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A B S T R A C T

This paper investigates the buckling of screws loaded in compression inserted into timber members. Screws
are often used as a reinforcement in timber structures. However, under compression forces, they are prone
to axial buckling. The current model for the screw buckling, enclosed in the EC5 proposal, is based on the
general framework of EC3 for the instability of compressed steel members. The main shortcomings of the
current formulation for the buckling of screws are the following. (1) The analytical expression for calculating
the theoretical buckling load does not follow the observed modes. (2) Due to the need for dedicated studies,
the value of the imperfection coefficient is arbitrarily chosen. This paper fills the above gaps. Firstly, a simple
analytical expression for predicting the buckling of screws is proposed and validated against experimental
and finite element (FE) findings. Furthermore, the formulation adopts a more accurate expression for lateral
deformation based on experimental observation. Secondly, a FE model calibrated on experimental tests is used
to estimate the defect coefficients of the instability curves as a function of the amplitude of the geometric
defects of the screw, expressed as a fraction of its length. Finally, a Markov chain Monte Carlo analysis is carried
out to simulate the capacity of screws with different sizes, assuming the uncertainty of all input parameters
sampled from suitable probability distributions. The results are used to validate the proposed deterministic
capacity model and estimate the uncertainty factors of the design equation.
1. Introduction

The increasing importance of mass timber structures is also related
to the development of self-tapping screws (STS) [5]. STS is growing as
the leading fastener system in timber engineering, used in timber-to-
timber [6–8], steel-to-timber [9] and concrete-to-timber [10]. An STS
consists of three main components: the head (sunk or non-sunk), thread
(full or partial) and self-drilling tip [11–13]. STS are often used as rein-
forcements to prevent failure mechanisms associated with compression
perpendicular to the grain (CPG), shear stresses [10,14,15], or tensile
stresses perpendicular to grain [7,11,16], see the screw reinforcement
around holes in timber beam [17–19,19–22].

Mainly to avoid excessive local deformation, the screws can be
used to reinforce timber members under CPG [12,23]. In this case, the
screws are subjected to axial forces applied at the screw head. There are
standard design approaches for timber under CPG, mainly originating
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from [24,25]. The standard capacity model for timber reinforced with
screws is additive [26,27]. The capacity is the summation between
the wood and screw resistance. The timber CPG strength has been
extensively investigated since the early 1900 [28]. Conversely, less
research was directed to the screw capacity characterization under axial
force.

The screw capacity is estimated as the minimum between the push-
in and buckling resistance. The push-in resistance is straightforward
to evaluate since it can be estimated by multiplying the withdrawal
strength by the screw surface. Besides, due to the symmetry between
push-in and withdrawal behaviour, there are extensive experimen-
tal campaigns for its resistance and stiffness characterization: stud-
ies on withdrawals can be considered valid also for push-in. Con-
versely, the buckling model has never been investigated systematically.
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List of symbols and notations

𝐴 Area of the section of the screw.
𝐴𝑖𝑚𝑝 Amplitude of the geometric im-

perfection of the screw defined
in Fig. 8.

𝑎1 Spacing between screw or rod
reinforcement in the direction
parallel to the grain.

𝑎3𝑐 Distance between the screw clos-
est to the member edge and
the member end in the direction
parallel to the grain.

𝛼 Angle between screw axis and
grain direction of the wood.

𝛼𝑔 Imperfection coefficient in
Eq. (3) defined for steel
members in Table 4.

𝛽 Constant appearing in Eq. (A.8)
defined as (𝑐𝑣∕𝐸𝐴)0.5.

𝑏 Member width.
𝑏𝑐 Width of the contact area for the

reinforced member under com-
pression perpendicular to the
grain.

𝑐ℎ = (0.19 + 0.012𝑑) 𝜌
(

90◦+𝛼
180

)

Horizontal sub-grade coefficient
for the screw for solid timber,
glued laminated (GL) timber of
softwood. 𝑐ℎ is in MPa if 𝑑 is
in mm, 𝜌 in kg/m3 and 𝛼 in
degrees.

𝑐𝑣,𝑒𝑥𝑝 = 234 (𝜌𝑑)0.2

𝑙0.6𝑤
Horizontal sub-grade coefficient
for the screw for solid timber,
glued laminated (GL) timber of
softwood. 𝑐𝑣 is in MPa if 𝑑 is in
mm, 𝜌𝑘 in kg/m3.

𝑐𝑣 Horizontal sub-grade coefficient
for the screw used in Eq. (A.8).

CoV Coefficient of variation.
CPG Compression perpendicular to

the grain.
𝑑 Outer thread diameter of the

screw.
𝑑1 Inner thread diameter of the

screw estimated as 0.5𝑑.
𝜖 Standard normal distribution.
𝐸 Young’s modulus of steel equal

to 210 GPa (∗).
𝐹 Resistance of a timber member

with screw reinforcement un-
der compression perpendicular
to the grain (∗).

𝐹𝑤 Withdrawal capacity of the
screw (∗).

𝑓𝑤 Withdrawal strength of the
screw (∗).

𝐹𝑐 Axial capacity of the screw (∗).
𝐹𝑓𝑒𝑚,NLSIM Axial capacity of the screw from

the FE model assuming an initial
geometric imperfection (∗).

𝐹𝑒𝑥𝑝 Experimental capacity of the
screw estimated as the maxi-
mum of the experimental curve.
2

𝑓𝑦 Yielding strength of the steel (∗).
𝑓𝑐,90 Compression strength

perpendicular to the grain
(∗).

𝑘 = 0.5
[

1 + 0.49
(

𝜆̄ − 0.2
)

+ 𝜆̄2
]

Buckling coefficient for the
screws.

𝑘𝑐 Proposed reduction coefficient
of the yielding strength of the
screw.

𝜅𝑐 =

⎧

⎪

⎨

⎪

⎩

1, 𝜆̄ ≤ 0.2
1

𝑘+
√

𝑘2−𝜆̄2
, 𝜆̄ > 0.2

Reduction factors for screw

buckling. Alternatively, the
values in Table 1 can be used.
For values not included in
Table 1 a linear interpolation
should be carried out.

𝑘𝑝𝑟 Parameter adopted for screws in
reinforced compression perpen-
dicular to the grain (this param-
eter was originally indicated as
𝑘𝑐,90 in EN 1995-1-1). According
to prEN1995-1-1, it considers
the material behaviour and the
degree of deformation perpen-
dicular to the grain. The value
of 𝑘𝑝𝑟 according to Blass [1] and
the existing version of EN 1995-
1-1 [2] can be assumed as 1,75
for glulam members on discrete
supports loaded by distributed
loads and/or by concentrated
loads at a clear distance from the
support larger or equal to 2ℎ, or
1,5 in case of glulam member
on continuous support (sill con-
figuration). For the other cases
the value of 𝑘𝑝𝑟 can be assumed
equal to 1.

𝑘𝑝 According to prEN1995-1-1, it
takes into account the material
behaviour and the deformation
perpendicular to the grain. The
factor accounts for the increased
stiffness when the deformation
increases [3], see Table 2.

𝑘𝑤 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1,
30◦ ≤ 𝛼 ≤ 90◦

1 − 0.01(30◦ − 𝛼),
0◦ ≤ 𝛼 < 30◦

Parameter for screws and rods

with wood-screw thread, where
𝛼 is the angle between the fas-
tener axis and the direction of
the grain.

𝑘𝑚𝑎𝑡 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1.0, 𝑛𝑝 = 1
1.06, 𝑛𝑝 ≥ 2
1.10, 𝑛𝑝 ≥ 3
1.13, 𝑛𝑝 ≥ 5
1.15, 𝑛𝑝 ≥ 7

Material parameter for the num-

ber of laminations, where 𝑛𝑝 is
the number of laminations.

ℎ Height of the timber member.

𝐼 Moment of inertia of the screw

estimated as (𝜋𝑑41∕64).
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𝐾𝑎𝑥 Axial stiffness of the screw.
𝑙 Total length of the screw.
𝑙𝑐 Length of the contact area for

the reinforced member under
compression perpendicular to
the grain.

𝑙𝑟 Penetration part of the threaded
part of the screw.

𝑙𝑒𝑓 ,1 Effective contact length paral-
lel to the grain in correspon-
dence of the contact area for a
reinforced member under com-
pression perpendicular to the
grain.

𝑙𝑒𝑓 ,2 Effective distribution length par-
allel to the grain defined by
the screw or rod types for a
reinforced member under com-
pression perpendicular to the
grain.

𝜆̄ = 𝑁𝑝𝑙
𝑁𝑘𝑖

Relative slenderness ratio of the
screws (∗).

𝑚 Order of the sine function as-
sociated with the first buckling
mode in Eq. (A.6)

𝑛 Number of fully threaded
screws.

𝑛0 Number of fully threaded screws
or rods arranged in a row paral-
lel to the grain.

𝑁𝑝𝑙 Characteristic yielding strength
of the screw (∗).

𝑁𝑘𝑖 = 2
√

𝑐ℎ𝐸𝐼 Approximate ideal elastic buck-
ling of a Winkler beam (∗).

𝑁𝑤 Ideal elastic buckling of a
Winkler beam, expressed by
Eq. (A.5) (∗).

𝑁𝑝 Proposed theoretical elastic
buckling of a Winkler beam,
given by Eq. (17) (∗).

𝑁𝑓𝑒𝑚,𝑏𝑢𝑐𝑘 Ideal elastic buckling of a screw
estimated with the FE model (∗).

