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Abstract: Chlorella vulgaris and Scenedesmus sp. are commonly used in wastewater treatment due
to their fast growth rates and ability to tolerate a range of environmental conditions. This study
explored the cultivation of Chlorella vulgaris and Scenedesmus sp. using wastewater from the food
industry, particularly from Italian basil pesto production tanks. The experiment involved different
carbon dioxide concentrations and light conditions with a dilution rate of basil pesto wastewater
at 1:2. Both microalgae strains were able to grow on pesto wastewater, and biomass characteriza-
tion highlighted the influence of CO2 supply and light irradiation. The highest lipid storage was
79.3 ± 11.4 mg gdry biomass

−1 and 75.5 ± 13.3 mg gdry biomass
−1 for C. vulgaris and S. obliquus under

red light (5% CO2 supply) and white light (0.04% CO2 supply), respectively. Protein storage was
detected at 20.3 ± 1.0% and 24.8 ± 1.3% in C. vulgaris and S. obliquus biomasses under white light
with a 5% CO2 and 0.04% CO2 supply, respectively. The removal of P, N, chemical oxygen demand,
and biological oxygen demand resulted in 80–100%, 75–100%, 26–35%, and 0–20%, respectively.

Keywords: microalgae; Chlorella; Scenedesmus; wastewater remediation; lipid storage

1. Introduction

In 2015, the United Nations General Assembly (UNGA) provided the 17 Sustainable
Development Goals (SDGs) that must be achieved by 2030. Among all the goals reported by
the UNGA, microalgae found a fundamental application in the resolution of Goal 6 (Clean
Water and Sanitation) and Goal 7 (Affordable and Clean Energy) [1]. Microalgae integration
in wastewater treatment plants and biofuel production has been studied extensively due to
their strong phytoremediation effect on agro-industrial effluents and storage of secondary
high-value products (e.g., lipids, starch). These secondary high-value products can be
used in the synthesis of biodiesel, bioethanol, biogas, or biohydrogen [2–4]. In addition,
the photosynthetic activity of microalgae has increased their application in greenhouse
gas treatment and biogas upgrading processes, with potential integration as coupled-
biological treatment systems [5,6]. Microalgae cultivation leads to reduced environmental
pollutants, decreased plant input costs, and their integration as a biological treatment in
the bio-circular green economy concept [7–9]. To sustain large-scale microalgae biorefinery
processes, an economically viable carbon source is essential. Agricultural residues and
by-products from the food industry could provide low-cost nutrient input for cost-effective
and environmentally sustainable microalgae-based wastewater treatment. The estimated
agro-waste production in Europe is about 250 million tons per year, consisting of damaged
fruits, unmarketable products that do not meet qualitative standards, unripe produce,
and wastewater. These wastes have a high organic matter concentration, creating an
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environmental problem for their disposal [10]. However, agro-waste chemical composition
could support microalgae cultivation [11]. Recently, seasonal food waste treatment using
microalgae has been explored with wine lees from wine production or its digestate [12,13]
and olive oil production [14]. The results showed promising applications for integrating
this biological treatment in loco for small food producers. Chlorella vulgaris and Scenedesmus
sp. represent an excellent choice for microalgae cultivation, known for their ability to fix
CO2 and remove nutrients from wastewater [7,13].

Among all agro-productions in Italy, one of the most popular traditional sauces
produced and consumed worldwide is the “basil pesto sauce”. Basil pesto sauce is made
from fresh basil leaves, pine nuts, garlic, cheese, and extra virgin olive oil. Basil, the
main ingredient, is a herbaceous plant rich in phenolic compounds, tannins, alkaloids,
flavonoids, and saponins [15]. The industrial production of basil pesto has a significant
economic impact in specific Italian regions (e.g., Liguria), and there is currently a lack of
knowledge regarding its wastewater treatment.

