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A B S T R A C T   

Dried oregano leaves are particularly prone to adulteration because of their widespread distribution and their 
easy mixing with leaves of other plants of lower commercial value, such as olive, myrtle, strawberry tree, or 
sumac. To reveal the presence of adulteration, in this study we considered an untargeted analytical approach, 
which instead of involving the a priori selection of specific compounds of interest is focused on defining the 
characteristic spectral signature of authentic oregano with respect to its most frequent adulterants. NIR 
HyperSpectral Imaging (NIR-HSI) represents a state-of-the-art, rapid and non-destructive technique, allowing for 
the collection of both spectral and spatial information from the sample, making it particularly suitable for 
characterizing visually heterogeneous samples. 

Authentication issues are typically assessed through class modelling techniques and Soft Independent 
Modelling of class Analogy (SIMCA) is one of the most used algorithms in this scenario. However, the high 
variability and heterogeneity within the authentic oregano class resulted in poor outcomes when SIMCA was 
applied. As an alternative, Soft Partial Least Squares Discriminant Analysis (Soft PLS-DA) algorithm was applied 
to differentiate authentic oregano samples from pure adulterants. Soft PLS-DA represents a hybrid approach that 
combines the advantages of both discriminant and class modelling techniques. The resultant classification model 
has indeed led to promising results, achieving a prediction efficiency of 92.9 %. Finally, based on the percentage 
of pixels predicted as oregano in the Soft-PLSDA prediction images, a threshold value of 10 % was established, 
serving as a detection limit of NIR-HSI to distinguish authentic oregano samples from adulterated ones.   

1. Introduction 

The global market of herbs and spices has experienced unprece
dented growth in recent years, driven by an increasing demand for 
culinary diversity, natural flavour enhancers, and the perceived health 
benefits of herbal products [1]. While this growth presents excellent 
opportunities for the industry, it also raises concerns about authenticity 
and integrity of these food products. An alarming consequence of this 
flourishing market is the increasing risk of adulteration, which is defined 
by European Spice Association as “the deliberate and intentional in
clusion in herbs and spices of substances whose presence is not legally 
declared, is not permitted or is present in form which might mislead or 

confuse the customer, leading to an imitated food and/or product of 
reduced value” [2]. 

In this context, we are referring to Economically Motivated Adul
teration (EMA), which involves the deliberate act of altering products, 
particularly in the food industry, with the aim of gaining a financial 
advantage. This practice entails substituting expensive ingredients with 
lower-quality alternatives to reduce costs [3,4]. In the case of herbs like 
oregano, EMA often includes adding lower-cost plant materials, which 
may encompass different botanical species. This unethical activity is 
facilitated by complexity of the supply chains, spanned in multiple 
stages occurring in countries that are different from that of the final sale 
[5]. Beyond the economic harm to consumers and the damaged 
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reputation of honest producers and distributors, adulteration is a prac
tice that can pose also significant health risks. Indeed, adulterated 
products may contain potential allergens that are not declared in the 
food labels, or the adulteration process may involve the introduction of 
different pesticides, which can accumulate dangerously in the adulter
ated product [6,7]. 

According to a technical report by the European Commission’s sci
ence and knowledge service (JCR) [5], oregano – the herb used to 
flavour many foods such as pizza and responsible for its characteristic 
“Italian" aroma – has emerged as the most adulterated herb, with 48 % of 
samples suspected of adulteration. The botanical species introduced as 
substitutes typically include olive leaves, sumac, cistus, strawberry tree 
and myrtle, whose dried and ground leaves are visually indistinguish
able from oregano. Since unintentional contamination can occur during 
processing, the presence of extraneous matter is still tolerated within 2 
% [8,9]. 

While the need for a proper authentication of dried oregano is 
evident, the selection of the most appropriate analytical technique is not 
straightforward. Various methodologies have been employed to face this 
authentication issue, each with its own advantages and limitations. In 
this context, we can delineate two primary approaches that have been 
employed by various research groups: targeted and untargeted 
approaches. 

Targeted approaches are based on the identification and quantifi
cation of specific chemical markers of adulteration or authenticity for a 
specific product. For instance, Dabrova and colleagues [6] employed 
advanced mass spectrometry methods to analyse 400 pesticides in both 
genuine and adulterated oregano samples, identifying a number of 
compounds that were exclusively present in those adulterated. Other 
studies employed liquid chromatography coupled with mass spectrom
etry to detect additional biomarkers of adulteration [10,11]. Cottened 
and coauthors [12] used a DNA metabarcoding approach to analyse 
commercial samples of spices and herbs; in 22 % of the examined 
samples, they identified undeclared species in complex mixtures con
taining down to 1 % of adulterants. On the other hand, Pages-Rebull and 
coauthors [13] utilized HPLC-UV technique to determine phenolic 
compounds in various spices and aromatic herbs. Their study revealed 
that the presence and quantity of six of these compounds define their 
typical profile, making them suitable markers of authenticity. Targeted 
methodologies are highly selective and capable of detecting even very 
low levels of adulteration. However, they come with significant draw
backs, including high costs for the analysis, the requirement for highly 
specialized personnel, and the need for prior knowledge of the specific 
markers, which may not always be available. Additionally, the extrac
tion and identification of markers often involve a lengthy and 
labour-intensive sample preparation process, particularly when dealing 
with complex matrices such as food samples. 

Conversely, untargeted approaches entail a comprehensive exami
nation of a sample distinctive chemical profile, without prior selection of 
specific compounds of interest. This approach facilitates a deep 
comprehension of the sample composition, essentially “recognizing” the 
profile of an authentic sample, much like its fingerprint, against which 
adulterated samples exhibit differences. Untargeted methods, therefore, 
necessitate the processing of analytical results using multivariate che
mometric techniques, essential for extracting pertinent information 
from the fingerprint [14]. 

