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Abstract. Let X, Y , Z be compact Hausdorff spaces and let E1,
E2, E3 be Banach spaces. If T : C(X, E1)×C(Y,E2) −→ C(Z,E3)
is a bilinear isometry which is stable on constants and E3 is strictly
convex, then there exists a nonempty subset Z0 of Z, a surjective
continuous mapping h : Z0 −→ X × Y and a continuous function
ω : Z0 −→ Bil(E1 × E2, E3) such that

T (f, g)(z) = ω(z)(f(πX(h(z)), g(πY (h(z))

for all z ∈ Z0 and every pair (f, g) ∈ C(X, E1) × C(Y,E2). This
result generalizes the main theorems in [2] and [6].

1. Introduction.

Let X be a compact Hausdorff space and E a Banach space. Let
C(X) (resp. C(X, E)) denote the Banach spaces of all continuous
scalar-valued (resp. vector-valued) functions on X endowed with the
supremum norm, ‖·‖∞. A bilinear mapping T : C(X)×C(Y ) −→ C(Z)
which satisfies

‖T (f, g)‖∞ = ‖f‖∞‖g‖∞
for every (f, g) ∈ C(X)× C(Y ) is called a bilinear isometry.

In [6], Moreno and Rodriguez proved the following bilinear version of
the well-known Holsztyński’s Theorem on non-surjective linear isome-
tries of C(X)-spaces ([5] and, also, [1]):

Let T : C(X)× C(Y ) −→ C(Z) be a bilinear isometry. Then there
exist a closed subset Z0 of Z, a surjective continuous mapping h :
Z0 −→ X × Y and a norm-one continuous function a ∈ C(Z) such
that T (f, g)(z) = a(z)f(πX(h(z))g(πY (h(z)) for all z ∈ Z0 and every
pair (f, g) ∈ C(X) × C(Y ). The proof of this result rests heavily
on the powerful Stone-Weierstrass Theorem. In [3], the authors extend
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these results to certain subspaces of continuous scalar-valued functions,
where Stone-Weierstrass Theorem is not applicable.

The concept of bilinear isometry can be naturally extended to the
context of spaces of vector-valued continuous functions. Examples of
bilinear isometries defined on these spaces can be found, for instance, in
[7, Proposition 5.2], where the author provide certain compact spaces
X and Banach spaces E for which there exists a bilinear isometry
T : C(X,E)× C(X, E) −→ C(Y,E).

In this paper we study the conditions under which we can obtain a
representation of such bilinear isometries on this vector-valued setting.
Thus, given three Banach spaces E1, E2 and E3, we prove that if T :
C(X, E1)×C(Y,E2) −→ C(Z,E3) is a bilinear isometry which is stable
on constants (see Definition 3) and E3 is strictly convex, then there
exists a nonempty subset Z0 of Z, a surjective continuous mapping
h : Z0 −→ X×Y and a continuous function ω : Z0 −→ Bil(E1×E2, E3)
such that

T (f, g)(z) = ω(z)(f(πX(h(z)), g(πY (h(z))

for all z ∈ Z0 and every pair (f, g) ∈ C(X,E1)× C(Y,E2).
It can be easily checked that this result contains the main theorems

in [6] and in [2] (see the concluding remarks at the end of the paper).

2. Notation and previous lemmas.

Let E be a Banach space and let SE denote the unit sphere of E.
For any e ∈ E, we denote by ẽ the element of C(X, E) which is

constantly equal to e. For any x ∈ X and e ∈ SE, let

Cx,e := {f ∈ C(X, E) : 1 = ‖f‖∞ and f(x) = e}.

We shall write Bil(E1 × E2, E3) to denote the space of jointly con-
tinuous bilinear mappings between E1 × E2 and E3 endowed with the
strong operator topology.

In the sequel we shall assume that T : C(X, E1) × C(Y,E2) −→
C(Z,E3) is a bilinear mapping which satisfies

‖T (f, g)‖∞ = ‖f‖∞‖g‖∞
for every (f, g) ∈ C(X, E1)×C(Y,E2), which is to say that T is bilinear
isometry.

