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Abstract
To accurately explore the anatomical organization of neural circuits in the brain, it is crucial to map the experimental brain 
data onto a standardized system of coordinates. Studying 2D histological mouse brain slices remains the standard procedure 
in many laboratories. Mapping these 2D brain slices is challenging; due to deformations, artifacts, and tilted angles intro-
duced during the standard preparation and slicing process. In addition, analysis of experimental mouse brain slices can be 
highly dependent on the level of expertise of the human operator. Here we propose a computational tool for Accurate Mouse 
Brain Image Analysis (AMBIA), to map 2D mouse brain slices on the 3D brain model with minimal human intervention. 
AMBIA has a modular design that comprises a localization module and a registration module. The localization module is a 
deep learning-based pipeline that localizes a single 2D slice in the 3D Allen Brain Atlas and generates a corresponding atlas 
plane. The registration module is built upon the Ardent python package that performs deformable 2D registration between 
the brain slice to its corresponding atlas. By comparing AMBIA’s performance in localization and registration to human 
ratings, we demonstrate that it performs at a human expert level. AMBIA provides an intuitive and highly efficient way for 
accurate registration of experimental 2D mouse brain images to 3D digital mouse brain atlas. Our tool provides a graphical 
user interface and it is designed to be used by researchers with minimal programming knowledge.

Keywords Image registration · 2D in 3D localization · Deep learning · Mouse Brain Mapping

Introduction

Accurate quantitative and comparative analysis of the ana-
tomical organization of neural circuits of the mouse brain 
at single-cell resolution is key to elucidate brain functions 

(Paşca, 2018). In order to standardize and globalize studies 
across subjects and different modalities, it is crucial to map 
the experimental brain data to a common coordinate space 
(Lein et al., 2007; Oh et al., 2014; Papp et al., 2014).

Existing mapping methods and tools fall under two major 
categories: (I) mapping 2D histological mouse brain slice 
images (MBI) to standard 2D coronal/sagittal atlases (Pallast 
et al., 2019; Iqbal et al., 2019; Abdelmoula et al., 2014; 
Piluso et al., 2021; Wang et al., 2022; Majka & Wójcik, 2016) 
or (II) partial or whole 3D reconstruction of a series of MBIs 
and then performing 3D-3D registration (Ni et al., 2020; 
Kim et al., 2015; Wang et al., 2021; Niedworok et al., 2016; 
Renier et al., 2016; Qu et al., 2022; Jin et al., 2022). With 
approach (I), prior to the registration step, it is necessary to 
specify the correct atlas plane matching the histological MBI. 
Despite the progress in this field, this pre-step is still done 
manually by the human expert based on visual similarity. 
This task is challenging and often inaccurately performed 
since brain slices often have non-standard slicing angles 
(Fig. 1a). A slightly tilted brain slice can have substantially 
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different anatomical regions compared with the standard 
axis reference atlas, which is often neglected during 
conventional analysis. Moreover, localizing the MBIs along 
the brain anteroposterior (AP) axis is highly dependent on the 
professional knowledge of the operator, which can introduce 
a significant bias (Tappan et al., 2019). The drawback of 
approach (II) is that 3D reconstruction and registration 
methods are computationally expensive and require a set 
of consecutive MBIs, which are not always available. In 
practice, acquired brain datasets are often incomplete due to 
the researcher’s particular interest in specific brain regions, 
limited resources, or artifacts during the brain slicing process.

Considering the drawbacks of the aforementioned 
approaches, a more suitable and efficient solution is the 
localization of 2D MBIs in the 3D atlas space (Fig. 1b). 2D 
to 3D localization allows the acquisition of custom atlas 
planes that match the slice plane orientation and provide 
superior anatomical precision. The angles to consider 
when calculating the orientation of the brain slice are the 
mediolateral angle around the dorsal-to-ventral axis and 
the dorsoventral angle along the left-to-right axis, � and � , 
respectively (Fig. 1d). Several studies have addressed the 
localization of 2D MBIs in the 3D reference space (Puchades 
et al., 2019; Xiong et al., 2018; Tappan et al., 2019; Song 
et al., 2020; Agarwal et al., 2017). Some studies consider the 
slicing angle and allow tilted atlas extraction, but the angle 
selection is done manually (Puchades et al., 2019; Agarwal 
et al., 2017). Other studies use an automatic approach (Xiong  

et al., 2018; Song et al., 2020), but the iterative nature of the 
methods is computationally expensive and slow. One study 
used a deep learning (DL) model to predict the coordinates 
of the MBIs in the reference space but assumed a uniform 
slicing angle for all slices (Carey et al., 2022).

