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Abstract
Molecular techniques like metabarcoding, while promising for exploring diversity of 
communities,	are	often	impeded	by	the	lack	of	reference	DNA	sequences	available	for	
taxonomic	annotation.	Our	study	explores	the	benefits	of	combining	targeted	DNA	bar-
coding and morphological taxonomy to improve metabarcoding efficiency, using beach 
meiofauna as a case study. Beaches are globally important ecosystems and are inhabited 
by meiofauna, microscopic animals living in the interstitial space between the sand grains, 
which play a key role in coastal biodiversity and ecosystem dynamics. However, research 
on meiofauna faces challenges due to limited taxonomic expertise and sparse sampling. 
We	generated	775	new	cytochrome	c	oxidase	I	DNA	barcodes	from	meiofauna	specimens	
collected along the Netherlands' west coast and combined them with the NCBI GenBank 
database. We analysed alpha and beta diversity in 561 metabarcoding samples from 24 
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1  |  INTRODUC TION

Metabarcoding has become a standard technique for the study 
of biological communities and a valuable tool for understanding 
biodiversity	 and	 ecology	 of	 species	 and	 communities	 (Ficetola	 &	
Taberlet, 2023; Taberlet et al., 2012). Despite technological ad-
vances, the efficiency of metabarcoding studies and their usability 
for ecological analyses depends on the completeness of reference se-
quence databases. These databases, such as NCBI GenBank (Benson 
et al., 2012)	and	Barcode	of	Life	Data	System	(BOLD;	Ratnasingham	&	
Hebert, 2007)	contain	reference	DNA	barcodes	(Hebert	et	al.,	2003) 
generated from individual, taxonomically identified specimens that 
serve as reference against which the metabarcoding sequences can 
be compared and identified. The availability of such references greatly 
varies across taxonomic groups and ecosystems, remaining particu-
larly poor for species- rich but understudied taxa and regions (Keck 
et al., 2023; Leasi et al., 2018;	Leray	&	Knowlton,	2015;	Weigand	&	
Macher, 2018).	A	promising	approach	to	mitigate	this	issue	lies	in	the	
targeted collection, identification, and sequencing of a high number 
of specimens, followed by their addition to molecular reference da-
tabases. This method, sometimes implemented through taxonomic 
expert workshops, has been successfully employed across diverse 
taxonomic groups and ecosystems (Behrens- Chapuis et al., 2021; 
Creedy et al., 2020;	De	Souza	Amorim	et	al.,	2023; Dugal et al., 2022; 
Emerson et al., 2023; Zhou et al., 2011). Since well- studied and well- 
described taxa are important for the identification and classification 
of species, and for evaluating the utility of reference databases, in-
volving taxonomic experts in the build- up and improvement of mo-
lecular reference databases is of utmost importance.

Using beach meiofauna as a case study, we investigate the ef-
fect of targeted sampling and expert identification on improving 
metabarcoding efficiency by increasing the completeness of refer-
ence libraries. Beach meiofauna comprises small animals inhabiting 
the interstitial spaces between sand grains. They form highly diverse 
communities, providing important ecosystem services and are valu-
able for the understanding of biodiversity and ecosystem dynamics 

of coastal areas (Felix et al., 2016;	 Schratzberger	 &	 Ingels,	 2018). 
Beaches are one of the Earth's most dynamic environments, which 
is threatened by sea level rise and other human impacts (Lansu 
et al., 2024; Schlacher et al., 2007). Studying meiofauna is challeng-
ing	due	 to	 their	 generally	microscopic	 size	 and	 the	 scarcity	of	 tax-
onomists for most of the world's geographic regions and taxonomic 
groups	(Leasi	&	Norenburg,	2014; Zeppilli et al., 2015). This taxonomic 
impediment means many beach meiofauna species remain unde-
scribed even in intensively sampled areas (Curini- Galletti et al., 2012; 
Martinez	et	 al.,	2023).	Advancements	 in	DNA	metabarcoding	have	
drastically improved our ability to detect species in complex com-
munities	 (Ficetola	 &	 Taberlet,	 2023), and after pioneering studies 
demonstrating	the	use	of	DNA	metabarcoding	for	marine	meiofauna	
(Creer et al., 2010; Fonseca et al., 2010), the technique now allows for 
more detailed studies and gaining a better understanding of the im-
pact	of	environmental	factors	and	stressors	on	meiofauna	(Atherton	
&	Jondelius,	2020; Gielings et al., 2021;	Martínez	et	al.,	2020).

Here we introduce a dataset comprising 775 newly generated 
cytochrome	c	oxidase	I	reference	sequences	(‘DNA	barcodes’)	de-
rived from meiofauna specimens collected along the Netherlands' 
west coast. This region, a part of the southern North Sea, is one 
of the best- studied areas in marine meiofaunal research (Germán 
Rodríguez,	2004;	Gray	&	Rieger,	1971; Kotwicki et al., 2005). By 
analysing a total of 576 metabarcoding samples, we study the in-
fluence of enhanced reference databases on inferred species rich-
ness and community composition patterns, both on a local (across 
the	 intertidal	 zone)	 and	 regional	 (spanning	 650 km	 of	 the	 North	
Sea Coast) scales. By demonstrating major improvements in iden-
tification of meiofauna in metabarcoding data through reference 
database enhancement, our study highlights the critical need for 
combining taxonomic expertise with reference sequencing even 
in well- studied areas. Due to the massive improvement demon-
strated by the use of a local reference library in one of the best- 
studied areas in the world, the improvement that can be obtained 
in poorly studied, species- rich areas will be much stronger. We seek 
to inspire similar initiatives in biodiversity research and advocate 

North Sea beaches, a region extensively studied for meiofauna, using both the enriched 
reference database and the NCBI database without the additional reference barcodes. 
Our results show a 2.5- fold increase in sequence annotation and a doubling of species- 
level Operational Taxonomic Units (OTUs) identification when annotating the metabar-
coding	data	with	the	enhanced	database.	Additionally,	our	analyses	revealed	a	bell-	shaped	
curve	of	OTU	richness	across	the	intertidal	zone,	aligning	more	closely	with	morphological	
analysis patterns, and more defined community dissimilarity patterns between supralitto-
ral and intertidal sites. Our research highlights the importance of expanding molecular ref-
erence databases and combining morphological taxonomy with molecular techniques for 
biodiversity assessments, ultimately improving our understanding of coastal ecosystems.

