BILINEAR ISOMETRIES ON SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS

JUAN J. FONT AND MANUEL SANCHIS

Abstract

Let X, Y, Z be compact Hausdorff spaces and let E_{1}, E_{2}, E_{3} be Banach spaces. If $T: C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right) \longrightarrow C\left(Z, E_{3}\right)$ is a bilinear isometry which is stable on constants and E_{3} is strictly convex, then there exists a nonempty subset Z_{0} of Z, a surjective continuous mapping $h: Z_{0} \longrightarrow X \times Y$ and a continuous function $\omega: Z_{0} \longrightarrow \operatorname{Bil}\left(E_{1} \times E_{2}, E_{3}\right)$ such that $$
T(f, g)(z)=\omega(z)\left(f \left(\pi_{X}(h(z)), g\left(\pi_{Y}(h(z))\right.\right.\right.
$$

for all $z \in Z_{0}$ and every pair $(f, g) \in C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right)$. This result generalizes the main theorems in [2] and [6].

1. Introduction.

Let X be a compact Hausdorff space and E a Banach space. Let $C(X)$ (resp. $C(X, E)$) denote the Banach spaces of all continuous scalar-valued (resp. vector-valued) functions on X endowed with the supremum norm, $\|\cdot\|_{\infty}$. A bilinear mapping $T: C(X) \times C(Y) \longrightarrow C(Z)$ which satisfies

$$
\|T(f, g)\|_{\infty}=\|f\|_{\infty}\|g\|_{\infty}
$$

for every $(f, g) \in C(X) \times C(Y)$ is called a bilinear isometry.
In [6], Moreno and Rodriguez proved the following bilinear version of the well-known Holsztyński's Theorem on non-surjective linear isometries of $C(X)$-spaces ([5] and, also, [1]):

Let $T: C(X) \times C(Y) \longrightarrow C(Z)$ be a bilinear isometry. Then there exist a closed subset Z_{0} of Z, a surjective continuous mapping h : $Z_{0} \longrightarrow X \times Y$ and a norm-one continuous function $a \in C(Z)$ such that $T(f, g)(z)=a(z) f\left(\pi_{X}(h(z)) g\left(\pi_{Y}(h(z))\right.\right.$ for all $z \in Z_{0}$ and every pair $(f, g) \in C(X) \times C(Y)$. The proof of this result rests heavily on the powerful Stone-Weierstrass Theorem. In [3], the authors extend

Key words and phrases. Bilinear isometries, spaces of vector-valued continuous functions.

2010 Mathematics Subject Classification. 46E40, 47B38.
Research partially supported by Spanish Ministery of Science and Technology (Grant number MTM2008-04599) and Bancaixa (Projecte P1-1B2008-26).
these results to certain subspaces of continuous scalar-valued functions, where Stone-Weierstrass Theorem is not applicable.

The concept of bilinear isometry can be naturally extended to the context of spaces of vector-valued continuous functions. Examples of bilinear isometries defined on these spaces can be found, for instance, in [7, Proposition 5.2], where the author provide certain compact spaces X and Banach spaces E for which there exists a bilinear isometry $T: C(X, E) \times C(X, E) \longrightarrow C(Y, E)$.

In this paper we study the conditions under which we can obtain a representation of such bilinear isometries on this vector-valued setting. Thus, given three Banach spaces E_{1}, E_{2} and E_{3}, we prove that if T : $C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right) \longrightarrow C\left(Z, E_{3}\right)$ is a bilinear isometry which is stable on constants (see Definition 3) and E_{3} is strictly convex, then there exists a nonempty subset Z_{0} of Z, a surjective continuous mapping $h: Z_{0} \longrightarrow X \times Y$ and a continuous function $\omega: Z_{0} \longrightarrow \operatorname{Bil}\left(E_{1} \times E_{2}, E_{3}\right)$ such that

$$
T(f, g)(z)=\omega(z)\left(f \left(\pi_{X}(h(z)), g\left(\pi_{Y}(h(z))\right.\right.\right.
$$

for all $z \in Z_{0}$ and every pair $(f, g) \in C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right)$.
It can be easily checked that this result contains the main theorems in [6] and in [2] (see the concluding remarks at the end of the paper).