Among the recent untargeted techniques employed for oregano 
authentication, notable examples include nuclear magnetic resonance 
(NMR) spectroscopy, which has been effectively utilized for initial 
fingerprinting to discern oregano types, geographical origins, and the 
presence of other plant additives [15]. In other instances, mass spec
trometry has been employed, using instrumental setups that offer rapid 
analyses with minimal or no sample preparation, such as 
Proton-Transfer Reaction Time-of-Flight Mass Spectrometry 
(PTR-TOF-MS), enabling real-time detection of volatile organic com
pounds [16]. Additionally, various applications of Ambient Mass 

Spectrometry, such as Direct Analysis in Real Time (DART-MS) [17–19] 
or Atmospheric Solid Analysis Probe (ASAP-MS) [19], have been uti
lized. While in these cases sample preparation may not be as 
time-consuming, challenges persist regarding instrument costs and the 
high level of technical expertise required of analysts. Mid- and 
Near-InfraRed spectroscopic fingerprinting techniques can thus over
come these limitations, simplifying and cost-effectively enhancing the 
analysis process. For these reasons, in the very recent years, several 
studies have emerged regarding the use of FTIR (Fourier-Transform 
InfraRed) and NIR (Near-InfraRed) spectroscopies for the authentication 
of both oregano [16,20–22] and other herbs and spices [4,23–25]. The 
last relatively unexplored frontier of infrared spectroscopic analysis for 
herbs and spices authentication is NIR HyperSpectral Imaging (NIR-HSI) 
[16,26,27]. 

NIR-HSI is a cutting-edge, rapid and non-destructive technique that 
allows the collection of both spectral and spatial information of the 
sample [28–30]. Indeed, each pixel of a NIR hyperspectral image con
tains a complete NIR spectrum, which represents a sort of chemical 
fingerprint at the corresponding sample position. In this manner, it is 
possible to obtain the so-called chemical maps of acquired samples, i.e., 
to characterize sample chemical composition and evaluate how it varies 
on sample surface. This method is particularly suitable for character
izing heterogeneous food matrices, such as ground herbs. Note that the 
ground herbs and spices contaminated with extraneous plant species 
may exhibit a variety of fragments, that potentially differ in terms of 
chemical composition. 

In this study we used NIR-HSI to analyse authentic oregano samples, 
pure adulterants, and oregano samples adulterated with various types 
and amounts of spiked adulterants. The collected images were first 
explored by Principal Component Analysis (PCA) to assess spectral dif
ferences between pure oregano samples and adulterants. Afterwards, 
multivariate classification methods were used to obtain predictive 
models able to distinguish between authentic oregano samples and 
adulterated ones. 

Ideally, authentication issues, such as the one considered in this 
study, should be assessed using Class Modelling (CM) classification ap
proaches [31–33], which construct individual class models based on 
similarities among samples belonging to the same target class (i.e., 
authentic oregano). Consequently, a new sample can be assigned to one 
or more of the modelled classes, or to none of them. However, CM 
methods usually provide poor results when the variability within the 
target class (i.e., authentic oregano) is greater than the variability be
tween target and non-target classes (i.e., pure adulterants), resulting in 
strong overlapping of the classes. 

In contrast to CM, discriminant analysis (DA) methods maximise the 
differences among the studied classes, even if these differences are 
subtle, thus providing better results when dealing with overlapping 
classes. One of the most used algorithms for this purpose is Partial Least 
Squares Discriminant Analysis (PLS-DA), a modified version of the PLS 
statistical regression method [34,35]. Classical DA methods are rec
ommended when the classes of interest are well defined as they force the 
class assignment of a new sample to one of the modelled classes. 
Therefore, they are not suitable for authentication issues where new 
unknown samples may belong to none of the considered classes. 

To benefit from the advantages of both CM and DA methods, soft 
discriminant approaches may represent a valid alternative. These algo
rithms can be considered hybrid classification methods that combine CM 
and DA as they enable the classification of samples based on differences 
among the considered classes, while simultaneously identifying samples 
belonging to none of them [36–39]. 

Therefore, classification models were calculated on a training set of 
authentic oregano and of pure adulterants using both a CM approach, 
namely Soft Independent Modelling of Class Analogies (SIMCA) [31], 
and a soft discriminant method, namely Soft Partial Least Squares 
Discriminant Analysis (Soft PLS-DA) [39]. Essentially, Soft PLS-DA is the 
same as PLS-DA, however class assignment is subjected to some 
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additional rules involving the calculation of further thresholds based on 
Q residuals and on y predictions. These additional thresholds do not 
constrain an unknown sample to belong to one of the modelled classes, 
thus facilitating effective handling of samples adulterated with extra
neous herbs or materials not previously accounted for model calculation 
[36]. 

Finally, the SIMCA and Soft PLS-DA models were applied at the pixel 
level to all the acquired images, including those of oregano samples 
adulterated with different percentages of adulterants. The resulting 
prediction images were used to provide a final classification of the 
samples into genuine or adulterated oregano. Moreover, the percentage 
of pixels predicted as oregano from the Soft PLS-DA model allowed to 
define a sort of detection limit of NIR-HSI in this context. 

2. Materials and methods 

2.1. Oregano samples 

The sample set included forty-nine samples: in detail, we analysed 
twenty-six authentic oregano samples (Origanum vulgare, Origanum 
onites, Coleus amboinicus and Origanum vulgare subsp. Viridulum, also 
known as Sicilian oregano), including two samples containing in
florescences and other two samples certified from the FAPAS proficiency 
tests 2985A-C. Four samples of pure adulterants including myrtle leaves 
(Lagerstroemia indica), sumac leaves (Rhus coriaria), strawberry tree 
leaves (Arbutus unedo) and olive leaves (Olea europaea) were also 
investigated. Moreover, nineteen adulterated oregano samples inten
tionally mixed with different percentages of myrtle leaves (Lagerstroemia 
indica), sumac leaves (Rhus coriaria), strawberry tree leaves (Arbutus 
unedo) and olive leaves (Olea europaea) and unintentionally polluted 
during various steps of the supply chain (with rosemary, cistus, hazelnut 
and sumac leaves) were tested. Among them, one certified oregano 
sample adulterated with olive leaves from FAPAS proficiency tests 
2985A-C was included. The authentic samples originated from Italy, 
France, Turkey and Albany, and were harvested between 2019 and 
2022. The percentages of adulterations ranged between 1.5 and 60 % 
(see Table S1 for the details of each sample). 

2.2. Image acquisition and elaboration 

Three random aliquots of each sample, ranging between 0.2 g and 
1.0 g, were placed inside a glass Petri dish of 6.0 cm diameter and ac
quired as an individual image using a HSI line-scan system. Such system 
was composed of a desktop NIR Spectral Scanner (DV Optic, Padova, 
Italy) embedding a Specim N17E reflectance imaging spectrometer, 
coupled to a Xenics XEVA 1.7–320 camera (320 × 256 pixels) embed
ding Specim Oles 31 f/2.0 optical lens and covering the spectral range 
from 900 to 1700 nm (5 nm resolution, 150 spectral channels). Due to 
low S/N values, the wavelengths at the extremes of the spectral range 
were excluded: the final hyperspectral images, covering the spectral 
range between 980 and 1660 nm (137 wavelengths), were considered 
for further analysis. 

