attains a closed first shell as

expected, while the 3-electron case shows an important con-

tribution of electronic configurations, which do not follow

the building-up and multiplicity principles, i.e., Aufbau’s

and Hund’s rules, respectively.22 An unusual leading config-

uration is also found for the 5-electron ground state, where

electrons distribute in pairs in the two degenerate first-

excited single-particle states forming a closed shell, while an

unpaired electron lies in the first shell. However, we must

stress that the above states are highly correlated, and in gen-

eral, the higher the number of particles, the higher the effect

of correlation. In fact, the weight of the leading Slater deter-

minant for the two-particle state is 63%, while it is only 19%

for the five-particle case.

We also quantify the relative stability of the N-electron

ground state by computing the addition energy, which is

obtained using the formula

EaddðNÞ ¼ EðN þ 1Þ � 2EðNÞ þ EðN � 1Þ; (7)

where EaddðNÞ is the energy required in order to place an

extra electron into the system that has initially N� 1 elec-

trons. Such quantity, similar to electron affinity in atomic

physics, is calculated by computing the total energy of the

N-electron system ground state E(N) and the total energies

for the hexagon occupied with Nþ 1 and N� 1 electrons,

i.e., E(Nþ 1) and E(N� 1), respectively.

The addition-energy spectrum is reported in Figure 4,

together with the chemical potential, for different numbers

of electrons. It reflects the orbital shell filling for the hexago-

nal symmetry up to N¼ 6. The first shell is identified with

the peak for 2 electrons, where system stabilizes because of

the closed shell configuration. The degeneracy pattern of the

symmetry of the system is observed when comparing 4- and

6-electron peaks. A half-filled shell is involved for the 4-

electron configuration while a closed shell is formed for the

6-electron ground state. The extra stabilization effect for the

closed shell can be detected thanks to the higher peak for six

electrons. This six-electron case corresponds to that of a ben-

zene ring. With seven electrons, the system stability

decreases having a single unpaired electron in the two degen-

erate orbitals above two closed shells, resulting in a negative

addition energy. The chemical potential versus the number

of electrons is also reported on Figure 4.

In order to assess the effects of Coulomb-induced corre-

lation on both ground state and excited states, we perform

FIG. 4. Addition energies and chemical potential for different number of

electrons. Two closed shells are formed at N¼ 2 and N¼ 6. A very stable

configuration is also found for N¼ 4, with the second shell half filled.

FIG. 3. Electron density along an edge

(dashed line on the top right hexagon) for

correlated ground states up to N¼ 7. To ease

the comparison, all the curves are normal-

ized to unity. Most of the electron density is

localized at the corners due to the Coulomb

repulsion and lower kinetic energy. On the

right, the colormap 2D plots for three cases

are reported, together with their leading Sla-

ter determinants. Note that in the 3-electron

case, the ground state is the spin-degenerate

quadruplet S ¼ 3
2

and we plot here the state

with Sz ¼ � 1
2
, which has three leading Slater

determinants entering the linear combination

of Eq. (4) with the same coefficient.
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conditional density calculations for several N-electron states

and report the spatial distribution of the remaining (N� 1)

electrons when one electron is found in a corner. In the

2-electron case, if an electron with spin up is fixed at one

corner of the hexagon, spin down density is localized at the

opposite corner as shown in Figure 5(a) for the 2-electron

ground state. This Coulomb repulsion effect is also observed

for excited states. For example, the double-degenerate sec-

ond excited state is shown in Figure 5(b). Note that in order

to preserve the symmetry of the system, a proper linear com-

bination of the degenerate eigenstates resulting from the FCI

procedure has to be considered. In fact, if a single correlated

state is taken, its real-space density does not maintain the

proper symmetry, as shown in Figure 5(c) and described in

its caption. This is because we take Slater determinants as a

basis and do not employ configuration state functions with

the full system symmetry. In other words, we do not exploit

quantum numbers originating from the hexagonal symmetry.

This choice, although computationally expensive, gives us

the freedom to alter the system geometry arbitrarily, as we

will do in Sec. VI.

Next, we check the effect of electron-electron interac-

tion on the correlation at higher electron densities. If we pop-

ulate the hexagon with three electrons and we fix one of

them in a corner, the other two are mainly found on the other

two corners forming with the first one an equilateral triangle.

This configuration is shown on the right of Figure 6, and it is

the same for the four degenerate ground states forming the

quadruplet with S ¼ 3
2
. As already reported in Figure 3, this

is a remarkable difference with respect to the non-correlated

state, for which the ground state consists of two electrons in

the lower orbital and one in the first-excited orbital, being

this a S ¼ 1
2

state. The latter state will be also the ground one

for the asymmetric system as we will show in Sec. VI. On

the left part of Figure 6, we report the electron density along

an edge, like in Figure 3. However, here, we fix the number

of particles to three and report three different states. The

more energetic the state, the more localized the electrons in

the corners. Although the difference is small, we find that

this effect is general, being present for any number of elec-

trons, at least for the few lower states.

