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A B S T R A C T

The paper presents a procedure for the stochastic calibration of a cracked hinge model on the basis of an
extensive experimental campaign performed on a large group of nominally identical fiber-reinforced specimens.
The calibration is carried out in a multi-level Bayesian framework that allows to quantify and separate several
uncertainty contributions affecting model parameters. Indeed, the variability in the experimental response
for nominally identical specimens due to the material heterogeneity represents a significant uncertainty
contribution as well as model error. The former can be quantified at the hyper-parameter level of the
multi-level framework. The presented results highlight the good agreement of the numerical predictions with
the experimental data and the superior performance of the multi-level framework compared to that of the
classical single-level framework. We also perform analyses to explore the impact of the prior parameter model
conditioned on hyper-parameters and assess the minimum number of specimen datasets needed to quantify
the inherent variability of model parameters.
1. Introduction

Non-linear mechanical models have a critical role in nowadays
engineering and research applications, in particular in the field of
advanced cementitious materials. The parameters of these models [1,2]
are usually estimated through calibration procedures based on inverse
analysis [3]. For instance, for Fiber Reinforced Concretes (FRC) data
from three-point bending tests (TPBT) on notched beams or from
wedge splitting tests (WST) [4] can be used to this purpose. From a
deterministic point of view, calibration is performed by minimizing
the difference between some experimental data and the corresponding
prediction provided by a model, for example the experimental force–
CMOD (Crack Mouth Opening Displacement) curve obtained from a
TPBT can be used to this purpose. The calibrated parameters are
found by solving an optimization problem, based on the definition
of a cost function measuring the discrepancy between numerical and
simulated results. The parameters to calibrate can be associated to
models with different degrees of complexity; for WSTs, Finite Element
(FE) models are commonly used [5–7], while for TPBTs, both closed
form solutions [8–12] and numerical simulations [7,13] have been
developed. Among these models, the fictitious crack model proposed by
Hillerborg [14] is probably one of the most adopted. However, other
similar models can be found in literature, such as the cracked band
model by Bazant and Oh [15].
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The spectrum of optimization strategies and algorithms which have
been adopted in literature for deterministic parameter calibration is
wide, ranging from gradient-based [6,11] to non gradient-based al-
gorithms [16,17]. The authors [18], for example, developed a smart
strategy aimed at calibrating the parameters of models against multi-
ple experimental results, proposing an application on TPBTs on FRC
elements. The deterministic approach to model parameter calibration
is focused only on the determination of the optimal parameter values,
namely those minimizing the cost function of the optimization problem.

However, model calibration is subjected to several sources of uncer-
tainties. In the literature it is frequent to distinguish between the uncer-
tainty related to experimental data and the uncertainty related to the
prediction model. The first one is commonly due to random measure-
ment noise, systematic error caused by the measurement equipment
or data post-processing. Uncertainty related to the adopted prediction
model has been analyzed by many authors [19–21] that identified two
main contributions: model form and model parameter uncertainty. The
former is caused by deliberate or unintended assumptions and simpli-
fications that are formulated to develop a model and are the result
of a lack of knowledge or understanding of the true system [22]. On
the other hand, uncertainty about the value of input parameters of the
selected prediction model is defined as model parameter uncertainty. It
can be associated to unknown properties of the model (e.g. regarding
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materials or geometry) but also to inherent structural variability [23]
that is an aleatory component of uncertainty. The latter is particularly
relevant for the application under consideration. An example in the
context of model calibration of constitutive laws is the variability of
material mechanical parameters (elastic modulus and/or strength) due
to material heterogeneity. This is particularly important in modeling
the behavior of materials like FRC, because the effect of material
heterogeneity and random distribution of fibers in the concrete matrix
leads to a very high variability of the experimental force–CMOD curves.
Indeed, it is very common that the results of several tests performed on
FRC specimens with the same characteristics may significantly differ
one from another. Another example from the dynamic identification
field is the variability of structural properties such as mass, stiffness and
boundary conditions due to changing environmental conditions [24].
This source of uncertainty is irreducible, and should not be confused
with the uncertainty in the estimations of the model parameters, that
can be reduced by acquiring new information. In many cases the extent
of these uncertainties is not-negligible and the calibration should be
treated as a statistical inference problem. This allows to estimate the
effect of model and measurement uncertainties on both the calibrated
parameters and the predictions of the calibrated model.

To the best of the authors’ knowledge, works aimed at the appli-
cation of statistical inference for the calibration of FRC models are
limited. Buratti et al. [17] carried out the deterministic calibration
of a cracked hinge model on the basis of the response of several
groups of nominally identical fiber-reinforced concrete specimens and
then computed the statistics of the calibrated parameters obtaining an
high variability for each group. Cavalaro and Aguado [25] computed
the coefficient of variation of the residual strength with reference to
an extensive parametric study. Bolzon et al. [5] applied the Kalman
Filter methodology to identify parameter and related uncertainties of
a cohesive crack model with reference to concrete specimens subjected
to WSTs. Dobrilla et al. [26] carried out the identification of fracture
and bond parameters in reinforced concrete by means of Bayesian
inference. Simwanda et al. [27] conducted a reliability analysis of
ultra high-performance fiber-reinforced concrete beams exposed to fire
after the stochastic calibration of their temperature-dependent thermal
properties.

In order to expand the research in this field, the present work
proposes the use of a Bayesian approach for model calibration. This
approach is based on the Bayes’ theorem for the expression of prob-
ability of a certain quantity conditioned on acquired information and
on the interpretation of probability as relative plausibility given the
current information level [28]. In this way, a rigorous probabilistic
framework for model calibration based on probability logic can be ex-
ploited. Reference works about the application of Bayesian inference for
model calibration have been developed by Beck and Katafygiotis [29],
Beck [30] and Tarantola [31]. Relevant applications of Bayesian meth-
ods in civil engineering are reported in [32], including vibration-based
model updating [33–36], structural health monitoring and damage
assessment [21,37,38] and seismic attenuation prediction [39].

The novelty of the present paper is that Bayesian inference is
performed in a hierarchical or multi-level framework [40,41] for the
calibration of a FRC model. In this way, parameter uncertainty due
to the inherent structural variability can be quantified in a rigorous
probabilistic context and it can be also separated from other uncer-
tainty sources. It represents an innovative approach in the field of
FRC model calibration. The introduction of a hyper-parameter level
in the updating framework allows the exchange of information among
different datasets. Consequently, the inherent parameter variability can
be quantified by the hyper-parameters while the remaining uncer-
tainty contributions are embedded in the prediction error. Hierarchical
Bayesian model updating has been successfully applied in the field
of structural dynamics based on modal features [23,24,42] or time-
domain responses for the identification of nonlinear hysteric mod-
els [43]. Moreover, hierarchical modeling has also been introduced in
2

sparse Bayesian learning for structural damage identification [44,45].
In this work, the hierarchical framework is applied for the parame-
ter estimation of a cracked hinge model. The calibration is performed
on the basis of an extensive experimental campaign based on TPBTs on
a significant number of specimen characterized by the same concrete
class and fiber dosage. The results of the hierarchical framework are
compared to those of the single-level framework, highlighting the
advantages in terms of uncertainty quantification and propagation.

The paper is organized as follows. First, the experiments on the FRC
specimens and their mechanical modeling are introduced in Sections 2
and 3. The Bayesian approach for parameter estimation is described
in Section 4 with reference to both the single-level and the hierarchical
framework, while the corresponding results are presented and discussed
in Section 5. Finally, conclusions are drawn in Section 6.

2. Experimental tests

The experimental campaign is carried out on 150 × 150 × 600
mm3 prismatic specimens that are nominally identical, namely they
are cast with the same concrete and fiber dosage. The concrete mix
used is detailed in Table 1. The fibers adopted are polymeric, have
a length of 42 mm and an equivalent diameter of 0.8 mm, i.e. they
are Class II according to EN 14889-2. After casting, the prismatic
specimens are cured for 26 days in water at 20 ◦C, then a 25 mm
deep and 4 mm wide notch is cut at mid-span on each specimen, as
prescribed by EN 14651. After notching, the specimens are cured in
water for two days in order to be tested at 28 days. Before testing,
a clip-on displacement transducer is installed at the bottom of the
prismatic specimen, across the notch, in order to measure the Crack
Mouth Opening Displacement (CMOD) and control the test. Tests are
carried out with a MTS Landmark servo-hydraulic machine, connected
to a MTS Flextest 40 controller. Closed loop PID is used to control the
CMOD opening during the tests; as prescribed by EN 14651, a rate of
0.05 mm/min is set for CMOD < 0.1 mm which is then increased to
0.1 mm/min for larger CMOD values.

