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Abstract

To accurately explore the anatomical organization of neural circuits in the brain, it is crucial to map the experimental brain
data onto a standardized system of coordinates. Studying 2D histological mouse brain slices remains the standard procedure
in many laboratories. Mapping these 2D brain slices is challenging; due to deformations, artifacts, and tilted angles intro-
duced during the standard preparation and slicing process. In addition, analysis of experimental mouse brain slices can be
highly dependent on the level of expertise of the human operator. Here we propose a computational tool for Accurate Mouse
Brain Image Analysis (AMBIA), to map 2D mouse brain slices on the 3D brain model with minimal human intervention.
AMBIA has a modular design that comprises a localization module and a registration module. The localization module is a
deep learning-based pipeline that localizes a single 2D slice in the 3D Allen Brain Atlas and generates a corresponding atlas
plane. The registration module is built upon the Ardent python package that performs deformable 2D registration between
the brain slice to its corresponding atlas. By comparing AMBIA’s performance in localization and registration to human
ratings, we demonstrate that it performs at a human expert level. AMBIA provides an intuitive and highly efficient way for
accurate registration of experimental 2D mouse brain images to 3D digital mouse brain atlas. Our tool provides a graphical
user interface and it is designed to be used by researchers with minimal programming knowledge.
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Introduction

Accurate quantitative and comparative analysis of the ana-
tomical organization of neural circuits of the mouse brain
at single-cell resolution is key to elucidate brain functions
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(Pasca, 2018). In order to standardize and globalize studies
across subjects and different modalities, it is crucial to map
the experimental brain data to a common coordinate space
(Lein et al., 2007; Oh et al., 2014; Papp et al., 2014).
Existing mapping methods and tools fall under two major
categories: (I) mapping 2D histological mouse brain slice
images (MBI) to standard 2D coronal/sagittal atlases (Pallast
et al., 2019; Igbal et al., 2019; Abdelmoula et al., 2014;
Piluso et al., 2021; Wang et al., 2022; Majka & Wojcik, 2016)
or (II) partial or whole 3D reconstruction of a series of MBIs
and then performing 3D-3D registration (Ni et al., 2020;
Kim et al., 2015; Wang et al., 2021; Niedworok et al., 2016;
Renier et al., 2016; Qu et al., 2022; Jin et al., 2022). With
approach (I), prior to the registration step, it is necessary to
specify the correct atlas plane matching the histological MBI
Despite the progress in this field, this pre-step is still done
manually by the human expert based on visual similarity.
This task is challenging and often inaccurately performed
since brain slices often have non-standard slicing angles
(Fig. 1a). A slightly tilted brain slice can have substantially
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Fig. 1 a Examples of histologi-

cal MBIs sliced at non-standard
angles. b Demonstration of the
axes in the 3D mouse brain
space: x-axis = left-to-right,
y-axis = dorsal-to-ventral and
z-axis = anterior-to-posterior,
and the origin of the coordinate
system. ¢ Categorization of the
MBIs based on the position
along the z-axis d Definition of
the mediolateral angle () and
the dorsoventral angle (/) in the
horizontal and sagittal views,
respectively. e Examples of an
MBI (purple) superimposed on
the registered atlas (green) using
Ardent registration showing

mismatch of the internal struc-

tures (dashed white markings)

different anatomical regions compared with the standard
axis reference atlas, which is often neglected during
conventional analysis. Moreover, localizing the MBIs along
the brain anteroposterior (AP) axis is highly dependent on the
professional knowledge of the operator, which can introduce
a significant bias (Tappan et al., 2019). The drawback of
approach (II) is that 3D reconstruction and registration
methods are computationally expensive and require a set
of consecutive MBIs, which are not always available. In
practice, acquired brain datasets are often incomplete due to
the researcher’s particular interest in specific brain regions,
limited resources, or artifacts during the brain slicing process.

Considering the drawbacks of the aforementioned
approaches, a more suitable and efficient solution is the
localization of 2D MBIs in the 3D atlas space (Fig. 1b). 2D
to 3D localization allows the acquisition of custom atlas
planes that match the slice plane orientation and provide
superior anatomical precision. The angles to consider
when calculating the orientation of the brain slice are the
mediolateral angle around the dorsal-to-ventral axis and
the dorsoventral angle along the left-to-right axis, & and f,
respectively (Fig. 1d). Several studies have addressed the
localization of 2D MBIs in the 3D reference space (Puchades
et al., 2019; Xiong et al., 2018; Tappan et al., 2019; Song
et al., 2020; Agarwal et al., 2017). Some studies consider the
slicing angle and allow tilted atlas extraction, but the angle
selection is done manually (Puchades et al., 2019; Agarwal
et al., 2017). Other studies use an automatic approach (Xiong
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et al., 2018; Song et al., 2020), but the iterative nature of the
methods is computationally expensive and slow. One study
used a deep learning (DL) model to predict the coordinates
of the MBISs in the reference space but assumed a uniform
slicing angle for all slices (Carey et al., 2022).