After the atlas plane is determined, it is necessary to 
perform 2D registration between the MBI and the obtained 
atlas. Image registration methods are extensively studied 
in medical images (Maintz & Viergever, 1998) and brain 
science (Niedworok et al., 2016). Some computational tools 
have been developed to automate the 2D-2D MBI registration 
using deformable registration algorithms (Abdelmoula 
et al., 2014; Xiong et al., 2018; Tappan et al., 2019; Song 
et  al.,  2020; Agarwal et  al. 2017). Other studies have 
attempted to automate it using deep learning approaches 
(Krepl et al., 2021). Although the automatic approaches show 
promising results, they do not always perform well when 
histological images contain major artifacts. Furthermore, 
they require advanced programming knowledge to be used 
in practice.

Ardent (Neurodata, 2023; Tward et al., 2019) is an open-
source registration module based on large deformation dif-
feomorphic metric mapping (LDDMM) (Beg et al., 2005), 
outperforming other methods for mouse brain image reg-
istration (Bai et  al.,  2012). Ardent has advanced features 
including artifact detection and cross-modal support for  
registering images with different types of contrast. How-
ever, although it performs well with outer contours, it fails to 

Fig. 1  a Examples of histologi-
cal MBIs sliced at non-standard 
angles. b Demonstration of the 
axes in the 3D mouse brain 
space: x-axis = left-to-right, 
y-axis = dorsal-to-ventral and 
z-axis = anterior-to-posterior, 
and the origin of the coordinate 
system. c Categorization of the 
MBIs based on the position 
along the z-axis d Definition of 
the mediolateral angle ( � ) and 
the dorsoventral angle ( � ) in the 
horizontal and sagittal views, 
respectively. e Examples of an 
MBI (purple) superimposed on 
the registered atlas (green) using 
Ardent registration showing 
mismatch of the internal struc-
tures (dashed white markings)
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consistently register finer inner structures accurately, with-
out manual hyperparameter tuning (Fig. 1e).

In this paper, we present AMBIA (Accurate Mouse Brain 
Image Analysis), a computational tool for localization and 
registration of 2D histological MBI in the 3D reference 
space. AMBIA has a modular design and consists of a locali-
zation and a registration module. The localization module is 
an automated DL-based pipeline that finds the position and 
orientation of the 2D histological MBI in the 3D brain model 
and generates a precise matching 2D atlas plane sliced from 
the 3D atlas.

In the AMBIA registration module, we extend the func-
tionality of the Ardent package to improve the registration 
on inner structures. We demonstrate the advantage of our 
method, by comparing the results of fully automatic regis-
tration and our hybrid registration method. Moreover, we 
validate the accuracy of this hybrid registration method, by 
comparing the results to fully manual registration by human 
experts as ground truth.

This paper presents a computational tool for the locali-
zation and registration of 2D MBIs in a 3D reference atlas 
space with minimal human intervention. Furthermore, the 
tool has an intuitive graphical user interface (GUI), to ease 
the use in practice.

Materials and Methods

AMBIA mainly consists of two modules; the localization 
module and the registration module (Fig. 2). The first mod-
ule consists of an automated DL-based pipeline that finds 
the position and orientation of the 2D histological MBI, 
including slicing angles and location in the AP axis of the 
brain. The module then generates a matching atlas plane by 
virtually slicing the 3D atlas. The registration module then 
registers the generated atlas to the input 2D MBI. The details 
of the data and methods used in the localization and the 
registration modules are described in the following sections.

Fig. 2  Diagram showing key steps in the workflow of AMBIA’s 
localization and registration modules. The localization module calcu-
lates the AP position d and slicing angles � , � of the input histologi-
cal MBI, based on the single label value and the quadrant/quintant 
label values. It consecutively extracts a 2D atlas by virtually slicing 

the 3D atlas with the calculated plane coordinates [ � , � , d]. The reg-
istration module then registers the 2D atlas to the MBI using an auto-
matic deformable registration followed by optional manual landmark 
(LM)-based refinement by the user
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Data and Resources

All animal procedures were performed according to insti-
tutional guidelines and were approved by the Austrian Ani-
mal Experimentation Ethics Board (animal license numbers 
2020−0.602.380, BMWFW−66.011/0123-WF/V/3b/2017) 
and in compliance with the European convention for the 
protection of vertebrate animals used for experimental and 
other scientific purposes, Animal Experiments Act 2012 
(TVG 2012) and the EU Directive 2010/63/EU.