A total of 84 specimens are tested and they are classified with
the acronym composed of the letter 𝑇 followed by a number ranging
from 1 and 84. For example, the first tested specimen is denoted as
T1. The high number of tests performed is motivated by the inter-
est in identifying the required number of specimens to achieve the
convergence of the proposed calibration procedure, as discussed in
Section 5.3. Specimens are produced in different batches, in each
batch 6 prisms and 2 150 × 150 × 150 mm3 cubes are cast. The
compressive strength measured from cubes at 28 days is 59.2 MPa with
a coefficient of variation of 0.11, no systematic difference is observed
among specimens from different batches. A picture of the experimental
setup is shown in Fig. 1a, while Fig. 1b presents all the force–CMOD
curve measured during the tests. During tests no anomalies are noticed
in the position of the crack, which always starts from the tip of the
notch. Fig. 2a shows an example of the crack observed at the end of one
of the bending tests. Furthermore, at the end of each test the prismatic
specimen is split into two parts in order to observe the distribution
of fibers; Fig. 2b shows the crack surfaces for two of the specimens
tested. Also in this case no anomalies are observed. It is possible to
observe a noticeable variability in the experimental curves, both in the
peak and post-peak region, that is mainly due to the heterogeneity of
the material and the random distribution of fibers inside the concrete
matrix. This is the source of the inherent variability of calibrated
model parameters, that will be quantified thanks to the hierarchical
framework described in Section 4. The peak force and the residual
strengths at CMOD values of 0.5, 1.5, 2.5 and 3.5 mm for all the 84
specimens are listed in Table A.5 for completeness. Mean values and
standard deviations among all the specimens are also reported in the
same table, highlighting the significant variability of the experimental

response.
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Fig. 1. (a) The experimental setup and (b) all the 84 force–CMOD experimental curves.
Fig. 2. (a) Crack observed at the end of one of the bending tests and (b) distribution of the fibers in the cross sections separated by the crack in the specimens T4 (left) and T6
(right). Fibers are marked with black dots.
Fig. 3. (a) Schematic representation of the numerical model and (b) bi-linear stress–crack opening relationship.
3. Numerical modeling

The Bayesian procedure proposed in this paper can be applied to
any parametric model, i.e. analytical, numerical etc., as far as it is
possible to define a prediction error (Section 4). In this paper we adopt
an analytical model adopted because of its very limited computational
cost.

The behavior of the notched beams described in the previous sec-
tion during the three-point bending test is simulated by combining
3

the classical beam theory with the fictitious crack propagation model
proposed by Olesen [8], which is a non-linear cracked hinge model
based on the fracture mechanics concept of fictitious crack with a bi-
linear stress–crack opening relationship. The part of the beam close to
the propagating crack is considered as a layer of independent spring
elements. These elements are formed by incremental horizontal strips
and are attached at each end to a rigid boundary. Each rigid boundary
is connected to an un-cracked beam element which behaves according
to the classical beam theory (see Fig. 3a). The constitutive law of each
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Table 1
Concrete mix used in the experimental campaign.
Superplasticizer is added to the mix in order to
achieve a slump of at least 150 mm.

Component Dosage

CEM I 52.5 R 400 kg/m3

Sand 0 mm–1 mm 885 kg/m3

Sand 0 mm–5 mm 440 kg/m3

Gravel 5 mm–15 mm 442 kg/m3

Fibers 3.0 kg/m3

Water/Cement ratio 0.45

horizontal strip in the fictitious crack is:

𝜎(𝑤) =

{

𝐸𝜀 if 𝑤 = 0
𝑔 (𝑤) 𝑓𝑐𝑡 if 𝑤 > 0

(1)

where 𝐸 is the elastic modulus of concrete, 𝜀 is the elastic strain, 𝑓𝑐𝑡
is the tensile strength of concrete, 𝑤 is the crack opening and 𝑔 (𝑤)
is, in this paper, a bi-linear curve defining the stress-crack opening
relationship shown in Fig. 3b, that reads:

𝑔(𝑤) =

{

1 − 𝑐1𝑤 if 0 ≤ 𝑤 ≤ 𝑤1

𝑑2 − 𝑐2𝑤 if 𝑤1 ≤ 𝑤 ≤ 𝑤2
(2)

The parameters of the bi-linear curve are easily calculated as func-
tion of 𝑤1, 𝑔

(

𝑤1
)

, 𝑤2 as 𝑐1 = (1 − 𝑔
(

𝑤1
)

)∕𝑤1, 𝑐2 = 𝑔
(

𝑤1
)

∕
(

𝑤2 −𝑤1
)

nd 𝑑2 = 𝑔
(

𝑤1
)

+ 𝑐2𝑤1. The previous assumptions allow to formulate
losed-form solutions for the moment–rotation relationship of the hinge
nd the force–CMOD curve of a three-point bending test, that are
mplemented in a MATLAB framework. To this aim, it is convenient to
escribe the hinge deformation by the rotation 2𝜑 and the neutral axis
epth 𝑦0, that are related to the average curvature 𝜒̄ and the average
ongitudinal strain 𝜀̄ as:

̄ =
2𝜑
𝑠
; 𝜀̄ (𝑦) =

(

𝑦 − 𝑦0
)

𝜒̄ (3)

where 𝑠 indicates the length of the nonlinear hinge which corresponds
to the length of the nonlinear springs. The elongation 𝑢 (𝑦) = 𝑠𝜀̄ (𝑦) of a
spring located at a depth 𝑦 is given by the sum of the elastic elongation
𝑠𝜎 (𝑤 (𝑦)) ∕𝐸) and the crack opening (𝑤 (𝑦)). By combining the previous

relationship, the stress distribution along 𝑦 can be expressed as:

𝜎 (𝑤 (𝑦)) =
[

2
(

𝑦 − 𝑦0
)

𝜑 −𝑤 (𝑦)
] 𝐸
𝑠

(4)

The moment–rotation curve can be numerically obtained by varying
the hinge rotation value inside a physically reasonable range and for
each value by imposing the translation and rotational equilibrium of
the hinge in order to compute the neutral axis depth 𝑦0 and the bending

oment. The stress distribution of the hinge changes through four
istinct phases corresponding to 𝑤 = 0, 0 < 𝑤 < 𝑤1, 𝑤1 < 𝑤 < 𝑤2
nd 𝑤 > 𝑤2. For this reason, it is necessary to define transition points
n order to correctly write the equilibrium equations. Transition points
epresent the rotation values causing the transition from a phase to the
ollowing one. Finally, the force corresponding to each moment value
s obtained through beam equilibrium considerations. The complete
ormulation is described in [8].

. Bayesian approach to model calibration

Model parameters obtained through inverse analysis are affected
y different sources of uncertainty, such as errors and noise in the
easure of an experimental data and uncertainty related to the pre-
iction model. The main contributions to the last source of uncertainty
re model form and model parameter uncertainty [20,21]. The latter
an be associated to unknown properties of the model (e.g. regarding
aterials or geometry) but also to the inherent structural variabil-

ty [23] induced by the aleatory of the system response. When the
4

agnitude of measurement and/or model uncertainty is significant, the
deterministic approach to model calibration may not be the optimal
strategy and the Bayesian approach is more suitable to quantify the
effect of uncertainty on calibrated model parameters. Single-level and
hierarchical Bayesian approach to model calibration are described in
Sections 4.1 and 4.2, respectively. In the following, the vector collecting
the model parameters subjected to calibration is denoted by 𝐱.