𝜉 Reciprocal of the fraction of
the screw length which repre-
sents the geometric imperfection
defined in Eq. (18).

𝜌 Density of wood (∗).
𝜎ℎ Standard deviation of the empir-

ical regression for 𝑐ℎ in Eq. (7)
estimated from [4] and defined
in Table 8.

𝜎𝑣 Standard deviation of the
empirical regression for 𝑐𝑣 in
Eq. (A.12) estimated from [4]
and defined in Table 8.

𝑢(𝑥) Axial displacement of the screw
as a function of the abscissa 𝑥.

𝑣(𝑥) Transverse displacement of the
screw as a function of the ab-
scissa 𝑥.

𝛾𝑅 Partial factor for material prop-
erty.
3

𝛾𝑀1 Partial factor for a design resis-
tance based on a (semi) empiri-
cal analysis with a ductile failure
mode.

(∗) The addition of a subscript 𝑘 in-
dicates the corresponding char-
acteristic value.

Table 1
Reduction factors due to buckling, where 𝛼 is the
angle between screw axis and grain.
𝑓𝑦𝑘 [Mpa] 𝛼 = 90 𝛼 = 0

1000 0.6 0.5
800 0.65 0.55
500 0.75 0.65

Table 2
Values for 𝑘𝑝 from prEN 1995, valid for solid timber, glulam, and CLT.

Cases Case A Case B Case C

Deformation 2.50% 10% 20%
𝑘𝑝 factor 1.4 2.1 2.7

The buckling model for the screws originates from the DIN [16]
and corresponds to the general framework in the EC3 [29] for steel
members loaded in compression. It evaluates the buckling load as
the product between the plastic resistance and the buckling reduction
factor, a function of the theoretical buckling load. Given the general
framework for compression buckling, Bejtka [4] observed that the
buckling load is difficult to obtain with a closed-forced analytical ex-
pression and complied tables for the buckling load based on FE analyses
in Ansys. The current EC5 proposal acknowledges the difficulty of using
tables or FE to calculate the theoretical buckling load. Therefore, it
estimates the buckling using a simplified expression valid for beams
embedded in an elastic subgrade under a constant axial force. Despite
the severe limitations, approximations and inaccuracy of the model,
the predictions agree with the experimental results. However, as later
discussed, this agreement depends on the low sensitivity of the buckling
model to the theoretical buckling load rather than on the reasonable
acceptability of the inherent model assumptions.

No paper attempts to critically discuss the buckling model for screws
based on FE or analytical investigations. Additionally, despite the con-
siderable research in pile modelling, there has never been exchanging
of knowledge between geotechnics and timber engineering. The review
by Poulos and Davis [30] shows that the buckling studies on slender
piles range from the 1929 analysis by Granholm [31], who used the
Winkler foundation for representing the soil response, to more recent
computer analysis, which uses the elastic continuum as a soil model.
However, the main limitations of existing analytical models are that
foundation is homogeneous, and the loading is concentrated at the
extremities of the pile [32–34].

The analytical solutions proposed by Hetenyi [32] and Timoshenko
and Gere [35] should not be considered valid for screws since the axial
force is not constant and vanishes at the screw tip. Likewise, Terzaghi
affirmed that, also in geotechnics, there are circumstances where the
analytical solutions cannot be considered valid [36]. For piles, the
primary source of inaccuracy is the uncertainty of the subgrade reaction
characterization [37,38]. The error associated with a mistaken soil
characterization can be considered more critical than the modelling
error. Therefore, it is generally accepted that the Winkler model does
provide a reasonably accurate method for estimating the lateral re-
sponse of piles [34].Despite the general acceptance of the classical
Winkler model [39], there is advanced research on pile stability ac-
counting for a nonuniform axial force. For instance, Heelis [40] studied
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the stability of piles supported vertically by a frictional force. Nonethe-
less, the intrinsic uncertainty of the soil characteristics makes it difficult
to transfer knowledge from structural mechanics to geotechnical design
[41].

Conversely, the subgrade reaction in the screws is known with
higher accuracy than the soil [4]. Therefore, considerable research
aimed to characterize the horizontal and vertical subgrade reactions in
screws. The estimation of the vertical subgrade reaction is associated
with studies on the withdrawal properties of STS. Initial investigations
by Blass et al. [42] led to an empirical equation for predicting with-
drawal stiffness as a function of the wood density, screw diameter
and penetration length. The empirical model was later modified by
Ringhofer et al. [43] based on more extensive testing, considering the
influence of laminated timber products (e.g., GLT, CLT) and thread of
the screws (e.g., fully and partially threaded). Recently, Stamatopou-
los and Malo [44] developed a withdrawal stiffness equation that
accounts for the influence of grain angle. Even with the above mod-
ifications [44], the model for the axial stiffness leads to less accurate
results than models for the lateral stiffness. For instance, the model by
Bejtka yielded an R2 close to 0.6 for the axial stiffness.

Conversely, the horizontal subgrade reaction, embedment stiffness,
an be predicted with higher accuracy [45,46]. Bejtka obtained an
2 higher than 0.9 using simple empirical regression. The current Eu-
ocode 5 [47] only provides the lateral stiffness for bolted connections
xpressed as a function of wood density and dowel diameter. However,
he EC5 proposal encloses an expression for the lateral stiffness of
he screws following. Bejtka [42]. Bejtka proposed an expression for
redicting the embedment stiffness as a function of the wood density,
crew diameter and insertion angle. The embedment and axial stiffness
re needed for rigorous mechanics-based screw models [48]. Nonethe-
ess, the above empirical regressions were mainly used to evaluate
tiffness properties [49] rather than refining or analysing the buckling
odel of screws.

Given the satisfactory accuracy of the empirical regressions for the
ateral and axial subgrade reaction, improving the current buckling
odel for screws is reasonable. Moreover, unlike geotechnics, the lower
ncertainty of the embedment stiffness makes it worthwhile to reduce
he modelling error. So far, the main obstacle against the development
f the model was the lack of a free database of experimental tests on
uckling screws, despite the numerous difficulties carried out in the
ast [50]. To the authors’ knowledge, no paper attempts to reduce
he modelling error for predicting the buckling of the screws using a
igorous mechanics-based formulation.

This paper provides a theoretical derivation of an analytical equa-
ion for estimating the buckling load of screws based on the observed
uckling mode. Additionally, the authors use a FE model to calibrate
he defect coefficients of the improved buckling capacity model as a
unction of the initial screw imperfection. The paper comprises four
ain parts: experimental tests (Section 3), analytical derivation (Sec-

ion 4), FE model calibration (Section 5), and Monte Carlo simulations
Section 6). Section 2 explains the paper’s methodology, introducing
he reader to the following investigations. The section on experimental
ests is reported before the analytical and FE models to give the reader a
hysical understanding of the buckling failure modes observed in actual
crews. The observation of the buckling modes will be used to develop
he analytical formulation for the instability problem.

The findings of this paper will need further validation by more
xtended experimental campaigns. The current experimental investiga-
ion comprises tests on eight screw types, each with two repetitions.
nfortunately, the exiguous number of tests is insufficient for ade-
uately validating the proposed model due to the high variability in
he mechanical response of screw connections. Nonetheless, despite
his limitation, this paper hopefully paves the way to an alternative
4

pproach for modelling the buckling of screws under compression.
Table 3
Synoptic table on the standard model for the buckling capacity of timber screws.

Buckling resistance of the screws (prEN 1995-1-1)

𝐹𝑐 = 𝑘𝑐𝑁𝑝𝑙 (1)

𝜅𝑐 =

⎧

⎪

⎨

⎪

⎩

1, 𝜆̄ ≤ 0.2

1
𝑘+

√

𝑘2−𝜆̄2
, 𝜆̄ > 0.2

(2)

𝑘 = 0.5
[

1 + 𝛼𝑔
(

𝜆̄ − 0.2
)

+ 𝜆̄2
]

where 𝛼𝑔 = 0.49; See Table 4 (3)

𝜆̄ =
(

𝑁𝑝𝑙

𝑁𝑘𝑖

)0.5
(4)

𝑁𝑝𝑙 = 𝜋 𝑑2
1

4
𝑓𝑦 (5)

𝑁𝑘𝑖 = 2
√

𝑐ℎ𝐸𝐼 a (6)

𝑐ℎ = (0.19 + 0.012𝑑) 𝜌
(

90◦+𝛼
180

)

(7)

aSee Appendix A for further details on the choice of 𝑁𝑘𝑖.

2. Problem formulation and methodology

In 2012, the European Committee for Standardization (CEN) made
a program to develop the second generation of Eurocodes, including
new materials, products, and construction methods [51]. Eurocode 5
— design of timber structures, NS-EN 1995-1-1, includes a buckling
model for screws. The working draft, prEN 1995 of November 2021,
reports a set of equations for calculating the axial resistance of the
screws, summarized in the synoptic Table 3. A detailed definition of
the notation is given at the beginning of the paper.

The buckling model for timber screws under compression in Table 3
originates from the standard DIN 18800 [4] and coincides with the
general formulation valid for axial buckling of steel members reported
in the current EC3 [29,52]. Estimating the axial resistance requires
the computation of two inputs, the theoretical buckling load and the
plastic resistance, as shown in Fig. 1. The theoretical buckling load
expresses the ideal buckling force without defects. At the same time,
plastic resistance is the axial resistance of the element in the absence
of instability phenomena. The ideal buckling never occurs due to initial
imperfections, which reduce the theoretical buckling load. Therefore,
the classical formulation assumes the resistance as the product between
the plastic resistance and a buckling reduction coefficient, see Eq. (1).
The buckling coefficient in Eq. (2) is different than one only for screws
with relative slenderness higher than 0.2, where the slenderness in
Eq. (4) is computed as the ratio between the plastic (Eq. (5)) and the
ideal buckling force (Eq. (6)).

