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A B S T R A C T   

Sparse-based models are a powerful tools for data compression, variable reduction, and model complexity 
reduction. Nevertheless, their major issue is the high computational time needed in large matrices. This 
manuscript proposes, for the first time, to couple randomised decomposition as a first step before sparsity cal
culations, followed by a projection of the full data onto a reduced-sparse set of loadings that will drastically 
reduce the time needed for calculations and built models that are equally reliable as their sparse-based ho
mologous. While this new approach might be valid for several scenarios (exploration, regression and classifi
cation), we will focus on exploration methods (like Principal Component Analysis – PCA) applied to large 
datasets of hyperspectral images. Two datasets of different complexity have been tested, and the benefits of the 
coupled randomisation and sparse PCA (rsPCA) are extensively studied.   

1. Introduction 

Nowadays, modern analytical tools such as spectroscopic techniques 
or -omics platforms allow to easily acquire high dimensional data arrays, 
which can be composed of an immense number of samples, variables, or 
both. Therefore, one of the main challenges of data analytics consists in 
the development and application of data mining methods able to deal 
with such high dimensional data arrays with reasonable computational 
efforts [1–3]. 

In this context, sparse-based methods have been demonstrated to be 
a powerful approach allowing to perform data compression and variable 
reduction at the same time. Sparse methods are extensions of traditional 
multivariate methods in which sparsity is induced on the estimated 
parameter vector of the considered model. In this manner, the parameter 
vector is forced to contain many zeros and few non-zero entries: the zero 
entries correspond to irrelevant or noisy variables that are discarded, 
while the non-zero entries correspond to the more informative variables 
[4]. For example, in the context of data exploration by means of Prin
cipal Component Analysis (PCA), a sparse PCA (sPCA) model will pro
vide sparse loading vectors where only the more relevant variables have 
non-zero loading coefficients and contribute to the trends observed in 
the score plots [5]. Sparse versions of classical multivariate methods 

have been developed not only for data exploration but also for regres
sion and classification problems. For regression purposes, different 
versions of sparse Partial Least Squares (sPLS) were proposed, consid
ering different penalisation methods to achieve sparsity [6,7]. In the 
context of classification, sparse versions of common classification al
gorithms such as Partial Least Squares Discriminant Analysis (PLS-DA) 
[8], Linear Discriminant Analysis (LDA) [9] and Support Vector Classi
fication (SVC) [10] were developed. 

Due to their advantages, sparse methods have been broadly applied 
in different data analytics frameworks including signal processing [11], 
analysis of massive biomedical and biological data [12–15] or extraction 
of relevant features from imaging data [16,17]. Despite their great po
tential, the high amount of time needed for the computations is one of 
the major issues and it becomes even more evident when the analysed 
matrix has a large number of rows. 

As a possible solution, this manuscript proposes for the first time to 
couple randomisation algorithms for a low-rank approximation of the 
data as a previous step before sparsity is induced in the model. Ran
domisation methods aim at generating a low-rank approximation of the 
original high dimensional data matrix that maintain the main sources of 
variance of the original high dimensional data matrix. In other words, 
the new low-rank matrix is a nearly accurate approximation of the 
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original matrix [18]. A common example of this kind of approach con
sists in performing a random subsampling of the original data matrix 
using for instance Monte Carlo method or its modifications [19,20]. In 
this manuscript we considered an alternative approach to achieve 
dimension reduction based on random projection, which consists in the 
projection of original data to a set of randomly taken vectors followed by 
a factorisation step [21]. This approach demonstrated to be faster and 
more robust than deterministic methods, and it has been used to solve 
clustering and classification issues [22]. 

Therefore, we used randomisation as a previous step before sparse 
model calculation to drastically reduce the time needed for calculations 
and to ease the model optimisation. While this new approach could be 
valid when all types of sparse models are applied, in this paper we will 
focus on exploration methods like PCA applied to large datasets of 
hyperspectral images. 

Hyperspectral imaging (HSI) [23] is a powerful non-destructive 
technique able to merge spectroscopic and imaging technologies in 
order to obtain both spatial and spectral information from a sample. 
Spectral information allows retrieving the chemical composition of the 
investigated sample while spatial information allows evaluating the 
variation of the chemical composition within the sample surface, 
obtaining the so-called chemical maps [24]. Thanks to these advantages, 
HSI has found a wide application in different fields, including remote 
sensing [25,26], food science [27,28], pharmaceutical and medical an
alyses [29,30], and forensic science [31,32] among others. 