To evaluate the system’s stability over time, a setup composed of a 
silicon carbide sandpaper as sample background – characterized by a 
very low and constant reflectance spectrum [40] – a 99 % reflectance 
standard and two ceramic tiles with different grayscale tones and in
termediate reflectance values, were used for the acquisition of all the 
images. The raw data were then converted into reflectance values by 
applying the instrument calibration procedure, which involved 
measuring the high-reflectance standard reference and the dark current. 
As a first step of image elaboration, an additional internal calibration 
was performed to minimize any residual variability among the images 
over time [41]. In total, 147 hyperspectral images were acquired (=49 
samples × 3 replicates). 

The corrected images were then cropped to a size of 248 × 199 
pixels, in order to consider only the sample area. Subsequently, the 

pixels associated with the black sandpaper background and the glass 
Petri dish were removed from each image using a fast-thresholding 
procedure: all the pixels with reflectance values lower than 0.50 
reflectance units measured at 980 nm were ascribable to the background 
and removed. Finally, a morphological erosion procedure, using a disk- 
shaped structuring element with a radius of 2 pixels, was performed to 
remove the pixels placed at the edges of the samples, which were 
affected by scattering phenomena and specular reflections of the glass 
Petri dish [29]. 

These image elaboration steps were performed using routines writ
ten ad hoc in MATLAB language (R2020b, The MathWorks Inc., USA). 

2.3. Data analysis 

2.3.1. Exploratory analysis 
A preliminary exploratory analysis of the images was performed by 

means of PCA both at the pixel-level and at the image-level. In both cases, 
PCA was performed using linear detrend and mean center as spectral 
preprocessing methods. 

For pixel-level exploratory analysis, some representative images of 
authentic oregano, pure adulterants (myrtle leaves, sumac leaves, 
strawberry tree leaves, and olive leaves) and adulterated oregano sam
ples (mixtures of oregano and adulterants) were selected and merged 
together. PCA was applied to the merged images in order to have a 
preliminary evaluation of the spectral differences between oregano and 
the considered adulterants. 

Subsequently, in order to have a global evaluation of the whole 
dataset structure at the image-level, as well as to gain an overall under
standing of sample characteristics and behaviour, the average spectrum 
was calculated from each image and PCA was applied to the average 
spectra dataset. 

2.3.2. Classification 
Classification was carried out using two classification methods: 

SIMCA as a class modelling technique [31] and the soft discriminant 
method Soft PLS-DA [39]. 

For both classification methods the ability to distinguish authentic 
and adulterated oregano samples was evaluated in two steps. Firstly, 
pixel level models able to classify genuine oregano and pure adulterants 
(single class including leaves of myrtle, strawberry tree, olive and 
sumac) were calculated. Then, both models were applied to all the ac
quired hyperspectral images, including those of adulterated oregano 
samples (i.e., mixtures of oregano and adulterant), and for each image 
the corresponding percentage of pixels predicted as oregano (PPO%) 
was calculated. Based on this value, a threshold was set in order to 
identify each sample as authentic or adulterated oregano (see Section 
2.3.2.4). As done for the previous exploratory analysis step, the spectra 
were preprocessed by applying linear-detrend followed by mean 
centering. 

The classification performances of the models were evaluated by 
cross-validation (CV) and prediction of the external test set (TS) by 
calculating the statistical parameters sensitivity, specificity and effi
ciency [42], where.  

- sensitivity (SENS), also known as True Positive Rate, measures the 
classifier’s ability to correctly identify samples belonging to a 
considered class. SENS is calculated as the ratio between objects 
correctly assigned to the modelled class (true positives, TP) and all 
objects belonging to the class.  

- specificity (SPEC), also known as True Negative Rate, evaluates the 
classifier’s ability to reject samples belonging to other classes. SPEC 
is calculated as the ratio between objects correctly rejected by the 
modelled class (true negatives, TN) and all objects that do not belong 
to the considered class.  

- efficiency (EFF), defined as the geometric mean of SENS and SPEC, 
provides an overall assessment of classification performance. 
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These classification performances were assessed by initially applying 
the models to a dataset comprising spectra references of authentic 
oregano and pure adulterants, and subsequently, to all the acquired 
hyperspectral images (see Sections 2.3.2.1 and 2.3.2.4, respectively). 

2.3.2.1. Dataset structure. Firstly, we developed pixel-level models able 
to classify genuine oregano and pure adulterants. To this aim, we built- 
up a dataset of representative spectra belonging to both classes. This 
phase is crucial as it determines the representativeness of spectra ref
erences for the two classes, thus affecting the robustness and reliability 
of the classification models. 

To this aim, a PCA model was calculated on the mean centered 
spectra of each image considering only the pixels belonging to the 
sample and selecting 3 principal components (PCs). Then, the pixels 
outside the 99.9 % confidence limit on both Hotelling T2 and Q residuals 
values were excluded. Indeed, a deeper investigation these few pixels 
allowed to observe that they were ascribable to specular reflections or to 
small portions of the glass Petri dish that were not removed during 
background segmentation and erosion. Finally, a new PCA model was 
calculated, and Kennard-Stone algorithm [43] was applied in the PC 
space to select a representative number of pixel spectra. In particular, 
600 spectra were selected from each image of pure adulterants, resulting 
in a total of 7200 representative spectra collected for the pure adulter
ants class (=600 spectra × 12 hyperspectral images), while 100 pixel 
spectra were selected from each image of authentic oregano samples, for 
a total of 7200 representative spectra (=100 spectra × 72 hyperspectral 
images). Note that two authentic oregano samples, listed as # 9 and # 10 
in Table S1, were excluded in this phase due to the presence of branch 
fragments, but they were used for the final validation of the classifica
tion models (see Section 2.3.2.4). This dataset of representative spectra 
included therefore an overall number of 14400 spectra, and it was then 
used to develop the classification models. 

Before calculating the classification models, the dataset was split into 
a training (TR) set used for model calculation and a test (TS) set used for 
model validation. The samples of authentic oregano were randomly 
subdivided in training and test samples with a ratio of 2/3 and 1/3, 
respectively, and the corresponding spectra were then assigned to the TR 
or TS dataset accordingly. Considering the pure adulterants, the subdi
vision into TR and TS sets was based on acquisition replicates: for each 
pure adulterant sample, the spectra of two of the three aliquots were 
included in the TR and one in the TS dataset. Therefore, the composition 
of TR and TS datasets can be summarised as follows.  