After the atlas plane is determined, it is necessary to
perform 2D registration between the MBI and the obtained
atlas. Image registration methods are extensively studied
in medical images (Maintz & Viergever, 1998) and brain
science (Niedworok et al., 2016). Some computational tools
have been developed to automate the 2D-2D MBI registration
using deformable registration algorithms (Abdelmoula
et al., 2014; Xiong et al., 2018; Tappan et al., 2019; Song
et al., 2020; Agarwal et al. 2017). Other studies have
attempted to automate it using deep learning approaches
(Krepl et al., 2021). Although the automatic approaches show
promising results, they do not always perform well when
histological images contain major artifacts. Furthermore,
they require advanced programming knowledge to be used
in practice.

Ardent (Neurodata, 2023; Tward et al., 2019) is an open-
source registration module based on large deformation dif-
feomorphic metric mapping (LDDMM) (Beg et al., 2005),
outperforming other methods for mouse brain image reg-
istration (Bai et al., 2012). Ardent has advanced features
including artifact detection and cross-modal support for
registering images with different types of contrast. How-
ever, although it performs well with outer contours, it fails to
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consistently register finer inner structures accurately, with-
out manual hyperparameter tuning (Fig. le).

In this paper, we present AMBIA (Accurate Mouse Brain
Image Analysis), a computational tool for localization and
registration of 2D histological MBI in the 3D reference
space. AMBIA has a modular design and consists of a locali-
zation and a registration module. The localization module is
an automated DL-based pipeline that finds the position and
orientation of the 2D histological MBI in the 3D brain model
and generates a precise matching 2D atlas plane sliced from
the 3D atlas.

In the AMBIA registration module, we extend the func-
tionality of the Ardent package to improve the registration
on inner structures. We demonstrate the advantage of our
method, by comparing the results of fully automatic regis-
tration and our hybrid registration method. Moreover, we
validate the accuracy of this hybrid registration method, by
comparing the results to fully manual registration by human
experts as ground truth.

Input 2D Image:
Single MBI

yes /Registration

approved by
the user

This paper presents a computational tool for the locali-
zation and registration of 2D MBIs in a 3D reference atlas
space with minimal human intervention. Furthermore, the
tool has an intuitive graphical user interface (GUI), to ease
the use in practice.

Materials and Methods

AMBIA mainly consists of two modules; the localization
module and the registration module (Fig. 2). The first mod-
ule consists of an automated DL-based pipeline that finds
the position and orientation of the 2D histological MBI,
including slicing angles and location in the AP axis of the
brain. The module then generates a matching atlas plane by
virtually slicing the 3D atlas. The registration module then
registers the generated atlas to the input 2D MBI. The details
of the data and methods used in the localization and the
registration modules are described in the following sections.
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Fig.2 Diagram showing key steps in the workflow of AMBIA’s
localization and registration modules. The localization module calcu-
lates the AP position d and slicing angles «, # of the input histologi-
cal MBI, based on the single label value and the quadrant/quintant
label values. It consecutively extracts a 2D atlas by virtually slicing

e 2D Slice of Atlas

the 3D atlas with the calculated plane coordinates [a, f#, d]. The reg-
istration module then registers the 2D atlas to the MBI using an auto-
matic deformable registration followed by optional manual landmark
(LM)-based refinement by the user
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Data and Resources

All animal procedures were performed according to insti-
tutional guidelines and were approved by the Austrian Ani-
mal Experimentation Ethics Board (animal license numbers
2020—0.602.380, BMWFW=66.011/0123-WF/V/3b/2017)
and in compliance with the European convention for the
protection of vertebrate animals used for experimental and
other scientific purposes, Animal Experiments Act 2012
(TVG 2012) and the EU Directive 2010/63/EU.

Two different types of datasets were used for training, vali-
dation, and evaluation in this study. First type are the histo-
logical MBIs scanned in-house using a digital slide scanner
(Pannoramic 250, 3DHISTECH Itd, Budapest, Hungary) (flu-
orescent mode, 20x magnification, 0.2 um/pixel). Mouse sec-
tions were prepared according to previously published proce-
dures (Ramos-Prats et al., 2022). Briefly, mouse brains were
fixed with 4% paraformaldehyde, 15% picric acid in 0.1 M
phosphate-buffer (PB), pH 7.2—7.4. Slices were cut with a
vibratome (Leica Microsystems VT1000S, Vienna, Austria) at
a thickness of 50 um. Some of the sections were processed for
immunofluorescence and then mounted onto gelatin-coated
slides and coverslipped with Vectashield (Vector Laborato-
ries) or ProLong Diamond (Thermo Fisher Scientific).