K E Y W O R D S
community	ecology,	DNA	barcoding,	invertebrates,	Molecular	reference	database
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for combining traditional taxonomic methods and modern genetic 
techniques to improve the understanding of biodiversity in import-
ant, but often overlooked taxonomic groups and ecosystems.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling for reference barcoding

Meiofauna specimens were collected during two taxonomic 
workshops held at Naturalis Biodiversity Center in Leiden, the 
Netherlands,	 in	May/June	2022	and	July/August	2023.	Samples	
were collected from 20 locations along the Dutch West Coast, 
by	 either	 taking	 sediment	 cores	 to	 a	 depth	 of	 10 cm,	 by	 filter-
ing coastal groundwater and sand through dug holes, or by 
scraping hard substrates, depending on the targeted taxonomic 
group. The samples were transported to the Naturalis labora-
tory	for	meiofauna	extraction	using	decantation	through	a	40 μm 
sieve	 after	 anesthetization	with	 isosmotic	MgCl2	 (Somerfield	 &	
Warwick, 2013). For a detailed list of all sample locations and 
sample types, see Table S1.	 After	 extraction,	 meiofauna	 speci-
mens were sorted and pictured alive using stereo and light mi-
croscopes. They were identified to the lowest possible taxonomic 
rank using a combination of identification keys for the respec-
tive taxa (see Schmidt- Rhaesa, 2020 and references therein for 
an overview) and the expertise of multiple taxonomic experts. 
Specimens	were	transferred	to	PCR	plates	and	submitted	to	the	
DNA	extraction	pipeline	described	below.

2.2  |  DNA extraction and amplification for 
reference barcoding

The	DNA	 extraction	 process	 for	meiofauna	 specimens	was	 per-
formed using the Macherey- Nagel (Düren, Germany) NucleoSpin 
tissue	kit	on	the	KingFisher	(Waltham,	USA)	robotic	platform,	fol-
lowing	the	manufacturer's	protocol.	After	extraction,	PCRs	were	
performed with Geller COI primers (Geller et al., 2013), target-
ing the 658 base- pair- long Folmer fragment of the mitochondrial 
cytochrome	c	oxidase	 I	 gene,	which	 is	 the	commonly	used	DNA	
barcode for animals (Folmer et al., 1994; Hebert et al., 2003). The 
protocol	was	as	follows:	Each	PCR	reaction	contained	10.2 μL of 
MiliQ	 water,	 4 μL of 5×	 PCR	 buffer	 (Qiagen;	 Hilden,	 Germany),	
0.8 μL	 of	 10 mg/mL	 BSA	 (Promega,	 Madison,	Wisconsin,	 United	
States),	1 μL of 10 picomolar/μL	primers,	0.4 μL	of	2.5 mM	dNTPs,	
0.4 μL	of	5 U/μL	Phire	II	Taq	polymerase	(Thermo	Fisher,	Waltham,	
Massachusetts,	 United	 States),	 and	 1 μL	 template	 DNA.	 PCR	
started	with	 an	 initial	 denaturation	of	 30 s	 at	 98°C,	 followed	by	
35 cycles	 of	 5 s	 denaturation	 at	 98°C,	 10 s	 annealing	 at	 50°C,	
15 s	 elongation	 at	 72°C,	 and	 a	 final	 extension	 of	 5 min	 at	 72°C.	
Each	PCR	included	a	negative	control	using	Milli-	Q	water	(Merck;	
Rahway,	New	Jersey,	United	States)	instead	of	template	DNA.	We	
cleaned	 the	 PCR	 products	 using	 AmPure	magnetic	 beads	 (Brea,	

California, United States) with a ratio of 0.9:1. Subsequently, a 
second	PCR	was	performed	to	individually	label	the	samples,	with	
2.5 μL	of	ONT	barcode	primers,	5 μL	of	LongAmp	Taq	2× master 
mix (New England Biolabs, Ipswich, Massachusetts, United States), 
and	2.5 μL	of	the	PCR	product	as	template.	The	PCR	protocol	for	
the second amplification was as follows: an initial denaturation of 
3 min	at	95°C,	followed	by	15 cycles	of	15 s	denaturation	at	95°C,	
15 s	 of	 annealing	 at	 65°C,	 50 s	 of	 elongation,	 and	 a	 final	 exten-
sion	 step	of	 3 min	 at	 65°C.	 The	PCR	 success	was	 checked	using	
the TapeStation platform. The samples were then pooled at equi-
molar concentrations to achieve a final concentration of approxi-
mately 200 femtomolar. This was followed by a purification step 
using	a	0.7:1	bead	clean-	up,	targeting	amplicons	of	700 bp	length.	
Finally,	the	purified	DNA	pools	were	eluted	in	11 μL of nuclease- 
free water, and their concentration was quantified using the Tape 
station (D5000 kit).

2.3  |  Sequencing and bioinformatics for reference 
barcoding

Sequencing was conducted using the Oxford Nanopore GridION 
sequencer on two FLO- MIN112 flow cells, with the SQK- 
NBD112.24 sequencing kit. The Basecalling was done with 
MinKNOW (v23.04.5), the run duration was set to 72H, and super 
accuracy basecalling was selected. The demultiplexing was per-
formed with Guppy barcoder (v6.4.6). The consensus calling con-
sisted of several steps combined together in a Snakemake (Mölder 
et al., 2021) pipeline: First, the reads (containing primers at both 
ends)	were	 filtered	by	size	 (> = 558,	<= 758)	and	quality	 (> = 10),	
and then reoriented with Cutadapt (v4.5, max error rate 20%, 80% 
coverage), which also removed flanking sequences. Then consen-
sus sequences were generated using NGSpeciesID v0.3.0 (Sahlin 
et al., 2021) with Medaka polishing (v1.8.0, r104_e81_sup_g5015 
model).	A	final	round	of	primer	sequence	trimming	was	performed	
with Cutadapt. Following this, multi- fasta files containing con-
sensus sequences were written by using a custom script. Quality 
control	and	visualization	of	the	processed	FASTQ	files	were	con-
ducted	using	NanoPlot	(De	Coster	et	al.,	2018) and MultiQC (Ewels 
et al., 2016).	All	resulting	sequences	underwent	manual	curation	in	
Geneious	Prime	(version	2023.2)	and	were	searched	against	exist-
ing	 references	 in	NCBI	GenBank	using	BLASTn	 (Ye	et	al.,	2006). 
All	scripts	used	for	processing	of	Nanopore	data	are	available	on	
GitHub: https:// gitlab. com/ arise -  biodi versi ty/ seque ncing/  arise 
-  barco ding-  pipel ine/ - / tree/ 1a2fa 54461 5be54 dccb7 136ca 20d36 
64ba8 5d467 .

