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SUMMARY

Neuronal synchrony in the basolateral amygdala
(BLA) is critical for emotional behavior. Coordinated
theta-frequency oscillations between the BLA and
the hippocampus and precisely timed integration
of salient sensory stimuli in the BLA are involved
in fear conditioning. We characterized GABAergic
interneuron types of the BLA and determined their
contribution to shaping these network activities.
Using in vivo recordings in rats combined with the
anatomical identification of neurons, we found that
the firing of BLA interneurons associated with net-
work activities was cell type specific. The firing of
calbindin-positive interneurons targeting dendrites
was precisely theta-modulated, but other cell types
were heterogeneously modulated, including parval-
bumin-positive basket cells. Salient sensory stimuli
selectively triggered axo-axonic cells firing and
inhibited firing of a disctinct projecting interneuron
type. Thus, GABA is released onto BLA principal
neurons in a time-, domain-, and sensory-specific
manner. These specific synaptic actions likely coop-
erate to promote amygdalo-hippocampal synchrony
involved in emotional memory formation.

INTRODUCTION

Understanding how the brain processes emotions holds major

potential for fundamental and medical research. Precisely

timed neuronal activity across brain regions is crucial for cogni-

tive processing (Singer, 1999). Studies in humans (Richardson

et al., 2004) and rodents (Maren and Fanselow, 1995) indicate

that cooperation between amygdala and hippocampus is critical

for emotional memory formation. This communication involves

the synchronization of neuronal activity at theta (q) frequencies

(4–10 Hz) across the basolateral amygdala complex (BLA)

and the CA1 hippocampal field. In fear conditioning, a model of

emotional memory, animals learn to associate a negative
emotional valence to an initially neutral stimulus (e.g., a tone) after

its repetitive pairing with an aversive stimulus (e.g., an electrical

footshock) (LeDoux, 2000). Unconditioned animals show hippo-

campus-related q oscillations in BLA at the levels of individual

principal cells and neuron populations (as reflected in local field

potentials, LFPs) (Paré and Gaudreau, 1996). Amplitude and

power of this rhythm increase after auditory, contextual or social

fear learning (Jeon et al., 2010; Paré and Collins, 2000; Seiden-

becher et al., 2003). Moreover, the degree of q synchrony

between BLA and CA1 after fear conditioning predicts memory

performance (Popa et al., 2010). Precise timing of activity in the

BLA is likely important not only for oscillations. It may also be crit-

ical for memory encoding, by selectively assigning emotional

valence to incoming sensory stimuli. However, howBLA network

activities are coordinated remains unknown.

Several lines of evidence suggest thatGABAergic neuronsmay

be instrumental in controlling q oscillations and integrating salient

sensory stimuli in the BLA. The BLA is a cortical-like area; in

cortex, GABAergic interneurons can synchronize the activity of

large cell assemblies (Bonifazi et al., 2009; Cobb et al., 1995).

Persistent BLA q oscillations are accompanied by fear extinction

deficits in GAD65 knockout mice (Sangha et al., 2009). Further-

more, electrical footshocks evoke synchronous GABAergic

currents in BLA principal neurons (Windels et al., 2010).

GABAergic cells in the BLA are comprised of several groups

(McDonald, 1982; Sosulina et al., 2010), with diverse neuro-

chemical expression profiles (Jasnow et al., 2009; Mascagni

and McDonald, 2003; Rainnie et al., 2006; Smith et al., 2000).

These might play specific physiological roles. However,

GABAergic cell types of the BLA have not been fully character-

ized, and there is a pressing need to define the nature and

function of such cellular diversity (Ehrlich et al., 2009). A division

of labor between GABAergic cell types in controlling local

network activities is exemplified in hippocampus, where cells

innervating distinct neuronal compartments fire at specific

oscillation phases (Klausberger et al., 2003; Tukker et al.,

2007). We hypothesized that BLA GABAergic cells contribute

in a type-specific manner to the coordination of q oscillatory

interactions with the hippocampus and local responses to salient

sensory stimuli. We investigated this by recording the sponta-

neous and noxious stimulus-driven firing of anatomically-identi-

fied BLA interneurons in vivo. Our findings demonstrate that
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Table 1. Spontaneous Firing of the GABAergic Interneurons Recorded In Vivo

Recorded neurons Spontaneous Firing during dCA1 Theta

Type Cell Code Rate (Hz) CV Mean Angle Angular Deviation p (Rayleigh) Modulation Depth

Axo-axonic tjx20f 6.5 1.41 n.s. n.s. 1.7 3 10�1 n.s.

tjx27b 15.9 0.82 n.s. n.s. 3.5 3 10�1 n.s.

tjx56b 7.9 1.00 187.0 137.5 2.2 3 10�6 0.06

tjx63a 15.6 1.02 251.5 156.0 3.7 3 10�3 0.02

tjx66a 13.0 1.28 213.0 127.0 4.3 3 10�41 0.09

tjx74a 15.4 0.97 283.7 146.5 1.1 3 10�7 0.04

PV+ basket tjx38a 23.1 0.66 n.s. n.s. 5.5 3 10�3 n.s.

tjx41c 23.7 0.69 357.5 148.1 3.9 3 10�5 0.04

tjx42b 16.7 0.67 173.9 141.8 2.2 3 10�10 0.05

tjx43a 6.4 0.93 n.s. n.s. 1.4 3 10�1 n.s.

tjx48a 27.2 0.61 14.7 150.2 1.9 3 10�7 0.03

tjx49a 3.9 1.18 83.2 133.7 4.0 3 10�8 0.07

tjx53a 6.8 1.97 150.1 163.9 3.2 3 10�3 0.02

tjx55b 9.4 1.03 13.2 113.3 3.7 3 10�44 0.14

tjx61a 8.6 1.25 125.1 141.7 5.1 3 10�8 0.05

tjx69a 12.2 0.94 136.5 156.7 1.4 3 10�4 0.02

tjx72b 4.3 1.27 140.8 146.2 1.5 3 10�5 0.04

tjx72d 1.8 1.28 97.8 130.2 1.3 3 10�6 0.08

tjx78a 6.2 0.97 339.9 108.4 4.1 3 10�38 0.17

tjx86b 10.4 0.96 n.s. n.s. 1.5 3 10�2 n.s.

tjx87b 4.9 1.00 183.5 145.5 5.7 3 10�9 0.04

CB+ dendrite-targeting tjx21i 4.3 0.96 145.0 127.5 5.1 3 10�13 0.08

tjx22c 3.1 1.00 145.5 112.9 1.8 3 10�31 0.14

tjx59b 3.0 1.03 144.3 110.6 6.8 3 10�20 0.16

AStria-projecting tjx45a 3.4 1.54 n.s. n.s. 7.9 3 10�1 n.s.

tjx52a 6.0 1.15 155.7 111.5 3.6 3 10�42 0.15

tjx68a 4.1 0.98 158.2 122.0 7.3 3 10�13 0.10

tjx83c 4.6 1.60 284.9 122.9 6.3 3 10�10 0.10

CV: coefficient of variation of interspike intervals (variance/mean); n.s.: not statistically significant.
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distinct types of BLA GABAergic cell fulfill specialized and

complementary roles in regulating behaviorally relevant network

activities.

RESULTS

We simultaneously recorded spontaneous single-neuron activity

in BLA (comprised of the lateral and basal nuclei) and hippo-

campal q oscillations in dorsal CA1 (dCA1) LFPs of urethane-

anesthetized rats. Prominent q oscillations (4.15 ± 0.23 Hz,

mean ± SD) occurred during cortical activated states in dCA1

(Klausberger et al., 2003), but not in BLA LFPs. Gamma (g)

oscillations were also detected in dCA1 LFPs (42.1 ± 1.60 Hz,

mean ± s.d.).

We recorded interneuron responses to noxious stimuli by

delivering electrical shocks and pinches to the hindpaw contro-

lateral to the recording sites. We also examined the firing of BLA

glutamatergic principal neurons in relation to dCA1 q. After

recordings, neurons were juxtacellularly filled with Neurobiotin,

allowing for their unambiguous identification.
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Interneurons with somata in the BLA were recorded and

labeled (Figure S1, available online, shows cell locations). These

were GABAergic, as all tested cells expressed the vesicular

GABA transporter (VGAT) and/or glutamate decarboxylase

(GAD; Figures 3F and 4I), and all synapses examined with elec-

tron microscopy were symmetric. Interneuron types were distin-

guished according to the combination of their postsynaptic

targets, neurochemical markers and axo-dendritic patterns.