Second type are the serial two-photon tomography
(STPT) (Ragan et al., 2012) MBI acquired from transgenic
line datasets available at Allen Institute’s Online Public
Resource. Please see Table A1l in the Online Resource 1 for
a complete list of the transgenic lines used.

In this study, two reference atlases were utilized. First,
the Allen Reference Atlas (ARA), is a standard set of 2D
coronal slices derived from the Allen Institute’s original
adult mouse brain atlas, version 2 (2011) (Allen Institute).
Second, the Allen Common Coordinate Framework atlas
(CCFv3) (Wang et al., 2020), is a 3D atlas employed for
the development of our atlas slicer algorithm and will be
referred to as the ACCF. Both atlases are annotated digital

resources that delineate and color-code anatomical brain
regions, complemented by a systematic and hierarchically
organized taxonomy of mouse brain structures.

ARA consists of 132 coronal sections evenly spaced at
100 ym intervals and annotated to detail for numerous brain
structures. The 3D ACCEF is available at four resolution levels
(100 pm, 50 ym, 25 pm, and 10 pm) in the Allen institute API
(Allen Institute). Here we used the 3D ACCF at 10 ym resolution.

Localization Module and Atlas Generation

The AMBIA localization module predicts the exact position d
and the plane angles [a, f] of the input MBI in the 3D ACCF
space. We consider d to be the distance from the origin (Fig. 1b)
to the geometric center of the atlas image along the AP axis of
the brain. Because of anatomical structural differences occurring
in the MBIs across the AP axis, for our approach, we categorized
the MBIs into three different groups. The categories based on
the ARA numbering system are as follows: group A: 1-22, group
B and B’: 23-83 and 104-132, and group C: 84-103 (Fig. 1c).
Examples of MBIs for each group are shown in Fig. 3a.

Figure 2 illustrates the localization module pipeline. The
Single Label (SL) predictor is a convolutional neural net-
work (CNN) regression model that inputs the 2D MBI and
detects approximately the position of the slicing plane along
the AP axis without considering the slicing angle. For this
purpose, we trained a ResNet50V2 (He et al., 2016) architec-
ture on 4778 images of MBIs, 20% of which were used as a
validation set. All the MBIs were manually labeled by three
experts with the corresponding Allen atlas section number.
The loss function used in the regression model was the Mean
Absolute Error (MAE), where a prediction is more penalized
the further away it is from the actual ground truth.

As a measure of performance for the SL predictor, we
used group accuracy, which computes the accuracy of cor-
rect group attribution for each image.

Fig.3 a Examples of dataset
used for training the localization
module, categorized based on
the position of MBIs along the
AP axis into groups A, B, C and
B’ images b Examples of MBI
used for testing the registration
module, categorized based on
artifact levels into level 1, 2

and 3
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a) Categorization of MBI based on AP position
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Due to limited anatomical structures in group A MBIs,
we decided to use segmentation for this group of images
instead of proceeding with atlas assignment (Fig. 4a). A
U-Net architecture model (Ronneberger et al., 2015) was

a) Group A processing

Image
Pre-processing

|

Single Label
Predictor

b) Group B and B’ processing

'G'w'l'l p'A' Group A
o o hid ‘ segmenter l

trained on 192 grayscale 256x256 pixels MBIs with ARA
numbers between 1-22. Two experts annotated the images
with the following anatomical regions: Main olfactory
bulb outer plexiform layer (MOBopl), Main olfactory bulb

\ 4

3 Image
Pre-processing
D 0 Atlas
T
- spiaer Quadrant Label
Predictor
AP pos & Angel
Predictor
c) Group C processing
Image
Pre-processing
. Atlas
Single Label Slicer
Predictor
Quadrant Label
Predictor

Fig.4 Processing workflow of the localization module for different
MBI groups. a Group A images are processed via an automatic seg-
mentation method. The group A segmentation model segments brain
regions without the need for an atlas. b Group B and B’ images are

5 part
splitter

Group C Segmenter

AP pos & Angel
Predictor

split into 4 quadrants and then fed into the QL predictor. ¢ Group C
images are split into 5 quintants using the help of the group C seg-
mentation algorithm, and then fed into the QL predictor
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granule layer (MOBgr), Main olfactory bulb glomerular
layer (MOBgl), Accessory olfactory bulb (AOB), and fiber
tracts.