- TR: 9600 spectra in total, 4800 spectra selected from 48 images of 
authentic oregano samples and 4800 spectra selected from 8 images 
of pure adulterants;  

- TS: 4800 spectra in total, 2400 spectra selected form 24 images of 
authentic oregano samples and 2400 spectra selected from 4 images 
of pure adulterants. 

Fig. 1 reports the mean spectrum of the selected pixel spectra of 
authentic oregano belonging to the TR set together with the mean 
spectra of the different pure adulterants considered in this study. 

2.3.2.2. Spectra classification by SIMCA. Under a CM perspective, the 
authentication issue of this study can be considered a one-class classi
fication problem. In fact we are interested in defining the boundaries of a 
single target class, i.e., authentic oregano, and predicting if a new 
sample belongs or not to the target class. Therefore, we developed a one- 
class SIMCA model considering only the spectra of authentic oregano of 
the TR set, while the spectra of pure adulterants of the TR set were used 
during cross-validation following a compliant approach [44]. 

SIMCA algorithm models the similarities among samples of the target 
class (i.e., authentic oregano), assuming that the main features of the 
target class can be represented by a Principal Component (PC) space of 

adequate dimensionality, commonly known as class subspace. Class 
assignment of new observations is carried out by calculating two sta
tistical metrics accounting for the distance between the new observation 
and the target class subspace: the Orthogonal Distance (OD) and the 
Score Distance (SD). OD is the squared Euclidean distance of each new 
observation from its projection into the PCA model, while SD is defined 
as the squared Mahalanobis distance between the projection of the 
sample into the PCA subspace and the origin of the PCs [45]. 

Afterwards, OD and SD values are usually compared with the cor
responding critical limits (ODcrit and SDcrit, respectively) at a defined 
confidence level to perform the final assignment of the new observation. 
Different versions of SIMCA algorithm have been developed based on 
how OD and SD metrics as well as the corresponding confidence limits 
are used to perform class assignment [31]. 

In this study, we used Alternative SIMCA algorithm (Alt-SIMCA), 
which combines OD and SD values in a single statistical parameter, d, 
that defines the limits of the acceptance subregion (Eq. (1)) [31,46]: 

d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

OD
ODcrit

)2

+

(
SD

SDcrit

)2
√

(1)  

where ODcrit and SDcrit values correspond to the critical limits at 95 % 
confidence level. Only the observations with d ≤

̅̅̅
2

√
are assigned to the 

target class, while those not meeting this decision rule are rejected and 
defined as non-target samples. 

The optimal number of PCs was selected by maximizing the cross- 
validation efficiency (as defined in Section 2.3.2) following the 
compliant strategy for one-class modelling, which consists in using also 
samples not belonging to the target class for model optimisation. This 
strategy is generally recommended when dealing with overlapping 
classes [44]. In particular, the authentic oregano samples of the TR set 
were randomly split into two deletion groups and, based on this subdi
vision, the corresponding spectra were assigned to the two groups; in 
this manner, spectra selected from replicate images of the same oregano 
sample were kept in the same deletion group. Conversely, the TR set 
spectra belonging to pure adulterants were divided into the two deletion 
groups based on replicates., i.e., the spectra of one of the two replicate 
images of the TR set were assigned to one deletion group, while the 
spectra of the other replicate image were assigned to the other deletion 
group. 

Afterwards, the classification performance of the Alt-SIMCA model 
was assessed though external validation using the TS set, which contains 
spectra belonging to both authentic oregano and pure adulterants. 

Alt-SIMCA model was calculated using routines written ad hoc in 
MATLAB environment (ver. 2020b, The MathWorks, USA) based on 

Fig. 1. Average spectrum of selected pixel spectra belonging to the TR set of 
authentic oregano class together with the average spectrum of each 
pure adulterant. 
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PLS_Toolbox functions (ver. 8.5, Eigenvector Research Inc., USA). The 
reader is referred to Vitale et al. [31] for an in-depth description of the 
Alt-SIMCA algorithm. 

2.3.2.3. Spectra classification by soft PLS-DA. The TR set was used to 
calculate a classification model to discriminate between genuine 
oregano and pure adulterants by means of Soft PLS-DA. Soft PLS-DA is a 
soft discriminant algorithm that combines the advantages of discrimi
nant analysis and class modelling approaches. Its configuration allows 
for increased flexibility and robustness in classification models: by 
applying additional constraints for class assignment, it effectively 
identifies possible outliers. In this manner, Soft PLS-DA overcomes the 
limitations of PLS-DA in handling new objects not belonging to the 
target classes, maximizing at the same time the discrimination between 
the classes of interest [36,39]. 

In details, a new sample is assigned to a defined class according to the 
following criteria.  

- it must have Q residuals values falling within the 99.9 % confidence 
limit of the model. This limit has been chosen to set boundaries wide 
enough to consider as much as possible within classes variability, but 
allowing at the same time to exclude samples with a very poor fit to 
the model;  

- it must have y predicted values falling within an acceptability range 
for the considered class. The lower limit is defined by the PLS-DA 
threshold value for the class under investigation, while the upper 
limit allows for the rejection of objects located at the extremes of the 
Gaussian probability density function;  

- for multiclass classification, the samples must be unambiguously 
assigned to only one class. 

The samples that do not match all the three criteria defined by the 
Soft PLS-DA decision rules are not assigned to any class and automati
cally labelled as “not assigned” samples (NA). 

Soft PLS-DA model was optimized by using the same custom cross- 
validation scheme and samples splitting criterion previously 
mentioned in Section 2.3.2.2. Furthermore, external validation was 
performed by predicting class assignment of the samples belonging to 
the TS set. 

Soft PLS-DA model was calculated using routines written ad hoc in 
MATLAB environment (ver. 2020b, The MathWorks, USA). The MAT
LAB routine to run Soft PLS-DA algorithm [39] is freely downloadable 
from http://www.chimslab.unimore.it/downloads/. The reader is 
referred to Calvini et al. [39] for a detailed description of the Soft 
PLS-DA algorithm. 

2.3.2.4. Validation on external images. Alt-SIMCA and Soft PLS-DA 
models, obtained as previously described in Section 2.3.2.2 and Sec
tion 2.3.2.3, were applied to all the acquired hyperspectral images, 
including the images of adulterated oregano samples. The resulting 
prediction images, in which each pixel is coloured according to the class 
assignment of the corresponding spectrum, were used to directly visu
alize the prediction performance on the images and obtain a quantitative 
evaluation of the classification performances on the entire set of images. 
To this aim, the percentage of pixels predicted as authentic oregano 
(PPO%) was calculated for each prediction image. 