This research aimed to identify the growth parameters of Chlorella vulgaris and Scenedesmus sp.
using different concentrations of basil pesto sauce-manufactured wastewater. To achieve this goal,
the optimization of cultivation conditions was carried out by varying the percentage of wastewater
and CO2, as well as light irradiation. A comparative analysis of biomass responses (growth rate,
lipid productivity, CO2 fixation rates) was conducted to understand the potential integration of in
loco microalgae cultivation in basil pesto sauce manufacturing.

2. Materials and Methods
2.1. Experimental Conditions

The microalgae strains Chlorella vulgaris Beij. 863 and Scenedesmus sp. 329, obtained
from the ACUF algal collection at the Department of Biology of the University of Federico II
of Naples (Italy), were cultured in Bold’s Basal Medium (BBM) supplemented with vitamins,
following the protocol described in Bischof et al. [16] and Starr et al. [17]. Inoculum cultures
were maintained under continuous mechanical agitation at 80 rpm using a horizontal shaker
(Universal Table Shaker 709, Lab Supply, Fattoruso Tech SRL, Italy) under continuous
illumination of 50 µE at room temperature (25 ◦C).

2.2. Evaluation of Pesto Wastewater as Substrate for Microalgae Cultivation

The particulate residues from wastewater were removed through filtration with a
paper filter as a pretreatment. The liquid fraction, without sterilization, was tested as a
substrate for Chlorella and Scenedesmus sp. cultivation. The chemical characterization of
basil pesto wastewater is reported in Table 1.

Table 1. Chemical characterization of basil pesto wastewater.

Total phosphorus, P (mg L−1) 3.67 ± 0.63 [18,19]
Total nitrogen, N (mg L−1) 4.21 ± 0.67 [20]

Chemical oxygen demand, COD (mg LO2
−1) 245 ± 12 [21]

Biochemical oxygen demand, BOD (mg LO2
−1) 86 ± 3 [22]

An inoculum concentration of 1 × 106 cell mL−1 was applied for both microalgae
strains under the experimental conditions, and the basil pesto wastewater was tested
at different concentrations: 25%, 50%, 75%, and 100% v/v (wastewater/BBM medium).
After one day of microalgae adaptation in orbital flasks, the experiments were conducted
in parallel using a multi-photobioreactor system (Multi-Cultivator MC 1000-OD, PSI-CZ
Drásov 470, Pribram, Czech Republic). Light irradiation was set up using warm white
(WW) (2700 K) or deep red (red) (660 nm) light at 100 µE. The photoperiod was configured
at 8:16 h dark/light, selected to mimic the summer period of the basil plant harvest and
basil pesto production. All conditions were at room temperature with continuous air
insufflation (flow rate 0.8 L min−1). Microalgae growth was monitored for seven days, and
the experiment was conducted in triplicate. The results are reported as mean values with
standard deviations.
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The data obtained (results not reported) highlighted that the experimental condition
with 50% v/v (dilution rate 1:2) of pesto wastewater was the most promising substrate for
microalgae cultivation in subsequent experiments.

2.3. Evaluation of 50% v/v Pesto Wastewater and CO2 Addition

The experiment upgrade involved the addition of CO2 at different percentages: 0.04%,
2%, and 5%. The inoculum concentration was 1 × 106 cell mL−1, and the experiment was
carried out under a light intensity of 100 µE with an 8:16 dark/light photoperiod at room
temperature and a gas flow rate of 0.8 L m−1. The experiment was carried out in batch
conditions for seven days using the Multi-Cultivator MC 1000-OD.

2.4. Monitoring Analyses and Biomass Storage

Daily, the Multi-Cultivator MC 1000-OD was used to record the absorption data
at 720 nm of wavelength. Biomass quantification at the end of the test was carried out
gravimetrically. Daily biomass samples were collected, centrifugated (NEYA 16 high speed,
Carpi, Italy) at 4500 rpm for 20 min, frozen at −80 ◦C, and lyophilized (HETO Lyolab 3000,
Thermo Fisher Scientific, Waltham, MA, USA) for chemical characterization analyses.

