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We study the well-known multiplicative log-normal cascade process in which the multiplication of Gaussian
and log normally distributed random variables yields time series with intermittent bursts of activity. Due to
the nonstationarity of this process and the combinatorial nature of such a formalism, its parameters have been
estimated mostly by fitting the numerical approximation of the associated non-Gaussian probability density
function to empirical data, cf. Castaing et al. [Physica D 46, 177 (1990)]. More recently, alternative estimators
based upon various moments have been proposed by Beck [Physica D 193, 195 (2004)] and Kiyono et al.
[Phys. Rev. E 76, 041113 (2007)]. In this paper, we pursue this moment-based approach further and develop
a more rigorous generalized method of moments (GMM) estimation procedure to cope with the documented
difficulties of previous methodologies. We show that even under uncertainty about the actual number of cascade
steps, our methodology yields very reliable results for the estimated intermittency parameter. Employing the
Levinson-Durbin algorithm for best linear forecasts, we also show that estimated parameters can be used for
forecasting the evolution of the turbulent flow. We compare forecasting results from the GMM and Kiyono
et al.’s procedure via Monte Carlo simulations. We finally test the applicability of our approach by estimating the
intermittency parameter and forecasting of volatility for a sample of financial data from stock and foreign exchange
markets.
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I. INTRODUCTION

Castaing et al. [1] have introduced the following seminal
approach for the characterization of the probability density
function (pdf) of velocity differences in fully developed
turbulent flows:
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where λ and σ0 are positive parameters characterizing the
pdf of the variable σ and Pσ is the pdf of a stationary and
zero mean random variable x. Both λ and σ0 determine not
only the second moment associated with Pλ,σ0 (x) but also
the kurtosis. When σ0 = 1 and λ > 0, Pλ,σ0 (x) represents a
mixture of distributions with a variance greater than one and
excess kurtosis. On the other hand, in the limit λ → 0, we
observe σ → σ0 and Pλ,σ0 (x) becomes a standard, mesokurtic
Gaussian distribution. Equation (1), therefore, covers a whole
spectrum of processes that can be used to describe more
complex fluctuations than those originating from a Gaussian
source. Stochastic processes corresponding to the pdf in Eq. (1)
could be of the form,

xi = exp (εi) ξi, (2)

where ξi and εi are mutually independent and follow normal
distributions [denoted by N (·,·) in the following]: ξi ∼
N (0,σ̄ 2) and εi ∼ N (ln σ0,λ

2).1 The resulting intermittency

*lux@bwl.uni-kiel.de.
1Though not expressed explicitly, σ̄ 2 can clearly be accommodated

in Eq. (1) via Pσ .

generated from processes of the type of Eq. (2) has been
found to approximate quite well the fluctuations observed in
data from various fields, such as from hadron collision [2],
solar wind [3] as well as human heartbeat [4,5] fluctuations,
high-resolution satellite images [6], and, finally, in data of
stock index [7] and foreign exchange rate [8,9] fluctuations.

It is also well known that the phenomenological approach
by Castaing et al. [1] allows for nonlinear scaling of absolute
moments or multifractality of the underlying data-generating
process. Considering a continuous-time process X(t) with
increments between times t and t + l : δl X(t) = X(t + l) −
X(t), self-similarity of the associated pdf amounts to

P (δl X) = sH P (sH δsl X), (3)

with H the pertinent (Hurst) exponent for the renormalization
of the pdf under changes of the scale s (s > 0). In order to
account for multiscaling in a series, a unique scaling exponent
H is not appropriate so that one has to extend the previous
approach. As originally suggested by Mandelbrot [10,11], by
replacing the constant factor sH in Eq. (3) by a random factor
Ms depending on the scale, we obtain

δsl X(st) = Law Ms δl X(t). (4)

It can be shown that such a scale-dependent multiplicative
random modulation of P (δl X) leads to a nonlinear scaling
of absolute moments. The stochastic process of Eq. (2) is an
example of a process characterized by such nonlinear scaling
and, consequently, the pdf of Eq. (1) is a potential outcome
of such a stochastic extension of the notion of a self-similar
process. Considering a cascade scale l and a finer scale
sl (s < 1) in Eq. (4), the pdf of Eq. (1) indeed characterizes
their relationship, with the random factor Ms being represented
by the log normally distributed random variable exp (εs).
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In the tradition of Castaing et al. [1], practical imple-
mentations of Eq. (1) have mostly resorted to numerical
approximations of the shape of the pdf minimizing the χ2

statistics with respect to the empirical pdf to obtain parameter
estimates. To avoid certain problems related to this method,
Kiyono et al. [12] suggest an alternative procedure based on
E[ |x|q], the qth-order absolute moments. Another moment-
based estimator has been proposed by Beck [13], who uses
the standardized fourth moment (or “flatness” of the pdf). In
this paper, we introduce a new alternative estimation procedure
based on a generalized method of moments (GMM) framework
and demonstrate its superior performance. Our approach is
motivated by a similar estimator that has been proposed in
Lux [14] for the causal Markov-switching multifractal (MSM)
model of Calvet and Fisher [15]. While our methodology is
also based on moment matching, it differs from the approaches
of Beck [13] and Kiyono et al. [12] in two important aspects:
First, our moments are computed with respect to the joint
distribution of xi at different points of the cascade and, as
such, they are exact moments of the underlying process. In
contrast, the moments proposed by Beck and Kiyono et al. are
computed from the marginal distribution Pλ,σ0 (x) of Eq. (1).
These moments are exact for the multiplicative log-normal
model of Eq. (2) with independent draws εi but not for a
model with added cascade-like structure. Secondly, by using
a GMM approach, we use more than one moment condition
and systematically exploit the degree of uncertainty in various
moments.

For the practical use of parameter estimates, we develop a
forecasting scheme based on the best linear forecast algorithm
that dispenses with the necessity to work with an approxi-
mation to the pdf of the coarse scale l process. We finally
test its out-of-sample accuracy via Monte Carlo simulations
and provide an empirical application. The remainder of this
manuscript is structured as follows. Section II introduces a
detailed description of the process. Section III details the esti-
mation methodology and compares our GMM estimates with
previous approaches via Monte Carlo simulations. Section IV
shows how the estimator behaves under misspecification
concerning the number of cascade levels. Section V introduces
the best linear forecast algorithm, and Sec. VI presents
empirical results for both parameter estimation and forecasting
for a sample of financial data. Section VII concludes and the
appendices collect explicit formulas for the particular moments
used in our GMM and best linear forecasting approaches.

II. THE PROCESS

To illustrate our procedure, we will first concretize the
hypothesized data generating process. Although several ways
to simulate intermittent fluctuations exist, we follow here
the algorithm of Kiyono et al. [12]) for the generation of
a cascade with n levels, and consider a fixed grid of 2n

points defining a sequence of uniform time intervals. In the
first cascade step, we take the whole discrete set [1,2n ] and
divide it into two sets of the same length. To each subset
[1,2n−1 ] and [2n−1 + 1,2n ] we uniformly assign a random
weight M1(k) = exp[ω1(k)] (k = 0,1). In the next step, we
further divide [1,2n−1 ] and [2n−1 + 1,2n ] into two new sets

each, and assign in the same fashion the random weights
M2(k) = exp[ω2(k)] (k = 0,1,2,3). This procedure is repeated
for j = 1, . . . ,n leading to the final sequence of products of
weights

∏n
j=1 Mj (k) attached to the data points {1, . . . ,2n}.