Two different types of datasets were used for training, vali-
dation, and evaluation in this study. First type are the histo-
logical MBIs scanned in-house using a digital slide scanner 
(Pannoramic 250, 3DHISTECH ltd, Budapest, Hungary) (flu-
orescent mode, 20x magnification, 0.2 �m/pixel). Mouse sec-
tions were prepared according to previously published proce-
dures (Ramos-Prats et al., 2022). Briefly, mouse brains were 
fixed with 4% paraformaldehyde, 15% picric acid in 0.1 M 
phosphate-buffer (PB), pH 7.2−7.4. Slices were cut with a 
vibratome (Leica Microsystems VT1000S, Vienna, Austria) at 
a thickness of 50 � m. Some of the sections were processed for 
immunofluorescence and then mounted onto gelatin-coated 
slides and coverslipped with Vectashield (Vector Laborato-
ries) or ProLong Diamond (Thermo Fisher Scientific).

Second type are the serial two-photon tomography 
(STPT) (Ragan et al., 2012) MBI acquired from transgenic 
line datasets available at Allen Institute’s Online Public 
Resource. Please see Table A1 in the Online Resource 1 for 
a complete list of the transgenic lines used.

In this study, two reference atlases were utilized. First, 
the Allen Reference Atlas (ARA), is a standard set of 2D 
coronal slices derived from the Allen Institute’s original 
adult mouse brain atlas, version 2 (2011) (Allen Institute). 
Second, the Allen Common Coordinate Framework atlas 
(CCFv3) (Wang et al., 2020), is a 3D atlas employed for 
the development of our atlas slicer algorithm and will be 
referred to as the ACCF. Both atlases are annotated digital 

resources that delineate and color-code anatomical brain 
regions, complemented by a systematic and hierarchically 
organized taxonomy of mouse brain structures.

ARA consists of 132 coronal sections evenly spaced at 
100 � m intervals and annotated to detail for numerous brain 
structures. The 3D ACCF is available at four resolution levels 
(100 � m, 50 � m, 25 � m, and 10 � m) in the Allen institute API 
(Allen Institute). Here we used the 3D ACCF at 10 � m resolution.

Localization Module and Atlas Generation

The AMBIA localization module predicts the exact position d 
and the plane angles [ � , � ] of the input MBI in the 3D ACCF 
space. We consider d to be the distance from the origin (Fig. 1b) 
to the geometric center of the atlas image along the AP axis of 
the brain. Because of anatomical structural differences occurring 
in the MBIs across the AP axis, for our approach, we categorized 
the MBIs into three different groups. The categories based on 
the ARA numbering system are as follows: group A: 1-22, group 
B and B’: 23-83 and 104-132, and group C: 84-103 (Fig. 1c). 
Examples of MBIs for each group are shown in Fig. 3a.

Figure 2 illustrates the localization module pipeline. The 
Single Label (SL) predictor is a convolutional neural net-
work (CNN) regression model that inputs the 2D MBI and 
detects approximately the position of the slicing plane along 
the AP axis without considering the slicing angle. For this 
purpose, we trained a ResNet50V2 (He et al., 2016) architec-
ture on 4778 images of MBIs, 20% of which were used as a 
validation set. All the MBIs were manually labeled by three 
experts with the corresponding Allen atlas section number. 
The loss function used in the regression model was the Mean 
Absolute Error (MAE), where a prediction is more penalized 
the further away it is from the actual ground truth.

As a measure of performance for the SL predictor, we 
used group accuracy, which computes the accuracy of cor-
rect group attribution for each image.

Fig. 3  a Examples of dataset 
used for training the localization 
module, categorized based on 
the position of MBIs along the 
AP axis into groups A, B, C and 
B’ images b Examples of MBI 
used for testing the registration 
module, categorized based on 
artifact levels into level 1, 2 
and 3
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Fig. 4  Processing workflow of the localization module for different 
MBI groups. a Group A images are processed via an automatic seg-
mentation method. The group A segmentation model segments brain 
regions without the need for an atlas. b Group B and B’ images are 

split into 4 quadrants and then fed into the QL predictor. c Group C 
images are split into 5 quintants using the help of the group C seg-
mentation algorithm, and then fed into the QL predictor

Due to limited anatomical structures in group A MBIs, 
we decided to use segmentation for this group of images 
instead of proceeding with atlas assignment (Fig. 4a). A 
U-Net architecture model (Ronneberger et al., 2015) was 

trained on 192 grayscale 256x256 pixels MBIs with ARA 
numbers between 1-22. Two experts annotated the images 
with the following anatomical regions: Main olfactory 
bulb outer plexiform layer (MOBopl), Main olfactory bulb 
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granule layer (MOBgr), Main olfactory bulb glomerular 
layer (MOBgl), Accessory olfactory bulb (AOB), and fiber 
tracts.