2.4.1. Elementary Analysis

Lyophilized biomass samples were analyzed using the Flash 2000 CHNS Analyser
(Thermo Fisher Scientific) to quantify the organication of CO2. The carbon dioxide fixation
rate (PCO2) was calculated following Equation (1) [23]:

PCO2 = Cc × P ×
(

MCO2

MC

)
(1)

where Cc represents the average carbon content in the dry biomass according to the
elemental analysis, P (g−1 L−1 mol−1) is the microalgae biomass productivity, MCO2 is the
molecular weight of CO2, and MC is the molecular weight of carbon.

The concentration of proteins in the microalgae biomass was calculated following
Equation (2) [24].

Crude protein(%) = N(%)× 6.25 (2)

The specific growth rate (µmax) was calculated based on OD 720 nm data following
Equation (3).

µmax = ln
(

Nt − N0

tt − t0

)
(3)

Nt − N0 and tt − t0 were the OD values on day zero and the final day, respectively.
Division day and generation time were calculated following Equations (4) and (5) [25].

Div.d.(day) =
µmax

ln2
(4)

Generation time =
1

Div.d.
(5)

2.4.2. Lipids Extraction

Lipid extraction was carried out using hexane (Merk, New Jersey, NJ, USA) as an
organic solvent, following the Blight et Dyer method [26]. The extraction process used
the ultrasonic-assisted procedure (UP200St, 200 W, 26 kHz, Hielscher, Teltow, Germany).
Specifically, 0.2 g of lyophilized biomass was suspended in 2 mL of water and sonicated
(25 W, width 50%) for 4 min on ice. Subsequently, the samples were centrifugated at
4500 rpm for 20 min, and 2 mL of hexane was added to the liquid fractions. After hexane
addition, the samples were vortexed for 30 s and then centrifugated at 450 rpm for 20 min.
Quantification of the extracted lipids was performed gravimetrically after evaporation of
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the solvent using a rotary evaporator (Concentrator 5301, Eppendorf AG 22331 Hamburg
Germany) for 30 min.

3. Results and Discussion
3.1. Wastewater–CO2 Combined Experiments

Pesto wastewater, when used as a substrate for microalgae cultivation, exhibited promising
biomass production, particularly when applied with a low dilution ratio (50% v/v). OD monitor-
ing of Chlorella and Scenedesmus (Figure 1) revealed a similar growth trend for both microalgae
strains. Chlorella biomass development was strongly influenced by red light irradiation compared
to Scenedesmus. The combination of red light irradiation and CO2 supply showed effects on
the exponential growth phase, resulting in a decrease in the lag phase (Figure 1b,c,e,f). Similar
trends in OD measurements were identified by He et al. [27], where different degrees of light
irradiation had varying effects on Chlorella and Scenedesmus growth in wastewater. As reported
by He et al. [27] and Liu et al. [28], 680–690 nm OD wavelengths were used to monitor biomass
development, corresponding to the wavelengths of maximum chlorophyll absorption. However,
in this study, the use of a 720 nm wavelength for OD measurement could not be compared with
other literature data. Typically, OD analysis conducted at 680–690 nm may not consider the
increase or decrease in chlorophyll content associated with the physiological microalgal response
to environmental conditions. For this reason, using 680–690 nm for microalgae monitoring could
over- or under-estimate microalgae biomass production [29,30]. Wavelengths higher than 700 nm
did not affect OD measurements, as the antenna system did not absorb wavelengths greater than
700 nm [30].
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Figure 1. OD 720 nm data for experimental conditions: Chlorella 50% v/v wastewater with 0.04% CO2

(a), 2% CO2 (b,c), and 5% CO2 (c); Scenedesmus 50% v/v wastewater with 0.04% CO2 (d), 2% CO2

(e), and 5% CO2 (f).