We obtain the log-normal cascade as a compound process
on the bounded interval [1,2n ] by multiplying the sum of
the log-normal weights with a normally distributed random
variable ξ :

xi
.=

[
n∏

j=1

Mj

(⌊
i − 1

2n−j

⌋)]
ξi

= exp

[
n∑

j=1

ωj

(⌊
i − 1

2n−j

⌋)]
ξi, (5)

where �·� represents the floor function and ξi ∼ N (0,σ̄ 2). It
is common to select ωj ( · ) ∼ N (μ̃,σ̃ 2) so that the sum of
ωj ( · ) is N (n μ̃,n σ̃ 2) distributed. Hence,

∑n
j=1 ωj (·) in Eq. (5)

corresponds to εi in Eq. (2), and xi fits into the framework of
Eq. (2) with σ0 = exp(n μ̃) and λ2 = n σ̃ 2. Note, however, that
here the εi are not independent draws but are correlated via the
cascade structure. In the presentation of their estimator, Kiyono
et al. assume that σ̄ = 1 and that σ0 = exp(−λ2), which
in our context would be equivalent to require that ωj ( · ) ∼
N (−λ2

0,λ
2
0) with λ2

0 = λ2

n
= − μ̃ = σ̃ 2. Figure 1 shows an

illustration of a n = 12-level cascade with standardized factors
ωj ( · ) ∼ N (−λ2

0,λ
2
0). In the top three panels we exhibit draws

at the first level M1(k) = exp[ω1(k)] (k = 0,1), the second
level M2(k) = exp[ω2(k)] (k = 0,1,2,3), and the 10th level
M10(k) = exp[ω10(k)] (k = 0, . . . ,9), respectively, while in
the fourth panel an outcome of the corresponding “time series”
{xi}2n

i=1 is displayed.
To overcome the statistical difficulties that may arise

from such a nonstationary construction, we go one step
further and allow for an infinite sequence of inde-
pendent cascades following the same generative princi-
ple, concatenating these series of sequences one after
the other. This assumption leads to a sequence of data
points {. . . ,m 2n + 1,m 2n + 2, . . . ,(m + 1) 2n,(m + 1) 2n +
1,(m + 1) 2n + 2, . . .}, with m = 0,1, . . . , an infinite se-
quence of repetitions of the same process of generation of
a stochastic cascade of length 2n. Our time series of mea-
surements of the multiplicative log-normal cascade process is
consequently given by

xt
.= exp

[
n∑

j=1

ω
(m)
j

(⌊
t − 2n (m − 1) − 1

2n−j

⌋)]
ξt , (6)

where again ξt ∼ N (0,σ̄ 2).2 The “multipliers” ω
(m)
j ( · ) =

ln M
(m)
j ( · ) are assumed to be new draws for each newly

started cascade, so that the process {xt }∞t=1 does not exhibit
any obvious periodic structure, which distinguishes our algo-
rithm from so-called cyclo-stationary processes (e.g., weather

2As the identification of the repetition number of the cascade is
irrelevant for the variable ξ , this sequence can simply be indexed by
time t .
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FIG. 1. (Color online) Illustration of one sample of the {xt }∞
t=1 process of Eq. (6) with n = 12. (From top to bottom) The first level of

draws of log-normal random variables, the second level, the 10th level, the corresponding bounded {xi}2n

i=1 process according to Eq. (5), and a
sample of 7500 points of the stationary {xt }∞

t=1 process of Eq. (6). The standardization of the pdf in Eq. (1) suggested by Kiyono et al. for the
construction of the cascades has been followed, with parameter value λ2

0 = 0.035. For better visualization of the samples in the last two panels,
σ̄ = 2−n was chosen to scale the overall magnitude of intermittency.

signals) that have clearly defined deterministic (e.g., sinu-
soidal) components (cf. Gardner et al. [16]).3

Note that the time series in Eq. (6) can also be described
by Eq. (2), taking into account the particular structure of the
conditional distribution for the draws ω

(m)
j ( · ) (or equivalently,

εi) as imposed by the cascade structure. There are two ways
to look at our infinite cascade process: First, under knowledge
of the actual position, the joint distribution of observations at
some time points {t1, . . . ,tk} and {t1 + z, . . . ,tk + z} would
clearly be different. This holds independently of whether
any sequence would extend beyond the boundary of a single
cascade or not. However, under ignorance of the current
position, both sequences could be considered to be draws
from a stationary process and would, thus, be characterized
by the same joint distribution (and, of course, by the same
moments). We adopt this second perspective and consider
data samples being drawn from this infinite repetition of

3In our case the independent draws of the “multipliers” have an
effect that would be similar to reshuffling of the seasons in annual
data.

independent random cascade processes at arbitrary starting
points.4 The bottom panel of Fig. 1 shows a sample of 7500
observations of the {xt }∞t=1 process as a result of concatenating
three n = 12-level bounded cascades.

Despite the nonstandard nature of the {xt }∞t=1 process (i.e.,
the application of a combinatorial construction in a time series
context), our process is stationary under the second perspective
(which corresponds to the limited information available to
the empirical researcher), and many standard procedures for
statistical inference become now available. On the contrary,
when considering the original process from Eq. (5) over a
bounded interval only, the nonstationarity of the process would
have followed trivially. As a consequence, standard “regularity
conditions” (cf. Harris and Mátyás [17]) for many standard
methods of statistical inference would have been violated.
As we will see in the following, our approach allows us to
compute exact conditional and unconditional moments for our
GMM estimation procedure that universally apply to any set of
observations arising from the process {xt }∞t=1 of Eq. (6). Due

4For this reason, we will drop from this point on the notation of m

in ω
(m)
j ( · ) and we will identify the “multipliers” simply by ωj (t).
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to the analytical structure of these moments (cf. Appendix A),
standard regularity conditions such as differentiability and
boundedness of the moments are now clearly satisfied.

III. ESTIMATION METHODOLOGY

GMM is a very general statistical approach for estimation of
the parameters of a model. Given a set of analytical moments,
the vector of parameter estimates, say ϕ, is obtained as the
result of the minimization of an objective function of the
following form:

ϕ̂T = arg min
ϕ ∈ �

fT (ϕ)′ �T fT (ϕ), (7)

with � being the parameter space, fT (ϕ) the vector of
differences between a set of sample and analytical moments,
�T a positive definite and possibly random weighting matrix,
and ϕ̂T is the solution to this optimization problem [i.e.,
the argument (arg) that minimizes the objective function
fT (ϕ)′ �T fT (ϕ), the weighted difference between sampled
and analytical moments]; cf. Hansen [18]. Using log-absolute
moments in the implementation of fT (ϕ), Lux [14] has applied
this estimation method to the iterative MSM model, demon-
strating that it provides reliable parameter estimates even for
small sample sizes. In the following, we will apply a similar
approach in our analysis of multiplicative log-normal cascades.

Let us consider the log-absolute difference ζt,�
.= ln |xt | −

ln |xt−�|, with � representing the lag at which the difference
is taken. In order to exploit the scaling properties of the
cascade process, we select as in Lux [14] autocovariances of
the overlapping log differences ζt,�, ζt+1,�, . . .. A closer look
at these yields

ζt,�
.= ln |xt | − ln |xt−�|

=
n∑

j=1

[ωj (t) − ωj (t − �)] + ln |ξt | − ln |ξt−�|. (8)

As one can see, these log-absolute differences remain unaf-
fected by σ̄ , the scale factor in Eq. (6) that is typically needed
to match the order of magnitude of the data under scrutiny. Our
moment conditions will consist, for p = 1,2, of the following
set of moments:

M(�,p) = E
[
ζ

p

t+�,� ζ
p

t,�

]
, (9)

together with a raw moment like E[x2
t ] = σ̄ 2 for the identi-

fication of σ̄ [note that we have standardized the distribution
of ωj (·) in a way to guarantee that the second moment of the
first term on the right-hand side of Eq. (6) is equal to unity; cf.
also Appendix B]. With this device, the resulting estimates of
σ̄ from GMM are identical to the sample standard deviation of
the {xt }∞t=1 process and the covariance matrix between both sets
of parameters would be block diagonal. Appendix A contains
the explicit derivations for the moments introduced in Eq. (9).