2. Notation and previous lemmas.

Let E be a Banach space and let S_{E} denote the unit sphere of E.
For any $e \in E$, we denote by \widetilde{e} the element of $C(X, E)$ which is constantly equal to e. For any $x \in X$ and $e \in S_{E}$, let

$$
C_{x, e}:=\left\{f \in C(X, E): 1=\|f\|_{\infty} \text { and } f(x)=e\right\} .
$$

We shall write $\operatorname{Bil}\left(E_{1} \times E_{2}, E_{3}\right)$ to denote the space of jointly continuous bilinear mappings between $E_{1} \times E_{2}$ and E_{3} endowed with the strong operator topology.

In the sequel we shall assume that $T: C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right) \longrightarrow$ $C\left(Z, E_{3}\right)$ is a bilinear mapping which satisfies

$$
\|T(f, g)\|_{\infty}=\|f\|_{\infty}\|g\|_{\infty}
$$

for every $(f, g) \in C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right)$, which is to say that T is bilinear isometry.

Lemma 1. Assume $(x, y) \in X \times Y$ and $\left(e, e^{\prime}\right) \in S_{E_{1}} \times S_{E_{2}}$. The set
$I_{x, y, e, e^{\prime}}:=\left\{z \in Z: 1=\|T(f, g)\|_{\infty}=\|\left(T(f, g)(z) \|,(f, g) \in C_{x, e} \times C_{y, e^{\prime}}\right\}\right.$
is nonempty.

Proof. For any $f \in C\left(X, E_{1}\right)$ and $g \in C\left(Y, E_{2}\right)$, let us define the following compact subset of $Z: M_{f, g}:=\left\{z \in Z:\|T(f, g)(z)\| \geq \frac{1}{2}\right\}$. It is apparent that $I_{x, y, e, e^{\prime}}$ is a closed subset of $M_{f, g}$. Hence, in order to prove that $I_{x, y, e, e^{\prime}}$ is nonempty, it suffices to check that if f_{1}, \ldots, f_{n} belong to $C_{x, e}$ and g_{1}, \ldots, g_{n} belong to $C_{y, e^{\prime}}$, then

$$
\bigcap_{i, j}\left\{z \in Z: 1=\left\|T\left(f_{i}, g_{j}\right)\right\|_{\infty}=\|\left(T\left(f_{i}, g_{j}\right)(z) \|\right\} \neq \emptyset\right.
$$

Let $f_{0} \in C\left(X, E_{1}\right)$ and $g_{0} \in C\left(Y, E_{2}\right)$ defined as follows:

$$
f_{0}:=\sum_{i=1}^{n} f_{i} \text { and } g_{0}:=\sum_{j=1}^{n} g_{i} .
$$

It is clear that $\left\|f_{0}(x)\right\|=n=\left\|f_{0}\right\|_{\infty}$ and $\left\|g_{0}(y)\right\|=n=\left\|g_{0}\right\|_{\infty}$.
Hence, $\left\|T\left(f_{0}, g_{0}\right)\right\|_{\infty}=\left\|f_{0}\right\|_{\infty} \cdot\left\|g_{0}\right\|_{\infty}=n^{2}$ since T is a bilinear isometry and, consequently, there exists $z_{0} \in Z$ such that

$$
n^{2}=\left\|T\left(f_{0}, g_{0}\right)\left(z_{0}\right)\right\|=\left\|\sum_{i, j} T\left(f_{i}, g_{j}\right)\left(z_{0}\right)\right\| \leq \sum_{i, j}\left\|T\left(f_{i}, g_{j}\right)\left(z_{0}\right)\right\| \leq n^{2} .
$$