Lemma 1. Assume (x, y) ∈ X × Y and (e, e′) ∈ SE1 × SE2. The set

Ix,y,e,e′ := {z ∈ Z : 1 = ‖T (f, g)‖∞ = ‖(T (f, g)(z)‖, (f, g) ∈ Cx,e×Cy,e′}

is nonempty.
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Proof. For any f ∈ C(X,E1) and g ∈ C(Y, E2), let us define the
following compact subset of Z: Mf,g := {z ∈ Z : ‖T (f, g)(z)‖ ≥ 1

2
}.

It is apparent that Ix,y,e,e′ is a closed subset of Mf,g. Hence, in order
to prove that Ix,y,e,e′ is nonempty, it suffices to check that if f1, ..., fn

belong to Cx,e and g1, ..., gn belong to Cy,e′ , then⋂
i,j

{z ∈ Z : 1 = ‖T (fi, gj)‖∞ = ‖(T (fi, gj)(z)‖} 6= ∅.

Let f0 ∈ C(X, E1) and g0 ∈ C(Y, E2) defined as follows:

f0 :=
n∑

i=1

fi and g0 :=
n∑

j=1

gi.

It is clear that ‖f0(x)‖ = n = ‖f0‖∞ and ‖g0(y)‖ = n = ‖g0‖∞.
Hence, ‖T (f0, g0)‖∞ = ‖f0‖∞ · ‖g0‖∞ = n2 since T is a bilinear

isometry and, consequently, there exists z0 ∈ Z such that

n2 = ‖T (f0, g0)(z0)‖ =

∥∥∥∥∥∑
i,j

T (fi, gj)(z0)

∥∥∥∥∥ ≤ ∑
i,j

‖T (fi, gj)(z0)‖ ≤ n2.

This fact yields ‖T (fi, gj)(z0)‖ = 1 for all i, j, which is to say that

z0 ∈
⋂
i,j

{z ∈ Z : 1 = ‖T (fi, gj)‖∞ = ‖(T (fi, gj)(z)‖}.

Lemma 2. Assume E3 is strictly convex and fix (x0, y0) ∈ X × Y and
(e, e′) ∈ SE1 × SE2.

(1) If f(x0) = 0 for some f ∈ C(X, E1) and g′ ∈ Cy0,e′, then
T (f, g′)(z) = 0 for all z ∈ Ix0,y0,e,e′.

(2) If g(y0) = 0 for some g ∈ C(Y, E2) and f ′ ∈ Cx0,e, then
T (f ′, g)(z) = 0 for all z ∈ Ix0,y0,e,e′.

Proof. (1) Let us choose z0 ∈ Ix0,y0,e,e′ . Define a linear isometry
T ′ : C(X,E1) −→ C(Z,E3) as T ′(f) := T (f, g′).

We shall first check that if f ∈ C(X,E1) vanishes on an open neigh-
borhood, U , of x0, then (T ′f)(z0) = 0. With no loss of generality, we
shall assume that ‖f‖∞ = 1.

Let us take ξ ∈ C(X) such that 1 = |ξ(x0)| = ‖ξ‖∞ and such that its
support is included in U . We can now define two functions in C(X,E1)
as follows:

g := f + ξe
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and

h :=
1

2
(g + ξe).

It is clear that g(x0) = h(x0) = ξ(x0)e and that ‖ξe‖∞ = ‖g‖∞ =
‖h‖∞ = 1. Therefore, since z0 ∈ Ix0,y0,e,e′ , then

‖T ′(ξe)(z0)‖ = ‖T ′(g)(z0)‖ = ‖T ′(h)(z0)‖ = 1.

Now, as T ′(h)(z0) is on the segment which joins T ′(ξe)(z0) and T ′(g)(z0),
the strict convexity of E yields T ′(ξe)(z0) = T ′(g)(z0), which is to say
that T ′(f)(z0) = 0.

Let us now define two linear functionals on C(X,E1) as follows:

T̂ ′ẑ0(f) := T ′(f)(z0) and x̂0(f) := f(x0). It is not hard to check that
the functions in C(X, E1) which vanish on a neighborhood of x0 are
dense in the kernel of x̂0, ker(x̂0), which is closed due to the continuity
of this functional. Consequently, the above paragraph yields the inclu-
sion ker(x̂0) ⊆ ker(T̂ ′ẑ0); that is, if f(x0) = 0, then T ′(f)(z0) = 0, as
was to be proved.