2.4  |  Sampling and environmental variable 
measurement for metabarcoding

We collected meiofauna samples for metabarcoding from 24 sandy 
beaches along the Dutch and German Coast during the summers of 
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2021 and 2022. See Figure 1 for a map and Table S2 for the coordi-
nates of the sampled beaches. Sampling was conducted at maximum 
low	tide.	At	each	beach,	we	sampled	along	three	parallel	transects,	
with eight sampling sites each. The first sampling site was located at 
the foot of the dunes, the second midway between the dunes and 
the high- tide line, and the remaining six samples were evenly spaced 
from the high- tide line to the low- tide line. Following McLachlan's 
classification (McLachlan et al., 2018), most sampled beaches were 
tide- modified. Two beaches were wave- dominated (Relative Tide 
Range Index (RTR) of <3), and two beaches were tide- dominated 
(RTR >10).	At	each	sampling	site	along	the	transects,	two	sediment	
cores	were	collected	using	sterile	plastic	syringes:	one	with	a	5 cm	
diameter	and	10 cm	length	(approximate	volume	of	200 mL),	and	an-
other	core	with	1 cm	diameter	and	10 cm	 length	 (approximate	vol-
ume	of	8 mL).	The	smaller	core	was	 immediately	transferred	 into	a	
50 mL	Falcon	 tube,	while	 the	 larger	core	was	stored	 in	a	sterile	1-	
litre plastic bottle. On the beach, we extracted meiofauna from the 
larger core using the MgCl2	decantation	method,	by	adding	500 mL	
of isosmotic MgCl2	solution	to	the	sediment.	After	a	5-	min	incuba-
tion, the sediment- MgCl2 mixture was swirled ten times, and the su-
pernatant	containing	meiofauna	was	decanted	through	a	1 mm	and	

40 μm sieve cascade, a common practice in beach meiofauna studies 
(Castro et al., 2021; Haenel et al., 2017;	Martínez	et	al.,	2020). The 
meiofauna	retained	on	the	40 μm sieve was then rinsed into sterile 
15 mL	Falcon	tubes	and	preserved	in	10 mL	of	96%	ethanol.	All	sam-
ples were subsequently transported to the Naturalis Biodiversity 
Centre	 laboratory	and	 stored	at	−20°C	until	 processing.	The	 sedi-
ment	 from	 the	 smaller	 core	was	dried	 for	 grain	 size	measurement	
using	a	LS13320	Particle	Size	Analyser	(Beckman-	Coulter,	USA).

2.5  |  DNA extraction, amplification and 
sequencing for metabarcoding

We	extracted	DNA	from	dried	meiofauna	samples	after	evaporat-
ing	the	ethanol	at	50°C	overnight	in	a	sterile	warming	cabinet	and	
transferring	 the	dried	 samples	 to	2 mL	Eppendorf	 tubes.	DNA	ex-
traction was performed using the Macherey Nagel NucleoSpin 
Soil kit (Macherey Nagel, Düren, Germany) following the standard 
protocol including bead beating, but with an additional overnight 
Proteinase	K	digestion	step	(50 μL	250 μg/mL	ProtK,	Thermo	Fisher	
Scientific,	Waltham,	USA)	 added	 to	 the	 lysis	 buffer	 provided	with	

F I G U R E  1 (a)	Map	showing	the	
location of the 24 beaches sampled for 
metabarcoding (blue circles) and locations 
sampled for reference barcoding (red 
squares). Note that reference barcoding 
sites in close proximity to each other are 
not shown separately due to the map 
scale. The mini map shows the locations of 
the sampling area in Europe. (b) Schematic 
view of a beach showing the location of 
the eight sampling points per transect 
from dunes to the low tide line.
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the kit to improve cell lysis, as done in previous studies on meiofauna 
(Martínez	et	al.,	2020;	Weigand	&	Macher,	2018).

For	community	metabarcoding,	we	amplified	meiofauna	DNA	
using	 a	 two-	step	 PCR	 protocol	 with	 the	 widely-	used	 LerayXT	
primers targeting a 313 base pair region of the mitochondrial cy-
tochrome c oxidase I (COI) gene of a broad range of Eukaryota 
(Leray et al., 2013; Wangensteen et al., 2018).	The	 first	PCR	 re-
action	 contained	11.7 μL	mQ	water,	 2 μL Qiagen CL buffer (10×; 
Qiagen,	 Hilden,	 Germany),	 0.4 μL MgCl2	 (25 mM;	Qiagen),	 0.8 μL 
Bovine	Serum	Albumine	(BSA,	10 mg/mL),	0.4 μL	dNTPs	(2.5 mM),	
0.2 μL	 Qiagen	 Taq	 (5 U/μL),	 1 μL of each nextera- tailed primer 
(10 pmol/μL),	 and	 2.5 μL	 of	DNA	 template.	 PCR	 amplification	 in-
volved	an	initial	denaturation	at	96°C	for	3 min,	followed	by	30 cy-
cles	of	denaturation	for	15 s	at	96°C,	annealing	at	50°C	for	30 s,	
and	extension	for	40 s	at	72°C,	concluding	with	a	final	extension	at	
72°C	for	5 min.	We	processed	six	negative	controls	(Milli-	Q	water,	
Merck,	Kenilworth,	USA)	alongside	the	samples	to	check	for	po-
tential	contamination.	After	the	first	PCR,	samples	were	cleaned	
with	AMPure	beads	 (Beckman	Coulter,	Brea,	United	States)	 at	 a	
0.9:1 ratio according to the protocol to remove short fragments 
and	 primer	 dimers.	 The	 second	 PCR	 involved	 amplification	with	
individually tagged primers, following the same protocol as above 
and	using	the	PCR	product	from	the	first	PCR	as	the	template,	but	
reducing	the	PCR	cycle	number	to	10.	We	measured	DNA	concen-
trations	using	the	Fragment	Analyser	(Agilent	Technologies,	Santa	
Clara,	CA,	USA)	with	the	High	Sensitivity	Kit	and	pooled	samples	
equimolarly.	The	final	library	was	cleaned	with	AMPure	beads	as	
described above and sent for sequencing on three Illumina MiSeq 
runs	 (paired-	end,	 300 bp	 read	 length)	 at	 Baseclear	 (Leiden,	 The	
Netherlands).