Group B and C images are split into four (“quadrant’)
or five (“quintant”) equal segments, respectively, as shown
in Fig. 5a. The quadrants are fed separately into the quad-
rant/quintant label (QL) predictor to associate them to an
atlas number referred to as Q labels [Q;];_ ;.5 (Fig. 4b, c).
For simplicity, the segments of the five split parts are also
referred to as quadrants. The reason for a different split-
ting strategy between group B and C is due to the fact that
sections from the most posterior parts of the brain, ranging
84-103, tend to detach during the slicing process into dif-
ferent components, e.g. left and right cerebrum, and brain
stem. This detachment creates two problems. First, the brain
stem (Qs) is sliced at an entirely different cutting plane
as compared to the cerebrum. Therefore, it is necessary to
consider that the regions in these MBIs may belong to dif-
ferent ARA planes. Second, it can happen that one or two
of these regions are lost in the cutting and staining process
(Fig. 5b). Proper identification of these incomplete slices is
needed to correctly attribute them to the atlas and perform
the registration. The brain stem must be present to consider
it an MBI

Fig.5 a Quadrant splitting and
numbering system for group B,
B’ (left) and C (right) images,
b Examples of group C images,
which are prone to detachment
and losing the left or right
cerebrum during process-

ing. ¢ Group C segmentation
model annotates the regions to
help with identifying missing
regions, as well as boundaries
for cropping five quintants.
The images are resized to
dimensions of 256x256 pixels
and input into the segmenta-
tion model, which detects the
regions and their respective
bounding boxes. Subsequently,
the images and bounding boxes
are resized back to their original
size and aspect ratios

(b)

(c)
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We thus next trained a segmentation model to distinguish
the brainstem and right and left cerebra to overcome the
mentioned problems. The segmentation helps with identi-
fying missing regions, as well as specifying boundaries for
cropping five quadrant images (Fig 5c). We trained a U-Net
architecture, with a MobileNetV2 (Sandler et al., 2018)
base model on 156 MBIs in grayscale, normalized and
resized to 256x256 pixels. The QL predictor block consists
of a ResNet50V2 CNN regression model trained on 10462
cropped quadrants with their AP position as the label. Labels
of the training data were assigned by three experts. The loss
function is MAE similar to the one used in the SL classifier.
The Q labels for an image were then passed to the next block
to calculate the accurate coordinates of the 2D MBI in the
3D ACCEF space (in case of group B and B’ images Qs = 0).

For group B and B’ images, a shallow neural network
was trained to input the Q labels and output the atlas plane
coordinates [«, #, d]. The model was trained on Q values of
predictions of our model and angles predicted by the three
experts on 250 training data.

For group C images, a multiplane atlas extraction
approach was employed since, due to the occurrence of
tissue separation, the atlas was extracted separately for the
brain stem, right cerebrum, and left cerebrum in different
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z-planes. Due to the typical shape of the cerebrum in group
C images, in the present study we have considered only the
p angle. For a more accurate atlas matching, the developed
GUI further allows a manual adjustment of the atlas num-

bers (Q,).

Registration Module

By digitally slicing the ACCF 3D atlas based on the coordi-
nates predicted by our localization pipeline, the 2D atlas cor-
responding to the input 2D MBI is generated. To map these
two images, the following 2D to 2D registration approach
was developed.

The AMBIA registration module is built upon the Ardent
registration package (Neurodata, 2023) fully written in
python and based on the Insight Segmentation and Regis-
tration Toolkit (ITK). In our registration approach, shown in
Fig. 6, automatic registration is followed by landmark (LM)-
based manual refinement. As a first step, Ardent computes
a preliminary registration to match the outer boundaries
and general anatomical structures of the MBI and atlas. The
transformation function M ,,,; can, therefore, transform the
source image (Iy) to the target image (I;), which results in
M, Jg. Ardent uses mutual information (Maes et al., 1997)
as the similarity metric. In order for the similarity meas-
ure to perform better, prior to the registration, a simplified
representation of the atlas image is generated, because the
expert knowledge contained in the anatomical atlas has no
counterpart in the visual information of the MBI. In the sim-
plified representation, only fiber tracts are contrasted with
gray color against the plain green color background.

The user selects sets of corresponding landmarks (n =
m, L,,) in both I, and M 4,,I¢ images. The algorithm then
automatically selects additional landmarks (n = 20, L)
along the outer contour of each image to anchor the correct
regions and enhance triangulation with more points. The
algorithm uses each set of L,, + L, landmarks to triangulate
each image using the Delaunay’s triangulation algorithm.
The corresponding triangles are then registered from the
source image to the target image by an affine warp. The
transformation function M, can, therefore, refine the reg-
istration of the M 4,1 and results in M ,,M /L.