The quantification of dry weight, lipid, and protein storage (Table 2) highlighted
the influence of WW and red light on biomass production and macromolecular stor-
age in both microalgae strains cultivated under a normal CO2 air supply (0.04%). Red
light positively influenced biomass production and lipid storage in both microalgae
strains, although the highest protein storage was observed during cultivation under
WW light. The 2% and 5% CO2 supply conditions showed similar biomass productiv-
ity and lipid storage. Conversely, a trend of higher protein storage under WW light
was identified for both strains. However, biomass production results were consistent
with findings from other literature data [27,31,32]. The maximum lipid productivity
(Figure 2e,f and Table 2) and protein storage (Figure 2g,h and Table 2) were detected
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in Chlorella and Scenedesmus biomasses under WW light irradiation with a 0.04% CO2
supply: 153.4 ± 11.4 mg gdry biomass

−1 d−1 and 75.5 ± 13.3 mg gdry biomass
−1 d−1 lipid pro-

ductivity and 23.14 ± 3.41% and 24.82 ± 1.25% protein storage for Chlorella and Scenedesmus,
respectively. These results contrasted with literature data, where red light irradiation at
5000 lux using a photoperiod of 12:12 was found to increase photosystem II activity and
influence biomass production and lipid storage, with an accumulation higher than 70% in
Chlorella and Scenedesmus strains [27]. In addition, the protein percentage detected during
the test indicated a shift in the metabolic synthesis pathway, where nitrogen from wastewa-
ter typically increases protein storage in microalgae biomass, as reported by Wang et al. [33].
The discrepancy in macromolecular storage observed when comparing the results with the
literature data may be correlated with differences in the experimental setup such as light
irradiation, photoperiod, wastewater composition, and CO2 supply. Indeed, as reported
by [27], the different degrees of light irradiation, photoperiods, and substrates significantly
influenced the metabolic synthesis pathway of Chlorella and Scenedesmus strains. Evidence
of these influences can be seen in the growth rate (µmax), division per day, and generation
time comparison (Table 2) with the literature data. As reported by Ajala et al. [34], Wang
et al. [33], and Singh et al. [35], the cultivation of Chlorella and Scenedesmus on different
wastewater samples showed µmax values ranging from 0.05 to 0.39 d−1 and 0.07 to 0.20 d−1,
respectively. The application of pesto wastewater with a low N concentration and high COD
value linked with different degrees of light irradiation and CO2 supply likely positively
influenced biomass production by enhancing photosynthetic activity and lipid storage in
Chlorella and Scenedesmus strains.
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Table 2. Biomass production, carbon dioxide fixation rate (PCO2), protein and lipid storage, growth
rate (µmax), division per day, and generation time during C. vulgaris and Scenedesmus sp. cultivation
with basil pesto wastewater 50% v/v with the addition of 0.004%, 2%, and 5% CO2.

CO2
(%) Light Dry Weight

(mg L−1 d−1)
PCO2

(mg L−1 d−1)
Crude Protein

(%)

Lipid
(mg g

dry biomass−1)

µmax
(d−1)

Divisions
per Day

Generation
Time (d)

C
hl

or
el

la

50
%

v/
v

ba
si

lp
es

to
w

as
te

w
at

er 0.04
White 75.9 ± 11.4 123.1 ± 36.4 23.1 ± 3.4 53.4 ± 11.4 0.5 ± 0.0 0.7 ± 0.0 1.5 ± 0.1
Red 103.6 ± 7.6 182.9 ± 13.9 18.3 ± 0.6 75.1 ± 32.2 0.5 ± 0.0 0.8 ± 0.0 1.3 ± 0.0