2.6  |  Bioinformatic processing of 
metabarcoding data

The	 raw	 metabarcoding	 reads	 were	 processed	 using	 APSCALE	
(Buchner et al., 2022) with the following settings: maximum differ-
ences in percentage: 20; minimum overlap: 50, minimum read se-
quence	length:	310 bp;	maximum	read	length:	316 bp,	minimum	size	
to	 pool:	 20	 sequences.	 Sequences	were	 clustered	 into	 both	 ESVs	
(setting: alpha 1, minimum 20 sequences) and OTUs, the latter with 
a sequence similarity threshold of 97%. To account for potential 
low- level contamination or tag jumping common on Illumina plat-
forms (Schnell et al., 2015), we removed OTUs with an abundance of 
<0.03% of reads per sample, and OTUs that were present in less than 
six out of 561 samples (<1% occurrence). The taxonomic assignment 
was first performed using NCBI GenBank expanded with reference 
COI barcodes generated as part of taxonomic expert workshops in 
Leiden. Taxonomic ranks were assigned to OTUs using established 
identity thresholds: >97%: species, >95%: genus, >90%: family, 
>85% order (Macher et al., 2023). OTUs that were assigned with less 
than 85% identity to a reference or identified as non- meiofauna taxa 
were excluded from further analyses. The three replicates per tidal 

level per beach were merged into one composite sample to account 
for potential variability within tidal levels, resulting in 190 composite 
samples.

2.7  |  Analysing the increase in annotation 
efficiency by enhancing the reference database

We evaluated the efficiency of taxonomic assignment by calcu-
lating the percentage of reads and the number of Operational 
Taxonomic Units (OTUs) assigned to species, genus, family, order, 
and class when using NCBI GenBank for identification, and when 
enhancing	the	database	with	the	newly	generated	DNA	barcodes.	
For this, we downloaded NCBI GenBank, conducted a nucleotide 
blast (blastn) for annotation, and then a second blastn annota-
tion	with	the	enhanced	database.	All	analyses	were	performed	on	
the	 Naturalis	 Biodiversity	 Center	 High	 Performance	 Computing	
Cluster.

2.8  |  OTU richness and community similarity 
across the intertidal zone

We calculated the OTU richness for each tidal level, both for the 
dataset annotated only with the NCBI database, and for the data-
set annotated with the enhanced database. We created point plots 
showing the increase in OTU number per taxonomic group and tidal 
level using the ggplot2 package in R, and used paired t- tests to test 
for significance in difference of OTU numbers. Further, we visual-
ized	 the	 total	 number	 of	OTUs	 at	 each	 tidal	 level	 using	Cumming	
estimation	 plots	 using	 the	 ‘dabestr’	 package,	 and	 used	 estimation	
statistics (Ho et al., 2019) to assess the mean difference between 
OTU numbers between the two datasets. We calculated the propor-
tion of OTU numbers per taxonomic group and tidal level and com-
puted stacked bar plots using ggplot2 in R. To analyse differences 
in taxonomic composition between the datasets at each tidal level, 
we applied chi- square tests, incorporating a Monte Carlo simulation 
for p- value estimation (simulate.p.value = TRUE)	to	address	the	small	
sample	sizes	and	low	expected	frequencies.

We analysed the distribution of OTUs across the beach tran-
sect from dunes to the low tide line, both for the dataset anno-
tated only with NCBI GenBank and the dataset annotated with 
the enhanced database. Tidal levels were ordered categorically 
from dune level (HW1) to low water level (S6) to reflect the nat-
ural gradient. To quantify the relationship between OTU richness 
and both tidal levels and the Relative Tide Range Index (RTR), 
we	employed	 generalized	 linear	mixed-	effects	models	 (GLMMs).	
This approach enabled us to assess the statistical significance of 
linear and potentially nonlinear relationships affecting OTU rich-
ness across tidal levels and RTR, while also accounting for po-
tential within- beach correlation in OTU richness. We tested for 
overdispersion and to ensure the model represented the underly-
ing	data	structure	and	OTU	count	variability,	we	selected	Poisson	
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6 of 15  |     MACHER et al.

distribution for the dataset annotated with NCBI only, and a neg-
ative binomial distribution for the dataset annotated with the en-
hanced database.

We	calculated	beta	diversity	using	the	Jaccard	index,	based	on	
presence-	absence	data,	and	used	the	adonis2	PERMANOVA	imple-
mented	 in	 the	 ‘vegan’	 package	 in	R	 to	 assess	 the	 influence	of	 the	
tidal level, that is, the distance from the low tide, and the Relative 
Tide Range Index (RTR), that is, the beach type, on community com-
position,	using	‘Beach’	as	a	stratifying	factor.	Further,	we	calculated	
Non-	metric	Multidimensional	Scaling	plots	(NMDS)	for	visualization.	
Subsequently, we used a Mantel test to assess the correlation and 
significance of the similarity between these datasets.

2.9  |  Impact of proximity to reference 
barcoding sites on meiofauna OTU richness in 
metabarcoding data

We tested whether the distance between sites sampled for refer-
ence barcoding during the taxonomic workshops and the sites 
sampled for metabarcoding significantly influenced the increase in 
the number of OTUs identified as meiofauna in our metabarcod-
ing dataset. To do this, we employed a linear modelling approach in 
R. We first calculated the geographic distances of metabarcoding 
sampling sites to the nearest site sampled for reference barcoding 
using	Haversine	straight-	line	distances	with	the	R	library	‘geosphere’	
(Hijmans et al., 2017). Then, we constructed linear models with the 
lm function in R to explore the relationship between the percentage 
increase in OTU richness and the distance to the nearest reference 
site. This was repeated for all eight tidal levels.