Group B and C images are split into four (“quadrant”) 
or five (“quintant”) equal segments, respectively, as shown 
in Fig. 5a. The quadrants are fed separately into the quad-
rant/quintant label (QL) predictor to associate them to an 
atlas number referred to as Q labels [Q

i
]
i= 1∶5

 (Fig. 4b, c). 
For simplicity, the segments of the five split parts are also 
referred to as quadrants. The reason for a different split-
ting strategy between group B and C is due to the fact that 
sections from the most posterior parts of the brain, ranging 
84-103, tend to detach during the slicing process into dif-
ferent components, e.g. left and right cerebrum, and brain 
stem. This detachment creates two problems. First, the brain 
stem (Q

5
 ) is sliced at an entirely different cutting plane 

as compared to the cerebrum. Therefore, it is necessary to 
consider that the regions in these MBIs may belong to dif-
ferent ARA planes. Second, it can happen that one or two 
of these regions are lost in the cutting and staining process 
(Fig. 5b). Proper identification of these incomplete slices is 
needed to correctly attribute them to the atlas and perform 
the registration. The brain stem must be present to consider 
it an MBI.

We thus next trained a segmentation model to distinguish 
the brainstem and right and left cerebra to overcome the 
mentioned problems. The segmentation helps with identi-
fying missing regions, as well as specifying boundaries for 
cropping five quadrant images (Fig 5c). We trained a U-Net 
architecture, with a MobileNetV2 (Sandler et al., 2018) 
base model on 156 MBIs in grayscale, normalized and 
resized to 256x256 pixels. The QL predictor block consists 
of a ResNet50V2 CNN regression model trained on 10462 
cropped quadrants with their AP position as the label. Labels 
of the training data were assigned by three experts. The loss 
function is MAE similar to the one used in the SL classifier. 
The Q labels for an image were then passed to the next block 
to calculate the accurate coordinates of the 2D MBI in the 
3D ACCF space (in case of group B and B’ images Q 

5
 = 0).

For group B and B’ images, a shallow neural network 
was trained to input the Q labels and output the atlas plane 
coordinates [ � , � , d]. The model was trained on Q values of 
predictions of our model and angles predicted by the three 
experts on 250 training data.

For group C images, a multiplane atlas extraction 
approach was employed since, due to the occurrence of 
tissue separation, the atlas was extracted separately for the 
brain stem, right cerebrum, and left cerebrum in different 

Fig. 5  a Quadrant splitting and 
numbering system for group B, 
B’ (left) and C (right) images, 
b Examples of group C images, 
which are prone to detachment 
and losing the left or right 
cerebrum during process-
ing. c Group C segmentation 
model annotates the regions to 
help with identifying missing 
regions, as well as boundaries 
for cropping five quintants. 
The images are resized to 
dimensions of 256x256 pixels 
and input into the segmenta-
tion model, which detects the 
regions and their respective 
bounding boxes. Subsequently, 
the images and bounding boxes 
are resized back to their original 
size and aspect ratios
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z-planes. Due to the typical shape of the cerebrum in group 
C images, in the present study we have considered only the 
� angle. For a more accurate atlas matching, the developed 
GUI further allows a manual adjustment of the atlas num-
bers (Q

i
).

Registration Module

By digitally slicing the ACCF 3D atlas based on the coordi-
nates predicted by our localization pipeline, the 2D atlas cor-
responding to the input 2D MBI is generated. To map these 
two images, the following 2D to 2D registration approach 
was developed.

The AMBIA registration module is built upon the Ardent 
registration package (Neurodata, 2023) fully written in 
python and based on the Insight Segmentation and Regis-
tration Toolkit (ITK). In our registration approach, shown in 
Fig. 6, automatic registration is followed by landmark (LM)-
based manual refinement. As a first step, Ardent computes 
a preliminary registration to match the outer boundaries 
and general anatomical structures of the MBI and atlas. The 
transformation function M 

Ard
 can, therefore, transform the 

source image (I
S
 ) to the target image (I

T
 ), which results in 

M 
Ard

I
S
 . Ardent uses mutual information (Maes et al., 1997) 

as the similarity metric. In order for the similarity meas-
ure to perform better, prior to the registration, a simplified 
representation of the atlas image is generated, because the 
expert knowledge contained in the anatomical atlas has no 
counterpart in the visual information of the MBI. In the sim-
plified representation, only fiber tracts are contrasted with 
gray color against the plain green color background.

The user selects sets of corresponding landmarks (n = 
m, L 

m
 ) in both I 

T
 and M 

Ard
I
S
 images. The algorithm then 

automatically selects additional landmarks (n = 20, L 
a
 ) 

along the outer contour of each image to anchor the correct 
regions and enhance triangulation with more points. The 
algorithm uses each set of L 

m
 + L 

a
 landmarks to triangulate 

each image using the Delaunay’s triangulation algorithm. 
The corresponding triangles are then registered from the 
source image to the target image by an affine warp. The 
transformation function M 

LM
 can, therefore, refine the reg-

istration of the M 
Ard

I
S
 and results in M 

LM
M

Ard
I
S
.