The AMBIA GUI provides three registration methods:
manual, automated, and semi-automated. In the manual
method, users are required to manually select all landmarks,
on outer and inner structures, to match the two images. This
method is primarily utilized for generating ground truth for
evaluating the registration, as detailed in “Evaluation Metrics”
section. The automated method relies on the Ardent regis-
tration module to register the images. The semi-automated
method enables users to manually refine the automatic regis-
tration executed by Ardent.

Implementation

The codes for the presented methods, are implemented in
Python 3.7.9.

Localization module: Tensorflow 2.0 backend was used
for training to implement the DL-based localization models.
The training was performed on a GPU server equipped with
a Titan V GPU card, 20 CPU cores, and 256GB of RAM.
The prediction of the localization module on one MBI takes
1 s on an intel Core i5 with 8GB RAM.

Registration module: to register one MBI to its corre-
sponding atlas, Ardent takes 30 s, and the LM-based regis-
tration takes 20ms after the landmark selection on an Intel
Core i5 with 8GB RAM.

Evaluation Metrics

To evaluate the performance of our localization module, we
utilized a test dataset comprising 108 histological MBIs,
categorized into three artifact levels (Fig. 3b). Artifact level
1 included 30 images with no artifacts or major morphologi-
cal changes of the brain, only exhibiting uneven staining,
sourced from the Allen Institute’s Transgenic line datasets.
Artifact level 2 comprised 44 images with common histo-
logical artifacts and morphological changes of the brain,
such as tissue shrinkage and uneven staining, scanned in-
house. Lastly, artifact level 3 consisted of 34 images with
severe histological artifacts, including tears, missing parts,
and tissue foldings, also scanned in-house. The images were
randomly selected from 10 distinct brains, unseen by the
trained model. The test set images were annotated by four
experts independently, with single and quadrant labels. The
raters assigned a label, a numerical value ranging from 1 to
132 to each whole section, and each quadrant separately.

Due to the interrater variations (four human raters for
each group of test images) in labeling the atlas numbers,
we have assessed the average label (Avg) and the standard
deviation (SD) of their ratings. The accuracy of the mod-
ule was determined by whether its prediction fell within the
range of Avg+2SD referred to as Accuracy 2SD. For fair
comparison, each rater is evaluated with the same method
against the other three raters.

To analyze the performance of our registration mod-
ule, we chose 60 slices from 3 different brains (n = 180)
evenly distributed along the AP axis. The images were reg-
istered using three different methods (manual, automatic,
and semi-automatic) by three experts using AMBIA. The
ground truth registration was determined by the consensus
of manual registration by the experts and the consensus
region was determined using majority vote (Fig. 7). The
registration via automatic and semi-automatic methods by
each rater was compared to the ground truth registration
using the Dice score metric (Dice, 1945), that is commonly
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Table 1 List of abbreviations

) : Abbr Name Abbr Name
and full name of brain regions
selected to test the registration Level 5 brain regions VIS Visual areas
performance in levels 3, 4 and MOB Main olfactory bulb PRT Pretectal region
5, according to the hierarchical
mouse brain structures of the ORB Orbital area CENT Central amygdalar nucleus
Allen Reference Atlas PL Prelimbic Area AN Anterolateral visual area
MO Somatomotor areas DEC Declive
AON Anterior olfactory nucleus uvu Uvula
Al Agranular insular area Level 4 brain regions
ACA Anterior cingulate area CTXpl Cortical plate
PIR Piriform area CTXsp Cortical subplate
ILA Infralimbic area STR Striatum
STRv Striatum ventral region PAL Pallidum
STRd Striatum dorsal region TH Thalamus
SS Somatosensory areas HY Hypothalamus
LSX Lateral septal complex MBmot Midbrain, motor related
HIP Hippocampal region P Pons
VISC Visceral area MY Medulla
MTN Midline group of dorsal thalamus VERM Vermal regions
PALd Pallidum, dorsal region Level 3 brain regions
PALv Pallidum, ventral region CTX Cerebral cortex
COA Cortical amygdalar area CNU Cerebral nuclei
MED Medial group of the dorsal thalamus 1B Interbrain
RSP Retrosplenial area MB Midbrain
LAT Lateral group of the dorsal thalamus HB Hindbrain
AUD Auditory areas CBX Cerebellar cortex
RHP Retrohippocampal region CBN Cerebellar nuclei

used to assess segmentation quality (Leung et al., 2010).
The registration of a given rater was also compared to
other raters to demonstrate the interrater variability. We
performed analyses on multi-level brain structures from
the Allen atlas. For a complete list of region names and
abbreviations refer to Table 1.