4.1. Single-level Bayesian model updating

Bayes’ theorem allows to infer posterior parameter distribution
𝑝(𝐱|) on the basis of a set of measured data  and the prior knowledge
about the parameter values, represented by the prior distribution 𝑝(𝐱):

(𝐱|) =
𝑝(|𝐱)𝑝(𝐱)

𝑝()
(5)

where 𝑝() is the Bayesian evidence, a constant ensuring that the
posterior distribution integrates to one, and it is computed as:

𝑝() = ∫𝐈
𝑝(|𝐱)𝑝(𝐱)d𝐱 (6)

here 𝐈 ⊂ 𝐑𝑛 is the support of the prior distribution. The Bayesian
vidence is usually employed for model class selection since it repre-
ents a trade-off between the ability of a model to fit the data and its
omplexity [30]. The dependency of all the terms of Eq. (5) on the
tochastic model class (obtained by means of stochastic embedding of
deterministic mechanical model [46]) is here omitted but the reader

ould refer to [36] for all details.
𝑝(|𝐱) is the likelihood function representing the plausibility that

he model class parameterized by 𝐱 provides the measured data . It
eflects the contribution of data in the determination of the posterior
istribution of parameters. The formulation of the likelihood function
epends on the definition of the prediction error that in turn represents
he discrepancy between the experimentally measured and numerically
redicted features. In this study, the prediction error is defined based
n the forces at eight reference values (𝑁 = 8) of CMOD, namely
.03, 0.05, 0.1, 0.2, 0.5, 1.5, 2.5, and 3.5 mm. The corresponding force
alues derived from the experimental and numerical force–CMOD curve
re collected in the vectors 𝐅(ex) and 𝐅(num), respectively. Consequently,
he prediction error is modeled as a multivariate zero-mean Gaussian
istribution:

𝐹 = 𝐅(ex) − 𝐅(num) (𝐱) ∼  (𝟎,Σ𝐹 ) (7)

iven the error definition of Eq. (7), the likelihood function values
orrespond to the probability density values of a multivariate Gaussian
istribution with mean 𝐅(ex) and covariance matrix Σ𝐹 , computed for
ach vector 𝐅(num) (𝐱), namely 𝑝 (|𝐱) = 

(

𝐅(num) (𝐱) |𝐅(ex),Σ𝐹
)

. The
ovariance matrix Σ𝐹 summarizes the uncertainties in the prediction
rror, that in this formulation combines measurement and model error.
he simplest approach involves the use of a diagonal covariance matrix
ith a single error parameter 𝜎𝐹 . An incorrect assumption regarding

he prediction error may unfairly influence the Bayesian updating
esults. For this reason, it is possible to include the prediction error pa-
ameter in the updating process [21,47]. In this case, the vector 𝐱 also
ncludes the error parameter 𝜎𝐹 in addition to the model parameters.

When multiple datasets
{

𝑖
}𝑁𝑑
𝑖=1 are available, with 𝑁𝑑 representing

he total number of datasets, Eq. (5) becomes:

(

𝐱|
{

𝑖
}𝑁𝑑
𝑖=1

)

=
𝑝
(

{

𝑖
}𝑁𝑑
𝑖=1 |𝐱

)

𝑝(𝐱)

𝑝
(

{

𝑖
}𝑁𝑑
𝑖=1

) (8)

The likelihood function 𝑝
(

{

𝑖
}𝑁𝑑
𝑖=1 |𝐱

)

can be expressed as the product
among the individual likelihood functions 𝑝(𝑖|𝐱) under the assump-
tions of independence among different datasets, namely:

𝑝
(

{

𝑖
}𝑁𝑑
𝑖=1 |𝐱

)

=
𝑁𝑑
∏

𝑝
(

𝑖|𝐱
)

(9)

𝑖=1
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Fig. 4. Graphical representation of the single-level Bayesian framework.
In this work, the term dataset refers to the result of the experimental
test on a single specimen, and corresponds to the set of force values
at the aforementioned reference CMOD values. The schematic repre-
sentation of the single-level framework in case of multiple datasets is
depicted in Fig. 4 where inferred variables are denoted by a circle,
while a rectangle is used for the observed quantities.

The computation of the joint posterior distribution 𝑝
(

𝐱|
{

𝑖
}𝑁𝑑
𝑖=1

)

and of the marginal distributions is limited in practical applications by
the need to solve high-dimensional integrals, for example the one of
Eq. (6). For this reason, asymptotic approximations [29] or sampling
methods [48] are generally employed, in which also an estimate of the
Bayesian evidence 𝑝() can be available. In this work, the sampling of
the posterior distribution is performed through the Bayesian Annealed
Sequential Importance Sampling (BASIS) algorithm [49], an improved
version of the Transitional Markov Chain Monte Carlo algorithm [50]
that has been largely diffused for Bayesian inference in structural
engineering problems.

4.2. Hierarchical Bayesian model updating

The single-level updating has been successfully implemented for the
identification of model parameters and model class selection in a vari-
ety of structural engineering problems. However, the covariance matrix
of the posterior distribution 𝑝

(

𝐱|
{

𝑖
}𝑁𝑑
𝑖=1

)

does not provide the total
variability of updating model parameters [40]. This covariance matrix
only represents the epistemic uncertainty, namely the uncertainty in
the parameter mean estimation which will decrease with an increasing
number of datasets [37,51,52]. The inherent variability of a parameter,
that is the variability of the calibrated parameters among different
experiments, cannot be quantified in a single-level framework.

Hierarchical or multi-level updating is an extension of the clas-
sical single-level framework and it allows the exchange of informa-
tion among different datasets [41]. As the name suggests, the overall
stochastic model is composed of different parameters hierarchically
organized in different levels. The parameter-level is composed of the
parameter vectors 𝐱𝑖 (𝑖 = 1, . . . , 𝑁𝑑), which contain also the error
parameter 𝜎𝐹 ,𝑖. They are separately inferred from the datasets

{

𝑖
}𝑁𝑑
𝑖=1 .

Realizations of the parameters 𝐱𝑖 can vary across each different dataset
𝑖, thus the collection of all the parameter vectors of the hierarchi-
cal model is denoted as

{

𝐱𝑖
}𝑁𝑑
𝑖=𝑖 . The extra level that distinguishes

the hierarchical framework is composed of the hyper-parameters, col-
lected in the vector 𝝍 and characterized in terms of their probability
distribution. The inherent variability is quantified through the hyper-
parameters, while all the other uncertainties are accounted for through
the prediction error term. The authors believe that this approach is well
suited to quantify the parameter variability of FRC models given the
5

high scattering of the experimental response, as indicated in Section 2.
At the same time, this approach has not been investigated in the
field of FRC model calibration and this work has been developed for
this purpose. The graphical representation of the proposed hierarchical
framework is depicted in Fig. 5.

The joint posterior distribution of parameters and hyper-parameters
conditioned on the available datasets

{

𝑖
}𝑁𝑑
𝑖=1 can be obtained by means

of the Bayes’ theorem:

𝑝
(

{

𝐱𝑖
}𝑁𝑑
𝑖=1 ,𝝍|

{

𝑖
}𝑁𝑑
𝑖=1

)

=𝐶−1𝑝
(

{

𝑖
}𝑁𝑑
𝑖=1 |

{

𝐱𝑖
}𝑁𝑑
𝑖=1 ,𝝍

)

×
(

𝑝
(

{

𝐱𝑖
}𝑁𝑑
𝑖=1 |𝝍

)

𝑝 (𝝍)
) (10)

where 𝑝(𝝍) denotes the prior distribution of hyper-parameters,
𝑝
(

{

𝐱𝑖
}𝑁𝑑
𝑖=1 , |𝝍

)

is the prior distribution of parameters conditioned on
the hyper-parameters, 𝐶 is the evidence of the hierarchical model
class and 𝑝

(

{

𝑖
}𝑁𝑑
𝑖=1 |

{

𝐱𝑖
}𝑁𝑑
𝑖=1 ,𝝍

)

is the joint likelihood function of
the hierarchical model class. Given the independence of individual
datasets and the dependence of 𝐱𝑖 only on the dataset 𝑖, the prior
𝑝
(

{

𝐱𝑖
}𝑁𝑑
𝑖=1 , |𝝍

)

and the likelihood function 𝑝
(

{

𝑖
}𝑁𝑑
𝑖=1 |

{

𝐱𝑖
}𝑁𝑑
𝑖=1 ,𝝍

)

can
be simplified as:

𝑝
(

{

𝐱𝑖
}𝑁𝑑
𝑖=1 |𝝍

)

=
𝑁𝑑
∏

𝑖=1
𝑝
(

𝐱𝑖|𝝍
)

(11)

𝑝
(

{

𝑖
}𝑁𝑑
𝑖=1 |

{

𝐱𝑖
}𝑁𝑑
𝑖=1 ,𝝍

)

=
𝑁𝑑
∏

𝑖=1
𝑝
(

𝑖|𝐱𝑖
)

(12)

𝑝
(

𝐱𝑖|𝝍
)

and 𝑝(𝑖|𝐱𝑖) are the prior distribution conditioned on the
hyper-parameters and the likelihood of an individual dataset 𝑖. We re-
mark a substantial difference between the likelihood of the hierarchical
framework (Eq. (12)) and the likelihood of the single-level framework
in case of multiple datasets (Eq. (9)) because Eq. (12) considers a
specific parameter vector 𝐱𝑖 for each dataset 𝑖. As happened in Sec-
tion 4.1 for the single-level framework, the dependency of the terms in
Eqs. (10)–(12) on the hierarchical model class

{

𝐱𝑖
}𝑁𝑑
𝑖=1 has been omitted.

The same holds for the following discussion.
Our goal is to obtain the marginal posterior distribution of the

hyper-parameters 𝑝
(

𝝍|
{

𝑖
}𝑁𝑑
𝑖=1

)

and of the parameters 𝑝
(

𝐱𝑖|
{

𝑖
}𝑁𝑑
𝑖=1

)

,
which can be theoretically obtained by marginalizing the joint pos-
terior distribution of parameters and hyper-parameters 𝑝

(

{

𝐱𝑖
}𝑁𝑑
𝑖=1 ,

𝝍|
{

𝑖
}𝑁𝑑
𝑖=1

)

of Eq. (10). Because of the complexity associated with
directly evaluating the joint posterior distribution, alternative method-
ologies can be adopted for their computation [40,41,43,53,54], which
in most cases allow to avoid the computation of the joint posterior dis-
tribution. We adopt the one proposed by Wu et al. [55], that involves an
efficient approximation based on the use of Importance Sampling [56]

and it is outlined in Section 4.2.1.
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.2.1. Numerical sampling in the hierarchical framework
The procedure for sampling marginal posterior distribution of the

yper-parameters and parameters is summed up through the flowchart
epresented in Fig. 6. In step 1, single-level Bayesian model updating
Eq. (5)) is performed separately for each dataset 𝑖 by sampling the
osterior distribution 𝑝

(

𝐱𝑖|𝑖
)

. A predefined number 𝑁𝑠 of samples is
rawn for each dataset by means of the BASIS algorithm introduced
n Section 4.1 and also an estimate of the Bayesian evidence 𝑝

(

𝑖
)

is
omputed. Then, step 2 aims to calibrate the hyper-parameters whose
osterior distribution 𝑝

(

𝝍|
{

𝑖
}𝑁𝑑
𝑖=1

)

is expressed through the Bayes’
heorem as:

(

𝝍|
{

𝑖
}𝑁𝑑
𝑖=1

)

=
𝑝
(

{

𝑖
}𝑁𝑑
𝑖=1 |𝝍

)

𝑝 (𝝍)

𝑝
(

{

𝑖
}𝑁𝑑
𝑖=1

) (13)

here 𝑝
(

{

𝑖
}𝑁𝑑
𝑖=1 |𝝍

)

is the likelihood for 𝝍 , 𝑝 (𝝍) is the prior of the

yper-parameters 𝝍 and 𝑝
(

{

𝑖
}𝑁𝑑
𝑖=1

)

is the evidence for 𝝍 , a constant

nsuring that the posterior distribution 𝑝
(

𝝍|
{

𝑖
}𝑁𝑑
𝑖=1

)

integrates to
ne. Its exact computation is characterized by the same issues high-
ighted for the single-level Bayesian procedure in Section 4.1. For this
eason, the natural logarithm of the evidence, log-evidence in the
ollowing, is numerically estimated by the BASIS sampling algorithm
s a by-product.

The computation of the likelihood 𝑝
(

{

𝑖
}𝑁𝑑
𝑖=1 |𝝍

)

needs the re-
eated evaluations of the likelihood 𝑝

(

𝑖|𝐱𝑖
)

for each dataset 𝑖, that
represents the largest contribution to the total computational effort of
the whole procedure. The idea is to approximate 𝑝

(

{

𝑖
}𝑁𝑑
𝑖=1 |𝝍

)

by
sing Importance Sampling and exploiting the samples of the posterior
istribution 𝑝

(

𝐱𝑖|𝑖
)

for each dataset (drawn in step 1), as:

(

{

𝑖
}𝑁𝑑
𝑖=1 |𝝍

)

≈
𝑁𝑑
∏

𝑖=1

𝑝
(

𝑖
)

𝑁𝑠

𝑁𝑠
∑

𝑘=1

𝑝
(

𝐱(𝑘)𝑖 |𝝍
)

𝑝
(

𝐱(𝑘)𝑖

) (14)

here 𝐱(𝑘)𝑖 is the 𝑘th sample of the proposal distribution 𝑝
(

𝐱𝑖|𝑖
)

, with
= 1,2, . . . , 𝑁𝑠, and provided that 𝑁𝑠 is sufficiently large. Moreover,
(


)

is the evidence of the single-level Bayesian procedure, estimated
6

𝑖

n the first step for each dataset 𝑖, 𝑝
(

𝐱(𝑘)𝑖 |𝝍
)

and 𝑝
(

𝐱(𝑘)𝑖

)

are the
alues of the priors 𝑝

(

𝐱𝑖|𝝍
)

and 𝑝
(

𝐱𝑖
)

for the sample 𝐱(𝑘)𝑖 . 𝑝
(

𝐱𝑖
)

is
efined in the first step and it is assumed as an uniform distribution in
he following. Hence, even if, in the general case, 𝑝

(

𝐱(𝑘)𝑖

)

depends on 𝑘
nd on the dataset 𝑖, in this case it is a constant since the same bounds
f the uniform distribution are adopted for all the datasets. On the
ontrary, the prior 𝑝

(

𝐱(𝑘)𝑖 |𝝍
)

typically follows a Gaussian distribution,
hich is assumed in the following.

The final step 3 aims to drawn sample from 𝑝
(

𝐱𝑖|
{

𝑖
}𝑁𝑑
𝑖=1

)

. On the
asis of the dependency assumptions previously mentioned and using
mportance Sampling, it can be written as:
(

𝐱𝑖|
{

𝑖
}𝑁𝑑
𝑖=1

)

≈
𝑝
(

𝑖|𝐱𝑖
)

𝑁𝑠

𝑁𝑠
∑

𝑘=1

𝑝
(

𝐱𝑖|𝝍 (𝑘))

𝑝
(

𝑖|𝝍 (𝑘)
) (15)

where 𝝍 (𝑘) is the 𝑘th sample of 𝑝
(

𝝍|
{

𝑖
}𝑁𝑑
𝑖=1

)

and the values of the
likelihood 𝑝

(

𝑖|𝝍 (𝑘)) are known from the previous step. Moreover,
𝑝
(

𝐱𝑖|𝝍 (𝑘)) is the value of the prior distribution 𝑝
(

𝐱𝑖|𝝍
)

whose param-
eters are defined by the sample 𝝍 (𝑘).

As reported in Wu et al. [55], the variance of results is strictly con-
nected with the closeness of the integrand and of proposal distribution.
Solutions to reduce the variance are the choice of a prior 𝑝

(

𝐱𝑖
)

very
close to 𝑝

(

𝐱𝑖|𝝍
)

or the use of a large number 𝑁𝑠 of posterior samples.
iven the difficulty of knowing the appropriate prior parameters at

he beginning of the procedure, the simplest solution to obtain good
ccuracies is to choose a large number of samples 𝑁𝑠. The reader could
efer to [55,57] for the complete description of the procedure.