Twenty eight GABAergic cells could be classified in four types:

axo-axonic, parvalbumin-expressing basket, calbindin-express-

ing dendrite-targeting, and ‘‘AStria-projecting’’ cells.

Axo-Axonic Cells Increase Their Firing in Response
to Noxious Stimuli
Axo-axonic cells (n = 6) were recorded and anatomically inden-

tified. During dCA1 q, they spontaneously fired action potentials

at a mean frequency of 12.4 Hz (range 6.5–15.9 Hz; Table 1; Fig-

ure 1A). The firing of 4 of 6 cells was significantly modulated in

phase with dCA1 q (p < 0.005, Rayleigh test), albeit weakly

(mean modulation depth (r) = 0.05, see Experimental



Figure 1. Axo-axonic Cells: Firing In Vivo and Anatomical Characterization

(A) In vivo, the neuron tjx20f fired non q-modulated spike trains.

(B) tjx20f increased its firing rate in response to hindpaw pinches. The electrocorticogram (ECoG) shows stable global activation.

(C) Another representative axo-axonic cell (tjx56b), dramatically increased firing upon hindpaw electrical shocks.

(D) Close appositions between tjx63a axon varicosities and ankyrin G-expressing axon initial segments (AIS). Low (top) and highmagnification (of area delineated,

bottom) of projection of a confocal z stack of 4.42 mm thickness.

(E) Electron micrograph of a DAB-labeled axon bouton (tjx20f) forming two synaptic junctions (arrows) with a single AIS. *undercoating.

(F) tjx20f is immunopositive for parvalbumin (PV; single confocal optical section).

(G) Reconstruction of tjx20f. Soma and entire dendritic tree (red) are drawn from 5 sections of 60 mm thickness. Axon (blue, main axon is purple) is drawn from 2

sections, for clarity. Inset: position of tjx20f dendrites (in red) in the BLA and axonal field extent (gray area) estimated from the two drawn and surrounding

sections. Boundary colors apply to the main panel. LA: lateral amygdala, BA: basal amygdala, CeA: central amygdala, ITC: intercalated cells cluster. Orientation:

top: dorsal, right: medial.

Scale bars: (A) LFP raw and filtered: 0.4 mV, unit: 1 mV, time: 400 ms; (B) unit: 1 mV, ECoG: 0.25 mV, time: 4 s; (C) unit: 1 mV, ECoG: 0.25 mV, time: 1 s; (D) top:

20 mm, bottom: 5 mm; (E) 500 nm; (F) 10 mm; (G) 100 mm, inset 500 mm. See also Figures S1–S5 and Tables S1–S3.
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Procedures). Two cells fired independently from the hippo-

campal q rhythm (Figure 1A). The four q-modulated cells fired

preferentially between the peak and the descending phase of

dCA1 q (range 187.0–283.7�, where 0� and 360� represent q

troughs; q phase histograms of single neurons are illustrated in

Figure S2). However, statistical analysis showed that these

four cells did not form a synchronized population in relation to

dCA1 q (R0 = 1.03, R0.05,4 = 1.09, Moore test). Furthermore, the

firing of axo-axonic cells did not show statistically significant

modulation in phase with dCA1 g oscillations (p > 0.1, Rayleigh

test, n = 6; Figure S3; Table S3).

Axo-axonic cells displayed dramatic short-latency excitations

in response to noxious stimuli. All axo-axonic cells increased

their firing rates upon hindpaw pinches (+377% of baseline,

latency 267 ms, peak 377 ms, n = 6; ranges: 133%–606%,
latency 200–400 ms, peak 400–600 ms, respectively; Table 2;

individual histograms are shown in Figure S4). This excitation

rapidly adapted, and was curtailed at stimulus offset (Figure 5D).

Responses to electrical footshocks were similarly pronounced

(mean 226% of baseline, latency 50 ms, peak 225 ms, n = 4/4;

ranges 133%–606%, 20–100 ms, 20–420 ms, respectively; Fig-

ure 1C; Table 2; individual histograms, Figure S5).

These neurons exhibited typical axo-dendritic patterns. Their

axons formed cartridges. Almost all of large-axon varicosities

were in close apposition with ankyrin G-expressing axon initial

segments, (n = 6/6 cells), as seen with immunofluorescence (Fig-

ure 1D). We analyzed randomly-sampled synapses from two of

these cells using electron microscopy. The vast majority of post-

synaptic targets were axon initial segments (95.4%, n = 43

synapses; Figure 1E; Table S1), confirming that these cells
Neuron 74, 1059–1074, June 21, 2012 ª2012 Elsevier Inc. 1061



Table 2. Noxious Stimulus-Driven Firing of the GABAergic Interneurons

Recorded Neurons Hindpaw Pinch Responses Electrical Footshock Responses

Type Cell Code Response Latency (ms) Peak (ms) % Response Latency (ms) Peak (ms) %

Axo-axonic tjx20f E 200 600 378 n.t. n.t. n.t. n.t.

tjx27b E 200 400 305 E 40 260 299

tjx56b E 200 400 606 E 100 200 194

tjx63a E-I 200-1120 600-1120 133-100 n.t. n.t. n.t. n.t.

tjx66a E 400 600 595 E 40 420 239

tjx74a E 400 400 246 E-I-E 20-40-140 20-60-220 172-81-213

PV+ basket tjx38a E 1200 2800 125 n.t. n.t. n.t. n.t.

tjx41c I 9600 9800 55 I 100 100 38

tjx42b E-I 200-1040 200-1060 130-72 I 100 240 45

tjx43a n.t. n.t n.t. n.t. n.t. n.t. n.t. n.t.

tjx48a I 5000 5000 27 E 20 20 71

tjx49a E 600 2400 218 n.s. n.s. n.s. n.s.

tjx53a n.s. n.s. n.s. n.s. E 20 100 115

tjx55b E 200 8800 526 I 180 220 68

tjx61a E 600 1600 153 n.s. n.s. n.s. n.s.

tjx69a E-I 200-1600 200-2800 160-100 n.s. n.s. n.s. n.s.

tjx72b I 5000 5000 100 I 340 400 100

tjx72d n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t.

tjx78a E 600 600 314 E 40 180 170

tjx86b E 2200 2200 62 n.t. n.t. n.t. n.t.

tjx87b n.t. n.t. n.t. n.t. I 100 200 72

CB+ dendrite-targeting tjx21i I 4200 4400 100 n.t. n.t. n.t. n.t.

tjx22c n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t.

tjx59b n.s. n.s. n.s. n.s. n.t. n.t. n.t. n.t.

AStria-projecting tjx45a I 1000 1000 100 I 60 740 100

tjx52a I 1600 1800 100 n.t. n.t. n.t. n.t.

tjx68a n.s. n.s. n.s. n.s. I 20 20 75

tjx83c I 3800 3800 100 I 20 380 81

%: maximal percentage of sensory-evoked firing changes; E: excitation; I: inhibition; n.s.: not statistically significant; n.t.: not tested.
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were of the axo-axonic type. All axo-axonic cells expressed par-

valbumin (PV), sometimesweakly (Figure 1F), but were never cal-

bindin (CB)-positive. Two of 6 neurons densely expressed the

GABAAR-a1 subunit on their dendrites (immunohistochemical

results are summarized in Table S2). Axo-axonic cells were bi-

tufted. Their dendrites did not branch immediately, were

tortuous and sparsely spiny (Figure 1G). Axonal arborizations

of all 6 cells were very dense and mostly contained within the

dendritic field. Axons were always restricted to the BLA, but

could be distributed between lateral and basal nuclei.

These results show that the firing of axo-axonic cells of the

BLA dramatically increases in response to salient sensory

stimuli. However, their spontaneous population activity is not

tightly synchronized with hippocampal q (Figure 5).