The estimator λ̂2
q of Kiyono et al. [[12], Eq. (5)] is derived

fromE[ |x|q], the absolute moment of power q for the marginal
pdf of Eq. (1):

λ̂2
q = 2

q(q − 2)

[
ln

(√
π E[ |x|q]

2q/2

)
− ln �

(
q + 1

2

)]
,

(10)

where q 
= 0,2, after standardizing the mentioned pdf by
setting σ0 = exp(−λ2) in Eq. (2). Note that Eq. (1) is not
the pdf of the ensemble of observations from a cascade
process as it applies strictly only for independent draws of
εi in Eq. (2). Given the stage of the cascade, it, however,
characterizes the marginal pdf of the process at any position
t . Since λ̂2

q is not derived from the exact pdf of the cascade
process, it will in all likelihood be an inconsistent estimator
for such a model. The same applies to the traditional χ̂ 2

estimator of Castaing et al. [1] and the flatness estimator F̂2

of Beck [13]. As we will see, this conjecture is confirmed by
our Monte Carlo simulations below. In our cascade setting,
the mentioned standardization implies, on the other side, that
ωj (t) ∼ N (−λ2

0,λ
2
0) in Eq. (6), and so as stated before, λ̂2

q

captures the overall intermittency λ2 = n λ2
0. In practice,

E[ |x|q] is calculated from a zero-mean unit-variance series
so that before being able to compute this moment, the series
{xt }Tt=1 must be detrended and consequently standardized by
the ad-hoc sample standard deviation estimator σ̂ . The value
of q is arbitrary a priori, but as the authors suggest, one can
numerically compare the root mean squared errors (RMSE) of
λ̂2

q under different q and select the optimal one.
We proceed by reporting results of several Monte Carlo

studies designed to explore the applicability of our GMM
estimator and its performance in comparison to the afore-
mentioned estimators. To this end, we first apply Kiyono
et al.’s [12] standardization for the generation of the data. In the
following, we choose q = 0.5 for the λ̂2

q estimator and consider
20 bins with equal probability mass for the χ̂ 2 estimator; that
is, the pdf of Eq. (1) is binned using a varying split of the
support [xj−1,xj ], for j = 1, . . . ,20, so that each bin contains
a probability mass of Fλ,σ0 (xj ) − Fλ,σ0 (xj−1) ≈ 0.05, where F
represents the cumulative distribution function associated to
Eq. (1).5

We apply both estimators for various sample lengths Ti ,
namely T1 = 2500, T2 = 5000, and T3 = 10 000. The GMM
procedure aims at exploiting the intermittency at different
cascade levels, and therefore, the moments in Eq. (9) depend
on the choice of the number and values of lags �. After many
trials, for which results are not presented here, we found
that using three lags leads to a good compromise between
computational speed and quality of the estimates. In short,
the values � = 1,14,64 are chosen to capture the intermittency
generated by the last seven cascade levels.6 We use the iterative
GMM version instead of the simple two-step GMM scheme,
where a new weighting matrix �T is computed and the whole
estimation process is repeated until convergence of both the
parameter estimates and the weighting matrix is obtained
(Hansen et al. [20]).

Table I shows the results from our GMM approach, while
Table II presents the outcomes from the older methods, where
we have normalized the results in Table II by the total number
of cascade levels n for better comparability. As we can infer
from both tables, all estimators start out very similarly with

5Results for alternative choices other than the ones presented in the
tables are available upon request, cf. Ref. [19].

6The value � = 14 is as good as any in (8,16).
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TABLE I. Monte Carlo results for GMM estimator.a

λ2
0 = 0.01 λ2

0 = 0.05 λ2
0 = 0.15

n T1 T2 T3 T1 T2 T3 T1 T2 T3

8 λ̄2
0 0.010 0.011 0.011 0.047 0.049 0.050 0.142 0.146 0.148

RMSE 0.009 0.008 0.005 0.017 0.011 0.007 0.024 0.016 0.011

σ̄ 1.000 1.002 1.000 1.000 0.995 0.998 0.969 0.967 0.993
RMSE 0.039 0.027 0.019 0.094 0.066 0.048 0.216 0.161 0.139

16 λ̄2
0 0.010 0.011 0.011 0.047 0.049 0.050 0.142 0.146 0.148

RMSE 0.010 0.007 0.005 0.016 0.011 0.007 0.024 0.017 0.012

σ̄ 0.976 0.979 0.993 0.916 0.900 0.917 0.611 0.661 0.740
RMSE 0.224 0.207 0.182 0.521 0.433 0.372 0.676 0.761 0.840

aAll simulations are based on a process with ξ ∼ N (0,1), ωj ∼ N (−λ2
0,λ

2
0), and σ = 1. Sample lengths are as follows: T1 = 2500, T2 = 5000,

and T3 = 10 000. λ̄2
0 and σ̄ are the corresponding means of the estimated parameters. RMSE denotes the root mean squared error. GMM was

executed using lags � = 1,14,64. For each case, 400 Monte Carlo runs have been carried out.

a slight advantage of the moment-based estimators of Kiyono
et al. and Beck in terms of RMSE at relatively small parameter
values λ2

0 or low cascade levels n. This appears plausible
as these scenarios are closest to the case of independent εi

for which the latter would be a consistent estimator. For a

fixed number of cascade levels n, however, the bias of the raw
moment-based estimators increases considerably the higher λ2

0
gets. Interestingly, the inconsistent χ̂ 2 estimator still performs
surprisingly well and even marginally better than our GMM
estimator for λ2

0 = 0.15 and n = 8. This indicates that with a

TABLE II. Monte Carlo results for χ̂ 2, λ̂2
q , and F̂2 estimators.a

λ2
0 = 0.01 λ2

0 = 0.05 λ2
0 = 0.15

Ei n T1 T2 T3 T1 T2 T3 T1 T2 T3

χ̂ 2 8 λ̄2
0 0.010 0.010 0.010 0.050 0.050 0.050 0.149 0.151 0.152

RMSE 0.004 0.003 0.002 0.008 0.006 0.004 0.019 0.013 0.009

σ̄ 1.004 1.004 1.001 1.024 1.019 1.024 1.050 1.050 1.062
RMSE 0.049 0.036 0.024 0.112 0.076 0.057 0.214 0.162 0.127

16 λ̄2
0 0.007 0.007 0.008 0.034 0.036 0.040 0.119 0.125 0.129

RMSE 0.005 0.004 0.003 0.020 0.018 0.015 0.057 0.048 0.040

σ̄ 0.983 0.981 0.990 0.857 0.919 0.910 0.778 0.856 0.952
RMSE 0.226 0.195 0.181 0.417 0.411 0.351 0.709 0.655 0.753

λ̂2
q 8 λ̄2

0 0.010 0.010 0.010 0.049 0.049 0.050 0.142 0.144 0.147
RMSE 0.002 0.002 0.001 0.007 0.005 0.004 0.025 0.019 0.017

16 λ̄2
0 0.007 0.007 0.008 0.033 0.036 0.040 0.090 0.100 0.111

RMSE 0.004 0.003 0.003 0.019 0.016 0.013 0.064 0.055 0.044

F̂2 8 λ̄2
0 0.009 0.010 0.010 0.044 0.047 0.047 0.099 0.103 0.110

RMSE 0.002 0.002 0.001 0.013 0.013 0.010 0.057 0.052 0.046

16 λ̄2
0 0.006 0.007 0.008 0.026 0.030 0.033 0.052 0.059 0.066

RMSE 0.004 0.004 0.003 0.025 0.022 0.019 0.099 0.092 0.085

σ̂ 8 σ̄ 1.000 1.001 1.000 0.997 0.992 0.996 0.973 0.970 0.993
RMSE 0.037 0.026 0.019 0.084 0.063 0.046 0.223 0.156 0.141

16 σ̄ 0.973 0.979 0.992 0.879 0.899 0.932 0.637 0.680 0.758
RMSE 0.228 0.206 0.184 0.463 0.429 0.397 0.910 0.901 0.701

aAll simulations are based on a process with ξ ∼ N (0,1), ωj ∼ N (−λ2
0,λ

2
0), and σ = 1. Sample lengths are as follows: T1 = 2500, T2 = 5000,

and T3 = 10 000. λ̄2
0 and σ̄ are the corresponding means of the estimated parameters, while RMSE denotes the root mean squared error. Ei

denotes the estimation method: χ̂ 2, Kiyono et al.’s estimator λ̂2
q , Beck’s flatness or fourth moment estimator F̂2, and the simple sample

standard deviation σ̂ . The χ̂ 2 estimator was calculated using 20 bins with equal probability mass, that is, with a varying support size [xj−1,xj ],
for j = 1, . . . ,20, so that in each bin a probability mass of Fλ,σ0 (xj ) − Fλ,σ0 (xj−1) ≈ 0.05 is obtained. λ̂2

q was calculated using q = 0.5 after
the series was filtered by the sample estimate σ̂ . The same filtered series was employed for the F̂2 estimator, too. All entries referring to the
parameter λ2

0 were obtained by normalizing the resulting estimates by n. For each case, 400 Monte Carlo runs have been carried out.
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limited number of cascade steps, the resulting pdf is still not too
different from that of Eq. (1). However, the limitations of this
approach become apparent when looking at the case n = 16,
which shows sizable biases as compared to those from the
GMM approach. Note that the relatively good performance
of the χ̂ 2 estimator is in contrast to results displayed in
Kiyono et al. [12]. Experiments with different settings indicate
that the relatively favorable results of the χ̂ 2 estimator in
Table II are due to our use of bins with equal probability
mass, while other bin structures would typically give worse
outcomes.