To produce segmentation annotations for the training data
and establish ground truth annotations for the evaluation

Source image (ls)

Target image (Iy)

Simplified atlas

Fig.6 Workflow of AMBIA’s registration module. The module inputs
the 2D MBI and 2D atlas image. The atlas image is converted into a
simplified representation where fiber tracts are recolored to gray and
the rest of the regions are converted to green to create a good contrast
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Ardent
Automatic
Registration

of group A and group C segmentation models, two experts
annotated the anatomical regions using an open-source seg-
mentation labeling tool (https://labelbox.com).

The evaluation results were statistically analyzed using
the Mann—Whitney U test and Levene’s test, as implemented
in the SciPy Python package. A p-value threshold of 0.05
was utilized to determine the significance of the differences
observed.

Registered atlas

(optional)
LM-based manual

refinement MinMals

similar to visible anatomical structures in an MBI. Ardent registration
is performed on the images. The user has the option to refine the reg-
istration by choosing landmarks through the GUI
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MO PIR

P
B AUD

> T

Annotation by raters == Consensus Annotation

Fig.7 Examples of four anatomical structures out of 30 structures
chosen to assess the performance of the registration module. For each
brain structure highlighted region on the Allen coronal atlas plane,

It is important to highlight that the variation in the num-
ber of experts involved in the evaluation process is not
attributed to any specific rationale, but rather stems from
the availability of experts at the time the assessments were
conducted.

Results
Performance of the Localization Module

Figure 8a demonstrates examples of tilted MBI from the test
dataset with their matching sliced atlas image generated by
our atlas slicer algorithm based on the coordinates predicted
by our pipeline. The standard coronal atlas chosen by the
raters is also displayed for comparison. It can be seen that
the atlas generated by our pipeline largely matches the tilted
MBI, compared to the standard coronal atlas. Some areas
are highlighted with white circles to show the difference in
regions when considering the slicing angle (Fig. 8a).

The performance of the SL predictor is presented in
Fig. 8b—d.The SL predictor achieved an MAE of 48 ym
(Fig. 8b).The SL predictor had no statistically significant
difference to raters 3 and 4 (Mann—Whitney U-test, p-value
=0.183 and 0.918). Figure 8c shows group accuracy of four

the segmentation outlines as a result of the registration of the three
raters (dim colored lines) the consensus outline for the same structure
(bold colored line) determined by the majority vote, are shown

raters compared to the SL predictor separated for different
artifact groups. The average group accuracy over all artifact
levels is displayed with a dashed line. The SL predictor had
an average group accuracy of 94.62% for images with arti-
fact level 1 and 2, and 88.8% for all artifact levels (Fig. 8c).
It was observed, as shown in Fig. 8d, that the average SD of
annotations by human raters were higher in group B and C
images as compared to the other two groups.

The performance of the QL predictor is presented in
Fig. 8e—g. The QL predictor achieved an average MAE of
102 um (Fig. 8e). It had no statistical significant difference
to the performance of raters 2, 3 and 4 (Mann—Whitney
U-test, p-value = 0.890, 0.123 and 0.585). Figure 8f shows
Accuracy 2SD of four raters compared to the QL predictor
separated for different artifact groups. The average Accuracy
2SD over all artifact levels is displayed with a dashed line.
The QL predictor had an average Accuracy 2SD of 86%.

Human raters had an average SD of 87 ym, 96 ym, and
137 pum in labeling images with artifacts of level 1, 2, and
3, respectively (Fig. 8g). This means that the more the sec-
tions were distorted or damaged, the higher the inter-rater
variability was. We also evaluated the performance of the
shallow neural network for the final prediction on the test
set. The results showed an MAE of 0.27° and 0.86° for & and
p angles, respectively.
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«Fig. 8 a Qualitative and visual evaluation of the performance of the
localization module. First row) Histological MBIs from the test set.
Second row) the atlas is sliced based on the coordinates and angles
predicted by our pipeline. Third row) the atlas is extracted from
standard 2D coronal atlas planes without considering the section
angles. The white markings highlight the areas where a tilted atlas
section has considerable structural difference to the reference coro-
nal atlas plane. b MAE of the SL predictor compared with the four
raters, which is statistically non-significant to raters 3 and 4. ¢ Group
Accuracy comparison between four raters and the SL predictor across
different artifact groups. The dashed line represents the average group
accuracy for all artifact levels. d The average standard deviation of
the four raters evaluated in different AP positions. e MAE of the SL
predictor compared with the four raters, which is statistically non-
significant to raters 2, 3 and 4. f Accuracy 2SD comparison between
four raters and the QL predictor across different artifact groups. The
dashed line represents the average group accuracy for all artifact lev-
els. g Average standard deviation of the four raters evaluated in differ-
ent artifact levels

Assessment of the Segmentation

The segmentation models for group A and group C were
assessed by comparing their segmentation predictions with
the expert annotations for their respective test data using the
Dice score metric.