The model in Table 3 is not specific to the screws but comes from
the traditional mathematical framework for instability phenomena. The
model in Table 3 has been applied as it is to the screws with two
modifications:

• Adopting Eq. (6) for estimating the ideal buckling load of the
screws.

• Assuming a constant defect class 𝑐 for the screws, with the corre-
sponding defect coefficient equal to 0.49 [29].

The first assumption is incorrect since the solution in Eq. (6) has sev-
eral limitations; the most relevant is the buckling mode. A simple sine
is the buckling mode corresponding to Eq. (6) . However, experiments
show that the buckling of the screw takes place with a concentration
of the deformation close to the applied load. The deformation tends
to vanish rapidly; thus, a simple sine is not appropriate to describe
such buckled mode. All Eq. (6) assumptions are discussed in-depth in
Appendix A. The following limitations of the buckling formulation are
highlighted:

1. The deformed shape is a simple sine, which does not mirror
the buckling mode of a screw inserted in an elastic medium. A

damped sine is more appropriate, see Fig. 2.
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Fig. 1. Illustration of the steps needed for the computation of the compression resistance of timber screws.
Fig. 2. Buckling failure of a screw loaded in compression.

Table 4
Values of the geometric imperfection factor (𝛼𝑔) for various stability curves.

Stability curve 𝑎0 𝑎 𝑏 𝑐 𝑑

𝛼𝑔 0.13 0.21 0.34 0.49 0.76

2. Eq. (6) does not respect the boundary conditions for a pinned–
pinned beam assumed in the formulation [35,53].

3. The axial force is assumed constant along the axis of the screw,
and the axial stiffness is infinite.

Regarding the second aspect, no studies relate the screw defects to
the imperfection coefficients. Additionally, the substantial difference
between the buckling mode of steel members loaded in compression (a
sine) and the screw (a damped sine) compromises the direct application
of the imperfection coefficients of EC3 to the screws.

Therefore, the model in the synoptic Table 3 might need the twofold
enhancements:

• An expression for the theoretical buckling load based on a suitable
assumption for the buckling mode.

• Calibration of the geometric uncertainty factors (𝛼𝑔), appearing
in Eq. (3) as a function of the initial geometric imperfection. The
EC5 proposal assumes 𝛼𝑔 = 0.49, corresponding to a class 𝑐 in
Table 4. However, this parameter has never been calibrated on
the screws for different values of the initial geometric defect.
Furthermore, the values in Table 4 cannot be directly used for
the screws since the buckling mode of the screws is significantly
different from a sine.

Given the above considerations, the objectives and novelties of this
paper are the following:
5

• Theoretical derivation of an analytical equation for estimating the
buckling load of screws based on the observed buckling mode.

• FE modelling of the tested configurations used to (i) validate the
theoretical buckling load estimated using the proposed equation
and (ii) calibrate the effect of the initial geometric defect on the
capacity.

The research path followed in this paper is illustrated in Fig. 3. The
problem is tackled by analysing and discussing experimental tests on
screws loaded in compression. The analyses reveal the buckling modes
and provide the actual capacity of the screws. The first step is deriving
a theoretical formulation for the critical buckling load. The formulation
is based on an assumption of the buckled shape from experimental
evidence. The model is validated against the theoretical buckling loads
obtained from the FE model. The second step deals with the FE inves-
tigation considering the effect of geometric defects. This step consists
of three phases:

• Development of a linear FE model of the screws loaded in com-
pression, representing the experimental configurations, for esti-
mating the theoretical buckling loads and the related buckling
modes. In this phase, the authors validate the analytical expres-
sion for the theoretical buckling and compare the experimental,
FE and analytical predictions for the buckling modes.

• Calibration of the geometric defect of the screws using the exper-
imental data. The axial capacity is obtained from a quasi-static
nonlinear push-in analysis of the screws, assuming an initially
deformed configuration corresponding to the first buckling mode,
estimated from the solution of the linear instability problem. In
this phase, the authors compare the FE predictions for the axial
capacity and the corresponding experimental values.

• Markov chain Monte Carlo (MCMC) analyses [54] of the push-in
FE simulations assuming the uncertainties of all input parameters
obtained by sampling suitable probability distributions, given
different values for the initial geometric imperfection. This sec-
tion aims to estimate the geometric uncertainty factor in Eq. (3)
given different amplitudes for the initial geometric imperfection,
expressed as a fraction of the screw length. Additionally, the
MCMC analyses lead to an estimate of the uncertainty safety
factors of the corresponding design equations. Finally, it must be
remarked that for the first time, the values for 𝛼𝑔 are estimated
for timber screws.

3. Experimental tests

The authors conducted compression tests on a set of timber screws
used for validating the FE model of the screw and understanding the
physics behind the buckling of the screws. The screw has been directly
loaded by connecting a Torx bit to the load cell through a steel plate.
The steel plate and Torx bit used for the tests are shown in Fig. 5. The
test specimens are glue-laminated timber of strength class GL30c (𝜌𝑘 =
390 kg/m3, 𝜌 = 430 kg/m3), with dimensions of 800 × 140 × 225
or 1200 × 140 × 540 mm (length × width × height). Rothoblaas
produced the screws. The mean moisture content of the specimens
measured by a Delmhorts RDM3 instrument was 12.3%. Fig. 4 shows
a schematic overview of the different screws, reporting the effective
screw length (𝑙𝑟) applied in the design model. The column named
‘‘Head’’ describes the geometry of the screw head. The predicted failure
mode is according to the design model.
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Fig. 3. Workflow of the investigation carried out in this paper.
Fig. 4. View of the tested screws. The first label indicates the screw type, followed by the geometry (diameter × length), the head type and the predicted failure mode.
Fig. 5. Setup of specimen with height 540 mm in ZwickRoell Z1200-Steel plate used for Torx tests — Setup of Torx test.
The screws are fully threaded self-tapping screws, except for the
WT-T screw, which is double-threaded and has a threaded length equal
to 130 mm. They were drilled with a right angle, and the head was
flushed in the timber surface. The screw is compressed using a load
cell of the ZwickRoell Z1200 UTM (Universal Testing Machine).

The loading protocol detailed in [12] consists of three phases follow-
ing EN408 and ISO6891. Phases 1 and 2 follow ISO6891 to avoid initial
residual deformations and stabilize the loading area. The specimen is
loaded up to 40% of the estimated resistance (𝐹𝑐), held for 30 s before
the load decreases to 10% of 𝐹𝑐 , and then held for 30 s. The load rate
in phases 1 and 2 is determined as the ratio between 40% and 10% of
𝐹𝑐 respectively, and 60 s. The actual load–displacement curves used in
the analyses correspond to phase 3. Phase 3 follows EN408. Hence, the
maximum force will be reached within 300 ± 120 s.

The authors carried out sixteen tests, eight configurations and each
with two repetitions. Fig. 6 displays the force–displacement curves. The
capacity is estimated from the maximum of the curve; see Fig. 6(b). The
trend is almost linear up to the attainment of the resistance. Then, there
is a sudden, nearly vertical drop due to the achievement of the buckling
load.

Six out of the eight screws failed due to axial instability; see Fig. 7
showing typical buckling modes. Table 5 reports the experimental
6

and predicted capacity using Eq. (1). The discrepancies between the
predictions and the estimates are:

• The failure mode is always buckling, except for the short screws
VGZ 7.0 × 160 and WT-T 8.2 × 160.

• The relative error between the predictions using Eq. (1) and the
experimental values is higher than 100%. Although this difference
might appear irrelevant for a single screw in absolute values,
it might be more significant when dealing with reinforcements
using multiple screws.

The deformation of the buckling mode is localized at the screw
head. The head almost remains aligned with the screw axis. Right
after the head, the screw exhibits a single bend, while the remaining
part of the screw is almost undeformed. The shape of the buckling
mode mainly depends on the stress localization at the screw head,
as discussed in the appendix (see Eq. (A.11)). The observed buckling
mode is far different from that assumed in the estimation of Eq. (6) ,
corresponding to a simple sine [35].

The authors tested 5 HT-T screws with different lengths. According
to Eq. (6) , the length of the screw does not affect the buckling capacity.
Still, the experimental data reveal experimental capacities ranging from
nearly 25 to 29 kN. This is an approximate 10% relative variation,
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Fig. 6. Load–displacement (a) and Stiffness–displacement (b) curves.
Fig. 7. Failure modes of the tested screws.
Table 5
Comparison between experimental and predicted capacity, where 𝐹𝑒𝑥𝑝,1 and 𝐹𝑒𝑥𝑝,2 are the experimental capacities of the first and second test repetition, 𝐹𝑒𝑥𝑝 is the mean between
𝐹𝑚𝑎𝑥,1 and 𝐹𝑒𝑥𝑝,2, 𝐹𝑐 is the predicted value according to EC5 in kN based on Table 3.

Screw type 𝑑 [mm] 𝑙𝑟 [mm] 𝐹𝑒𝑥𝑝,1 𝐹𝑒𝑥𝑝,2 𝐹𝑒𝑥𝑝 𝐹𝑐 Eq. (1) Error [%] Exp. Fail. Pred. Fail.