2
White 108.9 ± 2.5 193.3 ± 5.4 18.9 ± 0.4 52.9 ± 26.6 0.6 ± 0.1 0.8 ± 0.1 1.3 ± 0.2
Red 119.6 ± 10.1 214.6 ± 18.9 16.2 ± 0.7 46.6 ± 18.0 0.5 ± 0.1 0.7 ± 0.1 1.4 ± 0.2

5
White 105.4 ± 10.1 185.1 ± 18.5 20.3 ± 1.0 73.5 ± 8.0 0.7 ± 0.0 1.1 ± 0.0 1.0 ± 0.0
Red 108.0 ± 1.3 187.8 ± 3.1 17.1 ± 0.6 79.3 ± 11.4 0.6 ± 0.0 0.8 ± 0.1 1.2 ± 0.1

Sc
en

ed
es

m
us 0.04

White 89.3 ± 2.5 154.1 ± 5.6 24.8 ± 1.3 75.5 ± 13.3 0.4 ± 0.0 0.5 ± 0.0 1.9 ± 0.1
Red 120.5 ± 1.3 209.7 ± 6.2 17.9 ± 0.7 47.2 ± 22.8 0.4 ± 0.1 0.6 ± 0.1 1.7 ± 0.3

2
White 108.9 ± 2.5 191.5 ± 5.8 18.0 ± 0.5 44.1 ± 13.6 0.4 ± 0.0 0.6 ± 0.0 1.7 ± 0.0
Red 107.1 ± 5.1 190.3 ± 9.6 18.0 ± 1.3 53.7 ± 2.6 0.6 ± 0.1 0.8 ± 0.1 1.3 ± 0.2

5
White 91.1 ± 10.1 159.7 ± 18.3 20.7 ± 0.8 54.1 ± 21.3 0.5 ± 0.0 0.7 ± 0.0 1.4 ± 0.0
Red 110.7 ± 5.1 193.4 ± 9.4 18.1 ± 0.3 43.6 ± 14.2 0.6 ± 0.1 0.9 ± 0.1 1.1 ± 0.1

Biomass productivity (Figure 2a,b and Table 3) showed the red light influence on
Chlorella and Scenedesmus biomass production. CO2 supply and red light positively influ-
enced biomass productivity for both microalgae strains.

Table 3. Concentration limit for P, ammonia, N, COD, and BOD admitted by D. Lgs 152/06 for the
environmental release.

Surface Water
Discharge

Sewerage System
Discharge Ground Discharge

P (mg L −1) 10 10 2
NH4

+ (mg L −1) 15 30 -
N (mg L −1) - - 15

COD (mg LO2
−1) 40 250 20

BOD (mg LO2
−1) 160 500 100

For Chlorella, the highest biomass productivity (119.6 ± 10.1 mg L−1 d−1) was recorded
under red light with a 2% CO2 supply; for Scenedesmus, the highest biomass productivity
(120.5 ± 1.3 mg L−1 d−1) was achieved under red light with a 0.04% CO2 supply. These
data are consistent with the biomass productivity detected for Chlorella using 25% swine
wastewater (0.155 g L−1 d−1) [36]. Carbon dioxide fixation rate (Figure 2c,d and Table 3)
followed the biomass productivity trend, with the highest PCO2 detected under experimen-
tal conditions with red light irradiation and a 2% or 0.04% CO2 supply for Chlorella and
Scenedesmus, respectively. These results could inform future studies aimed at upgrading
wastewater treatment processes using microalgae in loco at pesto factories.

3.2. Pesto Wastewater Phytoremediation

Chlorella and Scenedesmus phytoremediation effects were evaluated to determine the
feasibility of applying the liquid fraction output as irrigation water or releasing it into the
soil and water environment. To achieve this purpose, the chemical characterization of the
effluent needed to comply with the legal limits reported by D. Lgs 152/06 (Table 3) [37].