The group A segmentation model was evaluated on 20
images of group A MBI. The mean Dice score for all regions

Test image

Expert
Annotation

Model
Segmentation

7] mMoBopl 7] MOBgl

B 08By

B ro8

B fibertracts

Fig.9 Performance of the group A segmentation model on six test
images (first row), expert annotation (second row) compared to the
segmentation model performance (third row). Due to limited anatom-

was 0.924. The Dice scores for separate regions of group A
images was 0.92 + 0.044. Figure 9 shows six images from
the test set on the first row, the region annotation labels by
an expert, and segmentations by our model in the second and
third rows, respectively. It can be seen that the model is able to
accurately segment these anatomical brain regions. The group
C segmentation model was evaluated on 20 images of group
C. It displayed a 100% accuracy in correct region detection
and achieved a Dice score of 0.90 and 0.98 for pixel-wise
segmentation and bounding box detection, respectively.

Assessment of the Registration

The accuracy of the AMBIA registration module was
assessed by comparing the results of the registration to a
consensus of manual registration considered as the ground
truth, based on the comparison of Dice scores for multi-level
brain regions. The results of this comparison are shown in
the boxplots in Fig. 10a. When pooling the scores of all
structures, the average Dice score was 0.86, 0.76, 0.80 for
level 3, level 4, and level 5 regions (see Table 1) respectively.
Figure 10c shows, when averaged over all regions, the semi-
automatic method of AMBIA registration had a significant
improvement over the automatic method (average Dice
score of 0.80 versus 0.76, Mann—Whitney U-test, p-value =

M 8ackground

ical structures in group A MBIs, we decided to use segmentation for
this group of images. The segmentation model segments five anatom-
ical regions MOBgr, MOBopl, MOBgl, AOB, fibertracts
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0.0091). In comparison, the manual annotations made by the
raters had an average Dice score of 0.71 compared to other
raters, indicating a moderate degree of interrater variability

(Fig. 10d). It is worth noting that for regions of level 3 and 4,
the semi-automatic and automatic methods gave rise to very
similar results, but for level 5 regions, the semi-automatic
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Fig. 10 Multi-level assessment of the performance of the AMBIA
registration module. a Boxplots of dice scores for the automatic
(green) and semi-automatic (white) registration methods compared
to the ground truth for level 5 brain regions. b shows a similar com-
parison for level 4 and level 3 brain regions. ¢ Comparison of man-
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ual annotations by three raters for three different test brains. d The
average (thick line) and range of number of landmarks (shaded area)
selected by the four raters for different MBI along the AP axis for the
manual and semi-automatic methods. e Average dice score for the
semi-automatic and automatic registration along the AP axis
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method outperformed the automatic Ardent registration. In
addition, for larger regions such as the MO and SS, the dif-
ference in performance between the two methods was not
as considerable, but in smaller regions such as the MTN
and the PRT, the difference was more pronounced (Fig 10a,
b). In addition, when comparing the test image groups with
varying artifact levels, the semi-automated method exhibited
the highest accuracy for the group with an artifact level of 3.

Figure 10e illustrates the number of landmarks that the
users selected in the manual and semi-automatic meth-
ods, with an average of 60 landmarks chosen in the man-
ual method and an average of 10 landmarks chosen in the
semi-automatic method. Manual landmark selection took an
average of 120 s, while semi-automatic landmark selection
required an average of 40 s. Figure 10f shows that along the
AP axis, the semi-automatic method had a more consistent
performance than the automatic method (Levene’s test on
pooled scores; p-value = 0.035).

Figure 11 demonstrates the ability of the registration module
to correct misalignment in MBI, as well as the utility of user
input in improving the accuracy of the registration. Dashed
white markings are used to highlight some regions to show the
advantage of manual refinement in the inner structures.

Discussion

The recent development of brain-wide neural circuit labeling
techniques (Lin et al., 2018; Wang et al., 2019), such as mono-
trans-synaptic tracing (Ramos-Prats et al., 2022; Miyamichi

Automatic Registration

LM-based refinement

Fig. 11 Qualitative evaluation of the registration module. The images
show the original MBI, the automatically registered image, and the
corrected and refined registration obtained using landmark-based
refinement. The MBI (purple) is superimposed on the registered atlas
image (green). The figure demonstrates the ability of the registration

et al., 2011) and activity mapping (Roy et al., 2022), as well
as the escalation in experiments employing viral transduction
of distinct neuronal populations, that require their mapping
to precise brain areas, have increased the demand for the
development of accurate and automated tools aimed at the
anatomical segmentation of individual 2D MBIs. Attempts
to map brain anatomical data to an annotated reference atlas
depends critically on localization and registration. However,
this procedure can be problematic due to variations in brain
shape and regions caused by tissue processing, as well as
intrinsic biological differences among brains.