VGZ 7 160 21.7 22.1 21.9 9.7 126.6% Push in Buckling
WT-T 8.2 130 19.6 23.0 21.3 13.4 58.9% Push in Buckling
HT-T 8 160 29.1 27.4 28.2 12.7 121.6% Buckling Push in
HT-T 8 180 29.3 29.1 29.2 12.7 129.3% Buckling Buckling
HT-T 8 200 26.3 28.6 27.5 12.7 115.7% Buckling Buckling
HT-T 8 300 26.0 25.9 26.0 12.7 103.9% Buckling Buckling
HT-T 8 340 29.2 27.8 28.5 12.7 123.8% Buckling Buckling
VGZ 9 440 38.7 42.8 40.8 16.2 151.3% Buckling Buckling
which can be considered coherent with the non-dependency of 𝐹𝑐
on the screw length. Additionally, the variation of the experimental
capacity is not correlated to the screw length. In some cases, the
shortest and the longest screws, 180 mm and 340 mm, have the same
capacity, which is 29 kN. This fact proves that the observed scatter of
the HT-T screws depends on the aleatoric uncertainty associated with
the experimental test repetition.
7

4. Proposed theoretical formulation for the critical buckling load

As previously mentioned, the classical solution to the buckling
problem of a bar on an elastic foundation is derived by assuming a
simple sine as buckled shape. However, the experiments show that the
actual deformed shape exhibits a sinusoidal trend close to the loaded
end of the screw. Right after, the deflection smoothly decreases. Thus,
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assuming a damped sine for the buckled shape seems more appropriate.
This assumption will be adopted in the following to propose a more
accurate theoretical solution for the buckling of screws.

The solution to the buckling problem of a bar on an elastic foun-
dation is derived under the following hypotheses: (i) the bar has an
infinite axial stiffness; (ii) the ends of the bar are hinged; (iii) the vari-
ation of axial load along the longitudinal axis is neglected. Comments
on this last hypothesis are given in Appendix A.2. Following the energy
method, the critical value of the load can be found by minimizing the
deformation energy [35], namely

𝛥𝑈 = 𝛥𝑇 (8)

where 𝛥𝑈 is the strain energy and 𝛥𝑇 is the external work.
The theoretical buckling load of a Winkler beam, expressed by

Eq. (6) , was derived by assuming the following buckled shape [35]:

𝑣(𝑥) = 𝑐 sin
(

𝑚𝜋𝑥
𝑙𝑟

)

(9)

n light of the previous considerations, a simple sine is not suitable for
escribing the actual buckled shape of the bar. Hence, a damped sine
s adopted

(𝑥) = 𝑐 𝑒−
𝑚
𝑙𝑟
𝑥 sin

(

𝑚𝜋𝑥
𝑙𝑟

)

(10)

The strain energy of the buckled bar is the sum of the energy
ssociated with the bending and the subgrade deformation:

𝑈 = 𝛥𝑈1 + 𝛥𝑈2 (11)

here

𝑈1 =
𝐸𝐼
2 ∫

𝑙𝑟

0
𝑣′′(𝑥)2𝑑𝑥 =

𝐸𝐼
(

5 + 𝜋2)𝜋2𝑐2𝑒−𝑚𝑚3 sinh(𝑚)

4𝑙𝑟3
(12)

The lateral reaction of an element 𝑑𝑥 of the bar is 𝑐ℎ𝑣𝑑𝑥. Hence, the
total strain energy of the elastic medium is

𝛥𝑈2 =
𝑐ℎ
2 ∫

𝑙𝑟

0
𝑣2(𝑥)𝑑𝑥 =

𝑐ℎ𝜋2𝑐2𝑙𝑟 𝑒−𝑚 sinh(𝑚)
2
(

2𝜋2𝑚 + 2𝑚
) (13)

he work done by the axial force in the critical configuration is

𝑇 =
𝑁𝑐𝑟
2 ∫

𝑙𝑟

0
𝑣′(𝑥)2𝑑𝑥 =

𝑁𝑐𝑟𝜋2𝑐2𝑒−𝑚𝑚 sinh(𝑚)
4𝑙𝑟

(14)

Using Eq. (A.2), the following expression for the buckling load is
btained:

𝑐𝑟 =
𝑐ℎ𝑙𝑟4 +

(

5 + 6𝜋2 + 𝜋4)𝐸𝐼𝑚4

(

1 + 𝜋2
)

𝑙𝑟2𝑚2
(15)

The 𝑚 value associated with the minimum of Eq. (15), provides the first
critical load:

𝑚𝑚𝑖𝑛 =
( 𝑐ℎ
𝐸𝐼

)1∕4 𝑙𝑟
(

5 + 6𝜋2 + 𝜋4
)1∕4

(16)

y substitution into Eq. (15), the expression for the first buckling load
𝑝 proposed in this paper is

𝑝 = 2
√

𝑐ℎ𝐸𝐼

√

5 + 6𝜋2 + 𝜋4

1 + 𝜋2
≈ 1.17𝑁𝑘𝑖 (17)

Interestingly, 𝑁𝑝 is 1.17 times the critical load 𝑁𝑘𝑖 obtained with the
classical formulation. The following section will validate this result
using FE analyses, showing that 𝑁𝑘𝑖 underestimates the critical load
by, on average, 22%, while 𝑁𝑝 provides a more accurate prediction.

It is worth noting that 𝑚 should be a natural number. However, in
general, the solution of Eq. (16) gives a real number. Nevertheless, as
explained in Appendix A.1, this does not affect the solution sensibly,
and the critical buckling load estimation is relatively accurate.
8

5. FE analyses

The authors developed a monodimensional FE model of the screw in
Abaqus. Initially, the model validates the expressions for the theoretical
buckling loads derived in the previous section. In a second step, the
authors modified the model to include the effects of initial geometric
imperfection, calibrated on the experimental data.

5.1. Model description and methodology

Two different finite element models have been developed. The
first model is defined to validate the analytical formulations for the
instability of screws, whilst the latter aims at describing the system’s
non-linear behaviour until failure.

In the linear buckling model (LBM) shown in Fig. 8(a), shear-
deformable beam elements with linear interpolation represent the
screw. This formulation considers the shear strain effects due to the
cross-section not necessarily being normal to the screw axis.

The screw section is assumed to circular with diameter 𝑑 = 1.1𝑑1.
A linear elastic constitutive model is adopted for steel (𝐸 = 210 000
N/mm2). Two orders of elastic spring elements describe the screw-
timber interaction in the axial and transversal directions. Axial and
transversal connectors stiffness are assumed as 𝐶𝑣 = 𝑐𝑣𝑙𝑚, and 𝐶ℎ =
𝑐ℎ𝑙𝑚 respectively, where 𝑙𝑚 is the length of the beam element between
two adjoining connectors and 𝑐𝑣 and 𝑐ℎ are determined according to
Eqs. (A.12) and (7), respectively. The screw-head is assumed free to
rotate and to translate in the screw axial direction while the transversal
displacement is restrained. The load 𝐹 is applied to the head-side end
node as a concentrated force. The eigenvalues analysis is conducted
in the initial undeformed and imperfection-free geometry. Differently
from Bejtka [4], the screw head is considered pinned.

The non-linear static incremental model (NLSIM) in Fig. 8(b) as-
sumes an elastic–plastic constitutive law for the steel, whilst an elastic
behaviour is considered for both axial and transversal springs. In this
way, the model can only predict the screw bending failure mode while
neglecting the push-in failure mode, which is outside this research’s
scope. An imposed displacement 𝑢̄ is applied to the head-side end
node. A static-incremental geometrically and mechanically non-linear
analysis is carried out on a defected screw geometry. As the initial
screw geometrical imperfection shapes, the first buckling mode from
LBM has been adopted (Fig. 8(b)) [55]. The amplitude 𝐴𝑖𝑚𝑝 is calibrated
on the experimental results.

5.2. Theoretical buckling validation

The formulation in Eq. (17) is validated against the theoretical
buckling loads obtained from the FE model. Table 6 compares the
theoretical buckling load estimated with the LBM (𝑁𝑓𝑒𝑚,𝑏𝑢𝑐𝑘) with 𝑁𝑘𝑖
in Eq. (6) and 𝑁𝑝 in Eq. (17).

The experimental capacities (𝐹𝑒𝑥𝑝) are not reference values for
validating the accuracy of the theoretical buckling load predictions
and thus are not reported in Table 6. The reference values, assumed
as ideal buckling loads, are the FE predictions in 𝑁𝑓𝑒𝑚,𝑏𝑢𝑐𝑘. Despite
the straightforwardness of the proposed formulation, the mean error
associated with 𝑁𝑝 in Eq. (17) is approximately 9%. Conversely, the
mean error of 𝑁𝑘𝑖 is approximately 22%.