(2) The proof of (2) is similar to (1).

Definition 2. For any pair (x, y) ∈ X × Y , we define the set

Ix,y :=
⋃

(e,e′)∈SE1
×SE2

Ix,y,e,e′ .

Lemma 3. Assume E3 is strictly convex. Let (x0, y0) ∈ X × Y and

suppose that there exist (f̃ , g̃) ∈ C(X, E1)× C(Y,E2) which vanish on

x0 and y0 respectively. Then T (f̃ , g̃)(z) = 0 for all z ∈ Ix0,y0.

Proof. Assume first that there exist (f, g) ∈ C(X, E1) × C(Y,E2)
which vanish on certain neighborhoods, U and V , of x0 and y0 respec-
tively. Then we claim that T (f, g)(z) = 0 for all z ∈ Ix0,y0 .

To this end, fix z0 ∈ Ix0,y0 . Then z0 ∈ Ix0,y0,e,e′ for some (e, e′) ∈
SE1×SE2 . Assume, with no loss of generality, ‖f‖∞ ≤ 1 and ‖g‖∞ ≤ 1.

Let us consider (f1, g1) ∈ C(X)×C(Y ) such that supp(f1) ⊂ U and
supp(g1) ⊂ V , and 1 = ‖f1‖∞ = f1(x0) and 1 = ‖g1‖∞ = g1(y0).

It is then clear that ‖f + f1e‖∞ = ‖f(x0) + f1(x0)e‖ = ‖e‖ = 1
and ‖g + g1e

′‖∞ = ‖g(y0) + g1(y0)e
′‖ = ‖e′‖ = 1. Consequently, since

z0 ∈ Ix0,y0,e,e′ ,
‖T (f + f1e, g + g1e

′)(z0)‖ = 1,

‖T (f1e, g1e
′)(z0)‖ = 1

and ∥∥∥∥T

(
f

2
+ f1e, g + g1e

′
)

(z0)

∥∥∥∥ = 1.
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On the other hand, by Lemma 2, we know that T (f, g1e
′)(z0) =

T (f1e, g)(z0) = 0. Therefore

T (f + f1e, g + g1e
′)(z0) + T (f1e, g1e

′)(z0)

2
=

=
T (f, g)(z0)

2
+ T (f1e, g1e

′)(z0) = T

(
f

2
+ f1e, g + g1e

′
)

(z0).

This means that T
(

f
2

+ f1e, g + g1e
′) (z0) is on the segment which

joins T (f + f1e, g + g1e
′)(z0) and T (f1e, g1e

′)(z0). Hence, since E3 is
strictly convex, T (f + f1e, g + g1e

′)(z0) and T (f1e, g1e
′)(z0) coincide,

which is to say, again by Lemma 2, that T (f, g)(z0) = 0.

Let us now take a sequence (fn) ∈ C(X, E1) convergent to f̃ and
such that fn ≡ 0 on a certain neighborhood Un of x0. Similarly, take a
sequence (gn) ∈ C(Y,E2) convergent to g̃ and such that gn ≡ 0 on a cer-
tain neighborhood Vn of y0. Fix z0 ∈ Ix0,y0 . Then we can define a linear
functional on C(X, E1)× C(Y, E2) as follows: Tz0(f, g) := T (f, g)(z0).
It is apparent, from the above paragraph, that Tz0(fn, gn) = 0 for all
n ∈ N . On the other hand, by the Uniform Boundedness Theorem
(see, e.g., [4, 11.15 Theorem]), we deduce that (Tz0(fn, gn)) converges

to Tz0(f̃ , g̃) = T (f̃ , g̃)(z0). This fact yields T (f̃ , g̃)(z0) = 0.

Definition 4. We say that T is stable on constants if, given (f, g) ∈
C(X, E1)× C(Y,E2) and z ∈ Z, then

‖T (f, ẽ2)(z)‖ = ‖T (f, ẽ′2)(z)‖
for every pair e2, e

′
2 ∈ SE2 and

‖T (ẽ1, g)(z)‖ = ‖T (ẽ′1, g)(z)‖
for every pair e1, e

′
1 ∈ SE1.