Finally, to assess the overall ability of the classification model to 
differentiate between authentic and adulterated oregano, we defined a 
threshold value based on the percentage of pixels predicted as pure 
oregano in each image. Samples whose images had PPO% values higher 
than the threshold were considered as authentic oregano samples, while 
samples whose images had PPO% values lower than the threshold were 
considered as adulterated. This threshold value was calculated as the 
minimum PPO% value obtained for the images of pure oregano 
belonging to the training set (see Section 3.4). 

3. Results and discussion 

3.1. Exploratory analysis at the pixel-level 

An exploratory analysis at the pixel-level was performed to evaluate 
the spectral differences between authentic oregano, pure adulterants 
(myrtle leaves, sumac leaves, strawberry tree leaves, and olive leaves) 
and adulterated oregano. To this aim, for each adulterant type a unique 
hyperspectral image was obtained by merging together one image of the 
pure adulterant, one image of an authentic oregano sample and two 
images of oregano adulterated with the corresponding adulterant at 
different percentages. The merged hyperspectral images were then 
analysed by PCA. 

Fig. 2 reports the results of the PCA model calculated on the merged 
image of an authentic oregano sample (47_04, 0 % myrtle leaves), of two 
oregano samples adulterated with myrtle leaves (48_29, 10 % myrtle 
leaves, and 48_04, 60 % myrtle leaves) and of the pure adulterant (A_05, 
100 % myrtle leaves). 

Fig. 2A shows the PC1-PC2 score plot, where the first two principal 
components account for 87.69 % and 6.67 % of total variance, respec
tively, whereas Fig. 2B reports the corresponding loading vectors. In the 
score plot each object represents a single pixel and it is coloured ac
cording to pixel density, i.e., red colour represents a region of the PC1- 
PC2 score space with a high density of pixels, while blue colour corre
sponds to low pixel density. From this score plot it is possible to observe 
the presence of two clusters of pixels, separated along PC2. The PC2 
score image reported in Fig. 2C shows that the differences observed 
along PC2 are ascribable to the spectral differences between authentic 
oregano and myrtle leaves. Indeed, the pixels of the authentic oregano 
sample (0 % of adulteration) are mainly characterised by low PC2 score 
values, while the pixels of the myrtle sample (100 % of adulteration) 
show generally high PC2 score values. Note that the adulterated samples 
show an intermediate behaviour somehow proportional to the per
centage of adulteration. In fact, the oregano sample adulterated with 10 
% of myrtle leaves has PC2 score values comparable to that of authentic 
oregano, whereas the oregano sample with 60 % of adulteration 
generally presents positive PC2 score values, slightly lower than those of 
the image of the myrtle leaves. 

Similar results were obtained from the PCA model calculated on the 
merged hyperspectral image for strawberry tree leaves as adulterant 
(Fig. S1 of Supplementary Material). Also in this case, PC2 allows 
separating the pixel spectra of the authentic oregano sample from those 
of the sample with only strawberry tree leaves, and the oregano samples 
adulterated with 20 % and 30 % of strawberry tree leaves show an in
termediate behaviour. The PCA model calculated on the merged 
hyperspectral image considering sumac as adulterant (Fig. S2 of Sup
plementary Material) provides comparable results to those previously 
discussed for myrtle and strawberry tree leaves. Finally, the results of 
the investigation regarding olive leaves as adulterant are reported in 
Fig. S3 of Supplementary Material. In this case, the direction which 
better reflects the differences between the images according to the 
percentage of adulterant is represented by PC3. 

Therefore, the PCA models calculated on the merged images allowed 
capturing the presence of detectable spectral differences between 
authentic oregano and the adulterants investigated in this study. 
Considering the loading vectors of the relevant PCs for this separation 
(mainly PC2 for myrtle leaves, strawberry tree leaves and sumac, and 
PC3 for olive leaves as adulterants), it is possible to identify some 
common spectral regions that contribute to these findings (Fig. 2B and 
Figs. S1B–S3B of Supplementary Material). 

These spectral regions fall into the 980–1080 nm spectral range, 
corresponding to O–H third overtone and C–H second overtone, asso
ciated with polyphenol content, in the 1150–1200 nm spectral range 
corresponding to asymmetric stretching of C–H second overtone, as
cribable to alcohols, in the 1420–1450 nm, ascribable to O–H stretch 
first overtone, C––O stretch third overtone and N–H stretch first 
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overtone which could be ascribable to terpenoids and cellulose content, 
and in the 1620–1660 nm region, ascribable to the stretching of aro
matic C–H first overtone [21,47–51]. Additional spectral regions that 
codify for myrtle, strawberry tree and sumac can be found around 1250 
nm and 1380 nm, related to alcohol and methyl groups [49]. 

3.2. Exploratory analysis at the image-level 

As mentioned in Section 2.3.1, the whole image dataset was also 
evaluated at the image-level to gain an insight on sample characteristics 
and behaviour. To this aim, the average spectrum was obtained from 
each image and a global PCA model was calculated on the average 
spectra dataset using linear detrend and mean center as preprocessing 
methods. 

Since in the previous evaluation performed at the pixel-level (see 
Section 3.1) we observed detectable differences between the spectral 
signatures of authentic oregano and pure adulterants, the image-level 
analysis was focused on identifying possible trends due to adulterant 
type and amount. Therefore, a PCA model was calculated on the average 
spectra of the sole authentic and adulterated oregano. The resulting PC1- 
PC2 score plot is reported in Fig. 3, accounting for 92.06 % of explained 
variance. In Fig. 3A the samples in the score plot are coloured according 
to authentic or adulterated class. It is worth noting that the oregano 
samples have a wide chemical variability and morphological heteroge
neity, probably due to the different geographical origins and multiple 
harvest years. Furthermore, the two classes of authentic and adulterated 
oregano samples are partly overlapped. Only a limited separation of 
some adulterated samples, characterised by extreme (both positive and 
negative) PC2 score values was observed. A more in-depth investigation, 
based on adulterant type and percentage (Fig. 3B), revealed that the 
adulterated samples showing more marked differences from pure 
oregano were those characterized by adulteration percentages equal or 
higher than 60 %, 30 % and 20 % with myrtle leaves, olive leaves and 
strawberry tree leaves, respectively. 