3  |  RESULTS

We structure the results into two main sections. First, we report 
the striking difference in taxonomic classification when enhanc-
ing the reference library with the newly generated COI barcodes. 
Second, we examine the impact of this enhanced reference library 
on ecological interpretations when analysing the same metabarcod-
ing dataset.

3.1  |  Reference DNA barcoding

We sequenced 775 mitochondrial cytochrome c oxidase I (COI) 
DNA	 barcodes	 of	 meiofaunal	 specimens	 following	 two	 taxo-
nomic	workshops	in	Leiden	in	the	years	2022	and	2023.	All	speci-
mens were identified at least on class level, with the exception of 
Platyhelminthes,	 which	 were	 classified	 at	 least	 to	 the	 subphylum	
level. For 643 specimens (82.97%), identification was achieved at 
least	to	the	order	level.	Additionally,	490	specimens	(63.23%)	were	
identified to at least the family level, 383 specimens (49.42%) to the 
genus level, and 164 specimens (21.16%) to the species level. The 

majority of barcoded specimens were Copepoda (143), followed by 
Chromadorea and Enoplea (Nematoda), with 137 and 116 speci-
mens	respectively.	Rhabditophora	(Platyhelminthes)	and	Polychaeta	
were present with 80 and 75 specimens, respectively, followed by 
Gastrotricha	(63	specimens),	Acoela	(41),	Clitellata	(30),	Rotifera	(28),	
Arachnida	(20),	Collembola	(14),	Eutardigrada	(7),	Heterotardigrada	
(7),	 Palaeonemertea	 (4),	 Ostracoda	 (3),	 Branchiopoda	 (1),	 and	
Gnathostomulida (1). In addition, we found and sequenced four 
specimens	of	Malacostraca,	and	one	Asteroidea	larva.	See	Table S3 
for the complete taxonomic list of barcoded specimens and COI bar-
code sequences. The specimen list is also available as a GBIF dataset: 
https:// doi. org/ 10. 15468/  gemfv4.

3.2  |  Increase in annotation efficiency of 
metabarcoding data by enhancing the reference 
database

From the 561 samples analysed through metabarcoding, we retained 
14,822,456 sequences and 566 OTUs after bioinformatic processing 
and quality filtering. Merging the three biological replicates per tidal 
level resulted in 190 composite samples. Using only NCBI GenBank 
for annotation, 4,633,286 sequences in 114 OTUs were assigned to 
meiofaunal taxa at least at the phylum level. Using the enhanced da-
tabase, 11,361,563 sequences in 188 OTUs were identified as mei-
ofauna at least at the phylum level. This corresponds to an increase 
of 145% in reads and an increase of 65% in OTUs annotated to mei-
ofauna at least at the phylum level. The majority of non- meiofaunal 
reads were assigned to Bacillariophyta (2,652,322 reads, corre-
sponding to 76.64% of non- meiofaunal reads). The number of OTUs 
assigned to order level increased by 63%, from 115 to 188. On the 
family level, we found an increase of 160%, from 53 to 138 OTUs. 
The number of OTUs assigned to at least genus level increased by 
202%, from 40 to 121, and the number of OTUs annotated to spe-
cies level increased by 205%, from 36 to 110.

The OTU number increased for all taxonomic groups ex-
cept	 Branchiopoda	 (Arthropoda)	 and	 Pilidiophora	 (Nemertea),	
with	 the	 strongest	 increase	 observed	 in	 Copepoda	 (Arthropoda),	
Chromadorea and Enoplea (both: Nematoda). Commonly, we found 
the strongest increase in number of OTUs in the middle to lower in-
tertidal	zone	(sampling	sites	S3	to	S6),	with	the	exception	of	Clitellata	
(Annelida),	Arachnida,	and	Collembola	(both:	Arthropoda),	for	which	
we found the strongest increase in OTU numbers in the supralitto-
ral	zone	 (sampling	sites	HW1,	HW2)	and	the	upper	 intertidal	zone	
(sampling sites S1, S2). Heterotardigrada OTUs were only found in 
the dataset annotated with the enhanced database (Figure 2). See 
Table S4 for paired t- test results.

3.3  |  Taxonomic composition in metabarcoding data

Comparing the dataset annotated with only NCBI reference bar-
codes and the enhanced database, we found a consistent distribution 
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of	OTU	proportions	per	taxonomic	group	across	the	intertidal	zone.	
Enoplea (Nematoda) exhibited an increased proportion across all 
tidal levels when annotated with the expanded reference dataset, 
and	a	similar	trend	was	observed	for	Platyhelminthes.	Additionally,	
Heterotardigrada, while present in low proportions, was exclusively 
identified in the dataset annotated with the enhanced database 
(Figure 3). However, chi- square tests showed that overall propor-
tions of taxonomic groups per tidal level did not differ significantly 
between the datasets (see Table S5 for results).

3.4  |  OTU richness along beach transects

The enhancement of the molecular reference database significantly 
improved the assignment of Operational Taxonomic Units (OTUs) to 
meiofauna taxa for all tidal levels. The most notable increase was 
observed in tidal levels S3, S4, and S5, while the lowest increase was 
found for tidal levels HW1 and HW2. See Figure 4 for graphical rep-
resentation and Table 1 for statistical results.

The analysis of OTU richness across beach transects, from dunes 
to the low tide line, revealed distinct patterns when comparing the 

datasets annotated only with NCBI GenBank and those annotated 
with the enhanced database.

For the dataset annotated only with NCBI GenBank references, 
the GLMM revealed significant linear (p = .002)	 and	 quadratic	
(p = .003)	effects	of	tidal	levels	on	OTU	numbers,	indicating	a	non-	
linear distribution of OTU richness across the tidal gradient. The 
positive linear term suggests an increase in OTU numbers towards 
the middle and lower intertidal level, and the negative quadratic 
term indicates that this increase peaks at intermediate levels, rather 
than continuing linearly across the entire gradient. The random ef-
fects component attributed to beach location accounted for a vari-
ance	of	0.037	(standard	deviation:	0.1928),	and	the	model's	AIC	and	
BIC were 1044.2 and 1076.7, respectively.