This fact yields $\left\|T\left(f_{i}, g_{j}\right)\left(z_{0}\right)\right\|=1$ for all i, j, which is to say that

$$
z_{0} \in \bigcap_{i, j}\left\{z \in Z: 1=\left\|T\left(f_{i}, g_{j}\right)\right\|_{\infty}=\|\left(T\left(f_{i}, g_{j}\right)(z) \|\right\}\right.
$$

Lemma 2. Assume E_{3} is strictly convex and fix $\left(x_{0}, y_{0}\right) \in X \times Y$ and $\left(e, e^{\prime}\right) \in S_{E_{1}} \times S_{E_{2}}$.
(1) If $f\left(x_{0}\right)=0$ for some $f \in C\left(X, E_{1}\right)$ and $g^{\prime} \in C_{y_{0}, e^{\prime}}$, then $T\left(f, g^{\prime}\right)(z)=0$ for all $z \in I_{x_{0}, y_{0}, e, e^{\prime}}$.
(2) If $g\left(y_{0}\right)=0$ for some $g \in C\left(Y, E_{2}\right)$ and $f^{\prime} \in C_{x_{0}, e}$, then $T\left(f^{\prime}, g\right)(z)=0$ for all $z \in I_{x_{0}, y_{0}, e, e^{\prime}}$.
Proof. (1) Let us choose $z_{0} \in I_{x_{0}, y_{0}, e, e^{\prime}}$. Define a linear isometry $T^{\prime}: C\left(X, E_{1}\right) \longrightarrow C\left(Z, E_{3}\right)$ as $T^{\prime}(f):=T\left(f, g^{\prime}\right)$.

We shall first check that if $f \in C\left(X, E_{1}\right)$ vanishes on an open neighborhood, U, of x_{0}, then $\left(T^{\prime} f\right)\left(z_{0}\right)=0$. With no loss of generality, we shall assume that $\|f\|_{\infty}=1$.

Let us take $\xi \in C(X)$ such that $1=\left|\xi\left(x_{0}\right)\right|=\|\xi\|_{\infty}$ and such that its support is included in U. We can now define two functions in $C\left(X, E_{1}\right)$ as follows:

$$
g:=f+\xi e
$$

and

$$
h:=\frac{1}{2}(g+\xi e) .
$$

It is clear that $g\left(x_{0}\right)=h\left(x_{0}\right)=\xi\left(x_{0}\right) e$ and that $\|\xi e\|_{\infty}=\|g\|_{\infty}=$ $\|h\|_{\infty}=1$. Therefore, since $z_{0} \in I_{x_{0}, y_{0}, e, e^{\prime}}$, then

$$
\left\|T^{\prime}(\xi e)\left(z_{0}\right)\right\|=\left\|T^{\prime}(g)\left(z_{0}\right)\right\|=\left\|T^{\prime}(h)\left(z_{0}\right)\right\|=1
$$

Now, as $T^{\prime}(h)\left(z_{0}\right)$ is on the segment which joins $T^{\prime}(\xi e)\left(z_{0}\right)$ and $T^{\prime}(g)\left(z_{0}\right)$, the strict convexity of E yields $T^{\prime}(\xi e)\left(z_{0}\right)=T^{\prime}(g)\left(z_{0}\right)$, which is to say that $T^{\prime}(f)\left(z_{0}\right)=0$.

Let us now define two linear functionals on $C\left(X, E_{1}\right)$ as follows: $\hat{T}^{\prime} \hat{z_{0}}(f):=T^{\prime}(f)\left(z_{0}\right)$ and $\hat{x_{0}}(f):=f\left(x_{0}\right)$. It is not hard to check that the functions in $C\left(X, E_{1}\right)$ which vanish on a neighborhood of x_{0} are dense in the kernel of $\hat{x_{0}}, \operatorname{ker}\left(\hat{x_{0}}\right)$, which is closed due to the continuity of this functional. Consequently, the above paragraph yields the inclusion $\operatorname{ker}\left(\hat{x_{0}}\right) \subseteq \operatorname{ker}\left(\hat{T}^{\prime} \hat{z_{0}}\right)$; that is, if $f\left(x_{0}\right)=0$, then $T^{\prime}(f)\left(z_{0}\right)=0$, as was to be proved.
(2) The proof of (2) is similar to (1).