. Results

In the present section, model parameters of the cracked hinge model
escribed in Section 3 are calibrated on the basis of the Bayesian frame-
ork of Section 4. Model parameters to be calibrated are the tensile

trength of concrete 𝑓𝑐𝑡 and the parameters of the bi-linear stress–
rack opening relationship in Eq. (2). Concerning the parametrization
f the bi-linear stress–crack opening curve for inverse analysis, it can
e convenient to consider the parameter 𝑤1, 𝑔

(

𝑤1
)

and 𝑔 (𝑤̄) (see
̄
Fig. 3b) rather than 𝑐1, 𝑐2 and 𝑑2, where 𝑤 is a predefined value of
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Fig. 6. Flowchart of the procedure for hierarchical model updating.
𝑓
crack opening that has been reached during the experimental tests, in
this work 𝑤̄=3.5 mm. In fact, it is more reasonable to calibrate 𝑔 (𝑤̄)
rather than 𝑤2, that corresponds to a stress equal to zero. Indeed, 𝑤2
s commonly larger than the maximum CMOD reached in a test and its
alibration can result in an ill-posed problem. Consequently, the second
ine of Eq. (2) is rewritten as:

(𝑤) = 𝑔
(

𝑤1
)

−
𝑔
(

𝑤1
)

− 𝑔 (𝑤̄)
𝑤̄ −𝑤1

(

𝑤 −𝑤1
)

if 𝑤1 ≤ 𝑤 ≤ 𝑤2 (16)

his parametrization directly involves physical quantities that are eas-
er to interpret and to bound. Indeed, if inappropriate bounds are
elected for the parameters, nonlinear constraint are necessary in order
o keep the physical significance of the model, see [8] for further
etails.

The calibration will be carried out in both the single-level (Sec-
ion 5.1) and hierarchical (Section 5.2) framework, highlighting differ-
nces between them and the advantages of the hierarchical framework.

.1. Results for the single-level updating

The calibration is first performed in the single-level framework
escribed in Section 4.1. The posterior distribution of the 5 parameters
7

𝑐𝑡, 𝑤1, 𝑔
(

𝑤1
)

, 𝑔 (𝑤̄) and 𝜎𝐹 are inferred on the basis of Eq. (5) and
the likelihood function defined by Eq. (9) for the case of multiple
datasets. The joint prior distribution 𝑝 (𝐱) of the updating parameter is
obtained by considering the a priori independence of parameters unless
for 𝑔

(

𝑤1
)

and 𝑔 (𝑤̄), since it is needed that 𝑔
(

𝑤1
)

≥ 𝑔 (𝑤̄). The prior
distribution of each parameter is described in Table 2. Note that the
parameter 𝑔 (𝑤̄) can assume negative values during the calibration. This
means that the coordinate 𝑤2 corresponding to 𝑔

(

𝑤2
)

=0 is lower than
the predefined value of 𝑤̄. In this case, negative values of 𝑔 (𝑤) are not
considered in the bi-linear curve, and the values for 𝑤 > 𝑤2 are set to
zero.

The results of the single-level updating are summed up in the last
columns of the same table. As reported by other authors [40,52], the
model parameter standard deviations do not represent the inherent
parameter variability but the uncertainty in the mean value estimation,
that reduces with an increasing dimension of datasets (for instance, in
the present case, increasing the number 𝑁 of forces at prescribed values
of CMOD used to compute the prediction error in Eq. (7)). Indeed,
the standard deviations listed in Table 2 are very small, one or more
orders of magnitude lower than the corresponding mean values. The
comparison between experimental and numerical force–CMOD curves
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Fig. 7. Representation of experimental and numerical curves: (a) mean experimental curve (black) compared to the mean numerical predicted curve of the single-level (blue)
and hierarchical (red) framework; (b) variability of the experimental curves (black dashed lines) and 99% uncertainty bounds for numerical predictions (red region) obtained by
considering the model parameter uncertainty in the single-level framework. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 8. Scatter plot of the most correlated model parameters in the single-level framework: (a) 𝑓𝑐𝑡 versus 𝑤1 and (b) 𝑔
(

𝑤1
)

versus 𝑔 (𝑤̄).
is presented in Fig. 7. Fig. 7a shows the high correspondence between
the experimental mean curve and the numerical mean curve, while
Fig. 7b shows the 99% uncertainty bounds for model predictions ob-
tained considering only the model parameter uncertainty. The bounds
clearly do not cover the variability of the experimental response. It is
worth noticing that larger prediction bounds can be obtained by adding
the calibrated prediction error 𝜎𝐹 to the deterministic model response.
In this case, two main drawbacks are highlighted. First, the bounds
overestimate the experimental variability since the prediction error
includes all the possible error sources in the single-level framework.
Second, the inherent parameter variability is not directly quantified and
it cannot be propagated to different model predictions.

As concerns the correlation among the updated parameters, the
strongest correlations are observed for the pairs 𝑓𝑐𝑡-𝑤1 and 𝑔

(

𝑤1
)

-
𝑔 (𝑤̄), whose scatter plots are represented in Fig. 8. The corresponding
correlation coefficients are −0.69 (𝑓𝑐𝑡-𝑤1, Fig. 8a) and −0.44 (𝑔

(

𝑤1
)

-
𝑔 (𝑤̄), Fig. 8b). From the last plot, it is easy to view the influence of
the prior distribution imposing 𝑔

(

𝑤1
)

≥ 𝑔 (𝑤̄). The red line represents
the boundary line of equation 𝑔

(

𝑤1
)

= 𝑔 (𝑤̄). The hypothesis of a
posteriori uncorrelated parameters is not appropriate in this case. The
absolute values of the correlation coefficients among all the other pairs
of updated parameters are less than 0.3.

5.2. Results for the hierarchical updating

The calibration is thus carried out according to the hierarchical
framework of Section 4.2. As regards the prior distribution 𝑝

(

𝐱 |𝝍
)

8

𝑖

Table 2
Prior 𝑝 (𝐱) and posterior 𝑝

(

𝐱|
{

𝑖
}𝑁𝑑
𝑖=1

)

distributions of the updating parameters in the
single-level framework. 𝑎, 𝑏: left and right bounds of a univariate uniform distribution.
𝜇𝑝𝑜, 𝜎𝑝𝑜: mean and standard deviation of the posterior distribution 𝑝

(

𝐱|
{

𝑖
}𝑁𝑑
𝑖=1

)

(see
Eq. (8)).

Parameter Units Prior dist. 𝑎 𝑏 𝜇po 𝜎po
𝑓𝑐𝑡 MPa Uniform 0.50 5 2.49 0.03
𝑤1 mm Uniform 0.02 0.30 0.05 1⋅10−3

𝑔
(

𝑤1
)

– Uniforma 0.01 0.99 0.16 4⋅10−3

𝑔 (𝑤̄) – −0.50 0.99 0.14 0.01
𝜎𝐹 kN Uniform 0.01 10 1.18 0.03

a Coupled distribution since 𝑔
(

𝑤1
)

≥ 𝑔 (𝑤̄).

of parameters 𝐱𝑖 conditioned on the hyper-parameters 𝝍 , Gaussian
distributions are chosen for all the five parameters involved. Hence the
hyper-parameter vector 𝝍 has dimension equal to 10 and it is composed
of the pairs mean-standard deviation of each of the five Gaussian
distributions. Hyper-parameters are characterized by uniform prior dis-
tributions (𝑝 (𝝍) ∼ 𝐔(𝑎, 𝑏)) and their posterior distributions are sampled
by means of the approximated method described in Section 4.2.1. Ta-
ble 3 sums up the characteristic of prior 𝑝 (𝝍) and posterior distribution
𝑝
(

𝝍|
{

𝑖
}𝑁𝑑
𝑖=1

)

for each hyper-parameter. Note that the symbols 𝜇 and
𝜎 used in first column of the table denote the hyper-parameters 𝝍
related to the five updating parameters. 𝜇𝑓𝑐𝑡 , 𝜇𝑤1

, 𝜇𝑔(𝑤1), 𝜇𝑔(𝑤̄) and 𝜇𝜎𝐹
represent the mean values of the updating parameters, while 𝜎𝑓𝑐𝑡 , 𝜎𝑤1

,
𝜎 , 𝜎 and 𝜎 quantify the inherent variability of the updating
𝑔(𝑤1) 𝑔(𝑤̄) 𝜎𝐹
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Fig. 9. Comparison between experimental curves (black dashed lines) and 99.9% (yellow), 99% (red) and 95% (blue) uncertainty bounds for numerical predictions obtained by
considering the parameter inherent variability in the hierarchical framework. (a) entire curve, (b) zoom on the peak region. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Table 3
Prior 𝑝 (𝝍) and posterior 𝑝

(

𝝍|
{

𝑖
}𝑁𝑑
𝑖=1

)

distributions of the hyper-parameters in the
hierarchical framework. 𝑎, 𝑏: left and right bounds of a univariate normal distribution.
𝜇𝑝𝑜, 𝜎𝑝𝑜: mean and standard deviation of the posterior distribution 𝑝

(

𝝍|
{

𝑖
}𝑁𝑑
𝑖=1

)

.