Each pixel of a hyperspectral image contains a full spectrum acquired 
in a defined wavelength range of the electromagnetic spectrum based on 
the acquisition device. Therefore, hyperspectral images are three- 
dimensional data arrays with two spatial dimensions, related to pixel 
rows and columns, and one spectral dimension. As an example, an HSI 
system with a spatial resolution of 250 × 250 pixels will provide 
hyperspectral images with 62 500 pixel spectra, and each spectrum can 
contain more than 100 spectral points; consequently, a single image can 
be composed by more than 6.25 × 106 data points. This toy example 
makes evident that hyperspectral images are high dimensional data ar
rays, and their analysis involves issues related to data handling and 
storage [33]. These problems become even more relevant considering 
that for practical applications it is necessary to acquire a large number of 
images and analyse them altogether to compare samples in different 
images or to evaluate changes over time of sample composition [34,35]. 

Sparse methods, and in particular sparse PCA in an exploratory 
framework, have been successfully used for the analysis of hyperspectral 
images in order to increase model interpretability by selecting only the 
relevant spectral features for the problem at hand [17,36–38]. However, 
when dealing with the analysis of a large number of images altogether 
sparse methods require high computational times for model calculation, 
which limits their possible application. 

Common approaches to perform data dimensionality reduction of 
hyperspectral images to speed up the computation time are generally 
based on reducing the spatial dimension by means of binning or 
computation of the average spectrum of each image. The main limitation 
of these methods is the loss of relevant information when spatial reso
lution is important. Conversely, the proposed approach allows to pre
serve both spatial and spectral information since the original high 
dimensional data matrix is converted into a low-rank approximation 
that maintain the relevant sources of data variance. 

This manuscript will apply randomisation as a preliminary step of 
applying sparse PCA (generating a methodology called randomised 
sparse PCA – rsPCA) to demonstrate that sparse models can be per
formed, first on a reduced, well selected, subspace of the spectral matrix 
and then project the rest of the matrix into the sparse solution with 
accuracy, reducing the time of analysis drastically. For this purpose, two 
well-known hyperspectral datasets will be used. Benefits, drawbacks and 
future possibilities will be discussed. 

2. Theory 

2.1. Sparse Principal Component Analysis 

Sparse PCA (sPCA) calculates a PCA model inducing sparsity on the 
model parameters: scores, loadings, or both. Focusing our interest on the 
sparsity induced on the loading vectors, this induction means converting 
a certain number of loading points to zero to eliminate all loading points 
that are not giving essential information. Therefore, variables that are 
not important are set to zero, increasing the explainability and inter
pretability of the model. 

Sparsity is achieved by adding a penalty term to the objective 
function of the PCA model [4]. Different penalisation methods are 
proposed in the literature [39,40], being the Least Absolute Shrinkage 
and Selection Operator (LASSO) one of the most helpful in spectroscopy 
[41,42]. LASSO applies a constraint to the sum of absolute values of a 
vector (or L1 norm), forcing several coefficients of the vector to be equal 
to zero [43] and, therefore, keeping the natural behaviour of the spectra 
composed of peaks and bands. 

Let X be the unfolded hyperspectral image data matrix with size {r ×
c, s}, where r and c correspond to the number of row and column pixels 
of the original hyperspectral image, respectively, and s corresponds to 
the number of spectral channels. The calculation of the sPCA model with 
A PCs and sparsity induced on the loadings can be formulated as: 

min
(⃒
⃒X − TPT

⃒
⃒2

F

)
(1) 

subject to: 

|pi|1 ≤ c, for i= 1, ...,A (2)  

where T is the scores matrix with size {r × c, A}, P is the loadings matrix 
with size {s, A}, | • |2F is the sum of squared elements (Frobenius norm), 
while c is a scalar corresponding to the L1 norm constraint applied to 
each column of matrix P (pi) and from here onwards it will be referred to 
as sparsity constraint. The sparsity constraint is a positive tuning 
parameter that controls the sparsity level of the model, i.e., the number 
of variables forced to be equal to zero. In particular, the value of c may 
range between 1 and the square root of the number of variables. When c 
is equal to 1, the sPCA model has a high sparsity level with only one 
variable selected for each PC. In contrast, a value of c equal to the square 
root of the number of variables gives the same loadings as those obtained 
with standard PCA. Therefore, the lower the value of the sparsity 
constraint, the higher the sparsity induced on the loadings [17]. 

To calculate sPCA models, two different algorithms are normally 
used. The first algorithm is based on an iterative alternating procedure 
similar to Nonlinear Iterative Partial Least Squares (NIPALS) in which a 
soft thresholding is applied on the loadings according to the sparsity 
constraint. This algorithm initially finds the solution for the first sparse 
PC, and then the subsequent PCs are calculated after a deflation step 
[44]. The second algorithm, named Alternating Shrunken Least Squares 
(ASLS), calculates all the PCs simultaneously by iterating between scores 
and loadings until convergence. Sparsity is applied PC-wise on the 
loadings during the iterations [45]. Since the PCs in sPCA are not 
orthogonal, calculating the PCs based on current residuals using defla
tion does not aim at solving Eq. (1) and Eq. (2) directly [46]. Therefore, 
ASLS represents a more direct approach to calculating sPCA models. For 
a more detailed description of the sPCA algorithms used in this study, 
the reader is referred to Refs. [44,45]. 