Definition 2. For any pair $(x, y) \in X \times Y$, we define the set

$$
I_{x, y}:=\bigcup_{\left(e, e^{\prime}\right) \in S_{E_{1}} \times S_{E_{2}}} I_{x, y, e, e^{\prime}} .
$$

Lemma 3. Assume E_{3} is strictly convex. Let $\left(x_{0}, y_{0}\right) \in X \times Y$ and suppose that there exist $(\tilde{f}, \tilde{g}) \in C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right)$ which vanish on x_{0} and y_{0} respectively. Then $T(\tilde{f}, \tilde{g})(z)=0$ for all $z \in I_{x_{0}, y_{0}}$.

Proof. Assume first that there exist $(f, g) \in C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right)$ which vanish on certain neighborhoods, U and V, of x_{0} and y_{0} respectively. Then we claim that $T(f, g)(z)=0$ for all $z \in I_{x_{0}, y_{0}}$.

To this end, fix $z_{0} \in I_{x_{0}, y_{0}}$. Then $z_{0} \in I_{x_{0}, y_{0}, e, e^{\prime}}$ for some $\left(e, e^{\prime}\right) \in$ $S_{E_{1}} \times S_{E_{2}}$. Assume, with no loss of generality, $\|f\|_{\infty} \leq 1$ and $\|g\|_{\infty} \leq 1$.

Let us consider $\left(f_{1}, g_{1}\right) \in C(X) \times C(Y)$ such that $\operatorname{supp}\left(f_{1}\right) \subset U$ and $\operatorname{supp}\left(g_{1}\right) \subset V$, and $1=\left\|f_{1}\right\|_{\infty}=f_{1}\left(x_{0}\right)$ and $1=\left\|g_{1}\right\|_{\infty}=g_{1}\left(y_{0}\right)$.

It is then clear that $\left\|f+f_{1} e\right\|_{\infty}=\left\|f\left(x_{0}\right)+f_{1}\left(x_{0}\right) e\right\|=\|e\|=1$ and $\left\|g+g_{1} e^{\prime}\right\|_{\infty}=\left\|g\left(y_{0}\right)+g_{1}\left(y_{0}\right) e^{\prime}\right\|=\left\|e^{\prime}\right\|=1$. Consequently, since $z_{0} \in I_{x_{0}, y_{0}, e, e^{\prime}}$,

$$
\begin{gathered}
\left\|T\left(f+f_{1} e, g+g_{1} e^{\prime}\right)\left(z_{0}\right)\right\|=1, \\
\left\|T\left(f_{1} e, g_{1} e^{\prime}\right)\left(z_{0}\right)\right\|=1
\end{gathered}
$$

and

$$
\left\|T\left(\frac{f}{2}+f_{1} e, g+g_{1} e^{\prime}\right)\left(z_{0}\right)\right\|=1
$$

On the other hand, by Lemma 2, we know that $T\left(f, g_{1} e^{\prime}\right)\left(z_{0}\right)=$ $T\left(f_{1} e, g\right)\left(z_{0}\right)=0$. Therefore

$$
\begin{gathered}
\frac{T\left(f+f_{1} e, g+g_{1} e^{\prime}\right)\left(z_{0}\right)+T\left(f_{1} e, g_{1} e^{\prime}\right)\left(z_{0}\right)}{2}= \\
=\frac{T(f, g)\left(z_{0}\right)}{2}+T\left(f_{1} e, g_{1} e^{\prime}\right)\left(z_{0}\right)=T\left(\frac{f}{2}+f_{1} e, g+g_{1} e^{\prime}\right)\left(z_{0}\right) .
\end{gathered}
$$

This means that $T\left(\frac{f}{2}+f_{1} e, g+g_{1} e^{\prime}\right)\left(z_{0}\right)$ is on the segment which joins $T\left(f+f_{1} e, g+g_{1} e^{\prime}\right)\left(z_{0}\right)$ and $T\left(f_{1} e, g_{1} e^{\prime}\right)\left(z_{0}\right)$. Hence, since E_{3} is strictly convex, $T\left(f+f_{1} e, g+g_{1} e^{\prime}\right)\left(z_{0}\right)$ and $T\left(f_{1} e, g_{1} e^{\prime}\right)\left(z_{0}\right)$ coincide, which is to say, again by Lemma 2, that $T(f, g)\left(z_{0}\right)=0$.