For the 4-electron case, we also address the spin density

distribution. If one electron is fixed in a corner, the remain-

ing particles are distributed along the rest of the system, with

preferential localization in the opposite corner, as shown in

Figure 7(a) for the 4-electron ground state. However, a re-

markable difference is found between electrons with the

same or opposite spin with respect to the fixed one. Let us fix

an electron with spin down in a corner. While the other spin-

down electron localizes as far as possible at the opposite cor-

ner of the hexagon, spin-up density is distributed at the next

sides of the fixed electron, leaving the opposite corner

empty. This is shown in Figure 7(b), on the right and left

plots, respectively. This effect is much less effective in the

excited states. In fact, the first excited state has a density dis-

tribution for same-spin electron (not shown) that resembles

the one for ground state, i.e., in the opposite corner, while

FIG. 6. Three electrons. Left: Density distribution along a hexagon edge for

three different states. The higher the energy, the more localized the density

in the corners. Right: Conditional density for the ground state when an elec-

tron is fixed in a corner. The other two electrons localize in two corners to

form an equilateral triangle configuration.

FIG. 5. Two electrons. Conditional densities, when one electron is fixed in

one corner (small circle) for the ground state (a) and the double-degenerate

second-excited state (b)-(c). While (b) shows the density of a proper linear

combination of the two degenerate states yielding a correct symmetry, (c)

shows the charge density of one of the states, as computed by our FCI

approach. For each density plot, the leading Slater determinants composing

the correlated state are reported on the right.
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opposite-spin electrons tend to localize at the opposite corner

too, as shown in Figure 7(c).

Finally, the energy balance for a 5-electron system has a

strong kinetic contribution. Electron density is high enough

to distribute electrons all over the corners of the hexagon in

the ground state, as shown in Figure 8(a) for the opposite-

spin case (the same-spin case is similar). This is not true for

the first excited state, where the density for the spin with the

same orientation as the fixed particle is mainly localized at

the opposite corner (Figure 8(b) on the right), while the

opposite-spin density is distributed close to the fixed particle

(Figure 8(b) on the left). It should be noted that here we find

a ground state that does not follow Aufbau principle since in

the leading Slater determinant, only one electron occupies

the ground single-particle state. The correlated state corre-

sponding to the non-interacting ground state is the first-

excited one, shown in Figure 8(b). To assess the effect of

larger electron number, the conditional spin distribution of

Figure 8(b) should be compared with the ground 4-particle

state in Figure 7(b). The behavior is qualitative similar, how-

ever in the 5-electron case, spin distributions are more

spread, and for the opposite-spin case, the two spin-up peaks

are in the two nearest-neighbor corners. This a Coulomb

effect. In fact, the two remaining spin-down electrons are

localized not only on the opposite corners but also spread

across the other two corners as shown on the right of

Figure 8(b).

VI. ASYMMETRIC HEXAGON

In this section, we analyze the case with one segment of

the hexagonal ring thicker than the others. In fact, the experi-

mental synthesis of semiconductor CSNWs achieved a very

high control on the width of the overcoating semiconductor

shells, as already described in the Introduction, with a nano-

metric precision. However, even a small deviation from the

perfect symmetry of the six edges is expected to have a deep

influence on the energy spectra and charge distributions of

our hexagonal system. Therefore, we consider convenient to

show the system’s behavior when an asymmetry is intro-

duced. Specifically, we take one edge of the hexagon up to

2 nm thicker than the others, while maintaining its inner bor-

der in the same position. We will refer to this kind of irregu-

lar system as an asymmetric hexagon.

At the single-particle level, the asymmetric spatial con-

finement is responsible for the breakdown of the degenera-

cies found in the symmetric case of Figure 2. The electron

density of the lower states is now concentrated in the large

edge and the energy of those states decreases dramatically.

We report the energy spectrum of the first eight states as a

function of the additional thickness of the hexagon top edge

in Figure 9. As the thickness increases, more and more levels

leave the energy of the symmetric case and decrease linearly.

Moreover, levels from the upper shell (only two of them are

shown in the graph) decrease as well, and join the lower

shell. States with energy below that of the first shell of the

symmetric system are mainly localized in the large edge. In

fact, we focus on a specific case, with an extra top edge

FIG. 7. Four electrons. (a) Conditional density for the ground state and its

leading Slater determinants. (b) Ground-state conditional spin density for

electrons with different (left) or same (right) spin as the fixed one. (c) Condi-

tional spin density of the first-excited state (and its leading Slater determi-

nant) for electrons with opposite spin with respect to the fixed one.