The proposed buckling load, 𝑁𝑝, gives a better prediction than 𝑁𝑘𝑖
because it is derived by assuming a damped sine as a buckled shape
instead of a simple sine. Furthermore, a damped sine can approximate
the deformed shapes of both linear buckling and nonlinear incremental
FEM analyses (see Figs. 8 and 10). The actual deformed shape from
FEM analyses depends on both the geometrical and mechanical char-
acteristics of the screw considered. A damped sine does not give a
perfect characterization, but undoubtedly better than a simple sine.
Yet, a very accurate buckling load prediction is hardly obtained from
closed-form solutions. Nevertheless, the proposed formula for 𝑁 gives
𝑝
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Table 6
Validation of the theoretical buckling load estimated with the FE model (𝑁𝑓𝑒𝑚,𝑏𝑢𝑐𝑘), compared against the theoretical buckling loads corresponding to the Winkler beam (𝑁𝑘𝑖) in
Eq. (6) and the proposed Eq. (17) (𝑁𝑝). The input parameters are 𝜌 = 430 kg∕m3, 𝛼 = 90◦, 𝑑1 = 0.65𝑑, 𝐸 = 210 GPa. The diameter assumed in the calculations is 1.1𝑑1.

Label 𝑙𝑟 [mm] 𝑑1 [mm] 𝑐ℎ [MPa] 𝑐𝑣 [Mpa] 𝑁𝑘𝑖 [kN] 𝑁𝑝 [kN] 𝑁𝑓𝑒𝑚,𝑏𝑢𝑐𝑘 [kN]

VGZ 160.0 5.0 117.8 55.3 55.2 64.6 73.0
WT-T 130.0 5.9 124.0 64.6 77.7 90.9 109.7
HT-T 160.0 5.7 123.0 56.8 73.7 86.2 99.5
HT-T 180.0 5.7 123.0 52.9 73.7 86.2 97.3
HT-T 200.0 5.7 123.0 49.6 73.7 86.2 95.6
HT-T 200.0 5.7 123.0 49.6 73.7 86.2 90.6
HT-T 300.0 5.7 123.0 38.9 73.7 86.2 89.4
VGZ 440.0 6.4 128.1 31.7 95.2 111.3 113.7

Relative error −0.22 −0.09
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Table 7
Finite element model (NLSIM) vs experimental results. The input parameters are
𝜌 = 430, 𝑓𝑦 = 1200, 𝛼 = 90◦, 𝑑1 = 0.65𝑑, 𝐸 = 210 GPa and 𝐴𝑖𝑚𝑝 = 𝑙∕500. The diameter
assumed in the calculations is 1.1𝑑1.

Configuration 𝐹𝑓𝑒𝑚,NLSIM [kN] 𝐹𝑒𝑥𝑝 [kN] Relative error [%]

T-7.0-160a 23.3 21.9 6.4
T-8.2-160a 32.3 21.3 51.9
T-8.0–160 30.7 28.2 9.0
T-8.0–180 30.5 29.2 4.6
T-8.0–200 30.3 27.5 10.4
T-8.0–300 29.2 26.0 12.5
T-8.0–340 28.8 28.5 1.2
T-9.0–440 35.9 40.8 −11.8

aExperimental push-in failure

Fig. 8. Finite element models: (a) Linear buckling analysis and (b) Non-linear static
ncremental analysis.

good prediction while maintaining an agile and explicit mathematical
xpression.

It must be remarked that the error associated with 𝑁𝑘𝑖 can be
onsidered reasonable in some applications (like geotechnics), where
he uncertainty of the soil properties are far more relevant than the
odelling assumptions in Eq. (6) . However, the higher accuracy of
q. (17) endorses its use in place of 𝑁𝑘𝑖 for predicting the ideal buckling

of the screws, where 𝑐ℎ can be estimated with reasonable accuracy.

.3. Calibration of the geometric defects

Initial imperfections and second-order effects affect the failure load
f a beam loaded in compression on an elastic medium. The capacity of
perfectly straight beam made of an elastic–plastic material equals its
lastic axial force 𝑁𝑝𝑙 = 𝑓𝑦𝜋𝑑2∕4. When initial imperfections occur, a
ending moment arises in the beam as the beam deforms. Accordingly,
9

d

the eccentricity between the load and the beam axis increases. The
failure of the systems occurs for a combination of axial force and
bending moment. Therefore the yielding tensile stress 𝑓𝑦 and the initial
imperfection amplitude 𝐴𝑖𝑚𝑝 directly influences the ultimate compres-
ion load of the screw. However, the failed configuration corresponds
o the buckling mode, as occurs in all instability phenomena [55]. For
his reason, it is necessary to know the ideal instability phenomena.

In the NLSIM, 𝑓𝑦 equals the mean value of the tensile failure
tress of the tested screws (𝑓𝑦 = 1200 N/mm2). At the same time,
he imperfection amplitude is calibrated on experimental results. The
mperfection amplitude 𝐴𝑖𝑚𝑝 is defined as a fraction of the screw length
ollowing the general approach for steel structures [52]:

𝑖𝑚𝑝 = 𝑙∕𝜉 (18)

he value of 𝜉 has been determined by minimizing the sum of the
quared relative error between NLSIM and the experimental results of
he configurations that exhibited bending failure mode (Fig. 7):

=
8
∑

𝑛=3

(𝐹𝑓𝑒𝑚,NLSIM − 𝐹𝑒𝑥𝑝

𝐹𝑒𝑥𝑝

)2

(19)

Fig. 9 shows the NLSIM failure load for increasing eccentricity values.
The value of the objective function 𝑆 is minimized when 𝜉 = 500.
The plot in Fig. 9 highlights the significant role of the geometric
imperfections. In the case of low imperfections, the predicted capacity
almost corresponds to the plastic capacity in Eq. (5). An increasing
value of the imperfection significantly reduces the axial capacity and
exalts the effects of instability. In the tested configurations, the es-
timated imperfection, equal to l/500, is very low compared to steel
structures where the lowest imperfection class 𝑎0 almost corresponds
to an eccentricity equal to l/350 [52]. However, the two scenarios, the
screw and the steel member loaded in compression are not comparable
due to the mentioned differences in the buckling modes. Therefore,
as discussed in the previous sections, the screws deserve a dedicated
calibration of the imperfection coefficients in Eq. (3) and Table 4.

Fig. 9(b) displays the force–displacement curves of the updated
model with 𝐴𝑖𝑚𝑝 = 𝑙∕500, while the deformed shapes at failure and
he bending moment contour are displayed in Fig. 9.

Table 7 compares the experimental vs FE estimations of the capacity
sing the optimized value for 𝐴𝑖𝑚𝑝 equal to l/500. The relative error is
inimum and generally less than 10% except for the screw T-8.2–160.
he finite element model can only predict the buckling failure mode,
ot the push-in one. Therefore, the FEM-predicted failure loads of T-
.2-160 and T-7.0-160 are not directly comparable to the experimental
utcomes of push-in failure.

It is worth noting that the bending moment maxima approximately
anifest at the same distance from the screw head for all configurations
≈15–20 mm). This result is confirmed by the experimental evidence
n Fig. 7. The obtained value for the imperfection coefficient could be
onsidered low due to the carefulness carried out in the screw drilling
sing a template for a right-angle insertion. Additionally, as shown
n Fig. 7, no defects could have deviated from the screw during the
rilling, thus causing a straightness defect.
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Fig. 9. (a) Finite element predicted failure loads (markers) and experimental failure loads (dashed lines) for varying imperfection amplitude. (b) Finite element force–displacement
curves with 𝐴𝑖𝑚𝑝 = 𝑙∕500.
Fig. 10. Finite element predicted deformed shape at failure and bending moment contour (kNmm).
6. Monte Carlo simulations and imperfection coefficient calibra-
tion

The experimental results and analytical findings suggest two im-
provements to the model in Eq. (21):

• Replacing 𝑁𝑘𝑖 with 𝑁𝑝 in Eq. (17).
• Adopting an imperfection coefficient (𝛼𝑔) calibrated for different

values of the geometric uncertainty (𝐴𝑖𝑚𝑝). This value depends on
the laminated timber product, the distribution of defects, and the
human error in screw insertion. This value should be decided on
a case-by-case basis.

he authors carried out a Markov chain Monte Carlo analysis [54] to
imulate the capacity of the screws with various lengths and diameters,
ssuming the uncertainty of the material inputs, as reported in Table 8.

Markov chain Monte Carlo (MCMC) methods comprise a class of
lgorithms for sampling from a probability distribution. This paper uses
he Metropolis–Hastings algorithm to get a sequence of random samples
rom a probability distribution.

The diameter (𝑑) has been randomly sampled from a uniform dis-
ribution with bounds in Table 8. The threaded length of the screw
as obtained by inverting the equation for the withdrawal resistance,
ssuming the withdrawal resistance was normally distributed. Likewise,
he yielding strength and the wood density are normally distributed
ollowing [42,56,57]. The scientific literature does not report the uncer-
ainties associated with the empirical regressions for 𝑐ℎ and 𝑐𝑣. Bejtka
nly reports the coefficient of determination of the fitting for 𝑐 and
10
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Table 8
Input parameters of the Monte Carlo simulations.

Symbol Distribution Characteristics

𝑑 [mm] Uniform Lower Bound = 1 Upper Bound = 20
𝑙𝑟 [mm] 𝑙 = [𝜋(𝑑∕2)2𝑓𝑦]∕(𝑓𝑎𝑥𝑑)
𝜌 [kg/m3] Normal 𝜇 = 470 CoV = 0.1 [42]
𝐸 [GPa] Normal 𝜇 = 210 CoV = 0.05 [42,56–58]
𝑓𝑦 [MPa] Normal 𝜇 = 1200 CoV = 0.05 [42,56,57]
𝑓𝑤 [MPa] Normal 𝜇 = 15 CoV = 0.1 [42]
𝑐ℎ [MPa] Eq. (7) +𝜎ℎ𝜖 𝜎ℎ = 19.58 𝜖 ∝  (0, 1) [4]
𝑐𝑣 [MPa] Eq. (A.12) +𝜎𝑣𝜖 𝜎𝑣 = 14.86 𝜖 ∝  (0, 1)[4]

𝑐𝑣. Therefore, the authors digitally converted the regression plots in
the doctoral thesis from Bejtka [4] to estimate the fitting error. The
histogram plot of the error follows a normal distribution with nearly-
zero mean and variances reported in Table 8. Therefore, the authors
included the uncertainty of 𝑐ℎ and 𝑐𝑣 from a random sampling of the
standard normal distribution (𝜖).