Let us now take a sequence $\left(f_{n}\right) \in C\left(X, E_{1}\right)$ convergent to \tilde{f} and such that $f_{n} \equiv 0$ on a certain neighborhood U_{n} of x_{0}. Similarly, take a sequence $\left(g_{n}\right) \in C\left(Y, E_{2}\right)$ convergent to \tilde{g} and such that $g_{n} \equiv 0$ on a certain neighborhood V_{n} of y_{0}. Fix $z_{0} \in I_{x_{0}, y_{0}}$. Then we can define a linear functional on $C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right)$ as follows: $T_{z_{0}}(f, g):=T(f, g)\left(z_{0}\right)$. It is apparent, from the above paragraph, that $T_{z_{0}}\left(f_{n}, g_{n}\right)=0$ for all $n \in N$. On the other hand, by the Uniform Boundedness Theorem (see, e.g., $[4,11.15$ Theorem $]$), we deduce that $\left(T_{z_{0}}\left(f_{n}, g_{n}\right)\right)$ converges to $T_{z_{0}}(\tilde{f}, \tilde{g})=T(\tilde{f}, \tilde{g})\left(z_{0}\right)$. This fact yields $T(\tilde{f}, \tilde{g})\left(z_{0}\right)=0$.

Definition 4. We say that T is stable on constants if, given $(f, g) \in$ $C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right)$ and $z \in Z$, then

$$
\left\|T\left(f, \widetilde{e_{2}}\right)(z)\right\|=\left\|T\left(f, \widetilde{e_{2}^{\prime}}\right)(z)\right\|
$$

for every pair $e_{2}, e_{2}^{\prime} \in S_{E_{2}}$ and

$$
\left\|T\left(\widetilde{e_{1}}, g\right)(z)\right\|=\left\|T\left(\widetilde{e_{1}^{\prime}}, g\right)(z)\right\|
$$

for every pair $e_{1}, e_{1}^{\prime} \in S_{E_{1}}$.
Lemma 4. Assume E_{3} is strictly convex. Fix $\left(x_{0}, y_{0}\right) \in X \times Y$ and assume that T is stable on constants.
(1) If $f\left(x_{0}\right)=0$ for some $f \in C\left(X, E_{1}\right)$ (resp. $g\left(y_{0}\right)=0$ for some $\left.g \in C\left(Y, E_{2}\right)\right)$, then $T(f, g)(z)=0$ for all $z \in I_{x_{0}, y_{0}}$ and all $g \in C\left(Y, E_{2}\right)$ (resp. all $f \in C\left(X, E_{1}\right)$).
(2) Furthermore, $T(f, g)(z)=T\left(\widetilde{\left.f\left(x_{0}\right), g\left(y_{0}\right)\right)(z) \text { for all } z \in I_{x_{0}, y_{0}}}\right.$ and all $(f, g) \in C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right)$.

Proof. (1) Let us take $(f, g) \in C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right)$ such that $f\left(x_{0}\right)=$ 0 and assume, with no loss of generality, that $\left\|g\left(y_{0}\right)\right\|=1$.

Fix $z_{0} \in I_{x_{0}, y_{0}}$. Then $z_{0} \in I_{x_{0}, y_{0}, e, e^{\prime}}$ for some $\left(e, e^{\prime}\right) \in S_{E_{1}} \times S_{E_{2}}$. By Lemma 2, we know that $T\left(f, e^{\prime}\right)\left(z_{0}\right)=0$

By Lemma 3, $T\left(f, g-\widetilde{g\left(y_{0}\right)}\right)\left(z_{0}\right)=0$, which yields $T(f, g)\left(z_{0}\right)=$ $T\left(f, \widetilde{g\left(y_{0}\right)}\right)\left(z_{0}\right)$.