Lemma 4. Assume E3 is strictly convex. Fix (x0, y0) ∈ X × Y and
assume that T is stable on constants.

(1) If f(x0) = 0 for some f ∈ C(X, E1) (resp. g(y0) = 0 for some
g ∈ C(Y,E2)), then T (f, g)(z) = 0 for all z ∈ Ix0,y0 and all
g ∈ C(Y, E2) (resp. all f ∈ C(X, E1)).

(2) Furthermore, T (f, g)(z) = T (f̃(x0), g̃(y0))(z) for all z ∈ Ix0,y0

and all (f, g) ∈ C(X, E1)× C(Y, E2).

Proof. (1) Let us take (f, g) ∈ C(X, E1)×C(Y, E2) such that f(x0) =
0 and assume, with no loss of generality, that ‖g(y0)‖ = 1.
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Fix z0 ∈ Ix0,y0 . Then z0 ∈ Ix0,y0,e,e′ for some (e, e′) ∈ SE1 × SE2 . By

Lemma 2, we know that T (f, ẽ′)(z0) = 0

By Lemma 3, T (f, g − g̃(y0))(z0) = 0, which yields T (f, g)(z0) =

T (f, g̃(y0))(z0).
Therefore, since T is stable on constants, we have

0 = T (f, ẽ′)(z0) = T (f, g̃(y0))(z0) = T (f, g)(z0).

(2) Take now a pair (f, g) ∈ C(X, E1) × C(Y, E2) and define the

function f ′ := f − f̃(x0). Since f ′(x0) = 0, then, by (a), T (f −
f̃(x0), g)(z) = 0 for all z ∈ Ix0,y0 , which is to say, by the bilinearity

of T , that T (f, g)(z) = T (f̃(x0), g)(z) for all z ∈ Ix0,y0 .

Next, define the function g′ := g − g̃(y0). Since g′(y0) = 0, then,

again by (a), T (f̃(x0), g − g̃(y0))(z) = 0 for all z ∈ Ix0,y0 , which yields

T (f, g)(z) = T (f̃(x0), g)(z) = T (f̃(x0), g̃(y0))(z).

3. The main result.

Theorem 1. Let T : C(X, E1) × C(Y, E2) −→ C(Z,E3) be a bilinear
isometry which is stable on constants and assume that E3 is strictly con-
vex. Then there exists a nonempty subset Z0 of Z, a surjective contin-
uous mapping h : Z0 −→ X × Y and a continuous function ω : Z0 −→
Bil(E1 × E2, E3) such that T (f, g)(z) = ω(z)(f(πX(h(z)), g(πY (h(z))
for all z ∈ Z0 and every pair (f, g) ∈ C(X, E1)× C(Y, E2).

Proof. Let us suppose that (x, y) and (x′, y′) belong to X × Y and
are distinct. Then we claim that Ix,y ∩ Ix′,y′ = ∅. Assume, contrary to
what we claim, that there exists z ∈ Ix,y ∩ Ix′,y′ . Let us suppose, with
no loss of generality, that x 6= x′.

• If y 6= y′, then we can choose f ∈ Cx,e and g ∈ Cy,e′ for some
e, e′ ∈ SE with f(x′) = g(y′) = 0. Consequently, ‖T (f, g)(z)‖ =
1, but, by Lemma 3, T (f, g)(z) = 0, which is a contradiction.

• If y = y′, then we can choose f ∈ Cx,e and g ∈ Cy,e′ for some
e, e′ ∈ SE with f(x′) = 0. Consequently, ‖T (f, g)(z)‖ = 1, but,
by Lemma 4, T (f, g)(z) = 0, which is a contradiction.

Let us next define a subset Z0 of Z as follows:

Z0 :=
⋃

(x,y)∈X×Y

Ix,y
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Now we can define a linear map ω from Z0 to Bil(E1 × E2, E3) as

ω(z)(e, e′) := T (ẽ, ẽ′)(z) where (e, e′) ∈ E1 × E2. Hence, by Lemma 4,

T (f, g)(z) = T (f̃(x0), g̃(y0))(z) = ω(z)(f(x0), g(y0))

for all z ∈ Z0 and every pair (f, g) ∈ C(X, E1)× C(Y,E2).
To prove the continuity of ω, let (zα) be a net convergent to z0 ∈ Z0.