2.2. Randomised PCA 

sPCA can be directly applied to X. Nevertheless, when the dimen
sionality of X is very large, sPCA models tend to be computationally 
expensive and time-consuming. Therefore, we propose to couple sPCA 
with randomisation methods [47]. 
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The aim of randomisation is simple. Randomisation aims at obtain
ing a representative subset of X, namely XR, containing all the essential 
information of the original dataset, but with significantly smaller 
number of rows compared to X. Then, PCA is applied to this subset. 

XR =TRPT
R + ER (3) 

If the first assumption is fulfilled, then it is easy to assume that the 
loadings of the reduced model will be similar (or even the same) to those 
obtained with the full model (PT

R = PT). Therefore, the calculation of the 
scores of the full matrix is straightforward: 

T̂ =XPR (4) 

The main issue of randomisation methods is to achieve a subset of the 
full data that is representative enough to have the warranty that all the 
essential information of the full data is contained in the subset sample. 
Therefore, performing a pure randomisation step (e.g. random selection 
of a small subset of samples) might produce under-fitted models or 
models that only represent some of the variance in the full data. One 
possibility that has been demonstrated to be very optimal is what is 
called randomised PCA (rPCA) [18,47]. This approach does not calcu
late a subset of X but a low-rank alternative matrix called B, which is a 
good approximation of X but containing much fewer rows. 

B is found by projecting X onto its orthonormal basis Q (X = QQTX). 
Ideally, the number of columns in Q should correspond to the number of 
PCs (A) on X. Nevertheless, since the exact number of PCs is unknown, 
the number of columns calculated in Q is slightly larger (A + p), where p 
is an oversampling parameter. Following an iterative procedure based 
on q iterations (further details in the supplied references), B can then be 
calculated and, therefore, a set of scores and loadings can be calculated 
as follows: 

B=TRPT
R + E (5) 

Once this B is calculated, the new scores can be easily predicted 
following eq. (4). 

2.3. Randomised sparse PCA (rsPCA) 

Following this idea, rPCA can be easily merged to sparse models by, 
first, calculating B and then applying sparsity to B instead of X.  

1) Calculate B on X. For this, the oversampling parameter (p) and the 
number of iterations (q) must be optimised. This might look 
cumbersome. Nevertheless, as demonstrated in the supplied refer
ences [18,22] and in further sections of this manuscript, this opti
misation is only somewhat critical.  

2) Apply sPCA on B.  
3) Calculate the new set of scores using the original full matrix X and 

the loadings from the previous step. 

3. Materials and methods 

Two well-known datasets have been evaluated: a benchmark dataset 
of a Raman hyperspectral image of an oil-in-water emulsion and a large 
time-series dataset of NIR hyperspectral images of bread samples. 

3.1. Oil-in-water emulsion Raman hyperspectral image 

The first dataset (emulsion dataset) was used for an initial compar
ison between sPCA and rsPCA models to evaluate the effect of sparsity 
level, sparse PCA algorithm, number of iterations, and the oversampling 
value in the randomisation step. The model consistency between sPCA 
and rsPCA was evaluated component-wise considering the correlation 
coefficients between the loading vectors and the percentage of mean 
squared difference between the score vectors (scores MSD%) of the two 
models (i.e., full model and reduced model) with respect to the variance 

of the corresponding score vectors of the full model: 

scores MSD%=
SSQD

SSQT
× 100 (6)  

where SSQD is sum of squares of the differences between the score 
vectors of a considered component for sPCA and rsPCA while SSQT is the 
sum of squares of the corresponding score vector of full sPCA model. 

This dataset consists of a Raman hyperspectral image of an oil-in- 
water emulsion sample. The hyperspectral image is composed of 60 ×
60 pixels and 253 spectral variables from 950 cm− 1 to 1800 cm− 1. De
tails about the experimental setup are described in Andrew et al., 1998 
[48]. This dataset is rather small (4 MB). Nevertheless, it is an excellent 
choice because it has been extensively analysed, and based on previous 
studies, the sampled area has four main components: a structural phase, 
two droplet phases and an aqueous phase [49–51]. Before calculating 
sPCA and rsPCA models, the hyperspectral image was unfolded into a 
3600 × 253 data matrix and mean centring was applied. 

Different sPCA models were calculated considering 6 sPCs, ASLS and 
deflation-based algorithms were applied to imply sparsity in the load
ings direction, testing 4 sparsity levels corresponding to the following 
values of the sparsity constraint (c): 3.18, 6.36, 9.54 and 12.72, corre
sponding to high, medium-high, medium-low and low sparsity level, 
respectively. For this dataset, the maximum value allowed for the 
sparsity constraint is equal to 15.90, which corresponds to the squared 
root of the number of variables. In this latter case (c = 15.90) no sparsity 
is induced on the model, and the results are the same as PCA (see Section 
2.1). 