Parvalbumin-Expressing Basket Cell Assemblies
Tonically Inhibit Principal Cells
Next, we studied the firing of parvalbumin-expressing (PV+)

basket cells (n = 15). During dCA1 q oscillations, PV+ basket cells

fired at amean frequency of 11.0 Hz (range 1.8–27.2 Hz; Table 1),
1062 Neuron 74, 1059–1074, June 21, 2012 ª2012 Elsevier Inc.
some tonically (coefficient of variation (CV) < 1, n = 8/15), others

irregularly (CV > 1, n = 7/15). It has been frequently speculated

that PV+ basket cells pace q rhythms in the BLA (reviewed in Ehr-

lich et al., 2009). Instead, we found that most cells were only

weakly modulated with dCA1 q (mean r = 0.06; Figure 2A), and

at dispersed phases (Table 1; Figures 5B and S2). In keeping

with this, the firing of PV+ basket cells as a population was not

synchronized with this rhythm (R’ = 0.73, R0.05,12 = 1.042, Moore

test; Figure 5A). The firing of PV+ basket cells was not modulated

with dCA1 g oscillations (p > 0.04, Rayleigh test, n = 15; Fig-

ure S3; Table S3).

As with q modulation, PV+ basket cells displayed heteroge-

neous and generally moderate responses to noxious stimuli

(Figure 2B; Table 2). Half of the cells tested (6/12) were excited

by hindpaw pinches, three were inhibited, two showed an exci-

tation-inhibition sequence, and one cell did not respond signif-

icantly (Figure S4). Several cells tested (5/11) were inhibited by

electrical footshocks, three cells were excited, and three other

cells did not change their firing rates (Figure S5). Cells that were

excited in response to one type of noxious stimulus could be



Figure 2. PV Basket Cells: Firing In Vivo and Anatomical Characterization

All panels show data from the same neuron (tjx48a).

(A) Tonic, weakly modulated firing during hippocampal q oscillations.

(B) Moderate firing increases in response to hindpaw electrical shocks, not noticeable in the raw data.

(C) Axon varicosities making close appositions with the soma of a CaMKIIa+ principal neuron (projection of a confocal z stack of 3.29 mm thickness).

(D) Low (top) and high magnification (bottom) electron micrographs of a synapse (arrow) made by a labeled axon bouton with a soma.

(E) Immunopositivity for parvalbumin and calbindin. Immunofluorescence confocal images (single optical section).

(F) Accumulation of GABAAR-a1 (a1) at the dendritic membrane of the Neurobiotin (NB)-filled cell (single confocal optical sections).

(G) Reconstruction of tjx48a. Soma and entire dendritic tree are drawn from 12 sections of 60 mm thickness. Axon is drawn from 2 sections for clarity. Inset:

position of tjx48a dendrites in the BLA and axonal field extent estimated from the two drawn and surrounding sections (color code as in Figure 1G). Orientation:

top: dorsal, right: medial.

Scale bars: (A) LFP raw and filtered: 0.4 mV, unit: 1 mV, time: 400 ms; (B) unit: 1 mV, ECoG: 0.25 mV, time: 1 s; (C) 10 mm; (D) top 2 mm, bottom 250 nm; (E) 20 mm;

(F) 5 mm; (G) 100 mm, inset 500 mm. See also Figures S1–S7 and Tables S1–S3.
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inhibited by the other stimulus (Table 2). This further shows that

the firing of PV+ basket cells is not selectively tuned by noxious

stimuli. Importantly, heterogeneous firing among PV+ basket

cells does not reflect spatial segregation of activity patterns

in the BLA (see Figure S1A and Table 1).

Axon varicosities of these cells were large and clustered. Light

microscopic analysis (n = 12 cells) revealed that they mostly

made close appositions with somata and large dendrites of

BLA neurons expressing the calcium/calmodulin-dependent

kinase II alpha subunit (CaMKIIa; Figure 2C), a marker of prin-

cipal cells (Supplemental Experimental Procedures). Electron

microscopic analysis confirmed that the main postsynaptic

targets were somata (55%; n = 40 synapses, 2 cells; Figures

2D and S6C) and proximal dendrites (45%; diameter 1.29 ±

0.1 mm; Figures S6A and S6B; Table S1). For 72.5% of these

synapses, the postsynaptic target was unambiguously identified

as a CaMKIIa+ principal neuron (Figures S6A and S6C, Table

S1). Thus, our results established that these interneurons were

basket cells.

In addition to PV, these cells always expressed CB and an

accumulation of the GABAAR-a1 subunit along their somatoden-

dritic plasma membranes (n = 12/12 cells; Figures 2E and 2F;

Table S2). This neurochemical pattern is distinct from those

of the other cell types studied here. Three PV+ neurons were

classified as basket cells based on these features, although their

axons could not be analyzed. In addition, PV+ basket cells

displayed characteristic axonal and dendritic fields. They were

multipolar. Their dendrites were varicose, typically aspiny,

straight, and branched rarely (Figure 2G). Axonal arborizations

were dense within the dendritic field and extended beyond

it in radial branches, sometimes over long ranges (Figure S7A).

This suggests that some PV+ basket cells influence neuronal

activities in large parts of the BLA. Overall, PV+ basket cells

show distinct postsynaptic targets and neurochemical contents,

demonstrating they are different cell types in the BLA.

As a group, PV+ basket cells do not appear to fire tuned to

dCA1 q or noxious stimuli (Figure 5). Thus, assemblies of them

may tonically inhibit principal neurons. The finding that axo-ax-

onic and PV+ basket cell groups do not fire in synchrony with

hippocampal q rhythm raises the question of which interneurons

might fulfill this role.

Calbindin-Expressing Dendrite-Targeting Cells Fire
Synchronously with Hippocampal Theta Oscillations
Dendrite-targeting CB+ cells spontaneously fired at a mean

frequency of 3.5 Hz (range 3.0–4.3 Hz, n = 3; Table 1). Their firing

was consistently and strongly modulated with the late ascending

phase of dCA1 q (Figure 3A; mean angle 144.9�, mean r = 0.13;

Figures 5B andS2; Table 1). Thus, as a population, CB+ dendrite-

targeting cells did fire tightly synchronized with hippocampal q

(R0 = 1.15, R0.05,3 = 1.095, p < 0.05, Moore test; Figure 5A). In

contrast, none of these cells fired in phase with dCA1 g (p >

0.1, Rayleigh test, n = 3; Figure S3; Table S3).

Responses to hindpaw pinches could be tested in two cells.

One cell did not significantly change its firing (Figure 3B); the

other was inhibited (latency 4.2 s, peak 4.4 s; Table 2; Figure S4).

Electrical footshocks were applied during recording of the third

cell. In this experiment, only 53 shocks were applied and
1064 Neuron 74, 1059–1074, June 21, 2012 ª2012 Elsevier Inc.
no change in firing was observed. Such a sample size is a limita-

tion of the juxtacellular recording/labeling technique used. It

cannot be ruled out that more heterogeneous activity relation-

ships with q oscillations or sensory stimuli would emerge if

a larger sample of CB+ cells were available.

When examined with light microscopy, axons of the three cells

were distributed in the BLA neuropil. Some axon varicosities

made close appositions with dendrites of CaMKIIa+, principal

neurons. A substantial proportion was not in apposition with

identifiable CaMKIIa+ structures (Figure 3C) and likely contacted

small dendritic processes that could not be resolved with light

microscopy. Electron microscopic analysis demonstrated that

postsynaptic targets were exclusively dendrites of small to

medium diameter (0.59 ± 0.05 mm, n = 41 synapses, 2 cells; Fig-

ure 3D; Table S1). Notably, this diameter value was the smallest

among the neuron types studied (p < 0.05, Kruskal-Wallis test

with Dunn’s multiple comparison; Figure S6E). In 24% of these

synapses, targets were confirmed to be CaMKIIa+ dendrites of

principal neurons (Figure 3D).

In addition to strongly expressing CB (Figure 3E), two neurons

tested contained very low levels of PV in their somata (but no

detectable PV in their dendrites). One cell was GABAAR-a1
+.

The cells were immunonegative for other molecules tested,

including somatostatin (Table S2). Dendrites emerged in bipolar

arrangement from the soma. They were tortuous, rough, and

sometimes spiny. Axons and dendrites were restricted to the

BLA, but could span lateral and basal nuclei (Figure 3G).

These results show that CB+ dendrite-targeting cells represent

a specific cell type, whose firing is synchronized with CA1 q

(Figure 5A).