The AMBIA GUI provides three registration methods: 
manual, automated, and semi-automated. In the manual 
method, users are required to manually select all landmarks, 
on outer and inner structures, to match the two images. This 
method is primarily utilized for generating ground truth for 
evaluating the registration, as detailed in “Evaluation Metrics” 
section. The automated method relies on the Ardent regis-
tration module to register the images. The semi-automated 
method enables users to manually refine the automatic regis-
tration executed by Ardent.

Implementation

The codes for the presented methods, are implemented in 
Python 3.7.9.

Localization module: Tensorflow 2.0 backend was used 
for training to implement the DL-based localization models. 
The training was performed on a GPU server equipped with 
a Titan V GPU card, 20 CPU cores, and 256GB of RAM. 
The prediction of the localization module on one MBI takes 
1 s on an intel Core i5 with 8GB RAM.

Registration module: to register one MBI to its corre-
sponding atlas, Ardent takes 30 s, and the LM-based regis-
tration takes 20ms after the landmark selection on an Intel 
Core i5 with 8GB RAM.

Evaluation Metrics

To evaluate the performance of our localization module, we 
utilized a test dataset comprising 108 histological MBIs, 
categorized into three artifact levels (Fig. 3b). Artifact level 
1 included 30 images with no artifacts or major morphologi-
cal changes of the brain, only exhibiting uneven staining, 
sourced from the Allen Institute’s Transgenic line datasets. 
Artifact level 2 comprised 44 images with common histo-
logical artifacts and morphological changes of the brain, 
such as tissue shrinkage and uneven staining, scanned in-
house. Lastly, artifact level 3 consisted of 34 images with 
severe histological artifacts, including tears, missing parts, 
and tissue foldings, also scanned in-house. The images were 
randomly selected from 10 distinct brains, unseen by the 
trained model. The test set images were annotated by four 
experts independently, with single and quadrant labels. The 
raters assigned a label, a numerical value ranging from 1 to 
132 to each whole section, and each quadrant separately.

Due to the interrater variations (four human raters for 
each group of test images) in labeling the atlas numbers, 
we have assessed the average label (Avg) and the standard 
deviation (SD) of their ratings. The accuracy of the mod-
ule was determined by whether its prediction fell within the 
range of Avg±2SD referred to as Accuracy 2SD. For fair 
comparison, each rater is evaluated with the same method 
against the other three raters.

To analyze the performance of our registration mod-
ule, we chose 60 slices from 3 different brains (n = 180) 
evenly distributed along the AP axis. The images were reg-
istered using three different methods (manual, automatic, 
and semi-automatic) by three experts using AMBIA. The 
ground truth registration was determined by the consensus 
of manual registration by the experts and the consensus 
region was determined using majority vote (Fig. 7). The 
registration via automatic and semi-automatic methods by 
each rater was compared to the ground truth registration 
using the Dice score metric (Dice, 1945), that is commonly 
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used to assess segmentation quality (Leung et al., 2010). 
The registration of a given rater was also compared to 
other raters to demonstrate the interrater variability. We 
performed analyses on multi-level brain structures from 
the Allen atlas. For a complete list of region names and 
abbreviations refer to Table 1.

To produce segmentation annotations for the training data 
and establish ground truth annotations for the evaluation 

of group A and group C segmentation models, two experts 
annotated the anatomical regions using an open-source seg-
mentation labeling tool (https:// label box. com).

The evaluation results were statistically analyzed using 
the Mann–Whitney U test and Levene’s test, as implemented 
in the SciPy Python package. A p-value threshold of 0.05 
was utilized to determine the significance of the differences 
observed.

Table 1  List of abbreviations 
and full name of brain regions 
selected to test the registration 
performance in levels 3, 4 and 
5, according to the hierarchical 
mouse brain structures of the 
Allen Reference Atlas