Considering the rsPCA models, the following parameters were tested: 
number of iterations (q) equal to 0 or 1 and oversample value (p) equal 
to 5 and 100. A detailed description of the model parameters tested for 
this dataset is reported in the second column of Table 1. 

3.2. Bread dataset of NIR hyperspectral images 

The second dataset is a large dataset of time series NIR hyperspectral 
images to assess, in this scenario, the effect of the different model pa
rameters on the consistency of the results obtained with rsPCA 
compared to a sPCA model. In this case, we considered the correlation 
coefficient between the loadings and the scores MSD% to check the 
consistency between rsPCA models and the corresponding sPCA model. 
In addition, given the nature of the dataset, we also compared the 
computation time. 

The bread dataset consists of 108 NIR-HSI images (938–1630 nm) of 
white bread slices of three different types measured in six subsequent 
times (1, 4, 7, 10, 14 and 21 days). The three bread types were prepared 
with different doughs: one was made following a standard recipe 

Table 1 
Summary information about the considered datasets and the model parameters 
used to calculate the sPCA and rsPCA models.   

Emulsion image Bread staling dataset 

Image size 60 × 60 2592 × 636 
# pixels 3600 1 063 583 after background 

removal 
# spectral 

variables 
253 142 

Preprocessing Mean center 2nd derivative +mean center 
# sPCs 6 From 1 to 6 
sPCA algorithms ASLS and deflation ASLS and deflation 
Sparsity levels High sparsity (3.18) 

Mid-High sparsity 
(6.36) 
Mid-Low sparsity 
(9.54) 
Low sparsity (12.72) 

High sparsity (2.30) 
Mid-High sparsity (4.60) 
Mid-Low sparsity (6.90) 
Low sparsity (9.19) 

# iterations 0 and 1 0, 1 and 2 
oversample 5 and 100 5, 10, 20, 50 and 100  
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without any modifications and used as control bread (CR). In contrast, 
the other two doughs were added with different maltogenic α-amylases 
enzymes (EZ1 and EZ2). This dataset was designed to study how bread 
staling affects the behaviour of the whole crumb surface and how these 
phenomena are modified by adding maltogenic α-amylases in the dough. 
A detailed description of this dataset, including sample preparation and 
image acquisition setup, is reported in Ref. [52]. 

Each hyperspectral image had dimensions of 144 row pixels × 106 
column pixels × 142 spectral channels. All 108 images were merged into 
a single augmented image with dimensions of 2592 × 636 × 142, cor
responding to 234 088 704 data points, as shown in Fig. 2 of reference 
[52]. The background was removed from the augmented image using a 
thresholding procedure at 1400 nm, resulting in 1 063 583 pixels kept 
after background masking. The size of this array is, approximately, 5 GB. 

Fig. 1. Heat map of the correlation coefficients of the loadings obtained with the sPCA models and those obtained with the corresponding reduced models calculated 
with different iterations (q) and oversample values (p). 

Fig. 2. sPCA and rsPCA loading vectors of the models calculated with ASLS algorithm considering a mid-high sparsity level. Solid red lines correspond to the loadings 
of the full sPCA model, blue lines correspond to the loadings of rsPCA models calculated with p = 5, green lines correspond to the loadings of rsPCA models calculated 
with p = 100, dotted lines correspond to the loadings of rsPCA models calculated with q = 0 and dashed lines correspond to the loadings of rsPCA models calculated 
with q = 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Before calculating the sPCA and rsPCA models, the spectra were pre
processed with Savitzky-Golay second derivative (window size of 11 
points and second polynomial degree) and mean center. 

Different sPCA models were calculated considering a varying num
ber of sPCs from 1 to 6. ASLS and deflation-based algorithms were used 
to induce sparsity. Four sparsity levels corresponding to a sparsity 
constraint equal to 2.30 (high sparsity), 4.60 (mid-high sparsity), 6.90 
(mid-low sparsity) and 9.19 (low sparsity) were used. 

Each sPCA model was compared with the corresponding rsPCA 
models calculated considering a number of iterations equal to 0, 1 and 2 
and oversampling values equal to 5, 10, 20, 50 and 100. A detailed 
description of the model parameters tested for this dataset is reported in 
the last column of Table 1. 

For both emulsion and bread datasets, the selection of q and p values 
to be tested were based on previous studies where the randomisation 
algorithm was evaluated in the frame of PCA-based data exploration 
[18,22,47]. 

3.3. Software 

In this study, sPCA was performed using the MATLAB (The Math
Works) function freely downloadable from https://ucphchemometrics. 
com/186-2/algorithms/[45]. 

The rsPCA was implemented following the nomenclature in Cruz- 
Tirado et al. [47]. Moreover, it has been implemented in the newest 
version of HYPER-Tools [53] (freely available at https://www.hypert 
ools.org/). 