Amygdalo-striatal Transition Area-Projecting Neurons
Are Inhibited by Noxious Stimuli
We discovered a GABAergic cell type that projects to the amyg-

dalo-striatal transition area (AStria, hence its name), as well

as innervating the BLA (Figures 4C and S7B). The firing of

most AStria-projecting cells (mean frequency 4.01 Hz, range

3.4–6.0 Hz, n = 4; Table 1) was related to dCA1 q (n = 3/4, mean

r = 0.12). Two of these cells preferentially fired before the

peak (Figure 4A) and one fired most during the descending

phaseof the q rhythm (Figures5BandS2;Table 1). Asa result, this

cell population was not statistically phase-locked to hippo-

campal q (R0 = 0.86, R0.05,3 = 1.095, Moore test). The firing of

AStria-projecting neurons was not modulated with dCA1 g oscil-

lations (p > 0.04, Rayleigh test, n = 4; Figure S3; Table S3).

In contrast to the previous three cell types, AStria-projecting

cells were robustly inhibited by noxious stimuli. Hindpaw

pinches suppressed the firing of 3/4 cells tested (Figure 4B;

mean latency 2,133 ms, peak 2,200 ms; ranges, 1,000–

3,800 ms for peak and latency; Table 2; Figure S4). In two cells,

this inhibition persisted for several seconds after the pinch offset

(Figure 5D). Electrical footshocks also elicited strong inhibitory

responses in AStria-projecting cells (�85% of baseline, latency

33 ms, peak 380 ms, n = 3; ranges: 75%–100%, 20–60 ms,

20–740 ms, respectively; Figures S5 and 5C).

The axon projecting to the AStria innervated somata and

dendrites of DARPP-32+ cells, likely medium-sized spiny

neurons (Anderson and Reiner, 1991), which also expressed



Figure 3. CB+ Dendrite-Targeting Cells: Firing In Vivo and Anatomical Characterization

(A) tjx22c fired preferentially before the peak of dCA1 q.

(B) tjx59b did not change its firing rate during a noxious stimulus.

(C) Axon varicosities of tjx21i avoid CaMKII+ somata and occasionally make visible appositions with CaMKII+ dendrites (arrows; projection of a confocal z stack of

2.10 mm thickness).

(D) Electron micrograph of a synapse formed by an axon bouton of tjx22c with a CaMKIIa+ dendrite (de). Inset: higher magnification.

(E) tjx22c is immunopositive for calbindin (structured illumination, single optical section).

(F) tjx22c is GABAergic: confocal images (projection of z stack of 0.75 mm thickness) showing Neurobiotin (NB)-filled axon varicosities containing VGAT (arrows).

(G) Reconstruction of tjx22c. Soma and entire dendritic tree are drawn from 8 sections of 60 mm thickness. Axon is drawn from 2 sections, for clarity. Inset:

position of tjx22c dendrites in the BLA and axonal field extent estimated from the two drawn and surrounding sections (color code as in Figure 1G). Orientation:

top: dorsal, right: medial.

Scale bars: (A) LFP raw and filtered: 0.4 mV, unit: 1 mV, time: 400 ms; (B) unit: 1 mV, ECoG: 0.5 mV; (C) 10 mm; (D) 500 nm, inset 100 nm; (E) 20 mm; (F) 2 mm; (G)

100 mm, inset 500 mm. See also Figures S1–S6 and Tables S1–S3.
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CaMKIIa (Figures 4D, 4E, and S6D). Most of the axons were

distributed in the BLA, where they made dense ramifications

(Figures 4C and S7B). Studied with light microscopy, a propor-

tion of the large axon varicosities made multiple perisomatic

contacts with CaMKIIa+ BLA principal neurons; the others

possibly contacted small dendrites (Figure 4G). Electron micro-

scopic analysis confirmed that postsynaptic targets in the lateral

nucleus were dendrites (Figure 4F) and somata (35% and 65%,
respectively, n = 40 synapses, 2 cells; Table S1). Of these,

35% were confirmed CaMKIIa+ neurons (Figure 4F, Table S1).

Dendrites targeted by AStria-projecting neurons were smaller

than those postsynaptic to PV+ basket cells but larger than those

targeted by CB+ dendrite-targeting cells (diameter 0.79 ±

0.06 mm, p < 0.05; Figure S6E).

All AStria-projecting neurons expressed PV (Figure 4H), and

half also expressed CB. GABAAR-a1 was moderately enriched
Neuron 74, 1059–1074, June 21, 2012 ª2012 Elsevier Inc. 1065



Figure 4. AStria-Projecting Cells: Firing In Vivo and Anatomical Characterization

All panels show data from one neuron (tjx52a).

(A) Preferential firing during the ascending phase of hippocampal q oscillations.

(B) Reduced firing during hindpaw pinches.

(C) Reconstruction of tjx52a. Soma and entire dendritic tree are drawn from 5 sections of 60 mm thickness. Axon is drawn from 2 sections, for clarity. Inset: position

of tjx52a dendrites in the BLA and axonal field extent in the two drawn and surrounding sections. Color code is as in Figure 1G, and AStria is purple. Orientation:

top: dorsal, right: medial.

(D) Electron micrograph of a labeled bouton making a synapse (arrow) with a CaMKIIa+ soma in the AStria.

(E) Axon varicosities making close appositions with a principal neuron (CaMKIIa+/DARPP-32+) soma in the AStria. Projection of a confocal z stack of 3.06 mm

thickness.

(F) Electron micrograph of a labeled bouton making a synapse (arrow) with a CaMKIIa+ principal cell dendrite in the lateral amygdala.

(G) Axon varicosities making close appositions with principal neuron somata (CaMKIIa+) or unidentified structures (arrows) in the lateral amygdala (projection of

confocal z stacks of 8.05 mm thickness).

(H) Immunopositivity for parvalbumin (structured illumination z stack; NB: Neurobiotin).

(I) tjx52a is GABAergic: confocal images (projections of z stack of 0.94 mm thickness) showing axon varicosities (arrows) positive for VGAT and GAD. NB:

Neurobiotin.

Scale bars: (A) units and LFPs: 0.5 mV, time: 400 ms; (B) units 1 mV, time: 4 s; (C) 100 mm, inset 500 mm; (D) 500 nm; (E) 10 mm; (F) 250 nm; (G) 10 mm; (H) 10 mm; (I)

Scale bar: 2.5 mm. See also Figures S1–S7 and Tables S1–S3.
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Figure 5. Firing Modulation with Hippo-

campal Theta Oscillations and Responses

to Noxious Stimuli Are Cell Type Specific

(A) Cell types mean q phase histograms. CB+

dendrite-targeting interneurons are homoge-

neously and strongly modulated in phase with

dCA1 q, in contrast to the other cell types. Two q

cycles are represented for clarity. 0�, 360�, and
720�: q troughs.

(B) Polar distribution of individual neurons’

preferred q phases and modulation depths. Each

symbol represents a significantly modulated cell.

(C and D) Cell typesmean peristimulus histograms

for noxious stimulation. Axo-axonic cells are

dramatically excited and AStria-projecting cells

are inhibited by electrical shocks and pinches

delivered to the controlateral hindpaw. Error bars:

SEM; dashed lines: mean ± 2 standard deviations.

n values represent the number of neurons tested in

each analysis.

See also Figures S2, S4, and S5.
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in the plasma membrane of one cell but was never strongly ex-

pressed, in contrast to PV+ basket cells (Table S2). Dendrites

were multipolar and branched profusely. They were short,

smooth, and very tortuous (Figures 4C and S7B).

The distinct dendritic and axonal patterns and postsynaptic

targets demonstrate that AStria-projecting cells may constitute

a specific cell type. The present data indicate that they do not

form a synchronous cell population with respect to dCA1 q but

dramatically decrease their firing in response to noxious stimuli

(Figure 5).

Overall, various BLA interneuron types appear to fire differ-

ently in relation to network activities. However, they could not

be separated on the basis of their spike shapes and durations

(Figure S8; Table S5).