Hyper-par. Units Prior dist. 𝑎 𝑏 𝜇po 𝜎po
𝜇𝑓𝑐𝑡 MPa Uniform 0.50 5 2.49 0.03
𝜎𝑓𝑐𝑡 MPa Uniform 0.50 3 0.30 0.02
𝜇𝑤1

mm Uniform 0.02 0.30 0.05 8⋅10−4

𝜎𝑤1
mm Uniform 1⋅10−3 0.2 7⋅10−3 8⋅10−4

𝜇𝑔(𝑤1) – Uniform 0.01 0.99 0.17 5⋅10−3

𝜎𝑔(𝑤1) – Uniform 0.01 0.60 0.05 5⋅10−3

𝜇𝑔(𝑤̄) – Uniform −0.50 0.99 0.10 6⋅10−3

𝜎𝑔(𝑤̄) – Uniform 0.01 0.60 0.04 9⋅10−3

𝜇𝜎𝐹 kN Uniform 0.01 3 0.59 0.02
𝜎𝜎𝐹 kN Uniform 0.01 1.5 0.07 0.02

parameters. This source of uncertainty is definitely not negligible since
they correspond to coefficient of variations with respect to the mean
value of 11.9%, 12.8%, 28.7%, 43.9% and 12.6%, respectively.

Conversely, 𝜇po and 𝜎po denote the mean and standard deviation of
samples of the hyper-parameter posterior distribution 𝑝

(

𝝍|
{

𝑖
}𝑁𝑑
𝑖=1

)

.
𝜎po represents the uncertainty in the hyper-parameter mean estimate,
that is at least one order of magnitude lower than the mean estimate for
most of the hyper-parameters. The mean predicted force–CMOD curve
exhibits a close similitude with the mean experimental curve and with
the mean predicted curve of the single-level updating (Fig. 7a).

The variability of predictions is investigated in Fig. 9. The uncer-
tainty bounds of the numerical predictions have been computed by
accounting for only the inherent parameter variability quantified by the
hyper-parameter vector 𝝍 . Hence, the prediction error 𝜎𝐹 has not been
included. The bounds clearly cover the variability of the experimental
curve both in the peak (Fig. 9b) and post peak (Fig. 9a) regions.
Only few portions of the experimental curves are not covered by the
uncertainty bounds because of the error committed by the numerical
model in the reproduction of the experimental response.

The effect of the introduction of the hierarchical framework on
the parameter samples can be analyzed thanks to Fig. 10. The blue
bars represent the histogram of the model parameter for all the 84
datasets obtained in the first phase of the method, namely after that
the single-level Bayesian model updating has been performed for each
dataset. The red bars represent the histogram of the model parameter
obtained at the end of the hierarchical framework, namely when the
prior distribution conditioned on the hyper-parameters 𝑝

(

𝐱𝑖|𝝍
)

has
been included in the sampling process. At the end of the hierarchical
updating, the samples are clearly more concentrated in a narrow range
9

with respect to first phase. This effect is more pronounced for 𝑤2
and 𝑔 (𝑤̄) (see Figs. 10b and 10d) but it is visible also for 𝑓𝑐𝑡 and
𝑔
(

𝑤2
)

(see Figs. 10a and 10c). Moreover, the samples are very close
to the probability distributions defined by the corresponding pair of
hyper-parameters, depicted with a black line in the same figures.

The hierarchical framework has the clear advantage of allowing the
direct quantification of the parameter inherent variability, as proved by
the previous results. Moreover, the calibration of a single experimental
test can be also refined. Two representative examples are shown in
Fig. 11. The 95% uncertainty bounds of model predictions for specimen
T79 and T81 are compared. The red region represents the bounds for
the single-level updating, while the blue one represents the bounds
for the hierarchical framework. The exchange of information among
different datasets carried out in the hierarchical framework allows to
reduce the uncertainty bounds in cases where the prediction error of the
single-level framework 𝜎𝐹 ,𝑆 is high, as for the case of T81 (Fig. 11b).
On the other hand, when the prediction error 𝜎𝐹 ,𝑆 is not excessively
high, the reduction obtained thanks to the hierarchical framework is
negligible, as for T79 (Fig. 11a). For a more comprehensive analysis,
all the datasets have been considered. The reductions of the prediction
error mean value from the single-level to the hierarchical framework
(𝛥𝜎𝐹 = 𝜎𝐹 ,𝑆 − 𝜎𝐹 ,𝐻 ) have been compared. The reduction 𝛥𝜎𝐹 is
represented in function of the prediction error mean value of the
single-level updating 𝜎𝐹 ,𝑆 in Fig. 12. 𝛥𝜎𝐹 is approximately linearly
proportional to 𝜎𝐹 ,𝑆 , namely the reduction is the greater the higher the
initial value of the prediction error in the single-level framework. It is
interesting to note that 𝛥𝜎𝐹 can be negative, hence a linear increment
of the prediction error mean value can be performed in the hierarchical
framework if 𝜎𝐹 ,𝑆 is lower than a threshold value, 0.56 kN in this
case.

5.3. Effect of the dataset size on the parameter variability

The results of Section 5.2 refer to the calibration based on the
overall available datasets (84 specimens). The authors have also an-
alyzed the convergence of hyper-parameters according to a varying
number of datasets, ranging from 1 to 84. First, the force–CMOD
curves obtained by the experimental tests of the specimens T1-T84 are
randomly shuffled obtaining a random sequence of 84 curves. Then,
the hyper-parameter posterior distribution 𝑝

(

𝝍|
{

𝑖
}𝑛
𝑖=1

)

is inferred
according to a number 𝑛 of datasets ranging from 1 to 84, by selecting
the first 𝑛 curves of the generated random sequence. Results of this
analysis are represented in Fig. 13. As concerns the mean value of the
5 parameters, very few datasets (namely 3-4) are needed in order to
have stability for the mean value in the case of 𝑤 (Fig. 13b), 𝑔

(

𝑤
)

1 1
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Fig. 10. Histogram of the model parameter for all the 84 datasets: (a) 𝑓𝑐𝑡, (b) 𝑤1, (c) 𝑔
(

𝑤1
)

and (d) 𝑔 (𝑤̄) in the first stage of the hierarchical framework (blue bars) and in
the final stage (red bars). Black line: probability distribution of the corresponding prior 𝑝

(

𝐱𝑖|𝝍
)

. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Fig. 11. 95% uncertainty bounds obtained for the (a) T79 and (b) T81 specimen according to the single-level (red region) and hierarchical (blue region) framework. Black line:
experimental curve; red and blue dashed line: numerical mean curve of the single-level and hierarchical framework, respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
(Fig. 13c) and 𝑔 (𝑤̄) (Fig. 13d). For 𝑓𝑐𝑡 (Fig. 13a) and 𝜎𝐹 (Fig. 13e) an
higher number, approximately 10, is needed.

As concerns the parameter variability, a minimum number of
datasets equal to 16 is required to reach quite stable uncertainty
bounds. This number is the result of the convergence analysis described
in the following. First, the values of the hyper-parameters 𝜎𝑓𝑐𝑡 , 𝜎𝑤1

,
𝜎𝑔(𝑤1) and 𝜎𝑔(𝑤̄) updated on the basis of an increasing number of
datasets, i.e. from 1 to 84, are collected in specific vectors. These
vectors are then normalized by dividing each of their components by
the mean value of the vector. Finally, a single vector 𝜼 representing
10
a global index for all the hyper-parameters is defined by adding
the squared normalized vectors. The minimum number of datasets is
determined as the point where the global index last exceeds a threshold
equal to 1.3 times the value of 𝜼 calculated for 84 specimens.