Equivalently, for a fixed λ2
0, the bias of the moment-based

estimators increases with a higher number of cascade levels
n. GMM, on the other hand, shows only very slight increases
of RMSE when either λ2

0 or n increases so that its advantage
becomes more and more pronounced for high levels of inter-
mittency and a high number of cascade levels. The decrease of
biases and sampling variability for the moment-based and χ̂ 2

estimators appears also much slower with increasing sample
sizes than for the GMM estimator at high levels n. While the
latter seems to nicely satisfy squared-root consistency when
doubling the sample size from T1 to T2 and from T2 to T3,
the former almost never do so. For high λ2

0 or n RMSEs of
the traditional methods appear almost constant across sample
sizes.

Tables I and II also present the results for σ̄ . In Table II,
only one sample standard deviation for the moment-based
estimators is presented given that these only provide an
estimate of λ2

0. One observes that the GMM estimator in Table I
agrees closely with the sample standard deviation in Table II,
which actually is to be expected under the block-diagonal
structure of the covariance matrix of the moment conditions.
In all cases, the estimator seems to be more biased the higher
both λ2

0 and n, the number of cascade levels. As in Lux [14],
this might be due to the fact that a higher λ2

0 and n generate
enhanced fluctuations of the product of volatilities, which
might interfere with the estimation of the constant scale factor
σ̄ . Somewhat surprisingly, Table I shows that in the case
λ2

0 = 0.15 and n = 16, an apparent violation of the square-root
consistency can be perceived for σ̄ when doubling the sample
size T . Additional analysis undertaken with larger sample sets,
left aside in this paper for brevity, indicate that this behavior
is only restricted to sample sizes T1, T2, and T3, and we
recover a “nice” behavior for increasingly larger samples. The
reason seems to be that initially, for small sample sizes (T1) in
relation to the sample size of a bounded cascade with n = 16,
the probability of encountering a major node at which many
switches occur will be low so that the behavior of moments is
quite regular. However, with medium sample sizes like T3, the
probability of meeting a node with many switches becomes
much larger and the remaining data points in that same sample
may not be enough to compensate for this disruption. Thus,
if n is very large, preasymptotic fluctuations of the quality of
estimated parameters cannot be excluded even for data sets in
the range of 10 000 observations.7 We note, however, that this

7In principle, it is quite plausible that the range of preasymptotic
volatility of estimates scales with the cascade level n.

apparently only happens for both very large n together with a
high intermittency parameter λ2

0.
Nevertheless, with this particular caveat notwithstanding,

the complete set of our simulations indicate that the GMM
estimates are generally as well behaved as they are expected
to be.

IV. UNCERTAINTY OF THE NUMBER OF CASCADE
COMPONENTS

Our initial study (Tables I and II) on GMM performance has
been based on the assumption that we have exact knowledge
about the relevant number of cascade steps. The lack of such
knowledge introduces an additional source of uncertainty.
To investigate the effect of such uncertainty we extend our
previous analysis and generate samples of size T = 10 000
for a cascade of n = 11 levels with different values of λ2

0. We
apply then our GMM estimator for a range of hypothesized
cascade levels from 8 to 14 and contemplate the change
in the estimated value as well as in the objective function.
Results of pertinent Monte Carlo simulations are presented in
Table III.

As it turns out, the additional uncertainty does not impede
the correct estimation of the intermittency parameter even if
the cascade generating the data has a higher or lower number
of components than the one used for estimation. As it can
be seen from Table III, the absolute percentage difference
(APD) between the estimates is at most 3%, which occurs
with low λ2

0. In addition, the difference of the objective function
compared to that of n = 11 increases with the difference of the
assumed cascade steps from the true n = 11, with more change
happening for lower than for larger values. The difference is
more pronounced the higher λ2

0 is. However, a large deviation
between the minimized objective functions does not directly
carry over to APDs, which appear to be smaller throughout the
range of n considered. The reason for this is that our moment
conditions focus on capturing the fluctuation generated at a
cascade of size 2� so that for any higher cascade level, the
number of anticipated switches decreases proportionally and,
eventually, when the length of the cascade level is larger than
the sample size T the number of added switches is at most
one per level. As such, higher cascade levels add very little
to the analytical moments, whereas the estimate of σ̄ absorbs
higher level cascade components to some extent and, therefore,
shows a bias that increases with n (the same observation has
been made for the MSM model in Lux [14]). In conclusion,
our GMM procedure seems to provide reliable estimates of the
intermittency generating parameter λ2

0 even with uncertainty
regarding the number of cascade steps.

V. FORECASTING METHODOLOGY

Lux [14] has introduced best linear forecasts to predict out-
of-sample fluctuations of realizations of the causal Markov-
switching multifractal process of Calvet and Fisher [15,21].
Given a zero-mean weakly stationary process {Yt }, the standard
approach for construction of best linear h-step forecasts
amounts to predicting the realization of the process at time
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TABLE III. Monte Carlo results for GMM with cascade-level uncertainty added.a

n

λ2
0 8 9 10 11 12 13 14

0.01 λ̄2
0 0.011 0.011 0.011 0.011 0.011 0.011 0.011

RMSE 0.005 0.005 0.005 0.005 0.005 0.005 0.005
APD 0.031 0.030 0.024 0.000 0.023 0.025 0.026
Qmin 0.994 0.997 0.999 1.000 1.000 1.001 1.001

0.05 λ̄2
0 0.050 0.050 0.050 0.050 0.050 0.050 0.050

RMSE 0.007 0.007 0.007 0.007 0.007 0.007 0.007
APD 0.006 0.003 0.001 0.000 0.001 0.001 0.001
Qmin 0.991 0.990 0.996 1.000 1.003 1.004 1.005

0.15 λ̄2
0 0.151 0.149 0.149 0.149 0.148 0.148 0.148

RMSE 0.012 0.012 0.012 0.012 0.012 0.012 0.012
APD 0.014 0.006 0.002 0.000 0.001 0.002 0.002
Qmin 1.156 1.025 1.002 1.000 1.002 1.003 1.004

aAll simulations are based on a process with n = 11 cascade levels, ξ ∼ N (0,1), ωj ∼ N (−λ2
0,λ

2
0), and σ = 1. The sample length is T = 10,000.

GMM was executed for each number of cascade levels in the table using lags � = 1,14,64. For each case, 400 Monte Carlo runs have been
carried out. λ̄0 is the corresponding mean of the estimated parameters, while RMSE denotes the root mean squared error. For each iteration,
the absolute difference between an estimate with cascade level n and the estimate with n = 11 as a proportion to the latter has been calculated.
The absolute percentage difference (APD) denotes the mean of such series. Qmin is the average of the objective value at the optimum for each
n divided by the one with n = 11.

horizons h by

Ŷt+h =
t∑

i=1

φ
(h)
t i Yt+1−i = �

(h)
t Yt , (11)

with the vector of weights �
(h)
t = (φ(h)

t 1 ,φ
(h)
t 2 , . . . ,φ

(h)
t t )′ being

any solution to the system �t �
(h)
t = γ

(h)
t , where �t = [γ (i −

j )]i,j=1,...,t is the variance-covariance matrix, and γ
(h)
t =

(γ (h),γ (h + 1), . . . ,γ (t + h − 1))′ denotes the vector of t

elements of lag h autocovariances and beyond (Ref. [22]).
One consequence of the periodicity of size 2n introduced

to the series by the concatenation of cascades is that the long
memory of the process is bounded by the length of that period.
As such, its autocovariances would rapidly drop to zero after
lag 2n so that the inclusion of all available data, as one might
consider when dealing with long-memory processes, should
have no practical influence on the resulting forecasts beyond
the maximum lag.

In the implementation of the procedure involving Eq. (11),
we use the iterative algorithm developed by Brockwell and
Dahlhaus [ [23], algorithm 5]. For the implementation, one
needs the autocovariances of the quantity one wishes to predict.
In our case, our aim is to predict squared returns, x2

t , as a proxy
of volatility which requires analytical solutions forE[ x2

t+� x2
t ].