BLA Principal Neurons Fire Heterogeneously in Relation
to Hippocampal Theta Oscillations
Next, we assessed the firing modulation of glutamatergic prin-

cipal neurons in phase with hippocampal q, because they are

a major target of the interneurons defined above and represent

the main output of the BLA (n = 23 cells; see Figure S1B for

somata locations). Principal cells fired at very low rates during

hippocampal q (mean 0.29Hz, range: 0.03–1.34 Hz; n = 23; Table

S4). Irregular burst firing (2–3 spikes) was often observed, as

reflected in high coefficients of variation of firing (CVs, which

quantify irregularity of spike trains, 1.95 ± 0.13). Noteworthy,

we found that principal cells fired longer-lasting spikes than all

four types of interneurons (Figure S8; Table S5). Unsupervised

cluster analysis could differentiate principal cells and interneu-

rons (Figure S8C).
Neuron 74, 1059–107
We verified the identity of 15 recorded

neurons after labeling. They showed large

dendrites coveredwith spines (Figure 6A),

typical of principal neurons (Faber et al.,

2001; McDonald, 1982). All were identi-

fied as glutamatergic by the expression

of the vesicular glutamate transporter 1
(Figure 6B). They coexpressed CaMKIIa (n = 14/14 tested; Fig-

ure 6C; Table S4). Of the remaining eight neurons, three were

weakly Neurobiotin-filled cells expressing CaMKIIa, whereas

the other five were unlabeled (see Supplemental Experimental

Procedures).

The firing of 39% (9/23) of principal neurons was strongly

modulated in phase with dCA1 q oscillations (mean r = 0.17; Fig-

ure 6D; Table S4). The majority of BLA principal neurons

thus fired independently of dCA1 q. Theta-modulated cells

did not form a tightly synchronized group (R0 = 0.72, R0.05,9 =

1.053, Moore test; Figure 6D), in line with the weak ensemble

(LFP) q activity observed in the BLA. Importantly, the proportion

of q-modulated neurons and the preferred phase distribution

(Figure 6E) were both consistent with previous studies in

nonanesthetized animals (Paré and Gaudreau, 1996; Popa

et al., 2010).

Modulation with Ventral Hippocampal Theta
The BLA receives dense innervation from the ventral hippo-

campal formation (McDonald, 1998; Pitkänen et al., 2000), but

not from dCA1. However, dCA1 q oscillations represent a more

reliable reference signal compared with ventral hippocampal q.

In dCA1, the q rhythm is regular, reproducible across animals

and it has been suggested to indirectly but accurately reflect

ventral hippocampal activities (Royer et al., 2010). Indeed, q

oscillations recorded from dorsal and ventral CA1 are coherent

in both urethane-anesthetized and drug-free rats (Adhikari

et al., 2010; Hartwich et al., 2009; Royer et al., 2010), and

many ventral hippocampal neurons fire phase-locked to

dCA1 q (Hartwich et al., 2009; Royer et al., 2010). In contrast,
4, June 21, 2012 ª2012 Elsevier Inc. 1067



Figure 6. Anatomical Features and Theta Modulation of BLA Principal Neurons

(A) The neuron tjx89c had large dendrites covered with spines (projection of a confocal z stack of 7.99 mm thickness).

(B) tjx89c expressed VGluT1, demonstrating its identity as a glutamatergic neuron (single optical section confocal micrographs; recordings from this neuron are

shown in Figure 7A).

(C) Moderate levels of CaMKIIa, (*) as well as weak calbindin (**) expression were detected in the soma of tjx89c (confocal images, single optical sections).

(D) Phase histograms. Two q cycles are shown for clarity. Error bars represent SEM.

(E) Polar distribution of preferred q phase and modulation depth of the q-modulated principal neurons (n = 9/23). Each symbol represents a modulated neuron.

Note that all 9 cells were strongly modulated.

Scale bars (A) 10 mm; (B) 2 mm (C) 10 mm. See also Figures S1 and S8, and Table S4.
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LFP q in ventral hippocampus would have been an unsuitable

reference. LFP q phase in ventral hippocampus varies dramati-

cally between recordings, preventing a reliable comparison of

phase locking between animals (Hartwich et al., 2009; Table

S6). Moreover, ventral hippocampal q oscillations have low

amplitude and occur only transiently (Adhikari et al., 2010; Hart-

wich et al., 2009; Royer et al., 2010), compromising the isolation

of q epochs using unbiased methods (Csicsvari et al., 1999;

Klausberger et al., 2003) and the calculation of q phases.

To validate that dCA1 signal predicted spike timing of BLA

neurons relative to ventral hippocampal q, we performed exper-

iments that included a vCA1-subiculum electrode (n = 3 animals,

6 neurons). Ventral stratum radiatum LFP signal was used as

second reference. Theta oscillations were intermittent and had

generally low amplitude, as reported in behaving rodents (Fig-

ure S9; Adhikari et al., 2010; Royer et al., 2010).

As expected, dCA1 signal predicted BLA unit firingmodulation

with ventral hippocampal q. Differences between the phases of

dCA1 and vCA1-subiculum LFP q oscillations were similar to,
1068 Neuron 74, 1059–1074, June 21, 2012 ª2012 Elsevier Inc.
and correlated with the difference between the preferred phases

of neuron firing calculated with the two references (Pearson’s

correlation r = 0.975, p = 0.025 and circular-circular correlation:

Fisher and Lee’s method, Oriana software, p < 0.05, n = 4:

3 principal cells, 1 PV+ basket cell; Figures 7 and S9). Moreover,

qmodulation strengths of units calculated with dorsal and ventral

hippocampal references were similar and linearly correlated

(Pearson’s correlation r = 0.976, p = 0.024; n = 4; Figure 7D).

These results establish that dCA1 is a suitable and sensitive

reference to study the coupling of BLA neuron firing to hippo-

campal q.

DISCUSSION

This study defines several types of BLA interneurons and their

role in shaping BLA activity in relation to dCA1 q oscillations

and noxious stimuli, two processes critical in forming emotional

memories. The key findings are the following: dendrite-targeting

CB+ interneurons provide inhibition to BLA principal cells in



Figure 7. Dorsal CA1 Reference Recapitulates

BLA Unit Firing Modulation by Ventral Hippo-

campal q

(A and B) A principal neuron (tjx89c) was recorded along

with LFPs from dorsal (CA1 str. pyramidale) and vHippo-

campus (subiculum str. radiatum). (A) Raw data showing

tjx89c firing during an exemplary period of ventral hippo-

campal q. Traces filtered for q frequencies are overlaid. (B)

Theta oscillations in the ventral subiculum are phase-

locked to those in dCA1. Phase histogram representing

the distribution of vSubiculum q troughs across the dCA1 q

cycle.

(C and D) Single units modulated in phase with dCA1 q are

similarly modulated with vHippocampus q. (C) Left: phase

histogram of tjx89c spikes computed with the dCA1

reference. vSubiculum q trough distribution was super-

imposed to illustrate the predicted firing phase relation-

ship of tjx89c with vSubiculum q rhythm (predicted phase:

135.7�). Right: distribution of tjx89c spike angles relative to
vSubiculum q, consistent with the prediction. (D) Results

obtained with dCA1 q phase as a reference accurately

reflect firing modulation of neurons in phase with ventral

hippocampal q. Top: linear correlation between the pre-

dicted (LFPs) and actual phase differences of neuron

modulation by dorsal and ventral hippocampal q. Bottom:

linear correlation between modulation depths calculated

with the dorsal and ventral hippocampal references.

Diagonal dashed lines: unity line.

(E) Anatomically confirmed recording sites in the ventral

subiculum from the same experiment. The white box

highlights the Neurobiotin (green) deposit made at the str.

pyramidale recording site. NeuN immunoreactivity (red)

was used as a panneuronal nuclear and cytoplasmic

marker to delineate str. pyramidale. Calbindin immuno-

reactivity (light blue) highlights hippocampal layers.

Colocalization with NeuN is indicated by white and pink.

Inset: higher magnification of the area delineated in the

main panel. Arrow: recording site in str. radiatum. SO: str.

oriens; SP: str. pyramidale: SR, str. radiatum; SLM: str.

lacunosum moleculare.

Scale bars: (A) time: 1 s, LFPs: 0.5 mV, units: 2 mV; (E)

1 mm, inset: 100 mm. See also Figure S9 and Table S6.
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phase with hippocampal q oscillations. The firing of PV+ basket

cells is not tightly synchronized with q oscillations. Axo-axonic

cells consistently and dramatically increase their firing in

response to noxious stimuli. In addition, we discovered a

GABAergic cell type well placed to coordinate spontaneous

and sensory-related BLA-AStria interactions. Our results

support the hypothesis that interneurons are critical in regulating

timing in the BLA, and that they operate in a cell-type-specific

manner. We demonstrate that this principle is not limited to firing

relationships with ongoing oscillations, but also applies to the

integration of sensory information.