5.4. Alternative parametrizations and prior distributions

The results of Section 5.2 refer to the parametrization of the bi-
linear stress-crack opening curve in terms of 𝑓 , 𝑤 , 𝑔

(

𝑤
)

and 𝑔 𝑤̄
𝑐𝑡 1 1 ( )
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Fig. 12. Reduction 𝛥𝜎𝐹 of the prediction error mean value for the 84 datasets in
function of the prediction error mean value 𝜎𝐹 ,𝑆 determined in the single-level updating.

Table 4
Log-evidence values for different parametrizations of the model and different
prior probability models.

Parametrization

PAR. A PAR. B

Prior model 𝑝
(

𝐱𝑖|𝝍
)

Normal −919 −1058
Uniform −1125 −1161
Lognormal −926 −1071
Beta −755 −850

for 𝑤̄ = 3.5 mm. In the current section the authors investigate how
the choice of alternative parametrizations and prior probability models
of parameters conditioned on hyper-parameters 𝑝

(

𝐱𝑖|𝝍
)

can affect the
esults of the hierarchical framework. By referring to the previous
arametrization as PAR. A, two alternative parametrizations are ana-
yzed: PAR. B that has the same first three parameters of PAR.A but
he forth is replaced by the value 𝑔 (𝑤̄) at 𝑤̄ = 1 mm instead of 𝑤̄ = 3.5

mm. The parametrization PAR. C replaces the forth parameter with 𝛥𝑤
representing the difference between 𝑤2 and 𝑤1 (that is 𝑤2 = 𝑤1 +𝛥𝑤).

Performing the updating with PAR. C revealed a clear difficulty,
namely the very low sensitivity of the likelihood function 𝑝

(

𝑖|𝐱𝑖
)

to
he parameter 𝛥𝑤. We consider as an example the calibration based
n the experimental response of the specimen T40, analyzing how the
hoice of the parameter bounds for 𝛥𝑤 affects the calibration results.
ig. 14 compares the posterior distribution of 𝛥𝑤 for the range [0.5;
5] mm (Fig. 14a) and [0.5; 150] mm (Fig. 14b). Except for small
alues of 𝛥𝑤, both distributions are nearly uniform, highlighting how
variation of 𝛥𝑤 does not cause a substantial modification of the

ikelihood function. Furthermore, increasing the upper limit of the
arameter range produces an increase in samples that have high 𝛥𝑤
alues, without being able to find a result independent of the imposed
pper and lower bounds. The reason could be sought in the way the
xperimental tests were carried out. It has been already pointed out that
he experimental tests have been stopped at CMOD = 4 mm and that 𝑤2
s commonly larger than 4 mm, hence it is more reasonable to calibrate
he stress reduction for CMOD values reached in the experimental
ests. The low sensitivity towards 𝛥𝑤 makes the calibration problem
ll-conditioned, for this reason the parametrization PAR.C is discarded
nd no other results regarding this parametrization will be presented
n the following.

The focus is then moved to analyzing the influence of different prior
odels 𝑝

(

𝐱𝑖|𝝍
)

for PAR.A and PAR.B. Four different prior models,
namely normal, uniform, lognormal and Beta, are considered. In the
analyzed cases, the five parameter distributions are described by the
11

same prior model. For the lognormal case, all the parameters have i
positive ranges of variation except for 𝑔 (𝑤̄) that can assume negative
alues. For this reason, the lognormal distribution is chosen to describe
he variation of 1 − 𝑔 (𝑤̄).

The comparison between different prior models 𝑝
(

𝐱𝑖|𝝍
)

is per-
ormed according to the value of the Bayesian evidence for the hyper-
arameter likelihood, introduced as the constant at the denominator
f Eq. (13). The evidence can be used in problems of model class
election since it represents a trade-off between the average ability of
model to fit the data and its complexity [30]. If the prior probability
f competing models is the same, a larger evidence value implies an
igher plausibility in the choice of the corresponding model according
o the available experimental data. The log-evidence values for the
arametrization PAR.A and PAR.B and for the different prior probabil-
ty models 𝑝

(

𝐱𝑖|𝝍
)

are listed in Table 4. The influence of 𝑝
(

𝐱𝑖|𝝍
)

on
he log-evidence value is distinctive and two general considerations can
e formulated. If the parametrization PAR.A and PAR.B are separately
nalyzed, it is evident how uniform and beta prior models are asso-
iated to the lowest and the highest log-evidence values, respectively.
ormal and lognormal prior models have intermediate values. On the
ther hand, comparing the two parametrizations for a fixed prior model
(

𝐱𝑖|𝝍
)

, we observe that PAR.A has always larger log-evidence values.
Parameter inherent variability obtained with different parametriza-

ions and prior models are shown in Fig. 15. These plots have been
ealized thanks to the Matlab tool developed by [58]. The shaded area
epresents the [25; 75] % percentile range, the horizontal line indicates
he median while the white dot indicates the mean. Uniform prior
istributions are very different from the other represented distribution.
oreover, since uniform prior has the lowest log-evidence values, the

onsiderations that are expressed in the following refer to the other
rior models. The distributions of 𝑓𝑐𝑡 (Fig. 15a), 𝑤1 (Fig. 15b) and
(

𝑤1
)

(Fig. 15c) have similar central trend indices and [25; 75] %
ercentile ranges. In general, a large discrepancy between distributions
elated to PAR.A or PAR.B is not observed, except for the case of Beta
rior model and PAR.B where the parameter variability is different
rom the others. For the parameters 𝑔 (𝑤̄) (Fig. 15d) and 𝜎𝐹 (Fig. 15e),
istributions related to PAR.A have noticeable differences compared to
hose of PAR.B. As concerns 𝑔 (𝑤̄), it is due to the fact that the pre-
ssigned crack opening 𝑤̄ is different for PAR.A and PAR.B, hence it is
xpected the 𝑔 (𝑤̄) is on average larger at 1 mm than at 3.5 mm. The
istribution of the prediction error 𝜎𝐹 depends on the sensitivity of the
ikelihood function to the calibration parameters, that varies for PAR.A
nd PAR.B in function of the value of 𝑤̄.

Finally, the probabilistic features of the numerical predictions have
een investigated for the two prior models 𝑝

(

𝐱𝑖|𝝍
)

that allow to have
he highest log-evidence values for PAR.A, namely Beta and normal
odel. Fig. 16 shows the comparison between the probability density

unctions (pdf) of the numerical predictions and of the experimental
esponses. The pdfs of the numerical predictions are estimated via a
ormal kernel smoothing function [59]. The comparison is presented
or two representative cases, namely the force distribution at CMOD
qual to 0.05 mm (Fig. 16a) and 3.5 mm (Fig. 16a). In both cases, the
dfs of the numerical predictions obtained with a normal and beta prior
odel are very similar. No remarkable differences between the two
rior models are noticed for the force distributions at different CMOD
alues. For the force distribution at 0.05 mm, there is a high accordance
etween the pdfs of the numerical and experimental quantities. As
he force distribution at 3.5 mm is concerned, some differences are
oticed for values of force larger than 5 kN. In the authors’ opinion,
hese differences can be imputed to the model error rather than an
nappropriate prior model 𝑝

(

𝐱𝑖|𝝍
)

. Indeed, the few experimental force
amples in the range [5.0; 7.0] kN are not well fitted by the numerical
dfs because of the simulation inaccuracies of the numerical model.
he empirical cumulative distributions of the same quantities are re-
orted in Fig. 17. According to the probability densities, the cumulative
istributions of the force at CMOD equal to 0.05 mm are very close
o the experimental distribution (see Fig. 17a). The numerical and
xperimental force distribution at 3.5 mm, instead, are more distant

n the range [5.0; 7.0] kN (see Fig. 17b).
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Fig. 13. Convergence of hyper-parameters pairs for (a) 𝑓𝑐𝑡, (b) 𝑤1, (c) 𝑔
(

𝑤1
)

, (d) 𝑔 (𝑤̄) and (e) 𝜎𝐹 in function of the number of available datasets. Red line: mean value; blue
region: 95% uncertainty bounds. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Comparison between the posterior distributions of 𝛥𝑤 for the parameter range (a) [0.2; 15] mm and (b) [0.2; 150] mm.
6. Conclusions

The present work proposed a Bayesian hierarchical (multi-level)
framework to quantify the inherent variability of calibrated parameters
of mechanical models, which can be relevant in structural engineering
problems involving materials with highly variable properties such as
12
FRCs. The proposed procedure was applied to the calibration of the
parameters of an analytical cracked-hinge model, considered as case
study, based on the results of an experimental campaign performed on
a large group of nominally identical FRC specimens.