FIG. 8. Five electrons. (a) Conditional spin density for the ground state (and

its leading Slater determinant) with spin opposite to that of the fixed particle.

(b) Conditional spin density for the first excited state for both opposite-spin

(left) and same-spin (right) cases. The leading Slater determinant of the first-

excited state has lower energy than that of the ground state, this being an

effect of Coulomb correlation. Spin distributions for the ground (first-

excited) 5-electron case should be compared with the first-excited (ground)

ones of the 4-electron case of Figure 7, where the shell-filling order is

preserved.
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thickness of 0.8 nm, i.e., 7.6 nm of total width, indicated by

the dashed vertical line in Figure 9. The bottom panel shows

the wave functions of such case, with increasing energy from

left to right. Correspondingly, in the upper graph, we have

three states with low (and linearly decreasing) energy.

Indeed, the first three wave functions are localized in the top

edge. The wave functions with higher energy have strong

occupation in the rest of the hexagon and show an increasing

number of nodal lines as in the symmetric case.

When including electron-electron interaction, the den-

sity profiles of the multi-electron states reflect the preferen-

tial localization in the top edge of the single-particle ones.

However, Coulomb interaction tends to increase as much as

possible the inter-particle distance. As a consequence, the

density distribution is a balance between those effects, tai-

lored by the number of electrons in the system. As an exam-

ple, we show in the upper part of Figure 10, the charge

density for three electrons (left) and seven electrons (right).

In the first case, the particles are almost completely localized

in the top edge, while in the second case, the larger electron

density gives a high density also on the other four corners. In

fact, with seven electrons, three of them are located in the

top edge, and the remaining four are in the other corners,

approximately. The effect of Coulomb correlation can be

exposed by observing the conditional density for the 3-

electron and 7-electron ground states (bottom graphs in Fig-

ure 10). While the conditional distribution for three electrons

is what one would expect from a mean-field perspective,

with the bottom part unchanged and a large density in the

top edge around the opposite corner with respect to the fixed

particle, the conditional density for seven electrons is fully

located on the three opposite corners, in spite of the lower

confining energy of the top ones.

Although the 3-electron conditional density resembles a

mean-field solution, it results to be strongly spin-polarized,

as shown in the top part of Figure 11. In fact, if we fix in a

corner of the large edge a spin-down particle, we find that

the charge localized on the other side of that edge has oppo-

site spin, while the other spin-down electron is spread in the

bottom edge and corners. We stress that the ground state is

double spin-degenerate and that we are considering the state

with Sz ¼ � 1
2
. It means that a crossing between S ¼ 3

2
and

FIG. 10. Charge density (top) and conditional charge density (bottom) for

the ground 3-electron (left) and 7-electron (right) state of the asymmetric

hexagon described in Figure 9. In the lower-density case, the particles are

completely localized in the large edge, while in the higher-density case, par-

ticles are also found in the other four corners. The conditional density distri-

bution of the latter state shows nonlocal effects typical of strong correlation.

FIG. 9. Single-particle energies as a function of the

additional thickness of the upper edge with respect

to the symmetric hexagon. The lower panel shows

several single-particle wave functions, in ascending

energy order from left to right, for an extra thick-

ness of 0.8 nm (dashed vertical line), i.e., with the

larger edge 7.6 nm thick. Note that contrary to the

multi-particle case, the part of the hexagon with a

smaller thickness is occupied already from the third

excited state.
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S ¼ 1
2

states occurs with the increase of the top edge thick-

ness. In order to find some charge density in the two middle

corners for the 3-electron case, we have to consider a high-

energy state, namely the sixth excited, shown in Figure 11

together with its leading Slater determinant. This means that,

while a system with higher electron density has all the cor-

ners occupied already in the ground state, a low-density

asymmetric state not only localizes the charge mainly in the

large edge, but completely removes electrons from the two

middle corners.

VII. CONCLUSIONS

We have presented a numerical study of multi-electron

states in hexagonal rings. We showed that the six corners are

sites of preferential localization for electrons at both single-

particle and correlated-particle levels. This makes our hexag-

onal system qualitatively similar to a benzene ring, where,

according to its standard picture, six carbon atoms act as

Coulomb centers, and six electrons are delocalized on a con-

tinuous p bond across the ring.23 We find that in the artificial

benzene system considered here, electron states are in gen-

eral strongly correlated, and a picture of a single orbital delo-

calized on the whole ring is not appropriate.

We specifically considered an hexagonal quantum ring

made by GaAs on an AlAs matrix, in analogy to CSNWs,

but with an additional confinement along the axial direction.