GABAergic Cell Types of the BLA
Defining cell types requires the correlated analysis of molecular

markers, full dendritic and axonal patterns and postsynaptic

targets at ultrastructural level (Somogyi, 2010). The present

study unambiguously defines four interneuron types of the BLA.
First, we demonstrate that axo-axonic and PV+ basket cells

are two distinct cell types in the rat BLA. Indeed, PV+ basket cells

target somata and dendrites of principal neurons, whereas axo-

axonic cells innervate almost exclusively axon initial segments.

Thus, the hypothesis that axo-axonic and PV+ basket cells of

BLA are a single cell type (Woodruff et al., 2006) should be re-

jected, at least in adult rats. The present report of an extensive

coexpression of PV, CB, and/or GABAAR-a1 in BLA interneurons

is consistent with earlier studies (McDonald and Betette, 2001;

McDonald andMascagni, 2004). Our data suggest that the coex-

pression of moderate to high levels of PV, CB, and GABAA-Ra1

may be specific to basket cells.

Second, we identified a CB+ dendrite-targeting cell type. The

existence in the BLA of such PV+ interneurons specifically target-

ing dendrites has been inferred (Muller et al., 2006; Woodruff

et al., 2006; Woodruff and Sah, 2007), but never directly demon-

strated. The target selectivity of basket and dendrite-targeting
Neuron 74, 1059–1074, June 21, 2012 ª2012 Elsevier Inc. 1069
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cells demonstrates a clear separation, and precludes their

grouping into a single population.

Third, we report a specific GABAergic cell type, that we named

AStria-projecting, for its axon reaching outside the BLA.

The BLA most likely comprises additional GABAergic cell

types (Ehrlich et al., 2009). Indeed, Golgi staining has revealed

BLA interneurons with axo-dendritic patterns distinct from those

presented here (e.g., neurogliaform-like cells, McDonald, 1982).

Moreover, populations of BLA GABAergic neurons lacking PV

have been shown to express markers such as calretinin,

cholecystokinin, neuropeptide Y, or somatostatin (Spampanato

et al., 2011). Recent in vitro studies have elucidated the firing

characteristics, dendritic and axonal patterns, expression of

neurochemical markers, and functional connectivity of some of

these neurons (Jasnow et al., 2009; Rainnie et al., 2006; Sosulina

et al., 2010). However, the lack of a comprehensive anatomical

strategy has so far prevented a clear characterization of these

interneuron types.

We demonstrated that different BLA interneuron types make

GABAergic synapses with specific domains of principal cells.

This appears of key significance in light of their distinct firing

activities.

Firing Relationship with Hippocampal Oscillations
The firing relation of BLA interneurons to hippocampal q differed

between cell types. This is consistent with only a subset of puta-

tive BLA interneurons firing in phase with hippocampal q in

behaving cats (Paré and Gaudreau, 1996). Importantly, the

modulation strength of interneuron activity was independent

from the power and frequency of dCA1 q oscillations (Experi-

mental Procedures).

Dendrite-targeting CB+ cells showed the most consistent

firing modulation. The dendritic inhibition they provide could

modulate the integration of glutamatergic inputs and limit

action potential back-propagation, thereby rendering synaptic

plasticity onto principal neurons dependent on hippocampal q.

This is particularly important in the BLA, where synaptic plasticity

on dendritic spines is thought to underlie fear memory encoding

(Humeau et al., 2005; Ostroff et al., 2010).

We found weak and inconsistent q-modulation of PV+ basket

and axo-axonic cell firing, which both innervate the perisomatic

domain of target cells. At the population level, these cells appear

to provide constant perisomatic inhibition of principal neurons.

We cannot rule out that synchronization is limited to subpopula-

tions of these neurons. Somata of BLA principal cells are inner-

vated by �60 PV+ boutons and their axon initial segment by

�20 boutons (Muller et al., 2006). Terminals of PV+ fast-spiking

cells release GABA with high fidelity (Hefft and Jonas, 2005).

Together with our results, this suggests that �900 boutons

release GABA around each BLA principal cell soma every

second. Such powerful inhibition likely contributes to the very

low firing rates of principal neurons, provided axo-axonic cells

chiefly inhibit postsynaptic cells (Woodruff et al., 2011). Our

finding of weakly q-related activity of perisomatic-innervating

cells constitutes a major difference fromwhat has been reported

in neocortex and hippocampus (Hartwich et al., 2009; Klaus-

berger et al., 2003). Individual AStria-projecting cells might

provide q-modulated perisomatic inhibition to their target
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neurons in BLA and AStria, but they do not seem to play such

a role as a population.

Interneurons might adjust their relationship with q rhythms on

a fine time-scale, possibly depending on behavioral states. The

present analysis assumes relatively stationary activities and

was not designed to capture specific bouts of dynamic synchro-

nization. The juxtacellular method used here restricts sample

sizes. It is possible that large assemblies of interneurons whose

activity is weakly synchronized can still have a large net effect on

principal neuron populations.

None of the recorded interneurons showed modulation in

phase with dCA1 g oscillations. This held true for the analysis

of q-nested g oscillations and for entire g oscillation periods.

Our findings are consistent with g oscillations being generated

locally and indicate that BLA interneurons are more likely

to participate in amygdalo-hippocampal synchrony at q

frequencies.

The firing of�40%of principal cells was strongly modulated in

phase with hippocampal q. Modulated cells could correspond to

the so-called fear neurons, which selectively receive inputs from

ventral hippocampus (Herry et al., 2008). As found in behaving

rats, preferred q phases of principal cells were dispersed

(Popa et al., 2010). Phase-modulation heterogeneity may result

from the convergence at heterogeneous phases of perisomatic

inhibition (as our data suggest) and of excitatory inputs from

several brain regions. For example, perirhinal and entorhinal

cortices also innervate the BLA (McDonald, 1998; Pitkänen

et al., 2000) and contain neuronal assemblies oscillating at q

frequencies (Collins et al., 1999).

Firing Responses to Noxious Stimuli
Salient sensory events recruit the amygdala to attach emotional

significance to coincident neutral stimuli (LeDoux, 2000).

Previous work suggests that phasic GABAergic inhibition may

be instrumental in integrating noxious stimuli, by increasing

synchrony in the BLA (Crane et al., 2009; Windels et al., 2010).

Diversity in roles played by interneuron types could be expected

not only during spontaneous activity, but also in integrating

salient sensory stimuli. Indeed, we found cell-type-dependent

responses to noxious stimuli.

AStria-projecting neurons responded with a long-lasting

inhibition of firing. Their target neurons in amygdala and

AStria should be concomitantly disinhibited, perhaps promoting

Hebbian synaptic plasticity. While the functions of AStria

neurons are unknown, they might be involved in appetitive

behavior and potentially participate in a parallel circuit controlling

emotional responses.

In contrast, the firing of axo-axonic cells increased systemati-

cally and dramatically upon noxious stimuli presentation.

Inputs from extrinsic afferents might mediate this effect. The

responses of axo-axonic cells to noxious events may trigger

the stimulus-induced GABAergic currents recorded in principal

cells, thus generating synchrony in the BLA (Windels et al.,

2010). Axo-axonic cells could provide temporal precision to large

principal cell assemblies for the encoding of associations with

unconditioned stimuli, in twoways: (1) by synchronizing principal

neurons for glutamatergic inputs subsequently reaching theBLA;

(2) by limiting the synaptic integration time window (Pouille and
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Scanziani, 2001), thus controlling spike-timing-dependent plas-

ticity (Humeau et al., 2005). Activation of GABAB receptors,

specifically expressed on glutamatergic inputs to BLA principal

neurons (Pan et al., 2009), might also reinforce the temporal

precision of synaptic plasticity (Humeau et al., 2003). Alterna-

tively, the response of axo-axonic cells might restrict principal

cell firing to those most strongly excited by noxious stimuli.