All the calculations were carried out in MATLAB 2020a (Mathworks, 
Natick, USA) environment on an HP EliteBook laptop, core i7 CPU 2 
GHz, 16 GB RAM and 1 TB storage. Both datasets used in this study are 
available at https://www.hypertools.org/. 

4. Results 

4.1. Emulsion dataset 

The correlation coefficients between the loadings obtained with the 
sPCA model and the ones obtained with rsPCA are reported in Fig. 1. The 

first observation that must be made is the extraordinary similarity ob
tained in all the cases studied. 

For the models with high sparsity, it is possible to observe that rsPCA 
performs with an outstanding similarity to the corresponding sPCA 
model for both sparse algorithms and a correlation coefficient between 
the loading vectors equal to one is obtained considering either 0 or 1 
iterations and an oversample value (p) equal to 5 or 100. Interestingly, 
there is a lower consistency between rsPCA and sPCA when rsPCA is 
calculated with 0 iterations and a low oversample value (p = 5) at lower 
sparsity levels. The decrease in the correlation coefficient between the 
loading vectors does not affect the first three sPCs. This decrease, 
though, mainly involves the PCs from PC4 onwards. This effect is 
particularly evident considering the mid-high sparsity level, while it can 
be considered negligible with the low sparsity level. 

Obviously, the correlation between the loadings is reflected in the 
projected scores of the models, affecting the consistency between the 
scores of rsPCA and sPCA. Supplementary Table S1 reports the scores 
MSD% to compare the scores of each tested rsPCA model and the cor
responding sPCA model. The main discrepancies between rsPCA and 
sPCA were found for the models calculated considering mid-high spar
sity. Fig. 2 reports the loading vectors of the rsPCA models calculated 
with ASLS algorithm, mid-high sparsity and the different model pa
rameters (i.e., number of iterations and oversampling value) together 
with the loading vectors of the corresponding sPCA model. 

As already observed, for the first 3 sPCs, the loading vectors obtained 
with rsPCA models are essentially the same as those obtained with sPCA. 
The main differences are evident for sPC4, sPC5 and sPC6 when the 
rsPCA model is calculated with no iterations (q = 0) and oversample 
equal to 5 (p = 5). Also, considering the deflation-based algorithm to 
calculate the PCA model, the main differences between sPCA and rsPCA 
loading vectors are found in sPC4, sPC5 and sPC6 with the rsPCA model 
calculated considering q = 0 and p = 5 (Supplementary Fig. S1). It must 
be highlighted that when the loading vectors do not match exactly, the 
spectral regions selected by the sparse algorithms generally correspond 
in the major peaks, being the differences allocated in very small, even 
noisy, spectral regions. 

Fig. 3 shows the normalised score images of the sPCA model calcu
lated with mid-high sparsity and ASLS algorithm together with the 

Fig. 3. Normalised score images obtained from the sPCA model calculated considering a mid-high sparsity level and ASLS algorithm, and difference images between 
the normalised sPCA scores (mid-high sparsity and ASLS) and the corresponding normalised scores of the rsPCA models calculated with different iterations (q = 0 and 
q = 1) and different oversampling values (p = 5 and p = 100). 
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images of the difference between the sPCA scores and the rsPCA scores 
calculated with a varying number of iterations (q) and oversample 
values (p). Each sPCA score image was normalised between − 1 and +1 
for a more direct comparison. The same normalisation was also applied 
to the calculated score images of the different rsPCA models. 

Except for the rsPCA model calculated with q = 0 and p = 5, in the 
other rsPCA models, the score images for all 6 sPCs correspond to those 
obtained with the sPCA model. Similar results were also observed 
considering the deflation-based algorithm to achieve sparsity (Supple
mentary Fig. S2). 

For both ASLS and deflation-based models, the main differences 
between sPCA and rsPCA models are particularly evident from sPC4 to 
the subsequent sPCs. However, observing the corresponding score im
ages, it is possible to highlight that these sPCs do not fully retain the 
structural information of the image. Instead, they retain spurious effects 
promoted by the noisy background of the sample. Therefore, when 
retaining relevant information in the sPCs, rsPCA and sPCA are more 
likely to provide consistent results even if considering a low number of 
iterations and oversampling values in rsPCA. When more sPCs have to be 
retained in the model, e.g., for an initial exploratory evaluation of the 
image dataset, it is necessary to increase either the number of iterations 
or the oversampling value to expect that rsPCA provides the same results 
as the corresponding sPCA model. 

4.2. Bread dataset 

The correlation coefficients between the loading vectors of the sPCA 
models and the corresponding rsPCA models are displayed in Fig. 4. As 
for the emulsion dataset, we evaluated the effect of considering different 
sparsity levels to achieve sparsity and the two algorithmic approaches to 
calculate sPCA. In addition, we also evaluated the effect of calculating 
the models considering a different number of sPCs since, in sPCA, the 
components are not orthogonal. Therefore, the number of sPCs may also 

influence the model consistency between sPCA and rsPCA. For ease of 
visualisation, Fig. 4 reports the correlation coefficients between sPCA 
and rsPCA loading vectors of the models calculated considering 6 sPCs, 
while the complete results are reported in Supplementary Figs. S3–S8. 