A number of ground and excited states have been addressed

by analyzing their charge and spin density profiles. As the

number of electrons populating the conduction band

increases, stronger charge localization forms at the corners

of the hexagon. However, the 7-electron ground state reveals

that one electron is completely delocalized in the structure,

above a closed, very stable, shell with one electron on each

corner. As a consequence, the localization trend with elec-

trons in the corners gets stronger up to six particles, then for

seven particles, the density profile spreads substantially also

along the edges. Although we do not find a general rule, we

expose several specific ground and excited states with spin

localization by considering opposite/same spin densities in

conditional density calculations. We observe that opposite-

spin densities tend to distribute as far as possible in order to

minimize the energy of the system.

When the hexagonal symmetry is broken by the increase

of an edge width, two effects are evident on the single-

particle states: first, the 1-2-2-1 degeneracy pattern is broken,

second, in low-energy states, the electron is mainly found in

the large edge. On one hand, the above effects are not sur-

prising, on the other hand, their consequences on the multi-

particle states are of interest. For example, in the 3-electron

case, we find a ground-state crossing between the symmetric

(S ¼ 3
2
) and the asymmetric (S ¼ 1

2
) systems, while we find a

highly correlated state for the 7-electron system, with con-

sistent charge density on the corners opposite to the thick

edge of the asymmetric system.

The understanding of correlation effects and the tailor-

ing of charge localization patterns with the electron density,

with asymmetries of the semiconductor structure or with

external fields, are the first step towards an engineering of

electronic and optical properties of semiconductor hexagonal

rings. In fact, the study of artificial benzene, beside being of

basic interest due to its analogy to a benzene ring, can expose

the potentiality of such system for novel applications. Our

methodology is the basis for both the calculation of intraband

electronic and interband excitonic spectra. In fact, the calcu-

lation of multi-electron states alone can be useful to describe

the far infra-red intraband spectra, but it cannot give hints on

the optical properties of a nanosytem (related to interband

near-UV and visible transitions). Exicton and multi-exciton

spectra can be obtained once holes are also included in the

calculations. However, in our paper, we focus on the multi-

particle correlation in hexagonal geometry, and both the cal-

culation of the far infra-red spectrum and the inclusion of

holes are beyond the scope of our work and will possibly be

a subject of future investigation.

Concerning the possible experimental fabrication of arti-

ficial benzene, we already mentioned in the Introduction

how it could be obtained from a “slice” of a CSNW. In fact,

while the length of CSNWs is only limited by their capabil-

ity of sustaining themselves vertically while growing on a

substrate and can reach several micrometers, their orthogonal

shape depends on the crystallographic arrangements of their

materials. In particular, most III-V NWs with a diameter less

than about 400 nm grow as hexagonal crystals exposing the

six 110 vertical facets normal to the (111) plane. For exam-

ple, InAs/InAsP CSNWs grown on Si(111),24 GaAs/AlAs

CSNWs grown on GaAs(111)B,2 and GaP/GaAs CSNWs

grown on Si(111)25 show a very neat hexagonal section in

electron microscopy scans, even after a few overcoating

processes. The overgrowth of different materials on the

exposed facets leads to a prismatic heterostructure that con-

fines eventually the free carriers either at the heterointerface

or in the lower-gap semiconductor layer.26 The two

FIG. 11. Top: Conditional spin density for the ground 3-electron state of the

asymmetric hexagon described in Figure 9. Two electrons with opposite

spin form a two-particle state in the large edge while the other electron is

completely localized in the two corners at the opposite edge. Bottom: The

sixth excited state is the first one showing nonzero occupancy of the two lat-

eral corners. The lower kinetic energy needed to occupy the larger edge also

induces a preferential localization on the opposite edge and high energy is

needed to occupy the remaining sites.
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confinement mechanisms are equivalent to that at the basis

of planar two-dimensional electron gas (2DEG) formation in

high-electron-mobility-transistors27 and in rectangular quan-

tum wells,28 respectively. As a result, a 2DEG wrapped on

the surface of an hexagonal prism can be formed.29,33–36 The

introduction of a strong confinement along the CSNW axis

(e.g., via material modulation) would lead to a hexagonal

ring.

Finally, we mention that the real-space electron distribu-

tion could be exposed though a near field spectroscopy.

However, our hexagonal rings should lie on a substrate rather

than being embedded in a CSNW in order to use such prob-

ing technique. In fact, experiments and simulations on Cu

hexagonal vacancy islands clearly showed standing-wave

patterns reflecting the hexagonal geometry.30–32 Although

the latter works could not reveal correlation effects due to

the metallic nature of the nanometric system addressed, they

demonstrated that spin polarization can be experimentally

manipulated. A similar approach could be able to tailor few-

particle spin-polarized states in hexagonal quantum rings.
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