With this in mind, we define a series of zero-mean squared
fluctuations:

Yt
.= x2

t − E
[
x2

t

] = x2
t − σ̂ 2, (12)

where σ̂ is the estimate of the scale factor σ̄ in Eq. (6).
Also, σ̂ 2 appears only in the mean value of Eq. (12), but
it drops from the coefficients φ

(h)
t i . Appendix B presents the

pertinent formulas for the variance and autocovariances of the
intermittency generating part of a series of length T .

We again explore the performance of our proposed method-
ology via Monte Carlo simulations, assuming that one knows
the exact number of cascade levels in the data-generating
process. We restrict ourselves to one sample of size T = 7500,
where we use the first 5000 entries for in-sample parameter
estimation and the remainder for an assessment of the out-
of-sample forecasting performance in terms of mean squared
error (MSE) and mean absolute error (MAE). Both MSE and
MAE are standardized relative to the MSE and MAE of the
most naive forecast, that is, the sample variance or squared
“historical volatility” of a random walk (RW) during the
in-sample period, for the same sample, so that values below
one indicate an improvement against the constant variance
forecast based on an RW. We confine ourselves to a comparison
of the quality of forecasts based on the GMM estimator, on
the one hand, and on the Kiyono et al.’s estimator, on the
other. A closer look at Table IV shows that forecasts based
on the λ̂2

q estimate plus the sample standard deviation are
fairly similar to those based on GMM. Indeed, both forecasts
outperform the naive forecast at similar rates. This advantage
of the model-based forecasts over the naive predictor initially
increases with the degree of intermittency of the time series
(i.e., λ2

0), but declines at the upper end of the spectrum of
values used in our Monte Carlo study. It seems worthwhile
emphasizing that we have kept the in-sample period constant
at T = 5000 at all times. This means that the information
used to estimate the parameters has not been updated over the
out-of-sample period. The increase in biases in the estimate
of σ̄ with increasing n does not appear to constitute a major
obstacle for the prediction of future fluctuations.

The U shape of the prediction accuracy with varying λ2
0 is

reminiscent of similar observations in Lux [14]. Apparently,
there are two opposite forces at work here: With small λ2

0,
an increase of this parameter leads to a better forecasting
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TABLE IV. Monte Carlo assessment of best linear forecasts based on GMM and λ̂2
q estimation.a

n = 10 n = 16

λ̂2
q GMM λ̂2

q GMM

T |λ2
0 0.01 0.05 0.15 0.01 0.05 0.15 0.01 0.05 0.15 0.01 0.05 0.15

MSE 1 0.954 0.911 0.936 0.959 0.911 0.938 0.912 0.835 0.828 0.919 0.835 0.850
(0.023) (0.039) (0.056) (0.025) (0.039) (0.054) (0.075) (0.166) (0.228) (0.073) (0.165) (0.195)

10 0.973 0.964 0.982 0.975 0.964 0.983 0.931 0.883 0.880 0.935 0.883 0.908
(0.020) (0.030) (0.030) (0.020) (0.031) (0.028) (0.075) (0.170) (0.211) (0.072) (0.169) (0.161)

20 0.980 0.975 0.987 0.981 0.975 0.989 0.938 0.895 0.890 0.942 0.895 0.920
(0.018) (0.026) (0.024) (0.018) (0.026) (0.022) (0.074) (0.171) (0.201) (0.071) (0.169) (0.149)

100 0.994 0.993 0.996 0.994 0.993 0.998 0.956 0.916 0.918 0.958 0.917 0.946
(0.010) (0.014) (0.010) (0.009) (0.015) (0.011) (0.074) (0.165) (0.164) (0.070) (0.161) (0.114)

MAE 1 0.965 0.897 0.901 0.968 0.897 0.897 0.936 0.806 0.833 0.941 0.807 0.855
(0.052) (0.112) (0.127) (0.049) (0.113) (0.126) (0.140) (0.278) (0.325) (0.134) (0.273) (0.232)

10 0.977 0.952 0.970 0.979 0.952 0.964 0.948 0.857 0.908 0.952 0.859 0.924
(0.045) (0.096) (0.088) (0.042) (0.097) (0.091) (0.137) (0.278) (0.297) (0.131) (0.268) (0.189)

20 0.983 0.967 0.981 0.984 0.967 0.975 0.954 0.875 0.925 0.957 0.877 0.938
(0.040) (0.084) (0.072) (0.038) (0.085) (0.080) (0.135) (0.272) (0.280) (0.128) (0.262) (0.173)

100 0.994 0.992 0.997 0.995 0.993 0.992 0.968 0.913 0.960 0.970 0.915 0.963
(0.021) (0.042) (0.030) (0.020) (0.046) (0.060) (0.122) (0.241) (0.221) (0.115) (0.227) (0.133)

aThe table shows mean squared errors (MSE) and mean absolute errors (MAE) for two different cascade sizes n. MSE and MAE are given in %
of the pertinent MSEs and MAEs of a naive forecast from an RW using the in-sample variance. All entries are averaged over 400 Monte Carlo
runs (with standard errors given in parentheses). In each run, an overall sample of 7500 entries from a random starting point has been drawn.
From that starting point on, an in-sample period of 5000 entries for parameter estimation and an adjacent out-of-sample period of 2500 entries
for evaluation of forecasting performance were selected. Parameter values have been estimated with Kiyono’s λ̂2

q and the GMM estimator,
respectively. GMM was executed using lags � = 1,14,64. The column T represents the forecast horizons, whereas the row λ2

0 describes the
selected intermittency values.

performance simply because, then, the fluctuations become
more pronounced, and the series shows more of a deviation
from a random walk, while at very high values (λ2

0 = 0.15)
these fluctuations become more intermittent and less pre-
dictable given the sample size T available for estimation. This
may also explain why the inconsistent estimator of Kiyono
et al. [12] is even marginally better than the GMM estimator
at higher values of λ2

0: Its strong downward bias (cf. Table II)
leads to smoother forecasts which on average might lead
to somewhat smaller errors than forecasts based on a more
accurate estimate.8

Next, we consider the case with added uncertainty on the
number of cascade levels n of the series. Table V presents
the forecasting results of a series generated by n = 11 and
T = 5000 splitted into two subsamples of 2500 for estimation
and forecasting. The process has been analyzed for a sequence
of cascade levels ranging from 8 to 50, for which GMM
estimation and subsequent out-of-sample forecasting exercises
have been conducted. As we can see the MSEs and MAEs
stabilize at the “true” n: While using too low a number of

8While the lack of an advantage of the GMM estimates compared
to the inconsistent moment estimator of Kiyono et al. might appear
disappointing, we should note that the use of the latter for forecasting
already implies quite some effort in computing exact moments [to
implement Eq. (12)]. Hence, at this point a reliance on the moment
estimator would be moot anyway.

cascade steps leads to suboptimal performance in forecasting,
using even unboundedly high levels of n is almost completely
harmless (except for a slightly higher variability of MSEs
and MAEs around their means as indicated by their standard
errors). Since, in practice, n will be typically unknown, these
results speak in favor of using deliberately large hypothesized
values of n in empirical research.

VI. EMPIRICAL EVIDENCE

Starting with Ghashghaie et al. [8], a fair amount of effort
has been spent particularly by physicists [7,12,24–27] on
the analogy between turbulence and financial markets. In
this strand of research, the main goal has been to retrieve
the functional form of the relationship among pdfs of price
changes at different scales. Instead, we focus in this paper
on forecasting turbulence (volatility) on the base of a cas-
cade model of intermittent fluctuations. Recently, multiscale
descriptions have also been used for the prediction of financial
time series (cf. Nawroth et al. [28]).