The authors repeated the MCMC for four values of imperfection:
l/500, l/400, l/300, l/200, l/100 and l/50. Fig. 11 shows the histogram
plots of the sampled values for 𝑓𝑦, 𝜌, 𝑑 and the threaded length of
the screw. Fig. 12 shows the superposition between the deterministic
estimations of 𝑐ℎ and 𝑐𝑣 and those with uncertainty based on Table 8.
The 𝑐ℎ and 𝑐𝑣 realizations have overlapped with the results reported by
Bejtka for further validation of the proposed approach. The scatter of
the data is very close to the one in the plots of Bejtka. The convergence
of the Monte Carlo simulations was checked a posteriori from the CoV
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Fig. 11. Plots of the realization of the input parameters for the Monte Carlo analyses: (a) yielding strength, (b) wood density, (c) diameter, (d) threaded length of the screw.
Fig. 12. In black the experimental/simulated values of 𝑐ℎ and 𝑐𝑣 using the inputs in Table 8 vs the deterministic predictions using Eqs. (7) and (A.12), respectively. In red the
experimental vs predicted values from Bejtka [4].
of the axial capacity. The analyses were stopped at 500 simulations
since the variation of the CoV was less than 1%, as shown in Fig. 13.
The values of 𝛼𝑔 for the different geometric defects are obtained by
minimizing the following objective function:

𝛼̂𝑔 = arg min
𝛼𝑔∈𝛺

{

[

𝐹𝑐 − 𝐹𝑓𝑒𝑚,NLSIM(𝐴𝑖𝑚𝑝)
]2
}

(20)

where 𝛺 ∈ R, 𝐹𝑐 is the buckling model in Eq. (1) where Eq. (17) is used
for assessing the ideal buckling force and 𝛼𝑔 in Eq. (3) is unknown. At
the same time, 𝐹𝑓𝑒𝑚,NLSIM is the capacity predicted by the FE model
function of the initial geometric imperfection (𝐴𝑖𝑚𝑝).

Table 9 reports the values of the obtained imperfection coefficients
by minimizing Eq. (20) using 𝑁𝑝 for the ideal buckling load.

As expected, an increment of the imperfection level determines an
increment of the corresponding imperfection coefficient 𝛼𝑔 , see the
stability curves in Fig. 14.

Fig. 15(a) shows the FE predictions of the theoretical buckling load
vs the estimations using Eq. (6) (𝑁𝑘𝑖) and Eq. (17) (𝑁𝑝). Additionally,
Fig. 15(a) displays the FE predictions of the axial capacity vs the
11
Table 9
Values of the calibrated imperfection coefficient 𝛼𝑔 as a function of the initial
imperfection expressed as a fraction of the screw length. The ideal buckling load is
estimated with Eq. (17).
𝛼̂𝑔 l/500 l/400 l/300 l/200 l/100

0.16 0.21 0.27 0.34 0.72

estimations of Eq. (5) with 𝑁𝑝 and the imperfection coefficients in
Table 9.

Table 10 reports the error of the three models 𝐹𝑐 , 𝑁𝑝 and 𝑁𝑘𝑖
in terms of mean error, standard deviation (SD), mean squared error
(MSE), maximum Absolute Error (MAE), root Mean Squared Error
(RMSE), and coefficient of determination (R2), considering all defect
scenarios.

The main findings of the analyses can be grouped into the following
considerations:

• The theoretical buckling model which best fits the FE buck-
ling predictions is the one in Eq. (17), despite the considered
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Fig. 13. Convergence of the Monte Carlo analyses regarding Coefficient of covariance
(CoV).

Fig. 14. Stability curves based obtained with the imperfection coefficients in Table 4.

Table 10
Mean error, standard deviation (SD) and mean squared error (MSE), Maximum Absolute
Error (MAE), Root Mean Squared Error (RMSE) or the difference between the FE and
analytically predicted force values (𝐹𝑐 ), shown in Fig. 15. R2 is the coefficient of
determination of the fitting.

Model Mean SD MSE R2 MAE RMSE

𝐹𝑐 −0.56 4.15 17.34 0.95 15.36 4.16
𝑁𝑝 13.71 28.48 991.19 0.60 127.71 31.48
𝑁𝑘𝑖 −20.73 27.94 1202.71 0.56 114.30 34.68

uncertainties have a significant effect on the error metrics in
Table 10. The differences between the predictions with 𝑁𝑝 or
𝑁𝑘𝑖 are not significant in the presence of uncertainty. However,
given the better performance of 𝑁𝑝 and the more solid mechanical
background, 𝑁𝑝 should be preferred to 𝑁𝑘𝑖.

• The axial capacity models obtained using Eq. (17) (𝑁𝑝) and the
imperfection coefficients in Table 10 are excellent. Therefore,
despite the considered uncertainties of the FE model, the deter-
ministic assessment of the capacity using the averaged values for
the parameters in Table 8 is extremely accurate, with excellent
error metrics in all configurations.

In conclusion, the prediction of the axial capacity of the screw in
case of buckling can be carried out using Eq. (17) (𝑁𝑝), where 𝛼𝑔 is
taken from Table 4. The main limitation of this paper is the lack of
an extended experimental campaign relating the effects of geometric
defects of the screw to the screw itself, the laminated timber product,
the strength class (the density of defects), the timber species, etc.
12
Therefore, future research efforts will aim at quantifying the influence
of defects on the capacity estimate of the screws from experimental
investigations.

Design codes require estimating the characteristic value, which can
be obtained by replacing all mean values involved in the computation
with the characteristic ones corresponding to a 5% fractile. Addition-
ally, the potential use of the formulation requires the definition of an
uncertainty factor 𝛾𝑀 to avoid underestimating the capacity due to the
uncertainties involved. The code-format design capacity in Eq. (21) can
be written as

𝐹𝑐,𝑘 = 1
𝛾𝑀

𝑘𝑐𝑁𝑝𝑙,𝑘 (21)

The uncertainty factor 𝛾𝑀 is estimated by assuming that the design
value is less than the corresponding experimental value with a prob-
ability equal to 𝑝 as

𝑃
[

𝐹𝑐 < 𝐹𝑓𝑒𝑚,NLSIM
]

= 𝑝 (22)

where 𝐹𝑐 and 𝐹𝑓𝑒𝑚 are the simulated and experimental capacity cor-
responding to 1% deformation respectively, and 𝑝 depends on the
assumed reliability threshold. The European building code sets 𝑝 as
𝛷(𝛼𝑅𝛽𝐿𝑆 ), where 𝛷(⋅) is the standard Normal cumulative distribution
function, 𝛼𝑅 is the sensitivity factor for the capacity, and 𝛽𝐿𝑆 is the
safety index relevant to the considered limit state. Assuming a 50-years
reference period for serviceability limit states (see Tab. C2 in Eurocode
0), 𝛽𝐿𝑆 = 1.5. The obtained 𝛾𝑀 coefficients corresponding to 𝛽 = 1.5
range from 1.2 to 1.3. An increased defect causes a slight worsening of
the predictions. The uncertainty factors slightly increase from an l/500
to an l/100 defect amplitude. Nonetheless, given the slight variation,
the most conservative value, 1.3, is recommended for designing screws
under compression loads.

7. Conclusions

This paper proposes a novel buckling model for timber screws
based on the general mathematical framework for the instability of
compressed steel members. The main shortcomings of the existing
buckling model for the screws enclosed in the current Eurocode 5
draft are two: (1) the ideal buckling load is underestimated due to
an incorrect assumption on the buckling shape; (2) the imperfection
coefficients valid for compressed steel members exhibiting a sine-like
buckling mode cannot be considered valid for timber screws loaded at
one end.

The experimental and FE investigations showed that the buckling
mode of the screws loaded at their heads resembles a damped sine func-
tion. As a result, the deformation of a buckled screw is concentrated
at the load application point, while the remaining part of the screw
is almost undeformed. Based on this evidence, the authors derived the
critical buckling load of the screws assuming a deformation field having
the shape of the observed failure modes. The error of the obtained
formulation validated against the FE predictions is approximately equal
to 9%. The proposed formulation is concise and corresponds to the
classical one for the instability of Winkler beams multiplied by 1.17.

The proposed equation for the ideal buckling is used for calibrating
the imperfection coefficients, assuming the mechanical parameters’
uncertainty from suitable probability distributions and increasing levels
of geometric imperfections of the screws. The authors estimated the
capacity of multiple screw realizations following a Markov chain Monte
Carlo approach. The axial capacity of the screw is obtained from
nonlinear FE push-in simulations assuming an initial screw geometry
corresponding to the first buckling mode with maximum amplitude
expressed as a fraction of the screw length. The simulated data calibrate
the imperfection coefficients for several defect amplitudes. Addition-
ally, the authors estimated the uncertainty factor of the corresponding
design equation for possible standard implementation.