Abbr Name Abbr Name

Level 5 brain regions VIS Visual areas
MOB Main olfactory bulb PRT Pretectal region
ORB Orbital area CENT Central amygdalar nucleus
PL Prelimbic Area AN Anterolateral visual area
MO Somatomotor areas DEC Declive
AON Anterior olfactory nucleus UVU Uvula
AI Agranular insular area  Level 4 brain regions
ACA Anterior cingulate area CTXpl Cortical plate
PIR Piriform area CTXsp Cortical subplate
ILA Infralimbic area STR Striatum
STRv Striatum ventral region PAL Pallidum
STRd Striatum dorsal region TH Thalamus
SS Somatosensory areas HY Hypothalamus
LSX Lateral septal complex MBmot Midbrain, motor related
HIP Hippocampal region P Pons
VISC Visceral area MY Medulla
MTN Midline group of dorsal thalamus VERM Vermal regions
PALd Pallidum, dorsal region  Level 3 brain regions
PALv Pallidum, ventral region CTX Cerebral cortex
COA Cortical amygdalar area CNU Cerebral nuclei
MED Medial group of the dorsal thalamus IB Interbrain
RSP Retrosplenial area MB Midbrain
LAT Lateral group of the dorsal thalamus HB Hindbrain
AUD Auditory areas CBX Cerebellar cortex
RHP Retrohippocampal region CBN Cerebellar nuclei

Fig. 6  Workflow of AMBIA’s registration module. The module inputs 
the 2D MBI and 2D atlas image. The atlas image is converted into a 
simplified representation where fiber tracts are recolored to gray and 
the rest of the regions are converted to green to create a good contrast 

similar to visible anatomical structures in an MBI. Ardent registration 
is performed on the images. The user has the option to refine the reg-
istration by choosing landmarks through the GUI

https://labelbox.com
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It is important to highlight that the variation in the num-
ber of experts involved in the evaluation process is not 
attributed to any specific rationale, but rather stems from 
the availability of experts at the time the assessments were 
conducted.

Results

Performance of the Localization Module

Figure 8a demonstrates examples of tilted MBI from the test 
dataset with their matching sliced atlas image generated by 
our atlas slicer algorithm based on the coordinates predicted 
by our pipeline. The standard coronal atlas chosen by the 
raters is also displayed for comparison. It can be seen that 
the atlas generated by our pipeline largely matches the tilted 
MBI, compared to the standard coronal atlas. Some areas 
are highlighted with white circles to show the difference in 
regions when considering the slicing angle (Fig. 8a).

The performance of the SL predictor is presented in 
Fig. 8b–d.The SL predictor achieved an MAE of 48 � m 
(Fig. 8b).The SL predictor had no statistically significant 
difference to raters 3 and 4 (Mann–Whitney U-test, p-value 
= 0.183 and 0.918). Figure 8c shows group accuracy of four 

raters compared to the SL predictor separated for different 
artifact groups. The average group accuracy over all artifact 
levels is displayed with a dashed line. The SL predictor had 
an average group accuracy of 94.62% for images with arti-
fact level 1 and 2, and 88.8% for all artifact levels (Fig. 8c). 
It was observed, as shown in Fig. 8d, that the average SD of 
annotations by human raters were higher in group B and C 
images as compared to the other two groups.

The performance of the QL predictor is presented in 
Fig. 8e–g. The QL predictor achieved an average MAE of 
102 � m (Fig. 8e). It had no statistical significant difference 
to the performance of raters 2, 3 and 4 (Mann–Whitney 
U-test, p-value = 0.890, 0.123 and 0.585). Figure 8f shows 
Accuracy 2SD of four raters compared to the QL predictor 
separated for different artifact groups. The average Accuracy 
2SD over all artifact levels is displayed with a dashed line. 
The QL predictor had an average Accuracy 2SD of 86%.

Human raters had an average SD of 87 � m, 96 � m, and 
137 � m in labeling images with artifacts of level 1, 2, and 
3, respectively (Fig. 8g). This means that the more the sec-
tions were distorted or damaged, the higher the inter-rater 
variability was. We also evaluated the performance of the 
shallow neural network for the final prediction on the test 
set. The results showed an MAE of 0.27° and 0.86° for � and 
� angles, respectively.

Fig. 7  Examples of four anatomical structures out of 30 structures 
chosen to assess the performance of the registration module. For each 
brain structure highlighted region on the Allen coronal atlas plane, 

the segmentation outlines as a result of the registration of the three 
raters (dim colored lines) the consensus outline for the same structure 
(bold colored line) determined by the majority vote, are shown
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Assessment of the Segmentation

The segmentation models for group A and group C were 
assessed by comparing their segmentation predictions with 
the expert annotations for their respective test data using the 
Dice score metric.

The group A segmentation model was evaluated on 20 
images of group A MBI. The mean Dice score for all regions 

was 0.924. The Dice scores for separate regions of group A 
images was 0.92 ± 0.044. Figure 9 shows six images from 
the test set on the first row, the region annotation labels by 
an expert, and segmentations by our model in the second and 
third rows, respectively. It can be seen that the model is able to 
accurately segment these anatomical brain regions. The group 
C segmentation model was evaluated on 20 images of group 
C. It displayed a 100% accuracy in correct region detection 
and achieved a Dice score of 0.90 and 0.98 for pixel-wise 
segmentation and bounding box detection, respectively.