Therefore, since T is stable on constants, we have

$$
0=T\left(f, \widetilde{e^{\prime}}\right)\left(z_{0}\right)=T\left(f, \widetilde{g\left(y_{0}\right)}\right)\left(z_{0}\right)=T(f, g)\left(z_{0}\right) .
$$

(2) Take now a pair $(f, g) \in C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right)$ and define the function $f^{\prime}:=f-\widetilde{f\left(x_{0}\right)}$. Since $f^{\prime}\left(x_{0}\right)=0$, then, by (a), $T(f-$ $\left.\widetilde{f\left(x_{0}\right)}, g\right)(z)=0$ for all $z \in I_{x_{0}, y_{0}}$, which is to say, by the bilinearity of T, that $T(f, g)(z)=T\left(\widetilde{f\left(x_{0}\right)}, g\right)(z)$ for all $z \in I_{x_{0}, y_{0}}$.

Next, define the function $g^{\prime}:=g-\widetilde{g\left(y_{0}\right)}$. Since $g^{\prime}\left(y_{0}\right)=0$, then, again by (a), $T\left(\widetilde{f\left(x_{0}\right)}, g-\widetilde{g\left(y_{0}\right)}\right)(z)=0$ for all $z \in I_{x_{0}, y_{0}}$, which yields $T(f, g)(z)=T\left(\widetilde{f\left(x_{0}\right)}, g\right)(z)=T\left(\widetilde{f\left(x_{0}\right)}, \widetilde{g\left(y_{0}\right)}\right)(z)$.

3. The main result.

Theorem 1. Let $T: C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right) \longrightarrow C\left(Z, E_{3}\right)$ be a bilinear isometry which is stable on constants and assume that E_{3} is strictly convex. Then there exists a nonempty subset Z_{0} of Z, a surjective continuous mapping $h: Z_{0} \longrightarrow X \times Y$ and a continuous function $\omega: Z_{0} \longrightarrow$ $\operatorname{Bil}\left(E_{1} \times E_{2}, E_{3}\right)$ such that $T(f, g)(z)=\omega(z)\left(f\left(\pi_{X}(h(z)), g\left(\pi_{Y}(h(z))\right.\right.\right.$ for all $z \in Z_{0}$ and every pair $(f, g) \in C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right)$.

Proof. Let us suppose that (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ belong to $X \times Y$ and are distinct. Then we claim that $I_{x, y} \cap I_{x^{\prime}, y^{\prime}}=\emptyset$. Assume, contrary to what we claim, that there exists $z \in I_{x, y} \cap I_{x^{\prime}, y^{\prime}}$. Let us suppose, with no loss of generality, that $x \neq x^{\prime}$.

- If $y \neq y^{\prime}$, then we can choose $f \in C_{x, e}$ and $g \in C_{y, e^{\prime}}$ for some $e, e^{\prime} \in S_{E}$ with $f\left(x^{\prime}\right)=g\left(y^{\prime}\right)=0$. Consequently, $\|T(f, g)(z)\|=$ 1 , but, by Lemma $3, T(f, g)(z)=0$, which is a contradiction.
- If $y=y^{\prime}$, then we can choose $f \in C_{x, e}$ and $g \in C_{y, e^{\prime}}$ for some $e, e^{\prime} \in S_{E}$ with $f\left(x^{\prime}\right)=0$. Consequently, $\|T(f, g)(z)\|=1$, but, by Lemma $4, T(f, g)(z)=0$, which is a contradiction.