In conclusion, it must be remarked that the experimental validation
of the proposed model is impaired by the exiguous number of test
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Fig. 15. (a) FE predictions of the theoretical buckling load vs the estimations using Eq. (6), and Eq. (17). (b) FE predictions of the axial capacity using 𝑁𝑝 in Eq. (17) and the
imperfection coefficients in Table 4.
repetitions and screw types. A few tests have been carried out to
develop and validate the mathematical and FE models. Nonetheless,
more extended experimental campaigns are needed to provide a solid
empirical foundation for the proposed mechanical model.
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Appendix A. Discussion on the approximations in 𝑵𝒌𝒊

The following discusses the buckling formulations’ limitations for
𝑁 .
13

𝑘𝑖
A.1. Shape of the buckling mode and boundary conditions

The theoretical buckling load of a Winkler beam, expressed by
Eq. (6) , was derived by assuming the following buckled shape [35]:

𝑣(𝑥) = 𝑐 sin
(

𝑚𝜋𝑥
𝑙𝑟

)

(A.1)

Following the energy method, the critical value of the load can be
found by minimizing the deformation energy [35],

𝛥𝑇 = 𝛥𝑈1 + 𝛥𝑈2 (A.2)

where 𝛥𝑇 is the work done by the external forces, 𝛥𝑈1 is the internal
strain energy associated with the bending, and 𝛥𝑈2 is the internal strain
energy associated with the subgrade deformation.

This expression can be rewritten as a function of the buckled shape:

𝑁
2 ∫

𝑙𝑟

0
𝑣′(𝑥)2𝑑𝑥 = 𝐸𝐼

2 ∫

𝑙𝑟

0
𝑣′′(𝑥)2𝑑𝑥 +

𝑐ℎ
2 ∫

𝑙𝑟

0
𝑣2(𝑥)𝑑𝑥 (A.3)

where, in case of the sinusoidal expression of Eq. (A.1), the integrals
can be written as:

∫

𝑙𝑟

0
𝑣′(𝑥)2𝑑𝑥 = 𝑐2𝑚

2𝜋2

2𝑙𝑟 ∫

𝑙𝑟

0
𝑣′′(𝑥)2𝑑𝑥 = 𝑐2𝑚

4𝜋4

2𝑙3𝑟 ∫

𝑙𝑟

0
𝑣2(𝑥)𝑑𝑥 = 𝑐2

𝑙𝑟
2

(A.4)

Eq. (A.3) can be solved with respect to the applied load 𝑁 , yielding
the buckling load of a Winkler beam [35]:

𝑁𝑤 = 𝜋2𝐸𝐼
𝑙2𝑟

(

𝑚2 +
𝑐ℎ𝑙4𝑟

𝑚2𝜋4𝐸𝐼

)

(A.5)

where 𝑚 is a positive integer number, indicating the number of half-
waves of the sine function along the length of the bar. Note that a
sine function with an integer number of half-waves fulfils the pinned–
pinned boundary conditions.

The 𝑚 associated with the first critical buckling load is determined
by minimizing 𝑁𝑤 in Eq. (A.5). This is done by setting the first
derivative equal to zero:

𝑚4 −
𝑐ℎ𝑙4𝑟
𝜋4𝐸𝐼

= 0 (A.6)

from which we obtain the expression

𝑚 =
𝑙𝑟
𝜋

( 𝑐ℎ
𝐸𝐼

)1∕4
(A.7)

By substitution into Eq. (A.6), the critical load 𝑁𝑘𝑖 = 2
√

𝑐ℎ𝐸𝐼 is
derived.

In general, Eq. (A.7) does not give as a solution an integer number.
Therefore, the expression of 𝑁𝑘𝑖 is associated with an inconsistent
buckled mode that violates the boundary conditions, being 𝑚 a real
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Fig. A.16. Contour plot of the axial resistance using Eq. (6) (a) and Eq. (A.5) (b) for the prediction of the theoretical buckling load.
Fig. A.17. (a) Illustration of the load application from the steel plate in CPG problems; (b) Mathematical model of the screw under axial forces.
Fig. A.18. Contour plot of 𝛽 = 𝑐𝑣∕𝐸𝐴 and of the variation of the adimensional axial force in Eq. (A.11).
number instead of a positive integer number. Strictly speaking, its value
should be determined as the closest integer (lower or greater) that
provides the minimum value for 𝑁𝑤. Nevertheless, as reported in [53],
the gap between the exact value of 𝑁𝑤 and the approximation 𝑁𝑘𝑖
decreases with increasing values of 𝑚. Hence, especially for slender
beams such as the screws, the difference between the two predictions
can be neglected.

The authors calculated the values of the axial resistance and buck-
ling load as a function of the diameter and threaded length of the screw
using Eqs. (6) and (A.5). Fig. A.16 shows the contour plot of the axial
resistance using Eq. (6) (a) and Eq. (A.5) (b) for the prediction of the
theoretical buckling load.

The comparison between Figs. A.16(a) and (b) proves that the
difference between 𝑁𝑤 and 𝑁𝑘𝑖 is negligible.

A.2. Notes on the effect of a variable axial force

Another relevant approximation of Eqs. (6) and (A.5) is the assump-
tion of a constant axial force along the screw. However, this is not true
14
since only the head of the screw is directly loaded, while the tip cannot
be in equilibrium with axial forces (Fig. A.17). Therefore, the axial force
decreases along the screw length. This is also evident from the observed
failure mode, where the deformation is concentrated at the screw head,
where the axial force is higher.

However, as noted by Bejtka [4], a rigorous mathematical formu-
lation for the buckling of screws is too demanding in complexity and
computational effort. Therefore, Bejtka, acknowledging the fallacy of
Eq. (A.5), replaced Eq. (6) with the buckling load from finite element
analyses in Ansys. The researcher compiled several tables as a function
of the diameter and the length, where intermediate values can be esti-
mated with linear interpolation. Despite the merit of this study, tables
of values are often difficult to handle, and a closed-form expression for
the buckling load should be preferred. Therefore, despite all limitations,
the EC5 proposal adopts Eq. (6) rather than tabular values.

In summary, the main limitations of the investigation of Bejtka are
the following:

• The author does not consider a screw length higher than 240 mm.
However, screws can be longer than that. Furthermore, instability
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problems often slip common sense and the suitability of linear
interpolations. The complexity of these problems demands the
exploration of all the parameter domains to assess the presence
of unique regions where the solution could be different than
expected from inter and extrapolation.

• Using tabular values is not suitable for standard implementation.

Therefore, the analysis of Bejtka must allow for properly evaluating the
error associated with using Eq. (6) due to the reduced number of values
reported in the table and the limited extent of the domain.

The actual trend of the axial force can be approximately esti-
mated from the following differential equation describing the axial
equilibrium of the screw:

𝑢′′(𝑥) + 𝛽2𝑢(𝑥) = 0; 𝛽 =
√

𝑐𝑣
𝐸𝐴

(A.8)

where 𝑢(𝑥) is the axial displacement, 𝑐𝑣 is the vertical stiffness of the
elastic subgrade, and 𝐸𝐴 is the axial stiffness. The general solution is

𝑢(𝑥) = 𝑐1 sin 𝛽𝑥 + 𝑐2 cos 𝛽𝑥 (A.9)

The boundary value problem can be solved by imposing the following
boundary conditions:

𝐸𝐴𝑢′(0) = 𝐹 ; 𝐸𝐴𝑢′(𝑙𝑟) = 0 (A.10)

The expression for the axial force as a function of 𝑥 is:

𝑁(𝑥) = 𝐹
(

cos 𝛽𝑥 − cot 𝛽𝑙𝑟 sin 𝛽𝑥
)

(A.11)

The accuracy of 𝑁(𝑥) and consequently of 𝛽 mostly depends on 𝑐𝑣,
which possesses the primary source of uncertainty. As written in the
introduction, multiple expressions exist for the axial capacity of the
screw. For instance, Bejtka [4] proposed the following empirical regres-
sion for 𝑐𝑣, labelled 𝑐𝑣,𝑒𝑥𝑝.

𝑐𝑣,𝑒𝑥𝑝 = 234
(𝜌𝑑)0.2

𝑙0.6𝑟
(A.12)

The applicability of Eq. (A.12) in Eq. (A.11) is further examined in
Appendix B.

Fig. A.18 shows the contour plot of 𝛽 for different diameters and
screw lengths using Eq. (A.12), Young’s modulus for steel equal to
210 GPa and wood density equal to 400 kg/m3. Parameter 𝛽 varies
between almost 5 and 30 for short screws with a small diameter. In
all practical cases, 𝛽 is lower than 5. These values are associated with
an almost linear distribution of 𝑁 . Conversely, values higher than ten
significantly increment the axial force compared to the one at 𝑥 = 0. It
must be remarked that in all design circumstances, the trend of 𝑁(𝑥) is
almost linear.

In light of the above, a rigorous buckling model should consider the
variation of the axial force along the screw axis. However, this problem
cannot be treated analytically [59–63]. In fact, there are still no closed-
form solutions available in the literature. Hence, in the present work,
we propose that the effect of the variation of 𝑁(𝑥) is directly considered
in the deformed shape of the screw by assuming a damped sine as
buckled configuration (see Section 4).

In other words, the main effect of the concentration of axial force at
the head of the screw is to produce a buckling mode well approximated
by a damped sine. In this way, the axial contribution to the strain
energy can still be neglected, and the effect of the variation of axial
force is already included in the deformed shape. Hence, in Section 4,
the axial force in the energy method is kept constant.