At the end of the batch tests, chemical analysis of the liquid fraction output (Table 4)
was conducted in line with D. Lgs 152/06 for discharge into the sewerage system. Signif-
icant N removal detected during the tests may be associated with a combination of gas
stripping and biomass consumption for protein synthesis. The highest COD, BOD, and
phosphorous removal rates were observed when Chlorella and Scenedesmus were cultivated
with a 2% CO2 supply. These data align with previous research, where microalgae cultiva-
tion on digestate resulted in nitrogen, phosphorus, and COD removal rates of 75.7–82.5%,
62.5–74.7%, and 27.4–77.8%, respectively [38,39].
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Table 4. Chemical characterization of liquid effluent after C. vulgaris and Scenedesmus sp. cultivation
with basil pesto wastewater 50% v/v with the addition of 0.004%, 2%, and 5% CO2.

Experimental
Conditions Residual Concentration in the Liquid Fraction Removal

(%)

CO2 (%) Light P
(mg L−1)

N
(mg L−1)

COD
(mg

LO2−1)

BOD
(mg

LO2−1)
P N COD BOD

C
hl

or
el

la

50
%

v/
v

pe
st

o
w

as
te

w
at

er 0.04
White 1.4 ± 0.1 22.5 ± 1.4 90.0 ± 4.2 32.0 ± 2.0 94.8 99.6 26.5 25.6
Red 2.1 ± 0.1 22.5 ± 1.4 88.5 ± 3.9 32.0 ± 2.0 92.2 99.5 27.8 25.6

2
White 0.8 ± 0.0 22.5 ± 1.3 89.5 ± 4.3 32.0 ± 1.0 97.1 99.5 26.9 25.6
Red 2.0 ± 0.1 22.6 ± 1.4 86.5 ± 3.7 32.0 ± 2.0 92.4 99.8 29.4 25.6

5
White 1.6 ± 0.1 22.6 ± 1.4 83.0 ± 3.3 30.5 ± 1.4 93.9 100 32.2 29.1
Red 3.1 ± 0.2 18.7 ± 1.3 75.3 ± 2.9 28.0 ± 1.0 88.3 82.7 38.8 34.9

Sc
en

ed
es

m
us 0.04

White 0.0 ± 0.0 19.8 ± 1.3 90.2 ± 3.1 32.0 ± 2.0 99.9 87.4 26.5 25.6
Red 0.9 ± 0.1 22.6 ± 1.4 88.2 ± 3.1 31.5 ± 1.6 96.5 99.7 28.2 26.8

2
White 2.4 ± 0.2 22.6 ± 1.3 87.0 ± 3.7 32.0 ± 1.0 91.1 100 29.0 25.6
Red 2.3 ± 0.2 22.6 ± 1.4 83.5 ± 3.1 31.0 ± 2.0 91.5 99.8 31.8 27.9

5
White 3.9 ± 0.3 22.4 ± 1.4 84.4 ± 4.0 31.0 ± 1.0 85.3 98.8 31.4 27.9
Red 4.2 ± 0.4 18.0 ± 1.2 79.2 ± 2.8 29.0 ± 1.0 84.2 79.6 35.5 32.7

4. Conclusions

The present research aimed to optimize the potential of microalgae-based biorefineries
and circular bioeconomies in the context of bioenergy production from renewable sources.
The use of microalgae and photobioreactors, such as MC 1000-OD, for wastewater treat-
ment has proven effective in reducing the demand for nitrogen, phosphorus, and chemical
and biochemical oxygen demand components that characterize wastewater and represent
pollutants that are harmful to the environment. The experimental findings suggest that
the reduction of these substances can be optimized by controlling variables that are ben-
eficial for microalgal growth, such as light and CO2, thereby facilitating the capture of
industrial waste. The sequestration of excess CO2 from the atmosphere is one of the main
contributions to mitigating the adverse environmental impacts of human activities. The
potential benefits of this approach are twofold: the generation of purified water and mi-
croalgal biomass, which can serve various purposes, including energy production through
lipid extraction.
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