Our analysis is based on data from seven different foreign
exchange markets: the Canadian dollar (CND), the Japanese
yen (YEN), the Swedish krona (SEK), the Swiss franc (CHF),
the Australian dollar (AUD), the Deutsche mark—extended
by the Euro since 1999—(DEM-EUR), and the British pound
(UKP), all against the US dollar. Furthermore, we have
analyzed the price of gold in US dollars. All time series start
on January, 2, 1979 and extend until July 2, 2010.
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TABLE V. Monte Carlo assessment of best linear forecasts with cascade-level uncertainty.a

n

T 8 9 10 11 12 13 14 · · · 20 · · · 50

MSE 1 0.896 0.893 0.891 0.890 0.890 0.890 0.890 0.890 0.890
(0.073) (0.078) (0.081) (0.083) (0.084) (0.085) (0.085) (0.086) (0.086)

10 0.954 0.947 0.843 0.941 0.940 0.940 0.939 0.939 0.940
(0.051) (0.064) (0.072) (0.078) (0.081) (0.083) (0.084) (0.085) (0.085)

20 0.970 0.961 0.956 0.953 0.951 0.951 0.951 0.951 0.951
(0.038) (0.054) (0.066) (0.074) (0.078) (0.081) (0.082) (0.084) (0.084)

100 1.000 0.992 0.983 0.977 0.974 0.972 0.972 0.971 0.971
(0.013) (0.018) (0.036) (0.052) (0.063) (0.070) (0.073) (0.077) (0.077)

MAE 1 0.890 0.884 0.881 0.880 0.878 0.878 0.878 0.878 0.878
(0.126) (0.146) (0.163) (0.175) (0.185) (0.190) (0.193) (0.198) (0.199)

10 0.948 0.940 0.934 0.931 0.930 0.929 0.929 0.928 0.928
(0.082) (0.111) (0.136) (0.157) (0.172) (0.182) (0.187) (0.195) (0.197)

20 0.967 0.957 0.950 0.947 0.945 0.944 0.944 0.943 0.943
(0.061) (0.090) (0.119) (0.143) (0.162) (0.174) (0.180) (0.190) (0.192)

100 0.999 0.991 0.984 0.979 0.976 0.975 0.975 0.975 0.975
(0.038) (0.040) (0.063) (0.094) (0.122) (0.141) (0.152) (0.168) (0.172)

aAll simulations are based on a process with n = 11 cascade levels, ξ ∼ N (0,1), ωj ∼ N (−λ2
0,λ

2
0), and σ = 1. MSE and MAE are given in %

of the pertinent MSEs and MAEs of a naive forecast from an RW using the in-sample variance. All entries are averages over 400 Monte Carlo
runs (with standard errors given in parentheses). In each run, an overall sample of 5000 entries from a random starting point with λ2

0 = 0.05
have been drawn. From that starting point on, an in-sample period of 2500 entries for parameter estimation and an adjacent out-of-sample
period of 2500 entries for evaluation of forecasting performance were selected. Employed parameter values were estimated with GMM, using
lags � = 1,14,64. The column T represents the forecast horizons.

Due to the slight variation in the number of active
trading days among markets, we use the first ≈21.8 years
of data for in-sample estimation and leave the remaining
years for out-of-sample evaluation of volatility forecast. This
gives exactly 5500 in-sample observations for each asset
and never less than 2000 observations for the out-of-sample
analysis.

Though not compulsory for our GMM methodology, we
employ the mentioned standardization for ωj so that ωj (t) ∼
N (−λ2

0,λ
2
0).9 Table VI reports in-sample parameter estimates

for the intermittency parameter λ2
0 and for σ̄ , together with

their standard errors and the corresponding probability of
Hansen’s test statistics JT = TfT (ϕ̂)′ �T fT (ϕ̂), where the
estimation procedure has been repeated for n = 8, . . . ,20. At
a significance level of 0.05, the J-test statistics would allow
one to reject the multifractal cascade as the data-generating
process only for the Swiss francs (CHF), on the basis of our
chosen moment functions. Furthermore, we can see that while
the number of cascade levels at which the lowest objective
function was obtained varies from asset to asset, the maximum
APD among different n remains always below 2.5%, except
for the case of the Swiss franc (CHF).

Finally, the forecasting procedure has also been applied
for all model specifications n = 8, . . . ,20. The forecasting

9The set of suggested moments in our GMM procedure allows the
alternative specification σ̄ = exp(−n μ̃), together with an additional
estimator for σ̃ 2, the variance of each ωj in Eq. (6). In this case,
however, the covariance matrix of the parameters would no longer be
block diagonal.

results under the MSE and MAE criteria for the highest cascade
level are presented in Tables VII and VIII, respectively. Also
presented are the forecasting results of a fitted GARCH(1,1)
model for each asset.10 Though we abstain from presenting all
details here, we find that the differences in forecast ability for
different n have been marginal, with the forecasts for n = 20
being very close to that of all other n. This agrees with results
reported in Lux [14] and Calvet and Fisher [21] who arrive
at a similar conclusion regarding the saturation of forecasting
performance beyond a certain threshold.

As one can observe in Tables VII and VIII, our procedure
performs quite well for most of the series, particularly
for the MSEs where results are almost always statistically
significantly better than RW forecasts at the 99% level of the
test statistic for nested models of Clark and West [29,30].11 In
some cases, statistical significance was found even when the
reported MSE is slightly higher than one. The reason is that if
the two forecasts are highly correlated the series with a lower
variance of squared-forecasting errors should be preferred
even if its mean is slightly worse. As concerns comparison
between the n = 20 log-normal cascade and GARCH(1,1),
most often GARCH(1,1) has a slight advantage for the smaller
lags, while the cascade model provides better forecasts for
larger horizons. Given that the GARCH(1,1) model has only

10Estimation results for the GARCH(1,1) are not presented here but
are available upon request.
11Best-linear and GARCH forecasts can be considered to nest the

naive forecasts from a random walk (RW). Best-linear multifractal
forecasts and GARCH forecasts are, however, not nested so that the
nonadjusted version of the test applies.
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TABLE VI. Empirical parameter estimates.a

Asset

CND YEN SEK CHF AUD DM UKP Gold

λ̂2
0 0.0154 0.0357 0.0167 0.0119 0.0357 0.0238 0.0191 0.0339

(SE) (0.006) (0.007) (0.006) (0.005) (0.007) (0.006) (0.006) (0.007)
M-APD 0.021 0.006 0.003 0.165 0.017 0.011 0.005 0.003
σ̂ 0.2781 0.6945 0.6556 0.7533 0.6208 0.7144 0.6546 1.3499
(SE) (0.009) (0.021) (0.038) (0.017) (0.032) (0.018) (0.020) (0.107)
Jprob 0.243 0.843 0.718 0.005 0.500 0.695 0.550 0.260
nmin 8 8 19 8 8 20 20 12

aEmpirical estimates for standardized cascade shocks ωj (t) ∼ N (−λ2
0,λ

2
0) and overall order of fluctuation magnitude σ̄ , obtained via GMM

from a sample of 5500 entries for each asset. Each column shows the estimate corresponding to the lowest objective function obtained for the
range of cascade sizes n = 8, . . . ,20 for each asset. GMM was executed using lags � = 1,14,64. SE are the standard errors of the pertinent
estimates and the entry Jprob gives the probability of the corresponding J statistics. nmin is the number of cascade levels at which the lowest
objective function was obtained. The maximum absolute percentage difference (M-APD) is taken between the λ̂2

0 with the lowest and the
highest objective function from the employed range.

short-term dependence (and two estimated parameters for
the exact structure of this short-term dependence), while the
cascade model is designated to capture dependence over larger
horizons, these results very much coincide with our expec-
tations. However, differences in both directions are mostly
nonsignificant under the modified Diebold and Mariano [31]
test statistic (Harvey et al. [32]) at the 95 % level. Nevertheless,
it is noteworthy that the cascade forecasts typically dominate
over the longer horizons which shows the added value of
the long-term dependence for the multiplicative structure of
volatility.

The MAE results in Table VIII display more significant
results, with the n = 20 log-normal cascade forecasts perform-
ing almost always better than GARCH(1,1), with a statistical
significance of 95%. Note that under the MAE criterion, the
cascade model mostly also dominates over GARCH(1,1) at

short horizons, and even significantly so. There is also a
difference in the significance of results against the RW-based
forecast in this table with a somewhat smaller number of im-
provement for both the cascade and the GARCH(1,1) models.
This, however, may be based on the nature of the modified
Diebold and Mariano test employed here, as the MAE logic of
averaging L1 distances precludes us from employing the Clark
and West [29,30] adjustments for nested models. Overall,
while the results for MAEs are not entirely homogeneous they
appear quite encouraging particularly as concerns potential
improvements against the GARCH(1,1) benchmark.