The axial stiffness of the elastic medium (𝑐𝑣) was obtained by
Bejtka [4] by dividing the axial stiffness of the screw (𝐾𝑎𝑥) by the length
of the screw (𝑙𝑟) as follows:

𝐾𝑎𝑥 = 𝑐𝑣,𝑒𝑥𝑝 ⋅ 𝑙𝑟 =
𝐹

𝑢(𝑙𝑟)
(A.13)

where 𝐾𝑎𝑥 was derived experimentally by dividing the applied force at
the tip (𝐹 ) and the measured displacement at the head 𝑢(𝑙 ), assuming
15

𝑟

Table A.11
Comparison between pinned-head and free-head buckling and failure load according to
finite element models.

Config. 𝑁𝑓𝑒𝑚,𝑏𝑢𝑐𝑘 [kN] 𝑁𝑓𝑒𝑚,𝑏𝑢𝑐𝑘 ratio 𝐹𝑓𝑒𝑚,NLSIM 𝐹𝑓𝑒𝑚,NLSIM [kN] ratio

Boundary pinned free pinned free

T-7.0–160 73.0 30.6 0.42 23.3 19.7 0.85
T-8.2–160 109.7 44.1 0.40 32.3 29.8 0.92
T-8.0–160 99.5 41.1 0.41 30.7 26.9 0.88
T-8.0–180 97.3 40.7 0.42 30.5 25.5 0.84
T-8.0–200 95.6 40.5 0.42 30.3 25.1 0.83
T-8.0–300 90.6 39.7 0.44 29.2 22.9 0.78
T-8.0–340 89.4 39.5 0.44 28.8 22.1 0.77
T-9.0–440 113.7 50.4 0.44 35.9 27.0 0.75

Fig. A.19. Buckling shapes of (a) free-head screw and (b) hinged-head screw.

Fig. B.20. Illustration of the design application and the notation.

𝑥 = 0 at the load application point. Eq. (A.11) reveals that the
axial force is not constant (see Eq. (A.11)). Rigorously the stiffness
of the screw, obtained by dividing the applied force by the measured
displacement at the head, can be written as:

𝐾𝑎𝑥 = 𝐹
𝑢(𝑙𝑟)

= 𝛽𝐸𝐴 sin(𝛽𝑙𝑟) (A.14)

The values of 𝑐𝑣 were experimentally derived in [42] with short screws.
Thus, the following approximation holds in (A.14), sin(𝛽𝑙𝑟) ≈ 𝛽𝑙𝑟.
Accordingly, the 𝐾𝑎𝑥 can be approximated by:

𝐾𝑎𝑥 ≈ 𝛽2𝑙𝑟𝐸𝐴 = 𝑐𝑣𝑙𝑟 (A.15)

Therefore, by equalling Eq. (A.13) with Eq. (A.15), the following holds
𝑐𝑣 ≈ 𝑐𝑣,𝑒𝑥𝑝. It must be remarked that this approximation can be con-
sidered valid only if 𝑐𝑣,𝑒𝑥𝑝 is derived experimentally with short screws,
where sin(𝛽𝑙𝑟) ≈ 𝛽𝑙𝑟. Then the value of 𝑐𝑣,𝑒𝑥𝑝 obtained for shorter screws
can also be used in the analysis when dealing with longer screws.



Construction and Building Materials 379 (2023) 131225A. Aloisio et al.

i
j
b
f
t
b

a
t
w
c
f
𝑁
s
F
s
p
s
e

A

p
o
p
b
u

𝐹

𝑙

Table B.12
Calculation example of the capacity of a timber member under compression perpendicular to the grain with screw reinforcement. The table sections on the buckling resistance
and design model have two parts, one for the prEN 1995 1.1 model and the one proposed in this paper.

Input data

Timber GL30c Screw VGZ 7.0 × 160 𝑘𝑝𝑟 1.5 𝑛 [mm] 4
𝑓𝑐,90,𝑘 [Mpa] 2.5 𝑑 [mm] 8 𝑏𝑐 [mm] 140 𝑛0 2
ℎ [mm] 400 𝑑1 [mm] 4.6 𝑙𝑐 [mm] 180 𝛼 90
𝑏 [mm] 140 𝑙𝑟 [mm] 300 𝑎1 [mm] 70
𝜌𝑘 [kg/m3] 390 𝑓𝑦,𝑘 [mm] 1200 𝑎3𝑐 [mm] 365

Withdrawal resistance Buckling resistance

𝑘𝑤 1 𝑓𝑤,𝑘 [MPa] 4.65 PrEN 1995 1.1 Proposed model

𝑘𝑚𝑎𝑡 1 𝐹𝑤,𝑘 [kN] 35.05 𝑁𝑝𝑙,𝑘 19.94 𝑁𝑝𝑙,𝑘 19.93
𝑘𝑝 1.1 𝑐ℎ 111.54 𝑐ℎ 111.54

Design model 𝑁𝑘𝑖,𝑘 22.68 𝑁𝑘𝑖,𝑘 53.08

PrEN 1995 1.1 Proposed model 𝜆𝑘 0.938 𝜆𝑘 0.613

Min(𝐹𝑐,𝑘 , 𝐹𝑤,𝑘) 13.58 Min(𝐹𝑐,𝑘 , 𝐹𝑤,𝑘) 21.38 𝛼𝑔 0.49 𝛼𝑔 0.16
𝑙𝑒𝑓 ,1 [mm] 240 𝑙𝑒𝑓 ,1 [mm] 240 𝜅 1.12 𝜅 0.72
𝑙𝑒𝑓 ,2 [mm] 670 𝑙𝑒𝑓 ,1 [mm] 670 𝜅𝑐 0.58 𝜅𝑐 0.91
𝐴1 [kN] 180.30 𝐴1 [kN] 211.51 𝐹𝑐𝑘 13.58 𝐹𝑐𝑘 21.38

𝐴2 [kN] 234.50 𝐴2 [kN] 234.50
𝐹𝑘 [kN] 180.30 𝐹𝑘 [kN] 211.51
A.3. Note on the choice of the boundary conditions

The buckling load reported in the EC5 draft is 𝑁𝑘𝑖 =
√

𝑐ℎ𝐸𝐼 , which
s precisely half of the expression of Eq. (6) . As observed by Be-
tka [25], this expression approximately corresponds to the theoretical
uckling load for elastic beams with free ends embedded in an elastic
oundation, which is in good agreement with the FE simulations where
hese boundary conditions are adopted. This leads to almost half of the
uckling load in Eq. (6) , as shown in Table A.11.

However, in many practical circumstances, when friction forces
rise between the screw and the steel plate, the lateral displacement of
he head of the screw can be considered negligible (also in agreement
ith the experimental evidence observed in the Torx test). In this

ase, assuming a constant vertical load, the theoretical buckling load
or double pinned elastic beams embedded in an elastic foundation is
𝑘𝑖 = 2

√

𝑐ℎ𝐸𝐼 , which is the one reported in Eq. (6) . The buckling
hapes associated with these two boundary conditions are compared in
ig. A.19. It is worth reminding, according to [35], that the theoretical
olution of Eq. (6) assumes a sinusoidal buckling shape, while in this
aper, the theoretical expression of Eq. (17) is derived with a buckling
hape of the form of Fig. A.19(b), coherently with the experimental
vidence.

ppendix B. Application

The proposed formulation has been applied to a typical design
roblem involving the buckling capacity of the screw, i.e. the resistance
f a timber member with screw reinforcement under compression
erpendicular to the grain. It can be the case of a simply-supported
eam, as illustrated in Fig. B.20. The design follows the PrEN 1995 1.1
sing the equations below.

𝑘 = min
{

𝐴1 = 𝑘𝑝𝑟 ⋅ 𝑏𝑐 ⋅ 𝑙𝑒𝑓 ,1 ⋅ 𝑓𝑐,90,𝑘 + 𝑛 ⋅ 𝑚𝑖𝑛{𝐹𝑤,𝑘, 𝐹𝑐,𝑘},
𝐴2 = 𝑏 ⋅ 𝑙𝑒𝑓 ,2 ⋅ 𝑓𝑐,90,𝑘

, (B.1)

𝑒𝑓 ,1 = 𝑙𝑐 + min{30 mm, 𝑙𝑐} + min{30 mm, 𝑙𝑐 , 𝑙𝑒} (B.2)

𝑙𝑒𝑓 ,2 = 𝑙𝑟 + (𝑛0 − 1) ⋅ 𝑎1 + min{𝑙𝑟, 𝑎3,𝑐} (B.3)

The definition of all symbols is given in the initial list of symbols
and notation. In place of the standard buckling model, the authors also
used the proposed one to understand the practical consequences related
to its use. Two important aspects need to be remarked: (1) the proposed
equation has not been validated against the experimental capacity
16

of multiple screws loaded in compression. Further investigations are
required to understand the accurate modelling of the so-called group
effect. (2) The proposed model assumes the additivity between the
timber and screw capacity contributions. This aspect has been recently
questioned in [64] and needs further investigations.

Table B.12 reports the results of the calculations. It is organized into
four sections, the input data, two sections dedicated to predicting the
withdrawal and buckling resistance of the screw, and the last section to
the model capacity. Based on this example, the reader can calculate the
capacity of the tested samples using geometric and material parameters.

This design case proves that the model in PrEN 1995 1.1 might lead
to a consistent underestimation of the capacity by approximately 17%.
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