Generally, more consistent results are obtained between rsPCA and 
sPCA when using the deflation-based algorithm, also considering low 
iterations and oversampling values. However, retaining fewer sPCs in 
model computation also allows consistent results with the ASLS algo
rithm (see Figs. S3–S5 of the Supplementary Material). This fact can be 
explained considering that the ASLS algorithm computes all the sPCs 
altogether, and thus retaining in the model an excessive number of sPCs 
determines that not only the useful information is considered but also 
the noise is modelled if the number of sPCs is elevated. Therefore, all 
sPCs are influenced by the presence of noise, and this, in turn, affects the 
consistency between the results obtained with sPCA and rsPCA. 
Conversely, when using the deflation-based algorithm, the main differ
ences between sPCA and rsPCA are found in the last sPCs since the 
successive calculation of the sPCs using deflation determines that the 
first sPCs are less influenced by non-relevant information. 

Differently from the emulsion dataset, the higher the sparsity of the 
model is, the less consistent the results between sPCA and rsPCA are, 
particularly for the ASLS algorithm. This fact can be explained by 
considering the different nature of Raman and NIR spectra. Raman 
spectra are composed of sharper and well-defined peaks. Therefore, 
considering higher sparsity levels, the model tends to select only the 
relevant peaks, while moving to lower sparsity levels implies the 
explanation of baseline shifts or smaller peaks with an increase in noise. 
Conversely, NIR spectra are composed of wider and broader bands. 
Therefore, sparse models with too high sparsity levels may need to 
include more information about the investigated dataset. 

However, similarly to what is observed for the emulsion dataset, to 
have consistent results between sPCA and rsPCA, it is possible to in
crease the number of iterations or the oversampling value. Fig. 5 shows 

Fig. 4. Heatmaps of the correlation coefficients between the loading vectors of rsPCA and sPCA models; the models were calculated considering 6 PCs, different 
sparsity levels, ASLS and deflation-based algorithms and, for rsPCA, varying iterations (q) and oversampling values. 
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Fig. 5. Loading vectors of the sPCA and rsPCA models calculated considering 6 sPCs, ASLS algorithm, high and mid-high sparsity levels, and for rsPCA different 
combinations of a number of iterations (q = 0, q = 1 and q = 2) and oversampling values (p = 5 and p = 100). Solid red lines correspond to the loadings of the full 
sPCA models, blue lines correspond to the loadings of rsPCA models calculated with q = 0, green lines correspond to the loadings of rsPCA models calculated with q 
= 1, magenta lines correspond to the loadings of rsPCA models calculated with q = 2, dotted lines correspond to the loadings of rsPCA models calculated with p = 5 
and dashed lines correspond to the loadings of rsPCA models calculated with p = 100. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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the loading vectors for the sPCA and rsPCA models calculated with 6 
sPCs, ASLS algorithm, high and mid-high sparsity levels, a number of 
iterations from 0 to 2, and oversampling values equal to 5 or 100. The 
same comparison between the loading vectors of sPCA and rsPCA 
models calculated considering the deflation-based algorithm to achieve 
sparsity is reported in Fig. S9 of Supplementary Material. 

Fig. 5 clearly shows that the differences in the loading vectors are 
mainly present when the oversampling value (p) is equal to 5, and q is 
equal to 0 or 1 (blue and green dotted lines in Fig. 5). Using the 
deflation-based algorithm, the loading vectors obtained with sPCA and 
rsPCA are essentially the same for the first 4 sPCs (Fig. S9). Conversely, 
for the ASLS algorithm, if p and q values are not correctly set, the dif
ferences between sPCA and rsPCA models are evident also in the first 
sPCs in particular for high sparsity, while for mid-high sparsity even if 
the loading vectors do not exactly match there is convergence on the 
selected spectral regions. 

One of the most important reasons for using randomisation in the 
calculation of sparse models is the drastic decrease in the computation 
time. This is especially relevant in very large datasets like this one. 
Figs. 6 and 7 report the computation time for the sPCA and rsPCA 
models calculated considering ASLS and deflation-based algorithms. In 
both figures, the computation time is expressed in seconds and reported 
using a logarithmic scale. 

The first observation is that the ASLS algorithm is generally faster 
than the deflation-based algorithm. Indeed, when the sPCA model is 
calculated using ASLS, the computation time is between about 50 and 

150 s (red dashed line in Fig. 6), and the number of sPCs does not in
fluence it since this algorithm computes all the sPCs simultaneously. 
Conversely, for deflation-based algorithm, the computation time of 
sPCA models strongly depends on the number of sPCs and the sparsity 
level. In particular, when more than 3 or 4 sPCs are considered in the 
model, the computation time may reach 3000 s with high and mid-high 
sparsity. 