Fix (e, e′) ∈ E1×E2. Then ‖ω(zα)(e, e′)−ω(z0)(e, e
′)‖ = ‖T (ẽ, ẽ′)(zα)−

T (ẽ, ẽ′)(z0)‖. Since (T (ẽ, ẽ′)(zα)) converges to T (ẽ, ẽ′)(z0), the continu-
ity of ω is then verified.

Let us next define a mapping h : Z0 −→ X × Y as h(z) := (x, y)
where z ∈ Ix,y. We claim that h is continuous. To this end, fix z0 ∈ Z0

and let h(z0) = (x0, y0). Let U be a neighborhood of x0 and choose
f ∈ C(X, E1) such that 1 = ‖f‖∞ = ‖f(x0)‖ and ‖f‖∞ < 1 off U . Let
s(x0) = supx∈X\U‖f(x)‖. It is apparent that s(x0) < 1. In like manner,
let V be a neighborhood of y0 and choose g ∈ C(Y,E2) such that
1 = ‖g‖∞ = ‖g(y0)‖ and ‖g‖∞ < 1 off V . Let s(y0) = supy∈Y \U‖g(y)‖.
As above, s(y0) < 1.

Since h(z0) = (x0, y0), then ‖T (f, g)(z0)‖ = ‖T (f, g)‖∞ = 1. Let
s := max{s(x0), s(y0)} and define the following open neighborhood of
z0:

W := {z ∈ Z0 : ‖T (f, g)(z)‖ > s}.
Fix z1 ∈ W and suppose that h(z1) := (x1, y1). Then, by the above

representation of T ,

s < ‖T (f, g)(z1)‖ = ‖ω(z1)(f(x1), g(y1))‖

= ‖T (f̃(x1), g̃(y1))(z1)‖

≤ ‖T (f̃(x1), g̃(y1))‖∞
= ‖f̃(x1)‖∞ · ‖g̃(y1)‖∞
= ‖f(x1)‖‖g(y1)‖

and, consequently, ‖f(x1)‖ > s ≥ s(x0) and ‖g(y1)‖ > s ≥ s(y0). This
yields x1 ∈ U and y1 ∈ V , which is to say that h(W ) ⊆ U × V and the
proof is done.

Finally, it is clear that T (f, g)(z) = ω(z)(f(πX(h(z)), g(πY (h(z))

Concluding remarks.

(1) To be stable on constants can be regarded as a necessary con-
dition in the following sense: Let T : C(X, E1)× C(Y,E2) −→
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C(Z,E3) be a bilinear isometry which can be written as

T (f, g)(z) = ω(z)(f(πX(h(z)), g(πY (h(z))

for all z ∈ Z and every pair (f, g) ∈ C(X,E1)×C(Y,E2), where
h is a surjective continuous mapping from Z onto X × Y and
ω(z) ∈ Bil(E1 × E2, E3). Then

‖T (f, ẽ)(z)‖ = ‖ω(z)(f(πX(h(z)), e)‖ = ‖f(πX(h(z))‖
for all e ∈ E2 and all z ∈ Z; that is, T is stable on constants.

(2) It is clear that if we assume E1, E2 and E3 to be the field of
real or complex numbers, then T is stable on constants. Hence,
Theorem 1 is an extension, indeed a vector-valued version, of
the main result in [6].

(3) In like manner, Theorem 1 contains the main theorem in [2], by
assuming Y to be a singleton and E2 to be the field of real or
complex numbers. Indeed, it is a routine matter to verify that,
in this context, Lemma 4 and Theorem 1 remain true even if
we do not assume T to be stable on constants.

(4) Typical examples of bilinear isometries can be defined as fol-
lows: assume that there exists a continuous surjection h : X −→
X × X and let E be a Banach algebra. Then we can define a
mapping T (f, g)(z) := f(π1(h(z))g(π2(h(z)) for all z ∈ X and
every pair (f, g) ∈ C(X, E)×C(X, E). It is apparent that T is
a bilinear isometry which is stable on constants.
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5. H. Holsztyński, Continuous mappings induced by isometries of spaces of con-
tinuous functions. Studia Math. 26 (1966), 133-136.
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