These findings confirm the results of the PCA models calculated at 
the pixel-level, where adulterated samples with percentages lower than 
20 % showed similar behaviour to authentic oregano samples. 

3.3. Classification between authentic oregano and pure adulterants 

The first step in the identification of adulterated oregano samples 
consists in the development of pixel-level classification models able to 
distinguish genuine oregano from pure adulterants. Table 1 reports the 
results obtained in calibration (CAL), cross-validation (CV) and valida
tion of the external test set (TS) of the Alt-SIMCA and Soft PLS-DA 
models. The classification performances were evaluated by calculating 
SENS, SPEC and EFF values: for Alt-SIMCA, the results refer to authentic 
oregano, which is the target class of the model, while for Soft PLS-DA the 
results of both pure adulterants and authentic oregano classes are re
ported. The results in Table 1 clearly show that the Soft PLS-DA model 
achieved good classification performances, with SENS and SPEC values 
for both classes higher than 90 %. 

Interestingly, about 39 % of misclassified pixel spectra of authentic 
oregano class (i.e., spectra of authentic oregano class but predicted as 
pure adulterants by Soft PLS-DA model) in cross-validation belong to 
genuine oregano with inflorescences. This finding suggests that the 
presence of inflorescences may negatively affect the classification 
performances. 

Conversely, despite the Alt-SIMCA model reached excellent SENS 
values both in cross-validation and TS set prediction, its ability to 
correctly reject not-authentic oregano samples is unsatisfactory, as 
indicated by SPEC values around 50 %. The poor classification perfor
mances obtained with Alt-SIMCA can be explained considering the sig
nificant within-class variability both for authentic oregano and for pure 
adulterants, resulting in partial overlap between the two classes. In this 
context, class modelling approaches are generally not effective. 

A more in-depth evaluation of the classification results was also 
performed, based on adulterant type. For this reason, considering Alt- 
SIMCA algorithm, Table 2 reports for each adulterant type the per
centage of spectra accepted or rejected by the authentic oregano class 
model. Similarly, Table 2 also reports the results obtained for Soft PLS- 
DA, expressed as percentage of spectra assigned by the model to 
authentic oregano class, pure adulterants class and not assigned spectra. 
For both models, the results reported in Table 2 are referred to cross- 
validation and prediction of the TS set, while for Soft PLS-DA model 
the results obtained also in calibration are reported in Table S2 of 
Supplementary Material. 

Fig. 2. Principal component analysis (PCA) results of the merged hyperspectral image containing one authentic oregano sample (0 % of adulteration), two samples 
adulterated with different percentages of myrtle leaves (10 % and 60 % of adulteration) and one sample of pure myrtle leaves (100 % of adulteration). In (A) PC1-PC2 
score plot; in (B) PC1 and PC2 loading vectors and in (C) PC2 score image. 
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Alt-SIMCA provided satisfactory classification performances only for 
olive leaves, achieving a percentage of correctly rejected spectra of 79.7 
% for TS set prediction. Conversely, overall poor classification perfor
mances were obtained for the other adulterant types. Specifically, 
approximately half of the spectra belonging to strawberry tree leaves 
and sumac were wrongly accepted by the authentic oregano class model, 
and the same applies to the vast majority of myrtle spectra. 

Concerning Soft PLS-DA, the best performances were obtained for 
strawberry tree leaves and sumac, with a percentage equal to or less than 
1.7 % of spectra misclassified as genuine oregano both in cross- 
validation and prediction of the test set. Conversely, higher mis
classifications were obtained for myrtle and olive leaves, where the 
percentage of correctly assigned spectra ranged between 82.7 % and 
89.1 %. Therefore, the Soft PLS-DA model better recognized sumac and 

strawberry tree leaves as adulterants; however, the results obtained for 
myrtle and olive leaves can still be considered satisfactory. 

In order to evaluate the spectral regions that contribute the most to 
the identification of authentic oregano, Fig. 4 reports the Variable 
Importance in Projection (VIP) scores of the Soft PLS-DA model. In 
particular, the spectral variables with VIP scores higher than 1 (red 
dashed line in Fig. 4) are those with higher relevance for the classifi
cation model. These variables fall into the intervals at 980–1010 nm 
(O–H third overtone and C–H second overtone), 1130–1150 nm (C–H 
second overtone and stretching of C––O fourth overtone), 1180–1225 
nm (asymmetric stretching of C–H second overtone), 1390–1420 nm 
(stretching of O–H first overtone for ROH and ArOH), 1445–1470 nm 
(stretching of O–H first overtone for water, stretching of C––O third 
overtone, stretching of N–H first overtone) and 1640–1650 nm 

Fig. 3. PC1-PC2 score plot obtained by calculating a PCA model considering the authentic oregano (circle) and adulterated oregano (rhombus) samples average 
spectra. In (A) samples are coloured according to authentic and adulterated class; in (B) samples are coloured based on adulterant type and percentage. 
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(stretching of aromatic C–H first overtone). The wavebands related to 
C–H and C––O absorption could be associated to polyphenols and ter
penoids, whereas the wavebands related to O–H and N–H absorption can 
be associated to water, cellulose, hemicellulose and lignin. In addition, 
the relevance of O–H and aromatic C–H can be associated with hydroxyl 
and aromatic groups, particularly present also in polyphenols. There
fore, the discriminant wavebands can be associated to differences in the 
aromatic content, in terms of polyphenols, terpenoids, esters and alco
holic groups, and to cellulose, hemicellulose and lignin, which are 
ubiquitous in plant tissues [21,47–51]. 

3.4. Validation on external images and identification of adulterated 
samples 

Alt-SIMCA and Soft PLS-DA classification models were applied to all 
the acquired hyperspectral images. For Soft PLS-DA, some representa
tive prediction images are reported in Fig. 5, where the pixel spectra 
predicted as authentic oregano are represented in green colour, the pixel 
spectra predicted as pure adulterant are reported in red colour while the 
not assigned pixels are reported in grey colour. 

Specifically, the first row of images in Fig. 5 reports the prediction 
images obtained from five authentic oregano samples, including one 
sample with inflorescences. Note that almost all the pixels belonging to 
the pure oregano samples were correctly predicted as authentic oregano 

and a few misclassifications are ascribable to an intrinsic error of the 
classification model. The oregano sample containing inflorescences 
represents an exception, since it has a high number of misclassified 
pixels; this fact confirms what already observed in Section 3.3, where a 
relevant number of misclassified spectra of genuine oregano belonged to 
samples with inflorescences. 