The most important observation is that the rsPCA models drastically 
reduced the computation time while keeping the same results as in sPCA. 
As discussed before, rsPCA requires defining the number of iterations 
and the oversampling value for model computation. Considering the 
effect of these parameters on computation time, it is possible to observe 
that setting higher oversample values determines a stronger increase in 
the computation time compared to performing more iterations. There
fore, to gain an advantage from randomness and maintain consistency 
with sPCA results, it is advisable to increase the number of iterations 
rather than the oversample value. 

Given these considerations, for the bread dataset, it is possible to 
identify the best compromise between lower computation time and 
higher consistency between sPCA and rsPCA outcomes. Since when 
applying sPCA, it is interesting to gain a better interpretability of the 
dataset selecting only relevant variables, from now on, we will focus on 
the models calculated considering high sparsity. 

In this situation, for the ASLS algorithm considering the models 
calculated with 6 sPCs, the optimal situation, i.e., the best compromise 
between computation time and consistency between sPCA and rsPCA 

Fig. 6. Computation time (seconds, expressed in logarithmic scale) for the sPCA and rsPCA models calculated considering the ASLS algorithm. Red colour refers to 
the full sPCA models while the other colours refer to the rsPCA models calculated with varying values of p: blue colour for p = 5, cyan colour for p = 10, green colour 
for p = 20, orange colour for p = 50 and brown colour for p = 100. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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results, corresponds to the rsPCA model calculated with q = 2 and p =
10. The computation time of this model is equal to 2.85 s, while the 
computation time of the corresponding sPCA model is 43.72 s (Table 2). 
Even if the computation time of the sPCA model is not excessively high, 
it has to be considered that rsPCA allowed to gain the same results with a 
computation time reduction of about 93.5%. This suggests that it could 
be possible to simultaneously analyse a higher hyperspectral image 
dataset than the one considered at this time and obtain the results much 
faster using the randomisation method. 

Moving to the deflation-based algorithm, the benefits of rsPCA on 

computation time are even more evident. In this case, the optimal rsPCA 
model was calculated with q = 2 and p = 5, corresponding to a 
computation time of 2.00 s. The corresponding sPCA model has a 
computation time of 1955.37 s (≈32 h), as shown in Table 2. In this case, 
randomisation reduces the computation time by about 99.9%. 

For both ASLS and deflation-based algorithms, Table 3 reports the 
percentage of explained variance for each component, the correlation 
coefficients between the loading vectors of sPCA and the selected rsPCA 
model as well as the scores MSD% values to also compare the scores of 
the two models. It is possible to observe that the correlation coefficients 
between the loading vectors are always equal to 1.000 except for sPC3 
and sPC4 for ASLS and deflation-based algorithms, respectively, where 
this value is equal to 0.999. 

Furthermore, the scores MSD% values reported in Table 3 suggest 
that the differences in the score values between sPCA and rsPCA can be 
considered negligible for both algorithms to achieve sparsity, further 
highlighting the benefits of the randomised approach for data reduction. 

In addition, it is possible to observe that considering both ASLS and 
deflation-based algorithms the percentage of explained variance of each 
sPC is comparable between sPCA and rsPCA. As previously highlighted, 
ASLS algorithm computes all the components simultaneously and the 
sPCS are not orthogonal, and this is also reflected in the explained 
variance. 

The normalised score images of the sPCA model calculated with high 
sparsity, 6 sPCs and ASLS algorithm are reported in Fig. S10 of Sup
plementary Material, together with the difference images between the 

Fig. 7. Computation time (expressed in logarithmic scale) for the sPCA and rsPCA models calculated considering the deflation-based algorithm. Red colour refers to 
the full sPCA models while the other colours refer to the rsPCA models calculated with varying values of p: blue colour for p = 5, cyan colour for p = 10, green colour 
for p = 20, orange colour for p = 50 and brown colour for p = 100. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 

Table 2 
Summary information about sPCA and the selected rsPCA models considering 
both ASLS and deflation based algorithms to achieve sparsity.    

ASLS Deflation 

sPCA # PCs 6 6 
Sparsity level High sparsity (c =

2.30) 
High sparsity (c =
2.30) 

Computation time 
(s) 

43.72 1955.37 

rsPCA # PCs 6 6 
Sparsity level High sparsity (2.30) High sparsity (2.30) 
# iterations (q) 2 2 
Oversample (p) 10 5 
Computation time 
(s) 

2.85 2.00  
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normalised sPCA scores and the corresponding normalised scores of the 
selected reduced model calculated with q = 2 and p = 10. Considering 
the difference images, it is possible to observe that there are not 
appreciable variations between the score images of the two models and 
only sPC3 shows some minor differences that are mainly due to the noise 
caused by the irregular surface of the bread slices (Fig. 8A). 