The analysis of the dataset annotated the enhanced database 
showed a more pronounced non- linear (bell- shaped) pattern in OTU 
richness across tidal levels, with highly significant linear (p < .001)	
and quadratic (p < .001)	 relationships.	 This	model	 accounted	 for	 a	
greater proportion of variability in OTU numbers, with a variance of 
0.045 (standard deviation: 0.212) attributed to beach location, and 
the	model's	AIC	and	BIC	were	1278.8	and	1314.5,	respectively.	The	
influence of the Relative Tide Range Index (RTR) on OTU richness 

F I G U R E  2 Increase	of	OTU	number	by	taxonomic	group	and	tidal	level.	Supralittoral	sampling	sites	are	labelled	HW1	and	HW2,	and	
intertidal sampling sites are labelled S1 to S6. Filled circles indicate the number of OTUs identified using only NCBI GenBank for annotation 
of metabarcoding data, and open circles indicate the number of OTUs identified when combining NCBI GenBank with the new reference 
barcodes.
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8 of 15  |     MACHER et al.

was not statistically significant in either dataset (p > .05),	indicating	
that within the context of these models, RTR did not play a signifi-
cant role in shaping OTU richness.

3.5  |  Community composition

The	analysis	of	community	composition	using	Jaccard	dissimilar-
ity showed that in the dataset annotated only with NCBI data, 
the tidal level significantly influenced community composition 
(R2 = .127,	p < .001).	However,	 the	R2 value of .127 indicates that 
the	explained	variance	 is	 limited.	The	RTR,	 characterizing	beach	

type, also showed a significant but smaller effect (R2 = .019,	
p = .001).	The	variability	attributed	to	different	beaches	was	sig-
nificant (R2 = .273,	p < .001)	and	had	the	highest	explanatory	value.	
A	 large	 proportion	 of	 variability	 in	 community	 composition	 re-
mained unexplained (Residual R2 = .581).

For the dataset annotated with the enhanced database, we 
found a more substantial influence of the tidal level on community 
composition (R2 = .155,	p < .001).	The	effect	of	RTR	remained	similar	
to that observed in the NCBI- only dataset (R2 = .018,	p < .001).	The	
variability attributed to different beaches was slightly more pro-
nounced in this dataset (R2 = .28,	p < .001).	 The	 residual	 variability	
in this dataset was slightly lower (Residual R2 = .547),	indicating	that	

F I G U R E  3 Stacked	bar	plots	showing	the	proportions	of	meiofauna	OTUs	per	taxonomic	group	across	the	beach	transect.	The	left	
plot represents the dataset annotated using only NCBI reference barcodes and the right plot represents the dataset annotated with the 
enhanced database. Each bar represents a tidal level (HW: Sublittoral sites, S: Intertidal sites), with the vertical stacking indicating the 
proportion of OTUs.

F I G U R E  4 Cumming	estimation	plot	showing	the	mean	differences	for	OTU	richness	in	the	eight	analysed	tidal	levels,	between	the	
dataset annotated with only NCBI reference data, and annotated with the enhanced database. The raw data is plotted on the upper 
axes; each mean difference is plotted on the lower axes as a bootstrap sampling distribution. Mean differences are depicted as dots; 95% 
confidence intervals are indicated by the ends of the vertical error bars.
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    |  9 of 15MACHER et al.

the inclusion of new reference barcodes slightly improved the mod-
el's explanatory power. See Table 2.

The Non- metric Multidimensional Scaling (NMDS) plots further 
underline these findings. In both datasets, samples collected from 
the highest tidal levels (HW1 and HW2) loosely cluster together, 
distinguishing them from samples taken from the middle to lower 
intertidal	zones	(S3–S6).	Samples	from	the	upper	intertidal	or	swash	
zone	(S1	and	S2)	cluster	between	and	within	these	two	groups.	The	
NMDS plot based on the dataset annotated with the enhanced data-
base shows a clearer separation between the supralittoral sampling 
sites and the intertidal communities (see Figure 5).

The Mantel test results showed a strong and statistically signif-
icant correlation between the two distance matrices, with a Mantel 
statistic (r) of .7848 and a p- value of .001.

3.6  |  Influence of distance from reference 
barcoding sites on the increase of identified 
meiofauna OTUs in metabarcoding data

We found negative correlations between the increase in iden-
tified meiofauna OTUs and the distance of the sampling site to a 
site sampled for reference barcoding. This was true for sampling 
sites	 in	the	tidal	 levels	S6	 (coefficient = −0.0005,	p = .02),	S4	 (coef-
ficient = −0.0002,	p = .04),	S3	(coefficient = −0.0003,	p = .05),	S2	(co-
efficient = −0.0004,	 p = .01)	 and	 S1	 (coefficient = −0.0003,	 p = .01).	
We observed a negative, but non- significant, trend for tidal level S5 
(coefficient = −0.0003,	 p = .06).	 No	 correlations	were	 found	 in	 the	
higher	tidal	levels	HW1	(coefficient = 0.00003,	p = .6)	and	HW2	(co-
efficient = −0.000001,	p = .98)	(Figure 6).

4  |  DISCUSSION

We tested the impact of enriching molecular reference databases on 
the efficiency of metabarcoding analyses, using beach meiofauna, an 
important yet frequently overlooked component of coastal biodiver-
sity, as a case study. Our findings reveal an impressive improvement 
in meiofauna identification across all taxonomic levels following two 
targeted reference sampling campaigns conducted with taxonomic 
experts. The inclusion of a local reference library enabled us to sig-
nificantly enhance metabarcoding efficiency. This improvement oc-
curred in one of the world's most thoroughly researched areas for 
beach meiofauna, and we expect that the impact in other regions 
and habitats will be even greater.

4.1  |  Improved metabarcoding efficiency through 
enhanced molecular reference databases

We show that with a local reference library, 11,361,563 instead of 
just 4,633,286 sequences could be annotated to meiofauna, an in-
crease of 6,728,277 sequences (145%) that would otherwise remain 
unassigned. On the genus and species level, reference barcoding in-
creased the number of identified OTUs by over 200%. We identified 
more OTUs at all tidal levels, from dunes to the low tide line, and 
showed that patterns of community dissimilarity between tidal lev-
els become more clear after adding new reference barcodes. Spatial 
analysis revealed that the enhanced database improved OTU assign-
ment across all tidal levels. Our results of a clear separation in com-
munity composition between supralittoral areas of the beach and 
areas	in	the	lower	intertidal	zone,	with	samples	from	the	swash	zone	
around the high tide line falling in between, are in line with previous 
findings	on	beach	meiofauna	(Pereira	et	al.,	2017). Our results show, 
however, that this pattern was more evident after adding new refer-
ence barcodes. We show that enhancing molecular reference data-
bases significantly boosts metabarcoding efficiency for meiofauna 
across various ecological niches and geographic regions. Our results 

TA B L E  1 Unpaired	mean	differences,	95%	confidence	intervals	
(CI), and p values from two- sided permutation t- tests comparing 
OTU richness per tidal levels between the dataset annotated with 
NCBI data only, and the dataset annotated with the enhanced 
database.