VII. CONCLUSION

We have proposed in this paper a GMM approach for
estimation of log-normal cascade processes, which compares

TABLE VII. Empirical forecast: MSE.a

Asset

T CND YEN SEK CHF AUD DM UKP Gold

GMM20 1 0.801c 0.956c 0.852c 0.943c 0.786 0.925c 0.890c 0.911c

5 0.808c 0.970c 0.840c 0.951c 0.851c 0.900c 0.877c 0.894c

20 0.855c 0.989c,d 0.867c 0.980c 0.927c 0.914c 0.917c 0.917c

50 0.913c,d 0.996c 0.919c 0.986c 0.968c 0.952c 0.962c 0.964c

100 0.923c 0.999c 0.970c 1.015c 0.973c 0.988c 1.008c 0.984c

GARCH 1 0.792c 0.958c 0.836c,d 0.942c 0.788 0.917c 0.874c,d 0.903c

5 0.794c 0.971c 0.827c,d 0.953c 0.902b 0.900c 0.877c 0.899c

20 0.847c 0.996c 0.851c 0.985c 1.056c 0.913c 0.908c 0.917c

50 0.933c 1.006c 0.899c 0.994c 1.203c 0.961c 0.948c 1.009c

100 0.952c 1.011c 0.948c 1.013c 1.252c 1.000 0.997c 1.050c

aMultifractal and GARCH(1,1) mean squared errors (MSE) in % of the pertinent MSEs of a “naive” forecast from a RW using the historical
variance. GMM20 denotes multifractal forecasts that were employed using a cascade level n = 20. Multifractal parameter values were estimated
with the GMM estimator executed using lags � = 1,14,64.
bDenotes an improvement against RW model which is significant at the 95% level.
cDenotes an improvement against RW model which is significant at the 99% level.
dDenotes an improvement significant at the 95% level [GMM20 against GARCH(1,1) and vice versa].
Comparisons against RW are based on the test statistic for nested models of Clark and West [29,30]. Comparisons against GARCH(1,1) are
based on the modified Diebold and Mariano [31] test statistic by Harvey et al. [32].
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TABLE VIII. Empirical forecast: MAE.a

Asset

T CND YEN SEK CHF AUD DM UKP Gold

GMM20 1 1.094 0.949c 1.051d 0.923c,d 1.090d 0.885c,d 0.911c,d 0.838c,d

5 1.085 0.949c,d 1.045d 0.916c,d 1.093d 0.872c,d 0.905c,d 0.838c,d

20 1.080 0.958b,d 1.035d 0.925c,d 1.107d 0.882c,d 0.910c,d 0.860c,d

50 1.070 0.964 1.044d 0.932b,d 1.120d 0.900c,d 0.918b,d 0.887c,d

100 1.061 0.969 1.060d 0.942 1.119d 0.915b,d 0.942d 0.904d

GARCH 1 1.103 0.950c 1.060 0.939c 1.172 0.908c 0.920c 0.849c

5 1.088 0.957c 1.061 0.939c 1.219 0.907c 0.921c 0.857c

20 1.073 0.974 1.068 0.961c 1.352 0.950c 0.937b 0.900b

50 1.037d 0.988b 1.088 0.983b 1.641 1.016 0.955 0.991
100 1.013d 0.998 1.119 0.998 2.082 1.064 0.994 1.091

aMultifractal and GARCH(1,1) mean squared errors (MSE) in % of the pertinent MSEs of a “naive” forecast from a RW using the historical
variance. GMM20 denotes multifractal forecasts that were employed using a cascade level n = 20. Multifractal parameter values were estimated
with the GMM estimator executed using lags � = 1,14,64.
bDenotes an improvement against RW model which is significant at the 95% level.
cDenotes an improvement against RW model which is significant at the 99% level.
dDenotes an improvement significant at the 95% level [GMM20 against GARCH(1,1) and vice versa].
Comparisons against RW and GARCH(1,1) are based on the modified Diebold and Mariano [31] test statistic by Harvey et al. [32].

favorably with previously proposed χ̂ 2 and raw moment-
based estimators. Our numerical analysis suggests that the
GMM estimator is indeed consistent and asymptotical nor-
mally distributed. Furthermore, our methodology allows us
to retrieve the cascade parameter value with high accu-
racy even when the number of levels of the cascade is
unknown.

To apply the estimates obtained for forecasting the fu-
ture evolution of a cascade, we have developed a forecast
methodology based on the Levinson-Durbin algorithm for best
linear forecasts. Our methodology circumvents the statistical
problems related to the definition of a cascade process on a
bounded interval by allowing for a new initialization of the
process each time the end point of the cascade is reached.
We also show that the size of the interval (i.e., the number
of cascade steps) has virtually no influence on the estimated
intermittency parameter. The predictive power of forecasts
based on past realizations is similarly relatively insensitive to
the number of steps beyond some threshold. Somewhat surpris-
ingly, using more precise GMM estimates yields virtually the
same forecasting performance as combining the inconsistent
Kiyono et al.’s estimator with best linear forecasts based on
accurate moment conditions (a feature probably due to a lucky
interplay between the bias of the estimator by Kiyono et al. and
the volatility of forecasts for different parameters and cascade
levels).

The applicability of our procedure is confirmed by an ex-
tensive simulation analysis. Our empirical application consists
in the estimation of the intermittency parameter and the fore-
casting of volatility for various foreign exchange markets and
the gold market. Our results suggest that cascade models, even
with their grid-bound nature of volatility components, capture
a nontrivial part of the variability of price fluctuations. This
supports previous findings for the causal Markov-switching

multifractal model (Calvet and Fisher [15]). However, our
use of the combinatorial structure of models of turbulence
in physics demonstrates that similar results can be obtained
without giving up the time-honored generating mechanisms
for turbulent flows in statistical physics. Our approach might,
therefore, be valuable for observations of turbulent processes
in other areas that are not easily cast into a causal time-series
framework.
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APPENDIX A: DESCRIPTION OF THE ANALYTICAL
MOMENTS

We first consider the following definition:

ηt,�
.=

n∑
j=1

[ωj (t) − ωj (t − �)], (A1)

where obviously it holds that E[ηt,�] = 0. Lux [14] shows
that the moments of ζt,�, defined as in Eq. (8), can be written
as

E[ζt+�,� ζt,�] = E[ηt+�,� ηt,�] + E2[ln |ξi |] − E[(ln |ξt |)2],

(A2)
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and

E
[
ζ 2
t+�,� ζ 2

t,�

] = E
[
η2

t+�,� η2
t,�

] − 4 {E[
η2

t,�

] − E[ηt+�,� ηt,�]} {E2[ln |ξi |] − E[(ln |ξt |)2]} + 3E2[(ln |ξt |)2]

− 4E[ln |ξt |]E[(ln |ξt |)3] + E[(ln |ξt |)4]. (A3)

As can be seen in Eqs. (A2) and (A3), the moments in Eq. (9) require one to compute E[η2
t,�], E[ηt+�,� ηt,�], and E[η2

t+�,� η2
t,�].

These moments require two inputs, the probabilities for the renewal of the “multipliers” ωj , and the distribution of ωj

itself.
In the first case, η2

t,� elements would be different from zero if the pertinent ωj has different realizations in t + � and t .
Therefore, the expected value of η2

t,� is computed as

E
[
η2

t+�,�

] =
(

2

2n

) n∑
j=1

{E[(ωj )2] − E2[(ωj )]} {I(2n−j > �) (2j �) + I(2n−j � �) 2n}

=
(

2 σ̃ 2

2n

) n∑
j=1

{I(2n−j > �) (2j �) + I(2n−j � �) 2n}, (A4)

where I(·) represents the indicator functions, ωj is distributed
N (μ̃,σ̃ 2), and 2n−j accounts for the length of each subinterval
at cascade step j . To understand the computation of Eq. (A4)
note that 2j is the number of different log-normal draws
at cascade level j while 2n−j is the number of successive
elements with equal contributions at level j within a single
sequence of a cascade with 2n time-ordered observations. In
Eq. (A4), we distinguished between the cases 2n−j > � and
2n−j � �. In the first case, we have to account for the sequence
of the �-first consecutive equal contributions at level j . From
these � of the 2n−j numbers, a difference of � will reach into
the next box and, hence, have a nonzero value. If 2n−j � �

all � differences at level j will lead out of the individual box
so that nonzero values will be estimated for all 2n admissible
starting points.