Similar results can be retrieved considering the comparison between 
sPCA and rsPCA (q = 2, p = 5) score images obtained using deflation- 
based algorithm (Fig. S11 of Supplementary Material). Also in this 
case, the reduced model provides essentially the same results as the 
corresponding full model and, interestingly, the little variations due to 
the irregular surface of the samples are not clearly visible (Fig. 8B). 

5. Conclusions 

This manuscript opens up the possibility of using randomisation 
methods as a previous step in sparse-based modelling for reducing 
drastically the computational time while keeping the stability of the 
sparse models. In particular, the benefits of coupling randomisation and 
sparse methods were evaluated in the context of unsupervised data 
analysis with sPCA of hyperspectral images of different nature and 
complexity. 

One of the most important achievements obtained with rsPCA is the 
drastic reduction in computation time during sparse modelling. Indeed, 
rsPCA allowed obtaining results comparable to sPCA in few seconds of 
computation time, where the corresponding full sPCA models may take 
up to tens of hours to get to the final outcomes. 

Nevertheless, since the randomisation step might compromise the 
variance on the full dataset, the consistency between rsPCA and the 
original sPCA models must be evaluated regarding the similarity of the 
loadings obtained with both methods. 

In this paper we extensively assessed the effect of different model 
parameters in the consistency of the results between sPCA and rsPCA 
models. Indeed, when using sPCA it is necessary to define the algorithm 

type (e.g., ASLS or deflation-based), the number of sPCs and the sparsity 
level, while the randomisation method used in this study requires to 
tune the number of iterations and the oversampling value. 

The effect of the sparsity level depends on the nature of the dataset 
and on the spectral information associated with the hyperspectral im
ages, while, considering the algorithm used to achieve sparsity, ASLS 
resulted to be less stable than deflation when coupled with the ran
domisation step. Moving to the parameters specific of the randomisation 
method, increasing both the number of iterations and the oversampling 
value allows to obtain essentially the same results as sPCA from rsPCA. 
However, a higher oversampling value has a much stronger impact on 
the computation time than performing more iterations. Therefore, to 
ensure consistent results from rsPCA with the corresponding full model, 
it is advisable to increase the number of iterations. Based on the out
comes of this study, it is generally advisable to use at least one iteration, 
but moving to two iterations allowed to keep oversample values 
extremely low (i.e., 5 or 10). These findings confirm the results of pre
vious studies where randomisation was used in the context of PCA data 
exploration [18,22,47]. 

In this paper, we have assessed the effects of coupling randomisation 
and sparse modelling in a limited scenario of unsupervised exploration 
of large hyperspectral datasets. However, the outcomes obtained in this 
study pave the way to the combined use of randomisation and sparse 
modelling in other scenarios.  

- Inducing sparsity in the spatial dimension of hyperspectral images 
with fast computation times. 

- Using the same approach also for different unsupervised and super
vised models.  

- Using datasets of different nature (e.g. with mass spectrometry 
imaging). 

All these aspects have to be taken into account in further studies in 
order to gain a comprehensive understanding of the benefits and 

Table 3 
Comparison between sPCA and the selected rsPCA models considering both ASLS and deflation-based algorithms to achieve sparsity. *% E.V. is the percentage of 
explained variance; **Loadings CC is the correlation coefficient between sPCA and rsPCA loading vectors.   

ASLS Deflation  

sPCA rsPCA sPCA rsPCA  

% E.V.* % E. V.* Loadings CC** Scores MSD% % E.V.* % E. V.* Loadings CC** Scores MSD% 

sPC1 22.37 23.24 1.000 2.22E-03 28.73 28.39 1.000 7.18E-06 
sPC2 0.64 0.64 1.000 6.67E-03 15.54 15.40 1.000 1.16E-04 
sPC3 0.21 0.19 0.999 5.37E-02 12.90 12.71 1.000 1.30E-03 
sPC4 1.33 1.09 1.000 1.80E-03 8.58 8.71 0.999 5.27E-03 
sPC5 1.34 1.40 1.000 4.19E-02 6.11 6.17 1.000 7.11E-03 
sPC6 1.97 2.02 1.000 1.69E-02 5.48 5.41 1.000 7.17E-03  

Fig. 8. Magnification of the difference images between normalised score images of sPCA and rsPCA models calculated considering ASLS (A) and deflation based (B) 
algorithms to achieve sparsity, reported in Fig. S9 and Fig. S10 of Supplementary Material, respectively. The magnification reports the bread slices placed in the top 
left corner of the original hyperspectral image. 
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possible limitations of the approach presented in this paper. 
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[6] H. Chun, S. Keleş, Sparse partial least squares regression for simultaneous 
dimension reduction and variable selection, J. R Stat. Soc. Series B Stat. Methodol. 
72 (2010) 3–25, https://doi.org/10.1111/j.1467-9868.2009.00723.x. 
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