Tidal level
Unpaired mean 
difference 95% CI p Value

HW1 6.38 3.75, 8.79 <.001

HW2 7.09 4.04, 10.3 <.001

S1 10.8 7.54, 14.7 <.001

S2 13.7 9.71, 17.5 <.001

S3 15.2 11.7, 18.8 <.001

S4 15.2 11.2, 18.8 <.001

S5 15.2 12.0, 17.5 <.001

S6 13.2 9.39, 16.7 <.001

Note: Results are based on 5000 bootstrap samples to assess the 
statistical significance of observed differences, with p values reflecting 
the	probability	of	observing	the	effect	sizes	under	the	null	hypothesis	
of no difference between groups.

TA B L E  2 Summary	of	adonis2	PERMANOVA	results	comparing	
the effects of tidal level, relative tide range (RTR), and beach on 
inferred community composition using only NCBI and NCBI + new 
reference barcodes for annotation of metabarcoding data.

Test df SumOfSqs R2 F Pr (>F)

NCBI only

Tidal level 7 9.715 .127 4.9756 <0.001

RTR 1 1.420 .019 5.0896 <0.001

Beach 22 20.867 .273 3.4004 <0.001

Residual 159 44.350 .581

NCBI + new	references

Tidal level 7 11.222 .155 6.4542 <0.001

RTR 1 1.283 .018 5.1640 <0.001

Beach 22 20.187 .28 3.6943 <0.001

Residual 159 39.493 .547
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10 of 15  |     MACHER et al.

are in line with findings from soil research, where the complexity 
and diversity of faunal communities are a significant obstacle to 
accurate taxonomic annotation and subsequent ecological analysis 

(Recuero et al., 2023). Enriching reference libraries with local and 
well- annotated sequences has been shown to dramatically improve 
the resolution and accuracy of community composition analyses 

F I G U R E  5 Non-	metric	Multidimensional	Scaling	(NMDS)	ordination	plots	comparing	community	compositions	across	different	tidal	
levels,	based	on	Jaccard	dissimilarity.	(a)	Dataset	annotated	with	NCBI	reference	data;	(b)	Dataset	annotated	with	the	enhanced	database.	
Points	represent	individual	samples,	coloured	by	their	respective	tidal	level.	Groups	are	outlined	by	95%	confidence	ellipses.

(a) (b)

F I G U R E  6 Linear	relationship	between	
the distance to the nearest reference site 
with newly generated reference barcodes 
(in kilometres) and the percent increase 
in Operational Taxonomic Units (OTUs) 
assigned to meiofauna. Linear regression 
lines in different colours and shaded 
confidence intervals show the trend for 
each tidal level.
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    |  11 of 15MACHER et al.

(Caterino	 &	 Recuero,	 2024; Maggia et al., 2021). The advantages 
of enriched reference databases are further documented for di-
verse ecosystems and taxonomic groups (Garlasché et al., 2023; 
Gold et al., 2021; Kjærandsen, 2022; Kocher et al., 2017; Magoga 
et al., 2022), but our results show a substantial improvement even 
in one of the most extensively studied areas for beach meiofauna. 
This underscores the massive benefit of local reference database en-
hancement on metabarcoding studies, underlining its value regard-
less of the prior level of research intensity.

4.2  |  Combining morphological and molecular 
techniques

Our	study	emphasizes	the	need	for	continuous	efforts	in	combining	
traditional	taxonomic	 identification	and	DNA	barcoding,	especially	
targeting under- represented regions and taxa, as the lack of taxo-
nomic expertise and sampling leaves many beach meiofauna species 
undescribed (Curini- Galletti et al., 2012, 2023;	Martinez	et	al.,	2023; 
Martínez	et	al.,	2019). This hampers more detailed ecological stud-
ies that would facilitate the understanding of beach biodiversity 
and ecosystem processes, a task urgently needed due to increasing 
pressure on the globally important ecosystems (Lansu et al., 2024; 
Schlacher et al., 2007).

Combining morphological identification with molecular methods 
is	 increasingly	 feasible	due	 to	 the	development	of	 rapid	DNA	bar-
coding pipelines relying on Oxford Nanopore technology (Srivathsan 
et al., 2019, 2023), potentially allowing the production of molecular 
references in field locations (Chang et al., 2020; Marin et al., 2022), 
while taxonomic experts are sorting and identifying specimens. 
An	 increased	 identification	 efficiency	 for	metabarcoding	 data	will	
significantly contribute to more precise ecological results (Faria 
et al., 2018), which will facilitate the use of molecular methods in 
monitoring	(Aylagas	et	al.,	2016), but also species detection (Giribet 
et al., 2023), and can therefore in turn facilitate taxonomic work on 
meiofauna.

4.3  |  Change in inferred ecological patterns

We found that enhancing the reference database resulted in an in-
creased identified OTU richness across all tidal levels, with the most 
significant	 increase	 observed	 in	 the	 middle	 intertidal	 zone.	 This	
led to a pattern of OTU richness peaking in the middle intertidal 
zone,	which	was	more	pronounced	when	 annotating	metabarcod-
ing data with the NCBI reference database. This pattern, character-
ized	by	the	highest	richness	in	the	middle	intertidal	zone	and	lower	
richness	 towards	both	 the	upper	 intertidal	 and	 supralittoral	 zones	
as	well	as	the	 lower	 intertidal	zone,	thereby	forming	a	bell-	shaped	
diversity curve, has been previously described in studies based on 
morphological	 analyses	 of	 meiofauna	 (Armonies	 &	 Reise,	 2000; 
Gingold et al., 2010; Maria et al., 2013). Thus, an improved reference 
database might reveal meiofauna richness patterns that align more 

closely with those identified through thorough, but time- intensive 
and expertise- dependent studies on morphology.