The stimuli used in this study closely resemble those em-

ployed in classical fear conditioning experiments. Therefore,

our results predict how BLA interneurons might be involved in

fear learning. The present results were obtained from urethane-

anaesthetized rats. We cannot rule out that firing patterns of

BLA neurons are different in behaving animals. However, reports

on responses of single units to visual or auditory cues in different

brain regions and species have found strong similarities between

awake and urethane anesthesia states (Niell and Stryker, 2010;

Schumacher et al., 2011). Spontaneous firing frequencies

appear decreased by urethane, whereas direction and magni-

tude of sensory-evoked responses seem unaffected. Urethane

treatment induces brain states comparable to those observed

in natural conditions (Clement et al., 2008). Hippocampal q oscil-

lations display patterns resembling those in the unanaesthetized

state (Lubenov and Siapas, 2009, and our results). In addition,

we found that BLA principal neurons fired similarly phase-locked

to hippocampal q as previously reported in behaving animals.

In hippocampus, groups of putative interneurons recorded in

behaving rats appear similarly q-modulated to the main

GABAergic cell classes recorded under urethane (Czurkó et al.,

2011). Overall, it is likely that firing patterns of BLA neurons

reported here recapitulate their main characteristics in drug-

free conditions.

BLA Theta Genesis
BLA-hippocampal theta synchronization increases after fear

conditioning. This might facilitate the cortical transfer of

emotional memories for long term storage (Paré et al., 2002;

Popa et al., 2010). How may specific firings of GABAergic inter-

neurons contribute to this? Convergent excitatory inputs onto

principal cells during sensory stimuli can trigger synaptic plas-

ticity (Humeau et al., 2003). Dendrite-targeting interneurons,

such as those CB+ cells, could provide powerful inhibitory

control of such excitatory inputs (Lovett-Barron et al., 2012).

Calbindin+ interneurons preferentially fire before the peak of

dCA1 q. Therefore, excitatory inputs active around the q trough

are more likely to increase their synaptic weight during intense

sensory stimulation.

Axo-axonic cells may ensure that synaptic potentiation is

restricted to inputs concomitantly active with the salient stim-

ulus. Assuming that some extrinsic inputs are q-modulated, the

net effect could be a stronger q modulation of excitatory input

to BLA principal neurons. This potentiation would create

synchrony in large cell assemblies in synergy with the intrinsic

membrane potential resonance of BLA principal neurons (Paré

et al., 1995). Consistent with this, LFP q power increases in

BLA following fear conditioning (Paré and Collins, 2000; Seiden-

becher et al., 2003), and BLA principal neurons become more q

modulated and synchronous after fear conditioning (Paré and

Collins, 2000). These changes are made possible by the fact
that in naive animals, only 20%–40% (Popa et al., 2010, and

our findings) of BLA principal neurons are q-modulated, and at

dispersed phases. BLA q oscillations increase after fear condi-

tioning with a delay (Pape et al., 2005; Paré et al., 2002), which

may be explained by the induction of structural plasticity (Ostroff

et al., 2010).

The present results suggest that PV+ basket and axo-axonic

cells play minor roles in q increase. However, they might modify

their activities with emotional learning and later support BLA q

oscillations. Futures work in behaving animals is needed to

examine the activities of BLA interneurons after fear conditioning

and, most critically, to address how they change during learning.

Our finding of cell-type-dependent firing could be used to facili-

tate the classification of putative BLA interneurons recorded in

behaving animals.

Conclusion
Modulation of neuronal synchrony in the BLA is critical for the

formation of emotional memories. This study provides insights

into the cell type-specific contribution of GABAergic cells to

BLA synchrony. Timed release of GABA on specific domains

of BLA principal neuron is likely important for emotional informa-

tion processing. We propose that the cooperation between

precise spike-timing of various interneuron types is necessary

for the encoding and persistence of emotional memories. Future

studies could build on our findings to manipulate specific

interneuron populations during behavior and directly test this

hypothesis.

EXPERIMENTAL PROCEDURES

In Vivo Electrophysiological Recordings

All procedures involving experimental animals were performed in accordance

with the Animals (Scientific Procedures) Act, 1986 (UK) and associated regu-

lations, under approved project and personal licenses. Seventy adult male

Sprague-Dawley rats (250–350 g) were anesthetized with intraperitoneal

injections of urethane (1.30 g.kg�1 body weight) plus supplemental doses of

ketamine and xylazine, (10–15 and 1–1.5 mg.kg�1, respectively) as needed.

The rectal temperature was maintained at 37�C with a homeothermic heating

device. Craniotomies-duratomies were performed over the right hippocampus

and amygdala.

Neuronal activities in the BLA and dCA1 (stratum oriens-pyramidale) were

recorded with independent electrodes made of silver-chloride wires loaded

in glass pipettes filled with 1.5% Neurobiotin (Vector Laboratories) in 0.5 M

NaCl (12–18 MU resistance in vivo, tip diameter �1.1 mm). Glass electrode

signals were referenced against a wire implanted subcutaneously in the

neck. The electrocorticogram (ECoG) was recorded via a 1 mm diameter steel

screw juxtaposed to the dura mater above the right prefrontal cortex (Bregma

AP: 4.5 mm, ML: 2.0 mm), and was referenced against a screw implanted

above the ipsilateral cerebellum.

Pinches of 15 s duration were delivered to the hindpaw controlateral to

recording sites using pneumatically driven forceps that delivered a pressure

of 183 g.mm�2. Similar mechanical stimuli have been shown to be noxious

by eliciting an escape response in behaving rats, as well as by recruiting noci-

ceptive brain circuits in urethane-anesthetized rats (Cahusac et al., 1990).

Electrical stimuli (single current pulses of 5 mA intensity and 2 ms duration)

were delivered at 0.5 Hz through 2 wires implanted on the ventral face of the

controlateral hindpaw, for at least 100 trials. The timing of stimuli delivery

was controlled by an external pulse generator (Master-8; A.M.P.I.) and

synchronously recorded. Identical electrical shocks have been shown to acti-

vate spinal cord nociceptive neurons in urethane-anesthetized rats (Coizet

et al., 2006).
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Residual 50 Hz noise and its harmonics were reduced in all signals

using Humbugs (Quest Scientific). Glass electrode signals were amplified

(103, Axoprobe 1A, Molecular Devices Inc.), bifurcated, further amplified

(1003), and differentially filtered (DPA-2FS filter/amplifier; Scientifica) to

extract local field potentials (LFPs, 0.3–5,000 Hz) and unit activities (300–

5,000 Hz). Raw ECoG signal was band-pass filtered (0.3–1,500 Hz) and ampli-

fied (2,0003). All signals were digitized online at 16.67 kHz using a Power 1401

analog-digital converter (Cambridge Electronic Design) and stored on a PC

running Spike2 software (versions 6.08 and 6.09, Cambridge Electronic

Design). GABAergic cell recordings lasted 15–105 min (typically �45 min).

The juxtacellular recording mode (rather than, for example, a quasi-intracel-

lular mode), was assured by only including for analysis neurons that (1) had

stable spontaneous firing rates/patterns and stable spike widths; (2) did not

display any ‘‘injury discharge’’; and (3) were recorded in the absence of

spurious ‘‘baseline noise’’ or hyperpolarizing shifts in the electrode potential.

Labeling of Single Neurons and Reference Sites

After recordings, neurons were selectively filled with Neurobiotin using juxta-

cellular labeling (Pinault, 1996). Spike shape and amplitude were monitored

throughout recording and labeling to ensure that the same neuron was

recorded and labeled. In order to verify the location of the reference electrode,

an extracellular Neurobiotin deposit was made in the dorsal CA1 (100 nA

anodal current 1 s, 50% duty cycle for 20–30 min).

Electrophysiological Data Analysis

Only data acquired before labeling and obtained from unequivocally identified

cells were analyzed. All data were analyzed off-line using Spike2 built-in func-

tions and custom scripts (Tukker et al., 2007). Spikes were detected with an

amplitude threshold in the BLA unit channel. Occasionally, additional smaller

amplitude units were present in the recording. Spike2 clustering function

supervised manually was used to isolate single units, and identity of labeled

neurons was systematically ensured as described above. Spike sorting was

always checked using autocorrelograms, which showed clear refractory

periods (R2 ms).

Hippocampal theta oscillation epochs were detected by calculating the

theta (3–6 Hz) to delta (2–3 Hz) power ratio in 2 s windows of the dCA1 LFP

(Csicsvari et al., 1999; Klausberger et al., 2003). Ratio >4 in at least three

consecutive windows marked theta episodes. We excluded from this analysis

periods of noxious stimuli and the following 20 s. Every theta episodewas visu-

ally checked. Selected periods always consisted of robust theta oscillations.