Let us next define a subset Z_{0} of Z as follows:

$$
Z_{0}:=\bigcup_{(x, y) \in X \times Y} I_{x, y}
$$

Now we can define a linear map ω from Z_{0} to $\operatorname{Bil}\left(E_{1} \times E_{2}, E_{3}\right)$ as $\omega(z)\left(e, e^{\prime}\right):=T\left(\widetilde{e}, \widetilde{e^{\prime}}\right)(z)$ where $\left(e, e^{\prime}\right) \in E_{1} \times E_{2}$. Hence, by Lemma 4,

$$
T(f, g)(z)=T\left(\widetilde{f\left(x_{0}\right)}, \widetilde{g\left(y_{0}\right)}\right)(z)=\omega(z)\left(f\left(x_{0}\right), g\left(y_{0}\right)\right)
$$

for all $z \in Z_{0}$ and every pair $(f, g) \in C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right)$.
To prove the continuity of ω, let $\left(z_{\alpha}\right)$ be a net convergent to $z_{0} \in Z_{0}$. Fix $\left(e, e^{\prime}\right) \in E_{1} \times E_{2}$. Then $\left\|\omega\left(z_{\alpha}\right)\left(e, e^{\prime}\right)-\omega\left(z_{0}\right)\left(e, e^{\prime}\right)\right\|=\| T\left(\widetilde{e}, \widetilde{e^{\prime}}\right)\left(z_{\alpha}\right)-$ $T\left(\widetilde{e}, \widetilde{e^{\prime}}\right)\left(z_{0}\right) \|$. Since $\left(T\left(\widetilde{e}, \widetilde{e^{\prime}}\right)\left(z_{\alpha}\right)\right)$ converges to $T\left(\widetilde{e}, \widetilde{e^{\prime}}\right)\left(z_{0}\right)$, the continuity of ω is then verified.

Let us next define a mapping $h: Z_{0} \longrightarrow X \times Y$ as $h(z):=(x, y)$ where $z \in I_{x, y}$. We claim that h is continuous. To this end, fix $z_{0} \in Z_{0}$ and let $h\left(z_{0}\right)=\left(x_{0}, y_{0}\right)$. Let U be a neighborhood of x_{0} and choose $f \in C\left(X, E_{1}\right)$ such that $1=\|f\|_{\infty}=\left\|f\left(x_{0}\right)\right\|$ and $\|f\|_{\infty}<1$ off U. Let $s\left(x_{0}\right)=\sup _{x \in X \backslash U}\|f(x)\|$. It is apparent that $s\left(x_{0}\right)<1$. In like manner, let V be a neighborhood of y_{0} and choose $g \in C\left(Y, E_{2}\right)$ such that $1=\|g\|_{\infty}=\left\|g\left(y_{0}\right)\right\|$ and $\|g\|_{\infty}<1$ off V. Let $s\left(y_{0}\right)=\sup _{y \in Y \backslash U}\|g(y)\|$. As above, $s\left(y_{0}\right)<1$.

Since $h\left(z_{0}\right)=\left(x_{0}, y_{0}\right)$, then $\left\|T(f, g)\left(z_{0}\right)\right\|=\|T(f, g)\|_{\infty}=1$. Let $s:=\max \left\{s\left(x_{0}\right), s\left(y_{0}\right)\right\}$ and define the following open neighborhood of z_{0} :

$$
W:=\left\{z \in Z_{0}:\|T(f, g)(z)\|>s\right\} .
$$

Fix $z_{1} \in W$ and suppose that $h\left(z_{1}\right):=\left(x_{1}, y_{1}\right)$. Then, by the above representation of T,

$$
\begin{aligned}
s<\left\|T(f, g)\left(z_{1}\right)\right\| & =\left\|\omega\left(z_{1}\right)\left(f\left(x_{1}\right), g\left(y_{1}\right)\right)\right\| \\
& =\| T\left(\widetilde{f\left(x_{1}\right)}, \widetilde{\left.g\left(y_{1}\right)\right)}\left(z_{1}\right) \|\right. \\
& \leq \| T\left(\widetilde{f\left(x_{1}\right)}, \widetilde{\left.g\left(y_{1}\right)\right)} \|_{\infty}\right. \\
& =\left\|\widetilde{f\left(x_{1}\right) \|_{\infty}} \cdot\right\| \widehat{g\left(y_{1}\right)} \|_{\infty} \\
& =\left\|f\left(x_{1}\right)\right\|\left\|g\left(y_{1}\right)\right\|
\end{aligned}
$$

and, consequently, $\left\|f\left(x_{1}\right)\right\|>s \geq s\left(x_{0}\right)$ and $\left\|g\left(y_{1}\right)\right\|>s \geq s\left(y_{0}\right)$. This yields $x_{1} \in U$ and $y_{1} \in V$, which is to say that $h(W) \subseteq U \times V$ and the proof is done.