Calculations become slightly more involved for the auto-
covariances of ηt,�. First of all, we know that

ηt+�,� ηt,� =
(

n∑
j=1

[ωj (t + �) − ωj (t)]

)

×
(

n∑
s=1

[ωs(t) − ωs(t − �)]

)
. (A5)

Because of independence of realizations of any pair
of volatility components j and s, only summands with
j = s give nonzero contributions. As such, Eq. (A5)
becomes

ηt+�,� ηt,� =
n∑

j=1

[
ωj (t + �) ωj (t) − ω2

j (t) − ωj (t + �)

×ωj (t − �) + ωj (t) ωj (t − �)
]
.

Furthermore, different realizations in t + � and t , and in
t and t − �, that is, ωj (t + �) 
= ωj (t) 
= ωj (t − �) at each
cascade step j may now exist depending on the relationship
between 2n−j and 2�, and 2n−j and �. We find, then, the
autocovariances of ηt,� using the first and second moments

E[(ωj )2] − E2[(ωj )]:

E[ηt+�,� ηt,�]

= −
(

σ̃ 2

2n

) n∑
j=1

{I(2n−j � �) 2n + I(2n−j > �)

× [I(2n−j < 2�) [I(j > 1) 2j (2� − 2n−j )]]}. (A6)

Equation (A6) can be understood following the sequence
of different cases we distinguish: First, if 2n−j � �, any �

difference at level j involves two different random numbers,
and so, all admissible values, 2n, make a nonzero contribution.
If 2n−j > �, at least 2n−j < 2� and j > 1 must hold to have
any nonzero entries. Their number can then be determined by
the following considerations: The term 2j is the number of
boxes of size 2n−j on the bounded interval while 2� − 2n−j

determines the number of possible starting points of nonzero
double differences of two times the size �.

Calculations for the autocovariances of η2
t,� are more

complex. We can arrive at the closed-form solutions for the
total sample counterpart by identifying the nonzero entries in
the cascade with respect to

η2
t+�,� η2

t,� =
(

n∑
j=1

[ωj (t + �) − ωj (t)]

)2

×
(

n∑
s=1

[ωs(t) − ωs(t − �)]

)2

, (A7)

which requires one to identify three different cases:
(1) j = s and ωj (t + �) 
= ωj (t) 
= ωj (t − �) leading to

entries of the form,

(ωj (t + �) − ωj (t))2(ωj (t) − ωj (t − �))2. (A8)

We count here the same number of entries as in the case of
ηt+�,� ηt,�. Using the identities E[(ωj )3] = 3 μ̃ σ̃ 2 + μ̃3 and
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E[(ωj )4] = 3 σ̃ 4 + 6 μ̃2 σ̃ 2 + μ̃4, the expectation of Eq. (A8),
once the number of cases is counted, is

E[(ωj )4] + 3E2[(ωj )2] − 4E[(ωj )3]E[(ωj )] = 6 σ̃ 4.

Together, we obtain

κ1 = 6 σ̃ 4
n∑

j=1

{I(2n−j � �) 2n + I(2n−j > �)

× [I(2n−j < 2�) [I(j > 1) 2j (2� − 2n−j )]]}. (A9)

(2) j 
= s and ωj (t + �) 
= ωj (t) and ωs(t) 
= ωs(t − �) for
the case of entries like

(ωj (t + �) − ωj (t))2(ωs(t) − ωs(t − �))2. (A10)

In this case, we can simplify our computations by considering
only contributions for which the second index is lower than the
first. The reason is that if a term is nonzero for the higher index,
it is the lower index that determines whether the complete
expression [Eq. (A10)] is vanishing or not.12 Therefore, we
define for h > l,

ψ(h)
.= I(2n−h � �) [I(2n−l > �) 2l � + I(2n−l � �) 2n]

+ I(2n−h > �) I(2n−h < 2�) 2l (2� − 2n−h).

(A11)

In Eq. (A11) we encounter the following cases: First, if
2n−h � � and 2n−l > �, a number of 2l boxes has each �

nonzero contributions for the double differences. Furthermore,
if both 2n−h � � and 2n−l � �, all countable elements (i.e., 2n

cases), make a nonzero contribution. If, finally, � < 2n−h < 2�

we have 2l boxes with 2� − 2n−h nonzero elements each.
Furthermore, for nonzero entries, the expectation of Eq. (A10)
is defined as

4E2[(ωj )2] − 8E[(ωj )2]E2[(ωj )] + 4E4[(ωj )] = 4 σ̃ 4.

Together with the number of cases, we obtain

κ2 = 4 σ̃ 4
n∑

j=1

n∑
s = 1, s 
= j

[I(j > s) ψ(j ) + I(j < s) ψ(s)].

(A12)

(3) j 
= s and ωm(t + �) 
= ωm(t) 
= ωm(t − �) for m = j,s

leads to entries of the format,

(ωj (t + �) − ωj (t))(ωj (t) − ωj (t − �))

× (ωs(t + �) − ωs(t))(ωs(t) − ωs(t − �)). (A13)

As we can see, we have here a double term at cascade step j

and another double term at a higher or lower cascade step s.

12Please remember that a lower index means a position in a longer
subinterval, so if the term is nonzero there, it must also be nonzero at
a higher index level or shorter subinterval, respectively.

Since both pairs of terms must not disappear simultaneously,
once we are in, let’s say, I(j < s), the total number of double
terms is fully determined by the number of double terms with
the index j . In summary, we have the same number of double
terms for index j as in ηt+�,� ηt,�, so for h > l we define the
counting formula as

ϕ(l) =
n∑

l=1

{I(2n−l � �) 2n + I(2n−l > �)

× [I(2n−l < 2�) [I(l � 1) 2l (2� − 2n−l)]]}. (A14)

Given the previous explanations, the components of Eq. (A14)
are easily explained.

Using these results and the fact that the expectation of
Eq. (A13) is 2σ̃ 4 we find

κ3 = 2 σ̃ 4
n∑

j=1

n∑
s = 1, s 
= j

[I(j > s) ϕ(s) + I(j < s) ϕ(j )].

(A15)

Putting (A9), (A12), and (A15) together we finally obtain

E
[
η2

t+�,� η2
t,�

] =
(

1

2n

)
(κ1 + κ2 + κ3). (A16)

As the last element we need, the log-absolute moments of the
standard normal variates ξi in Eq. (A3) can be easily obtained
by using the Gamma function and its derivatives.

APPENDIX B: FORECASTING FORMULAS

For computing linear forecasts of x2
t − σ̂ 2 in Eq. (12), we

need the second moment and the autocovariances of the xt .
Let us define

ϑt
.= exp

[
2

n∑
j=1

ω
(m)
j

(⌊
t − 2n(m − 1) − 1

2n−j

⌋)]

= exp

[
2

n∑
j=1

ωj (t)

]
=

[
n∏

j=1

Mj (t)

]2

, (B1)

for m = 0,1, . . ., and exp[ωj (t)] = Mj (t). Due to the standard-
ization of the pdf in Eq. (1) by σ0 = exp(−λ2) in Eq. (2), it
follows that ωj (t) ∼ N(−λ2

0,λ
2
0), which conveys that E[ ϑi ] =

1 and the cascade level conserves mass on average. The second
moment of the volatility process is

E[ ϑ2
t ] = E

[
exp

[
4

n∑
j=1

ωj (t)

]]
= E

[(
n∏

j=1

Mj (t)

)4]

= exp
(
4 n λ2

0

)
, (B2)
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while the autocovariance of the volatility process is given by

E[ϑt+� ϑt ] = E

[
n∏

j=1

[
M 2

j (t)M 2
j (t + �) I(Mj (t) 
= Mj (t + �)) + M 4

j (t) I(Mj (t) = Mj (t + �))
]]

=
n∏

j=1

[
E

[
M 2

j (t)M 2
j (t + �) I(Mj (t) 
= Mj (t + �))

] + E
[
M 4

j (t) I(Mj (t) = Mj (t + �))
]]

=
n∏

j=1

[
1 I(2n−j � �) +

[
exp

(
4 λ2

0

) 2n − 2j �

2n
+ 1

2j �

2n

]
I(2n−j > �)

]
.
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