Assessment of the Registration

The accuracy of the AMBIA registration module was 
assessed by comparing the results of the registration to a 
consensus of manual registration considered as the ground 
truth, based on the comparison of Dice scores for multi-level 
brain regions. The results of this comparison are shown in 
the boxplots in Fig. 10a. When pooling the scores of all 
structures, the average Dice score was 0.86, 0.76, 0.80 for 
level 3, level 4, and level 5 regions (see Table 1) respectively. 
Figure 10c shows, when averaged over all regions, the semi-
automatic method of AMBIA registration had a significant 
improvement over the automatic method (average Dice 
score of 0.80 versus 0.76, Mann–Whitney U-test, p-value = 

Fig. 8  a Qualitative and visual evaluation of the performance of the 
localization module. First row) Histological MBIs from the test set. 
Second row) the atlas is sliced based on the coordinates and angles 
predicted by our pipeline. Third row) the atlas is extracted from 
standard 2D coronal atlas planes without considering the section 
angles. The white markings highlight the areas where a tilted atlas 
section has considerable structural difference to the reference coro-
nal atlas plane. b MAE of the SL predictor compared with the four 
raters, which is statistically non-significant to raters 3 and 4. c Group 
Accuracy comparison between four raters and the SL predictor across 
different artifact groups. The dashed line represents the average group 
accuracy for all artifact levels. d The average standard deviation of 
the four raters evaluated in different AP positions. e MAE of the SL 
predictor compared with the four raters, which is statistically non-
significant to raters 2, 3 and 4. f Accuracy 2SD comparison between 
four raters and the QL predictor across different artifact groups. The 
dashed line represents the average group accuracy for all artifact lev-
els. g Average standard deviation of the four raters evaluated in differ-
ent artifact levels

◂

Fig. 9  Performance of the group A segmentation model on six test 
images (first row), expert annotation (second row) compared to the 
segmentation model performance (third row). Due to limited anatom-

ical structures in group A MBIs, we decided to use segmentation for 
this group of images. The segmentation model segments five anatom-
ical regions MOBgr, MOBopl, MOBgl, AOB, fibertracts
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Fig. 10  Multi-level assessment of the performance of the AMBIA 
registration module. a Boxplots of dice scores for the automatic 
(green) and semi-automatic (white) registration methods compared 
to the ground truth for level 5 brain regions. b shows a similar com-
parison for level 4 and level 3 brain regions. c Comparison of man-

ual annotations by three raters for three different test brains. d The 
average (thick line) and range of number of landmarks (shaded area) 
selected by the four raters for different MBI along the AP axis for the 
manual and semi-automatic methods. e Average dice score for the 
semi-automatic and automatic registration along the AP axis

0.0091). In comparison, the manual annotations made by the 
raters had an average Dice score of 0.71 compared to other 
raters, indicating a moderate degree of interrater variability 

(Fig. 10d). It is worth noting that for regions of level 3 and 4, 
the semi-automatic and automatic methods gave rise to very 
similar results, but for level 5 regions, the semi-automatic 
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method outperformed the automatic Ardent registration. In 
addition, for larger regions such as the MO and SS, the dif-
ference in performance between the two methods was not 
as considerable, but in smaller regions such as the MTN 
and the PRT, the difference was more pronounced (Fig 10a, 
b). In addition, when comparing the test image groups with 
varying artifact levels, the semi-automated method exhibited 
the highest accuracy for the group with an artifact level of 3.

Figure 10e illustrates the number of landmarks that the 
users selected in the manual and semi-automatic meth-
ods, with an average of 60 landmarks chosen in the man-
ual method and an average of 10 landmarks chosen in the 
semi-automatic method. Manual landmark selection took an 
average of 120 s, while semi-automatic landmark selection 
required an average of 40 s. Figure 10f shows that along the 
AP axis, the semi-automatic method had a more consistent 
performance than the automatic method (Levene’s test on 
pooled scores; p-value = 0.035).

Figure 11 demonstrates the ability of the registration module 
to correct misalignment in MBI, as well as the utility of user 
input in improving the accuracy of the registration. Dashed 
white markings are used to highlight some regions to show the 
advantage of manual refinement in the inner structures.

Discussion

The recent development of brain-wide neural circuit labeling 
techniques (Lin et al., 2018; Wang et al., 2019), such as mono-
trans-synaptic tracing (Ramos-Prats et al., 2022; Miyamichi 

et al., 2011) and activity mapping (Roy et al., 2022), as well 
as the escalation in experiments employing viral transduction 
of distinct neuronal populations, that require their mapping 
to precise brain areas, have increased the demand for the 
development of accurate and automated tools aimed at the 
anatomical segmentation of individual 2D MBIs. Attempts 
to map brain anatomical data to an annotated reference atlas 
depends critically on localization and registration. However, 
this procedure can be problematic due to variations in brain 
shape and regions caused by tissue processing, as well as 
intrinsic biological differences among brains.