Finally, it is clear that $T(f, g)(z)=\omega(z)\left(f\left(\pi_{X}(h(z)), g\left(\pi_{Y}(h(z))\right.\right.\right.$

Concluding remarks.

(1) To be stable on constants can be regarded as a necessary condition in the following sense: Let $T: C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right) \longrightarrow$
$C\left(Z, E_{3}\right)$ be a bilinear isometry which can be written as

$$
T(f, g)(z)=\omega(z)\left(f \left(\pi_{X}(h(z)), g\left(\pi_{Y}(h(z))\right.\right.\right.
$$

for all $z \in Z$ and every pair $(f, g) \in C\left(X, E_{1}\right) \times C\left(Y, E_{2}\right)$, where h is a surjective continuous mapping from Z onto $X \times Y$ and $\omega(z) \in \operatorname{Bil}\left(E_{1} \times E_{2}, E_{3}\right)$. Then

$$
\|T(f, \widetilde{e})(z)\|=\| \omega(z)\left(f (\pi _ { X } (h (z)) , e) \| = \| f \left(\pi_{X}(h(z)) \|\right.\right.
$$

for all $e \in E_{2}$ and all $z \in Z$; that is, T is stable on constants.
(2) It is clear that if we assume E_{1}, E_{2} and E_{3} to be the field of real or complex numbers, then T is stable on constants. Hence, Theorem 1 is an extension, indeed a vector-valued version, of the main result in [6].
(3) In like manner, Theorem 1 contains the main theorem in [2], by assuming Y to be a singleton and E_{2} to be the field of real or complex numbers. Indeed, it is a routine matter to verify that, in this context, Lemma 4 and Theorem 1 remain true even if we do not assume T to be stable on constants.
(4) Typical examples of bilinear isometries can be defined as follows: assume that there exists a continuous surjection $h: X \longrightarrow$ $X \times X$ and let E be a Banach algebra. Then we can define a mapping $T(f, g)(z):=f\left(\pi_{1}(h(z)) g\left(\pi_{2}(h(z))\right.\right.$ for all $z \in X$ and every pair $(f, g) \in C(X, E) \times C(X, E)$. It is apparent that T is a bilinear isometry which is stable on constants.

References

1. J. Araujo and J.J. Font, Linear isometries between subspaces of continuous functions, Trans. Amer. Math. Soc. 349 (1) (1997), 413-428.
2. M. Cambern, A Holsztynski theorem for spaces of continuous vector-valued functions, Studia Math. 63 (3) (1978), 213-217.
3. J.J. Font and M. Sanchis, Bilinear isometries on subspaces of continuous functions, Math. Nach. 283 (4) (2010), 568-572.
4. J.R. Giles, Introduction to the analysis of normed linear spaces, Australian Mathematical Society Lecture Series 13, (2000).
5. H. Holsztyński, Continuous mappings induced by isometries of spaces of continuous functions. Studia Math. 26 (1966), 133-136.
6. A. Moreno and A. Rodríguez, A bilinear version of Holsztyński's theorem on isometries of $C(X)$-spaces, Studia Math. 166 (2005), 83-91.
7. A. Rodríguez, Absolute valued algebras and absolute-valuable Banach spaces, Advanced courses of mathematical analysis I: Proc. First Intern. School, Cádiz, Spain, 2002, World Scientific Publ., 2004, 99-155.

Departament de Matemàtiques, Universitat Jaume I, Campus Riu Sec, Castelló, Spain.

E-mail address: font@mat.uji.es
E-mail address: sanchis@mat.uji.es