In the second row of Fig. 5 six prediction images, calculated on 
adulterated oregano samples, are shown: from left to right, the images 
are reported at decreasing concentrations of adulterants. In this case, the 
samples with adulterant concentrations equal to or higher than 10 % 
have a relevant number of pixels predicted as adulterants and their 
amount is roughly proportional to the adulterant concentration. On the 
other hand, the prediction images of oregano samples adulterated at 
percentages lower than 10 % have a number of pixels predicted as 
adulterant comparable to or even smaller than the number of mis
classified pixels of those of the pure oregano. 

In order to perform a global evaluation of the prediction ability of 
Alt-SIMCA and Soft PLS-DA classification models, the percentage of 
pixels predicted as oregano class (PPO%) was calculated for each pre
diction image obtained with both methods. The scatter plot in Fig. 6 
shows the relationship between the actual oregano percentage in the 
analysed sample aliquots and the PPO% values obtained from the cor
responding prediction images, calculated by applying Alt-SIMCA 
(Fig. 6A) and Soft PLS-DA (Fig. 6B) models. 

The plot with Alt-SIMCA results (Fig. 6A) reveals that images of 
authentic oregano correctly present PPO% values higher than 90 %. 
However, also all the images of adulterated samples have PPO% values 
around 90 %, regardless of the actual adulterant concentration. High 
PPO% values are also evident for the pure adulterants, particularly for 
myrtle which has PPO% values around 90 %. These results confirm the 
low specificity of Alt-SIMCA model, i.e., its poor ability of correctly 

Table 1 
Classification performances of Alt-SIMCA and Soft PLS-DA models in calibration 
(CAL), cross-validation (CV) and prediction of the external test set (TS).   

Alt-SIMCA Soft PLS-DA 

Authentic 
Oregano 

Pure 
Adulterants 

Authentic 
Oregano  

PCs/ 
LVs 

6 7 

Calibration 
(CAL) 

SENS 
(%) 

94.9 92.4 93.5 

SPEC 
(%) 

– 94.3 93.8 

EFF 
(%) 

- 93.4 93.7 

NA (%) – 1.4 0.8 
Cross-validation 

(CV) 
SENS 
(%) 

90.9 91.7 90.4 

SPEC 
(%) 

50.8 91.5 93.7 

EFF 
(%) 

67.9 91.4 92.0 

NA (%) – 2.4 1.1 
Prediction (TS) SENS 

(%) 
96.9 90.8 93.6 

SPEC 
(%) 

47.1 94.1 92.3 

EFF 
(%) 

67.5 92.4 92.9 

NA (%) – 1.5 0.5  

Table 2 
Classification performances of pure adulterants in cross-validation (CV) and prediction of the test set (TS). Alt-SIMCA: for each adulterant type the percentage of 
spectra accepted or rejected by the authentic oregano class model is reported. Soft PLS-DA: for each adulterant type the percentage of spectra predicted as authentic 
oregano, pure adulterants or not assigned (NA) is reported.     

Myrtle Olive Strawberry tree Sumac 
Alt-SIMCA CV Authentic oregano (%) 83.9 20.2 45.7 47.1 

Not Authentic oregano (%) 16.1 79.8 54.3 52.9 
TS Authentic oregano (%) 89.0 20.3 52.0 50.3 

Not Authentic oregano (%) 11.0 79.7 48.0 49.7 
Soft PLS-DA CV Authentic oregano (%) 14.7 7.9 1.1 1.7 

Pure adulterants (%) 84.8 89.1 97.1 94.2 
NA (%) 0.6 3.0 1.8 4.2 

TS Authentic oregano (%) 17.2 11.7 0.7 1.5 
Pure adulterants (%) 82.7 83.8 98.7 97.8 
NA (%) 0.2 4.5 0.7 0.7  

Fig. 4. VIP scores of the Soft PLS-DA model for the discrimination of authentic 
oregano and pure adulterants. 
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rejecting samples not belonging to the authentic oregano class. 
Conversely, the plot related to Soft PLS-DA results (Fig. 6B) shows a 

discrete correlation between actual oregano content and the percentage 
of pixels predicted as authentic oregano extracted from the prediction 
images. Concerning the pure adulterants, the PPO% values were found 
to be in the 0–10 % range. Except for sample 47_08 and sample 47_15 

containing inflorescences (see Table S1 of Supplementary Material), the 
images of authentic oregano showed PPO% values around 90 % or 
higher. In this case, the adulterated samples have PPO% values that are 
generally proportional to the actual concentration of pure oregano. 
Except for one image of a sample adulterated with 30 % olive leaves, 
only the samples adulterated with less than 10 % of adulterant show PPO 
% values higher than 90 %, comparable to those of authentic oregano. 

Since the final goal of this study was the identification of authentic 
and adulterated oregano samples, we decided to define a threshold value 
based on PPO% value to assign the samples to one of the two classes. 
This threshold value was defined as the minimum PPO% value obtained 
for the hyperspectral images of authentic oregano samples belonging to 
the training set (see Section 2.3.2.1). The threshold was set at PPO% 
values equal to 94.74 % and 90.41 % for Alt-SIMCA and Soft PLS-DA, 
respectively. Therefore, the hyperspectral images, whose prediction 
images have PPO% values equal or higher than the threshold values, 
were assigned to the authentic oregano class whereas those with a lower 
value were classified as adulterated. 

The resulting outcomes are reported as confusion matrix (Table 3), 
where the columns represent the actual classes, and the rows are the 
assigned classes. Table 3 shows the results obtained only for the images 
used as external validation, i.e., the authentic oregano images used as 
test images and all the images of adulterated samples. For ease of 
interpretation, the results of the images of adulterated oregano were 
reported after splitting them in three categories based on adulterant 
concentration: images of samples with adulterant concentration lower 

Fig. 5. Prediction images obtained by applying the Soft PLS-DA model to hyperspectral images of authentic and adulterated oregano samples. Prediction images of 
pure oreganos, one oregano sample with inflorescences and one sample of raw oregano are reported in the first row, whereas the prediction images of adulterated 
oregano samples at decreasing percentages of adulteration (from left to right) are reported in the second row. 