They exclusively occurred during persistently activated brain state (Figure S9).

After theta episodes detection, the dCA1 LFP was downsampled to 1.04 kHz,

digitally filtered (3–6 Hz) and the troughs were determined (Spike2). Each spike

was assigned an angle relative to surrounding theta troughs (Tukker et al.,

2007; Klausberger et al., 2003). The precision of our electrode placements

(mediolateral and antero-posterior ranges �400 mm) ensured phase consis-

tency between experiments (i.e., �8.5 degrees error, assuming a phase shift

of 21�/mm; Lubenov and Siapas, 2009).

Mean firing frequency was calculated over 100 s continuous periods of

robust theta activity. Coefficient of variation (S.D./mean, CV) of interspike

intervals during these periods was used as a measure of firing regularity. CV

greater than 1 indicated the cell fired in an irregular pattern.

Responses to noxious stimuli were assessed by constructing peristimulus

histograms (bin size 20 ms for electrical footshocks, 200 ms for hindpaw

pinches). Responses were analyzed only if the brain state corresponded to

stable global activation before, during, and after the noxious stimulus. This

allowed for the distinction of sensory-driven responses from effects on the

brain state (e.g., change from slow wave to activation). In addition, we verified

that hindpaw pinches did not induce changes in the power of the LFP oscilla-

tions recorded in dCA1 or BLA (q and g bands; p > 0.05, Wilcoxon signed-rank

test, n = 25 cells).

Statistical Testing

Relation to hippocampal theta oscillations: all 833–20,522 (average 6,906)

spike angle values from single interneuron units were exported for testing

with circular statistics (Oriana v. 2.0, Kovac Computing Services). Modulation

in phase with dCA1 theta oscillations was tested for significance using
1072 Neuron 74, 1059–1074, June 21, 2012 ª2012 Elsevier Inc.
Rayleigh’s uniformity test (significance p < 0.005). If p < 0.005, the sum vector

of all spikes was computed and normalized by the number of spikes. Its

orientation determined the mean angle of spike firing, with respect to the

trough (0�) of dCA1 theta oscillation (180� represents the theta peak). The

length r of the normalized vector determined modulation depth. Phase

modulation homogeneity within neuron groups (only modulated cells

included) was tested with Moore’s non parametric test (Zar, 1999). The null

hypothesis was the absence of directionality in the group. If p < 0.05, cells

of the group fired at consistent phases and Batschelet’s method was used

to calculate the population mean angle (Zar, 1999). This ensured the statistical

reliability of our conclusions on population modulation. Furthermore, we es-

tablished that the depth of modulation of BLA interneurons activity was not

correlated with either the power or the mean frequency of dCA1 theta oscilla-

tions (Pearson correlation, R = 0.03, p = 0.896; R = 0.216, p = 0.335; respec-

tively, n = 22).

Significance of responses to noxious stimuli was tested using thresholds.

Footshocks: significance was accepted if at least 3 consecutive bins differed

from the preonset 300 ms mean by 2 SD or any bin by 4 SD. Pinches: for 1–2

trials, significance was accepted if at least 3 consecutive bins differed from the

preonset 10 s mean by 1 SD or any 1 bin by 4 SD. For 3 trials and more, signif-

icance was accepted if at least 3 consecutive bins differed from the preonset

mean by 1.5 SD or any 1 bin by 4 SD. Latency was defined as the starting time

of the first binmeeting these criteria. The peak time was the starting time of the

largest change in the first significant series.

Differences in postsynaptic dendrite diameter between cell subgroups were

evaluated using the Kruskal-Wallis test followed by Dunn’s post hoc analysis.

Data are expressed as mean ± SEM, unless otherwise stated.
Tissue Processing and Anatomical Analysis

Details on brains fixation, immunofluorescence, electron microscopy, and

camera lucida reconstructions are given in the Supplemental Information.
SUPPLEMENTAL INFORMATION

Supplemental Information includes nine figures, eight tables, and Supple-
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Buzsáki, G., and Somogyi, P. (2003). Brain-state- and cell-type-specific firing

of hippocampal interneurons in vivo. Nature 421, 844–848.

LeDoux, J.E. (2000). Emotion circuits in the brain. Annu. Rev. Neurosci. 23,

155–184.

Lovett-Barron, M., Turi, G.F., Kaifosh, P., Lee, P.H., Bolze, F., Sun, X.H.,

Nicoud, J.F., Zemelman, B.V., Sternson, S.M., and Losonczy, A. (2012).

Regulation of neuronal input transformations by tunable dendritic inhibition.

Nat. Neurosci. 15, 423–430, S421–S423.

Lubenov, E.V., and Siapas, A.G. (2009). Hippocampal theta oscillations are

travelling waves. Nature 459, 534–539.

Maren, S., and Fanselow, M.S. (1995). Synaptic plasticity in the basolateral

amygdala induced by hippocampal formation stimulation in vivo.

J. Neurosci. 15, 7548–7564.

Mascagni, F., and McDonald, A.J. (2003). Immunohistochemical characteriza-

tion of cholecystokinin containing neurons in the rat basolateral amygdala.

Brain Res. 976, 171–184.

McDonald, A.J. (1982). Neurons of the lateral and basolateral amygdaloid

nuclei: a Golgi study in the rat. J. Comp. Neurol. 212, 293–312.

McDonald, A.J. (1998). Cortical pathways to the mammalian amygdala. Prog.

Neurobiol. 55, 257–332.

McDonald, A.J., and Betette, R.L. (2001). Parvalbumin-containing neurons in

the rat basolateral amygdala: morphology and co-localization of Calbindin-

D(28k). Neuroscience 102, 413–425.

McDonald, A.J., and Mascagni, F. (2004). Parvalbumin-containing interneu-

rons in the basolateral amygdala express high levels of the alpha1 subunit of

the GABAA receptor. J. Comp. Neurol. 473, 137–146.

Muller, J.F., Mascagni, F., andMcDonald, A.J. (2006). Pyramidal cells of the rat

basolateral amygdala: synaptology and innervation by parvalbumin-immuno-

reactive interneurons. J. Comp. Neurol. 494, 635–650.

Niell, C.M., and Stryker, M.P. (2010). Modulation of visual responses by behav-

ioral state in mouse visual cortex. Neuron 65, 472–479.

Ostroff, L.E., Cain, C.K., Bedont, J., Monfils, M.H., and Ledoux, J.E. (2010).

Fear and safety learning differentially affect synapse size and dendritic trans-

lation in the lateral amygdala. Proc. Natl. Acad. Sci. USA 107, 9418–9423.

Pan, B.X., Dong, Y., Ito, W., Yanagawa, Y., Shigemoto, R., and Morozov, A.

(2009). Selective gating of glutamatergic inputs to excitatory neurons of amyg-

dala by presynaptic GABAb receptor. Neuron 61, 917–929.

Pape, H.C., Narayanan, R.T., Smid, J., Stork, O., and Seidenbecher, T. (2005).

Theta activity in neurons and networks of the amygdala related to long-term

fear memory. Hippocampus 15, 874–880.
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and theta dynamics in dorsal and ventral hippocampus. J. Neurosci. 30, 1777–

1787.

Sangha, S., Narayanan, R.T., Bergado-Acosta, J.R., Stork, O., Seidenbecher,

T., and Pape, H.C. (2009). Deficiency of the 65 kDa isoform of glutamic acid

decarboxylase impairs extinction of cued but not contextual fear memory.

J. Neurosci. 29, 15713–15720.

Schumacher, J.W., Schneider, D.M., and Woolley, S.M. (2011). Anesthetic

state modulates excitability but not spectral tuning or neural discrimination

in single auditory midbrain neurons. J. Neurophysiol. 106, 500–514.

Seidenbecher, T., Laxmi, T.R., Stork, O., and Pape, H.C. (2003). Amygdalar

and hippocampal theta rhythm synchronization during fear memory retrieval.

Science 301, 846–850.

Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of

relations? Neuron 24, 49–65, 111–125.
1074 Neuron 74, 1059–1074, June 21, 2012 ª2012 Elsevier Inc.
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