The obtained results revealed the advantages of the hierarchical
framework in contrast to single-level updating. In fact, the hierarchical
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Fig. 15. Parameter inherent variability for different prior models and for the parametrization PAR.A (blue) and PAR.B (red). (a) 𝑓𝑐𝑡, (b) 𝑤1, (c) 𝑔
(

𝑤1
)

, (d) 𝑔 (𝑤̄) and (e) 𝜎𝐹 . N:
normal, U: uniform, LN: lognormal, B: Beta. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
approach allows a direct quantification of the inherent variability of
parameters. Moreover, also a calibration based on a single experimental
test can be refined by exploiting the information related to the other
tests. In fact, the exchange of information among different datasets
allows to reduce the uncertainty bounds in cases where the prediction
error of the single-level framework is high.

Furthermore, specific analyses have been carried out to determine
the minimum number of specimens needed for an accurate assessment
of inherent parameter variability. With the dataset considered, results
13
indicate that 16 specimens are sufficient for this purpose. This may
allow to reduce time and costs in future experimental campaigns aimed
at characterizing the behavior of similar materials.

The main practical application of the proposed procedure is prob-
abilistic assessment of structural safety and the calibration of partial
safety factors used in design. In fact, a proper calibration of the in-
herent uncertainty of material parameters is essential for uncertainty
propagation and therefore for structural reliability assessment.
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Fig. 15. (continued).
Fig. 16. Comparison between the probability densities of the numerical predictions and the experimental responses (blue bars) at CMOD values of (a) 0.05 mm and (B) 3.5 mm.
Black line: normal prior model; red line: Beta prior model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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B
a

A

Fig. 17. Comparison between the cumulative distributions of the numerical predictions and the experimental responses (blue line) at CMOD values of (a) 0.05 mm and (b) 3.5 mm.
lack line: normal prior model; red line: Beta prior model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)
ppendix A

See Table A.5.

Table A.5
Peak load and residual strength at CMOD values of 0.5, 1.5, 2.5 and 3.5 mm for all
the 84 specimens together with the related statistics.

Specimen 𝐹peak [kN] 𝐹0.5 [kN] 𝐹1.5 [kN] 𝐹2.5 [kN] 𝐹3.5 [kN]

T1 14.95 3.88 3.64 3.94 3.94
T2 12.38 3.06 2.48 2.66 2.75
T3 12.28 3.12 2.63 2.73 2.68
T4 13.22 4.50 4.38 4.74 4.93
T5 12.97 2.37 1.78 1.91 1.93
T6 11.23 4.17 4.25 4.49 4.39
T7 13.10 3.91 4.08 4.23 4.24
T8 12.78 4.31 4.36 4.71 4.59
T9 14.08 3.93 3.84 4.06 4.02
T10 13.12 4.13 3.27 3.31 3.24
T11 13.14 4.70 4.66 5.12 5.32
T12 12.32 3.84 3.56 3.77 3.55
T13 13.76 5.42 5.78 5.95 5.89
T14 13.63 4.79 5.16 5.47 5.42
T15 13.38 3.37 3.62 4.06 4.15
T16 11.71 4.44 4.61 5.02 5.15
T17 11.84 4.53 4.25 4.69 4.75
T18 12.18 4.19 3.89 3.90 3.81
T19 13.39 3.98 3.64 3.89 3.9
T20 14.11 4.90 4.80 5.01 5.04
T21 14.59 4.10 3.97 4.10 3.9
T22 14.43 2.17 2.02 2.28 2.39
T23 15.63 3.70 4.11 4.40 4.31
T24 16.63 2.68 2.35 2.67 2.88
T25 16.21 3.17 2.67 2.82 2.95
T26 16.29 4.61 4.79 5.22 5.42
T27 14.06 5.18 6.10 6.78 7.16
T28 15.67 3.47 3.38 3.76 3.89
T29 13.45 4.99 4.53 4.98 5.25
T30 12.13 2.99 2.31 2.46 2.62
T31 14.92 2.66 2.48 2.89 3.09
T32 15.88 2.35 2.27 2.53 2.65
T33 15.26 3.63 3.48 3.90 4.17
T34 15.60 2.74 2.52 2.84 3.02
T35 13.69 3.00 2.85 3.02 3.21
T36 15.52 2.42 2.12 2.24 2.37
T37 13.54 3.85 4.43 4.79 4.82
T38 13.26 4.41 4.87 5.57 5.83
T39 14.36 4.59 4.59 4.41 4.26
T40 16.27 4.76 5.67 6.27 6.32
T41 15.00 4.89 4.50 5.07 5.37
T42 12.16 2.83 2.43 2.55 2.66
T43 14.02 3.94 3.38 3.46 3.49

(continued on next page)
15
Table A.5 (continued).
Specimen 𝐹peak [kN] 𝐹0.5 [kN] 𝐹1.5 [kN] 𝐹2.5 [kN] 𝐹3.5 [kN]

T44 13.44 4.03 3.85 3.80 3.93
T45 12.13 2.98 1.91 1.95 1.86
T46 12.99 4.29 3.85 4.07 4.24
T47 12.64 3.60 2.86 2.91 2.93
T48 13.70 3.19 2.32 2.42 2.47
T49 12.82 2.95 2.61 2.71 2.74
T50 11.10 2.70 2.45 2.66 2.77
T51 12.77 3.64 3.45 3.64 3.69
T52 12.75 3.04 3.12 3.29 3.34
T53 10.26 4.44 3.83 3.78 3.76
T54 13.34 2.14 1.34 1.38 1.44
T55 13.05 3.28 3.47 3.75 3.80
T56 11.91 3.27 2.47 2.52 2.51
T57 13.90 4.03 3.58 3.67 3.41
T58 13.41 4.67 4.16 4.08 4.1
T59 10.82 2.38 1.88 1.96 1.97
T60 11.99 3.93 3.82 4.00 4.09
T61 10.51 2.81 2.40 2.56 2.65
T62 14.78 2.73 2.44 2.68 2.78
T63 14.13 3.69 3.08 3.14 3.13
T64 12.18 2.73 1.95 1.97 2.12
T65 11.60 2.39 2.20 2.49 2.69
T66 13.38 3.20 2.95 3.13 3.32
T67 14.19 2.32 2.00 2.08 2.06
T68 13.77 3.06 2.39 2.60 2.63
T69 13.94 3.24 2.66 2.57 2.52
T70 16.78 2.92 2.81 2.96 3.02
T71 12.90 4.36 4.94 5.32 5.65
T72 12.64 3.00 2.82 2.75 2.74
T73 14.22 2.61 2.47 2.73 2.91
T74 13.41 2.57 2.21 2.33 2.34
T75 12.68 3.43 2.73 2.74 2.74
T76 12.74 5.08 5.36 5.59 5.55
T77 12.59 5.23 5.66 6.01 5.80
T78 13.72 3.65 3.77 3.76 3.64
T79 13.46 5.11 5.53 5.69 5.61
T80 12.55 2.78 2.65 2.58 2.6
T81 14.82 3.60 3.75 3.86 3.81
T82 12.95 2.70 2.35 2.42 2.45
T83 15.21 3.36 3.01 3.07 3.13
T84 13.91 3.54 3.40 3.79 3.85

Mean 13.50 3.61 3.42 3.62 3.67
Std. dev. 1.40 0.85 1.10 1.19 1.20
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