We found that the inclusion of new reference barcodes for an-
notating metabarcoding data increased the community dissimilarity 
between tidal levels, and led to a more distinct inferred community 
composition of the intertidal communities as opposed to communi-
ties	from	the	supralittoral	and	the	swash	zone.	This	is	likely	because	
the addition of new reference barcodes allows for both the identi-
fication of more widespread meiofauna OTUs, which could not be 
identified with less complete reference databases, and rare OTUs 
found in only a few sites. For example, OTU 1 in our dataset, pres-
ent in 119 samples and with >2 million reads, was only identified 
as a meiofaunal copepod after adding the new reference barcodes, 
and was unassigned based on annotation with NCBI. The meiofauna 
community	 composition	 in	 the	middle	 to	 lower	 intertidal	 zones	of	
the studied beaches may be more similar, potentially due to similar 
ecological conditions across these areas. In contrast, the higher vari-
ability between communities from the supralittoral levels and the 
swash	zone	may	indicate	these	areas'	exposure	to	more	fluctuating	
environmental conditions or disturbances, leading to reduced com-
munity	stability.	This	is	plausible	as	the	supralittoral	zone	of	beaches	
is often heavily influenced by human activities, such as tourism- 
related activities including trampling and beach driving, which have 
been shown to have major impacts on meiofauna communities 
(Gheskiere et al., 2005;	Martínez	et	al.,	2020;	Pereira	et	al.,	2017).

4.4  |  Limitations and biases in reference barcoding

Despite the major improvements in databases and metabarcoding 
efficiency, our study has limitations. The focus on a limited geo-
graphic region (here: the Netherlands' west coast) for reference bar-
coding can introduce bias in the molecular reference database, as 
shown by our analyses on the correlation of increase in annotation 
efficiency with distance to the nearest sampling site used for refer-
ence barcoding. However, existing reference databases are almost 
always biased towards well- studied taxonomic groups and regions, 
and are thereby inherently biased (Weigand et al., 2019), a fact that 
is usually not tested due to the lack of comparison data from the 
same study. Our analyses show that the existing reference data in 
NCBI GenBank allows identifying the general patterns in meiofauna 
diversity in the study area, but the additional reference barcodes 
allow identifying more taxa and detect clearer patterns of alpha and 
beta	diversity	across	the	intertidal	zone.	In	addition,	the	‘local’	ref-
erence	 library	 provided	 significant	 improvements	 along	650 km	of	
coastline	and	up	 to	300 km	away	 from	the	sites	where	 the	organ-
isms were obtained for reference barcoding. Furthermore, primer 
bias can hamper the amplification of both new reference barcodes 
and taxa in metabarcoding datasets. This is a known phenomenon 
that affects several taxonomic groups that are numerous in beach 
meiofauna communities, such as Nematoda (Ren et al., 2023) and 
Platyhelminthes	(Balsamo	et	al.,	2020). However, the highly degen-
erate	 LerayXT	 primers	 allow	 for	 amplification	 of	 a	 wide	 range	 of	
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meiofaunal taxa (Macher et al., 2022), and we show that targeted 
reference barcode sequencing of individual meiofaunal specimens 
on Oxford Nanopore platforms can overcome this impediment, 
as we successfully amplified reference barcodes for all major mei-
ofauna taxa. We acknowledge, however, that the high degeneracy 
of the primers can also lead to co- amplification of a high number of 
non- target taxa, which can make metabarcoding based on the mi-
tochondrial COI gene less efficient, and other markers such as 18S 
rRNA	can	be	an	appropriate	choice	for	targeting	taxonomically	di-
verse communities (Collins et al., 2019; Taberlet et al., 2018).

4.5  |  Future collaborative efforts for reference 
database expansion

Future research efforts should target both unexplored areas and 
taxa to enhance the taxonomic and geographical scope of reference 
databases, but also revisit areas that have been studied, as we un-
expectedly found that COI reference barcodes for beach meiofauna 
in the North Sea region are rare. This gap is surprising because 
the North Sea has been the focus of extensive meiofauna studies 
(Armonies,	2018;	Reise	&	Ax,	1979;	Vincx	et	al.,	1990). However, in 
general, only a limited number of studies on meiofauna incorporate 
molecular	techniques,	and	there	is	a	tendency	to	use	the	18S	rRNA	
marker due to its higher success rate in amplification, even though it 
offers less specificity in species identification (Gielings et al., 2021).

Our work demonstrates the feasibility of using COI barcoding and 
metabarcoding for a diverse range of beach meiofauna. The mitochon-
drial COI gene is the standard molecular barcode for most animals, 
and often offers superior species- level identification compared to 18S 
rRNA	(Fontaneto	et	al.,	2015; Giebner et al., 2020; Tang et al., 2012). 
Improving	the	18S	rRNA	reference	library	is	important,	but	might	not	
be as helpful in delimiting meiofaunal species due to the conserved 
nature and thereby lower variability in this marker. It is therefore desir-
able to increase the availability of COI barcodes for meiofauna, as this 
will facilitate species- level molecular studies and enable more direct 
comparisons with macrofauna and other invertebrate groups, thanks 
to the use of the same amplified marker gene and gene region.

We advocate for the replication of our approach of combining 
taxonomic expert workshops, conducting reference barcoding, and 
applying metabarcoding to study not only meiofauna but also other 
understudied taxonomic groups. Future efforts should focus on in-
creasing the number of reference specimens that are identified at 
the	species	level.	Additionally,	 integrating	environmental	data	with	
metabarcoding results will offer insights into the ecological factors 
influencing meiofauna distribution and diversity.

5  |  CONCLUSION

Our study highlights the benefits of enhancing molecular reference 
databases	for	DNA	metabarcoding	analyses	through	integrated	tax-
onomy	 and	 DNA	 barcoding.	 This	 approach	 significantly	 improves	

species identification and biodiversity assessment and shows the 
need for a collaborative effort in merging traditional taxonomic with 
molecular approaches. We advocate for continued efforts to build 
comprehensive, globally representative reference databases for me-
iofauna, which will be fundamental to advancing our understanding 
of coastal biodiversity and ecosystem dynamics.
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