To address these issues, we introduce AMBIA, a tool for 
the localization and registration of 2D histological MBIs 
with minimal human intervention. The proposed method 
not only localizes the MBI in the 3D brain along the AP 
axis, but also calculates the slicing angle, considerably faster 
compared to 3D reconstruction approaches. A preliminary 
version of AMBIA has already been used earlier (Ramos-
Prats et al., 2022).

By comparing the tilted atlases to the coronal atlases, it 
can be observed that the precision of the anatomical struc-
ture of the annotated atlas can benefit considerably from 
taking the slicing angle of the slice into account. In addition, 
the pipeline can assign multi-plane atlases to MBIs with 
unconnected parts. This is especially beneficial for slices 
taken from the midbrain, where the brain stem can detach 
from the cerebrum during the slide preparation process.

Our results suggest that AMBIA’s semi-automatic regis-
tration method has comparable accuracy to manual experts, 
while also offering the great advantage of saving time and 

Fig. 11  Qualitative evaluation of the registration module. The images 
show the original MBI, the automatically registered image, and the 
corrected and refined registration obtained using landmark-based 
refinement. The MBI (purple) is superimposed on the registered atlas 
image (green). The figure demonstrates the ability of the registration 

module to identify and correct misalignment in MBI, as well as the 
utility of user input in improving the accuracy of the registration. 
Dashed white markings are used to highlight some regions to show 
the advantage of manual refinement in the inner structures
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effort. Our comparison of semi-automatic and automatic 
registration methods indicates that the semi-automatic 
method offers higher accuracy compared to the automatic 
one, particularly in level 5 regions. When examining the 
results grouped by artifact level, we found that higher inter-
rater variability in images with an artifact level of 3 may 
account for the higher accuracy of the AMBIA registration 
module in this group. Additionally, when comparing the 
outcomes of region groups with different hierarchical lev-
els, it was observed that level 5 regions exhibited a higher 
Dice score than level 4 regions. This may be partially due 
to the greater number of smaller regions which tend to have 
higher inter-rater variability in expert annotations. This vari-
ability leads to a consensus region that covers a larger area, 
subsequently increasing the Dice score. It is appropriate to 
point out the limitations of our tool, AMBIA, in terms of 
accuracy and generalizability. One limitation of the locali-
zation module is the higher error in detecting the � com-
pared to the � angle. The high symmetry in the two brain 
hemispheres facilitates the identification of the � angle in 
the left-right axis, whereas the � angle is harder to define 
for human raters because of the lack of clear landmarks in 
distinct areas in the AP axis. Since the model is trained on 
human-annotated data, it is similarly biased towards lower 
accuracy on � . Second, while the current implementation is 
tailored specifically to the Allen CCFv3 atlas, it is conceiv-
able that the approach could be modified for use with other 
atlas frameworks. However, this would require considerable 
modifications to accommodate different atlas structures and 
coordinate systems. Despite these limitations, we hope that 
our work can inspire researchers to adapt our approach for 
a broader range of atlases and templates, thereby expand-
ing the applicability of the methodology to a wider array of 
research contexts.

It is worth mentioning that while the present study 
focuses on histological MBIs scanned with a digital slide 
scanner, our methods have the potential to be applied to a 
variety of other modalities and domains. The normalization, 
downsampling, and grayscale transformation of the images 
used to train the localization module suggest that it may 
perform with similar accuracy on MBI scanned using differ-
ent scanners and stained using various staining procedures. 
Similarly, the use of a simplified version of an atlas in the 
registration module suggests that it may be able to register a 
wide range of datasets that exhibit the anatomical features of 
brain regions, including MRI images. Future research could 
explore the validity and generalizability of these methods in 
these and other contexts.

Finally, one notable feature of AMBIA is its modular 
design, which allows for the integration of various cell 
detection methods through the use of a placeholder mod-
ule in the pipeline. This flexibility enables researchers to 

employ a range of analyses to suit the needs of their specific 
study. To facilitate the wider use of AMBIA in practice, we 
have implemented all of its functionalities and modules in 
a GUI that is easy to use and requires minimal program-
ming knowledge. Figures A1-6 in the Online Resource 2 
present the GUI screenshots representing various stages of 
the process.

Information Sharing Statement

Our pipeline is made open access for the scientific commu-
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ardent. A modified version of Ardent is integrated in the 
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