To address these issues, we introduce AMBIA, a tool for
the localization and registration of 2D histological MBIs
with minimal human intervention. The proposed method
not only localizes the MBI in the 3D brain along the AP
axis, but also calculates the slicing angle, considerably faster
compared to 3D reconstruction approaches. A preliminary
version of AMBIA has already been used earlier (Ramos-
Prats et al., 2022).

By comparing the tilted atlases to the coronal atlases, it
can be observed that the precision of the anatomical struc-
ture of the annotated atlas can benefit considerably from
taking the slicing angle of the slice into account. In addition,
the pipeline can assign multi-plane atlases to MBIs with
unconnected parts. This is especially beneficial for slices
taken from the midbrain, where the brain stem can detach
from the cerebrum during the slide preparation process.

Our results suggest that AMBIA’s semi-automatic regis-
tration method has comparable accuracy to manual experts,
while also offering the great advantage of saving time and

module to identify and correct misalignment in MBI, as well as the
utility of user input in improving the accuracy of the registration.
Dashed white markings are used to highlight some regions to show
the advantage of manual refinement in the inner structures
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effort. Our comparison of semi-automatic and automatic
registration methods indicates that the semi-automatic
method offers higher accuracy compared to the automatic
one, particularly in level 5 regions. When examining the
results grouped by artifact level, we found that higher inter-
rater variability in images with an artifact level of 3 may
account for the higher accuracy of the AMBIA registration
module in this group. Additionally, when comparing the
outcomes of region groups with different hierarchical lev-
els, it was observed that level 5 regions exhibited a higher
Dice score than level 4 regions. This may be partially due
to the greater number of smaller regions which tend to have
higher inter-rater variability in expert annotations. This vari-
ability leads to a consensus region that covers a larger area,
subsequently increasing the Dice score. It is appropriate to
point out the limitations of our tool, AMBIA, in terms of
accuracy and generalizability. One limitation of the locali-
zation module is the higher error in detecting the f com-
pared to the a angle. The high symmetry in the two brain
hemispheres facilitates the identification of the a angle in
the left-right axis, whereas the § angle is harder to define
for human raters because of the lack of clear landmarks in
distinct areas in the AP axis. Since the model is trained on
human-annotated data, it is similarly biased towards lower
accuracy on f. Second, while the current implementation is
tailored specifically to the Allen CCFv3 atlas, it is conceiv-
able that the approach could be modified for use with other
atlas frameworks. However, this would require considerable
modifications to accommodate different atlas structures and
coordinate systems. Despite these limitations, we hope that
our work can inspire researchers to adapt our approach for
a broader range of atlases and templates, thereby expand-
ing the applicability of the methodology to a wider array of
research contexts.

It is worth mentioning that while the present study
focuses on histological MBIs scanned with a digital slide
scanner, our methods have the potential to be applied to a
variety of other modalities and domains. The normalization,
downsampling, and grayscale transformation of the images
used to train the localization module suggest that it may
perform with similar accuracy on MBI scanned using differ-
ent scanners and stained using various staining procedures.
Similarly, the use of a simplified version of an atlas in the
registration module suggests that it may be able to register a
wide range of datasets that exhibit the anatomical features of
brain regions, including MRI images. Future research could
explore the validity and generalizability of these methods in
these and other contexts.

Finally, one notable feature of AMBIA is its modular
design, which allows for the integration of various cell
detection methods through the use of a placeholder mod-
ule in the pipeline. This flexibility enables researchers to
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employ a range of analyses to suit the needs of their specific
study. To facilitate the wider use of AMBIA in practice, we
have implemented all of its functionalities and modules in
a GUI that is easy to use and requires minimal program-
ming knowledge. Figures A1-6 in the Online Resource 2
present the GUI screenshots representing various stages of
the process.

Information Sharing Statement

Our pipeline is made open access for the scientific commu-
nity. The source code of AMBIA can be obtained at https://
github.com/mrymsadeghi/AMBIA. The original Ardent
package can be found at https://github.com/neurodata/
ardent. A modified version of Ardent is integrated in the
AMBIA code. All AMBIA modules can be executed from
its GUI. We also provide a step by step tutorial, test data and
a "Best Practices" page within AMBIA's GitHub repository
to promote its adoption and optimize performance across
diverse experimental contexts.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s12021-023-09632-8.
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