Fig. 6. Actual oregano concentration vs. percentage of pixels predicted as 
oregano (PPO%) by the Alt-SIMCA (A) and Soft PLS-DA (B) models. The red 
dashed line represents the threshold value used to discriminate images of 
authentic oregano from images of adulterated oregano. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 3 
Classification results of the images used for external validation into authentic 
and adulterated oregano classes based on the threshold considering PPO% 
values, obtained by applying Alt-SIMCA and Soft PLS-DA. For the images of 
adulterated oregano, the results are reported by splitting the samples according 
to adulterant concentration: adulterant concentration lower than 10 % (adult. <
10 %), adulterant concentration equal to or higher than 10 % (adult. ≥ 10 %) 
and unknown concentration.   

Actual class 

Authentic 
oregano 

Adulterated oregano 

adult.<
10 % 

adult.≥
10 % 

unknown 

Assigned 
class (Alt- 
SIMCA) 

Authentic 29 9 26 6 
Adulterated 4 3 13 0 

Assigned 
class (Soft 
PLS-DA) 

Authentic 27 11 1 3 
Adulterated 6 1 38 3  
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than 10 % (adult. < 10 %), with adulterant concentration equal to or 
higher than 10 % (adult. ≥ 10 %) and with unknown concentration. 

Concerning the ability of the models in correctly recognizing 
authentic oregano samples, the performances are comparable: Alt- 
SIMCA correctly classified 29 images of authentic oregano out of 33, 
which corresponds to a SENS value of 87.9 %, while Soft PLS-DA 
correctly classified 27 images out of 33, which coincide with a SENS 
value of 81.8 %. In both cases, the misclassified images of authentic 
oregano include 3 replicates of two oregano samples with in
florescences, confirming that the presence of inflorescences can nega
tively affect the classification performances. 

Conversely, the two models have a different ability to identify 
adulterated oregano samples. Concerning Alt-SIMCA, only 16 adulter
ated oregano images out of 57 (28.1 %) were correctly recognized. 

On the other hand, Soft PLS-DA correctly attributed 42 adulterated 
oregano images out of 57 to the corresponding class (73.7 %). 
Furthermore, among adulterated oregano there is a clear difference in 
the classification performances based on adulterant concentration. As 
expected, 11 out of 12 images with adulterant concentration lower than 
10 % were erroneously assigned to the authentic class, while 38 out of 
39 images with adulterant concentration equal to or higher than 10 % 
were correctly classified as adulterated oregano. The misclassified image 
is a replicate of one adulterated sample whose remainder replicates were 
correctly classified. Supposing a sample-based classification by majority 
voting of the assignments done on the three replicated images of each 
sample, we can state that all the samples with adulterant concentration 
equal to or higher than 10 % were correctly identified by Soft PLS-DA. 

The image-level classification based on the Soft PLS-DA results on the 
one hand confirmed the preliminary findings obtained by exploratory 
data analysis, and on the other hand allowed to better identify the 
minimal spectral differences between pure adulterants and authentic 
oregano. In accordance with previous studies [16], NIR-HSI is affected 
by a detection limit of 10 % adulteration. According to the European 
Spice association [9], 2 % of extraneous matter is tolerated; however, a 
detection limit of 10 % may still be considered acceptable, since oregano 
adulteration levels are generally higher that this value to lead to a 
concrete economic advantage. 

4. Conclusions 

The aim of the present study was to evaluate NIR-HSI as a rapid, non- 
destructive and untargeted method to authenticate oregano samples 
which, due to their heterogeneity, can benefit from the coupling of 
spectral and spatial information. 

The initial exploratory analysis performed both at the pixel level on 
some representative images and at the image level on the average spectra 
dataset allowed to identify the presence of spectral differences between 
authentic oregano and pure adulterants, to point out a remarkable 
heterogeneity among different genuine oregano samples and to high
light the need of accounting for spatial variation of sample composition 
to authenticate the samples. 

Based on these considerations, Alt-SIMCA and Soft PLS-DA algo
rithms were used to build classification models able to differentiate 
authentic oregano and its most frequent adulterants, i.e., myrtle, olive 
leaves, strawberry tree leaves and sumac. 

Due to classes overlapping and heterogeneity of the authentic 
oregano class, Alt-SIMCA led to overall poor classification performances. 
Conversely, Soft PLS-DA achieved satisfactory outcomes, with efficiency 
values in classification higher than 91 % in calibration, cross-validation 
and validation of the external test set. In this case, the spectra of pure 
strawberry tree and sumac leaves were easier to distinguish from 
authentic oregano, while pure myrtle and olive leaves presented higher 
misclassifications. 

To obtain a final assignment of the acquired oregano samples into 
authentic and adulterated classes, both classification models were 
applied to all the acquired hyperspectral images and from each image 

the corresponding percentage of pixels predicted as oregano (PPO%) 
was calculated. Once defined a PPO% threshold value to differentiate 
authentic oregano samples from adulterated ones, it was possible to 
reach SENS values for authentic class equal to 87.9 % and 81.8 % for Alt- 
SIMCA and Soft PLS-DA, respectively. In both cases, the mis
classifications of authentic oregano were mainly due to samples con
taining inflorescences. 

The main differences in classification performances were encoun
tered in the ability of correctly differentiating adulterated oregano 
samples. Indeed, while Alt-SIMCA was unable to correctly identify most 
of the adulterated samples, Soft PLS-DA successfully distinguished all 
adulterated oregano samples with adulterant concentrations equal to or 
greater than 10 %. These results confirm that soft discriminant ap
proaches like Soft PLS-DA are an effective and powerful alternative to 
CM and DA methods when dealing with authentication problems. 

Furthermore, according to the results obtained with Soft PLS-DA, we 
can consider the 10 % of adulteration as a sort of limit of detection of 
NIR-HSI to identify adulterated oregano samples. Considering that the 
percentage of adulteration detected on market oregano samples has 
been found very often at much higher levels, these results seem rather 
satisfactory to corroborate NIR-HSI potentialities as a screening tech
nique able to face adulteration issues, also considering the possibility of 
performing the analysis in a fast and non-destructive manner. 

Further developments may involve expanding the dataset to include 
additional authentic samples, aiming to better represent the intrinsic 
variability of oregano matrices and diverse types of adulterants at 
different percentages of adulteration as well. From the results obtained 
from the Soft PLS-DA model, a discernible correlation between actual 
oregano percentages and PPO% values emerged, suggesting the poten
tial for developing a quantitative model with proper sampling. 

Moreover, the application of spectral variable selection methods 
could enhance the robustness and flexibility of the model, while also 
offering a monitoring system that is easier to apply. Indeed, the selected 
wavebands can be used to implement multispectral imaging systems, 
which are more suitable for industrial applications in terms of compu
tational time, durability and lower costs of the optical components. 
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