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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Untargeted HRMS-based cannabinomics 
of 84 samples of industrial hemp. 

• Seven cultivars of industrial hemp from 
four experimental fields were analyzed. 

• 54 phytocannabinoids, 134 flavonoids, 
and 77 phenolic compounds were 
annotated. 

• ASCA models for the individual com
pound classes as well as a low-level fusel 
model. 

• Phenolic compounds play a decisive role 
in discriminating industrial hemp 
samples.  
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A B S T R A C T   

Cannabis sativa has long been harvested for industrial applications related to its fibers. Industrial hemp cultivars, 
a botanical class of Cannabis sativa with a low expression of intoxicating Δ9-tetrahydrocannabinol (Δ9-THC) have 
been selected for these purposes and scarcely investigated in terms of their content in bioactive compounds. 
Following the global relaxation in the market of industrial hemp-derived products, research in industrial hemp 
for pharmaceutical and nutraceutical purposes has surged. In this context, metabolomics-based approaches have 
proven to fulfill the aim of obtaining comprehensive information on the phytocompound profile of cannabis 
samples, going beyond the targeted evaluation of the major phytocannabinoids. In the present paper, an HRMS- 
based metabolomics study was addressed to seven distinct industrial hemp cultivars grown in four experimental 
fields in Northern, Southern, and Insular Italy. Since the role of minor phytocannabinoids as well as other 
phytocompounds was found to be critical in discriminating cannabis chemovars and in determining its biological 
activities, a comprehensive characterization of phytocannabinoids, flavonoids, and phenolic acids was carried 
out by LC-HRMS and a dedicated data processing workflow following the guidelines of the metabolomics Quality 
Assurance and Quality Control Consortium. A total of 54 phytocannabinoids, 134 flavonoids, and 77 phenolic 
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acids were annotated, and their role in distinguishing hemp samples based on the geographical field location and 
cultivar was evaluated by ANOVA-simultaneous component analysis. Finally, a low-level fused model demon
strated the key role of untargeted cannabinomics extended to lesser-studied phytocompound classes for the 
discrimination of hemp samples.   

1. Introduction 

Cannabis sativa L. is a multi-purpose crop that has found several 
applications, despite over a century of global prohibition, for its 
generally sustainable and low-input cultivation [1]. Other than being 
employed as a source of fiber, seeds, and oil, C. sativa has the peculiar 
ability to synthesize phytocannabinoids, terpenophenolic compounds 
that probably serve as a defense against predators [2]. Among these, the 
most notorious compound is Δ9-tetrahydrocannabinolic acid 
(Δ9-THCA), which has the capability, after decarboxylation, to bind 
cannabinoid receptors 1 and 2 (CB1 and CB2, respectively), causing the 
well-known intoxicating psychoactive effects but also several pharma
cological activities [3,4]. Among the major constituents of C. sativa, 
non-psychoactive cannabidiolic acid (CBDA) and cannabidiol (CBD) 
have also gained significant scientific interest for their 
anti-inflammatory, anti-epileptic, and pain-relief properties [5,6]. 
Δ9-THCA and CBDA are both enzymatically obtained from a common 
phytocannabinoid progenitor, the cannabigerolic acid (CBGA), that is 
produced by a type III polyketide synthase [7] (see Table 1). 

For its remarkably genetic plasticity, C. sativa has been bred all over 
the world to create new strains and varieties, e.g., genotypes enriched in 
a single phytocannabinoid or more resilient to specific climates [8]. 
Historically, C. sativa plants have been classified into three chemotypes 
(sometimes also referred to as chemovars) based on the relative amounts 
of Δ9-THC and CBD: chemotype I (Δ9-THC > CBD), chemotype II 
(Δ9-THC and CBD at similar concentrations, Δ9-THC >0.3%), also 
indicated with the vernacular name “drug-type”, and chemotype III 
(Δ9-THC < CBD, Δ9-THC <0.3%), also called “fiber-type” based on their 
main utilization [9]. Later, other chemotypes have been described, 
including a cannabigerol (CBG) predominant one (chemotype IV) [10] 
and chemotype V with no cannabinoids [11]. 

Despite most studies being still focused on the pharmacologically 
active Δ9-THC and CBD and a few other major cannabinoids, the liter
ature on C. sativa is rapidly expanding. In the last few years, in fact, 
research has enlarged its focus on minor phytocannabinoids [12,13] and 
other constituents, such as terpenes [14–16], phenolic compounds [14, 
17], and lipids [18,19]. As a result, the common approaches targeted to 
a few major compounds might not be sufficient for characterizing 
C. sativa varieties, especially for the evaluation of their medicinal 
properties [20]. In this context, metabolomics has represented a 
powerful approach to investigating cannabis constituents as a whole. In 
2020, Aliferis et al. introduced the term cannabinomics (cannabis 
metabolomics) for indicating the approaches that go beyond the analysis 
of the sole major constituents for cannabis research and development 
[21]. Hazekamp et al., in the early 2010s, pioneered the use of 
metabolomics-based workflows for discriminating cannabis cultivars 
and chemovars by focusing on both major and minor phytocannabinoids 

as well as terpenes by gas chromatography coupled to flame ionization 
detector (GC-FID) and mass spectrometry (GC-MS) [22–24]. Similarly, a 
GC-FID approach targeted to phytocannabinoids and terpenes was 
employed by Al Bakain et al. for discriminating the geographical field 
location of cannabis samples from 23 states of the United States [25]. 
Moreover, a recent paper by Fischedick described for the first time 
terpene chemotypes by monitoring the terpenoid content of 233 
drug-type cannabis samples by GC-FID and GC-MS [26]. 

Untargeted metabolomics approaches based on liquid chromatog
raphy coupled with high-resolution mass spectrometry (LC-HRMS), 
allowing the possibility of identifying numerous as well as unknown 
compounds, have become pivotal for deciphering the biological role of 
plant metabolites [27]. Vásquez-Ocmín et al. compared targeted and 
untargeted LC-HRMS cannabinomics approaches in discriminating 
cannabis chemovars I-III, highlighting the role of minor constituents 
[28], and, similarly, Monti et al. combined a targeted method for 15 
phytocannabinoids to an untargeted cannabinomics workflow for dis
tinguishing cannabis varieties [29]. A recent study by our research 
group employed untargeted LC-HRMS coupled with a suspect screening 
approach (named phytocannabinomics) for the annotation of 135 phy
tocannabinoid in 50 C. sativa accessions and the description of 
sub-chemotypes that were characterized by different amounts of minor 
phytocannabinoids [30]. 

At present, industrial hemp (chemotypes III and IV) has been scarcely 
investigated compared to drug-type cannabis, despite its significant 
content in bioactive compounds and nutraceuticals and the progressive 
relaxation of the prohibition laws worldwide [31]. In the present paper, 
an untargeted LC-HRMS cannabinomics workflow followed by suspect 
screening data processing was employed for assessing the role of phy
tocannabinoids and phenolic compounds in discriminating industrial 
hemp samples of different varieties and geographical field locations. 
ANOVA-simultaneous component analysis (ASCA) [32] was then 
applied to evaluate whether the field location and the cultivar had a 
significant effect on the composition of the different samples, and, 
eventually, which phytocompounds are responsible for the main 
differences. 

2. Experimental section 

2.1. Chemical and reagents 

Analytical grade ethanol 96% and LC-MS grade acetone, acetonitrile, 
water, formic acid, and acetic acid (AcOH) were purchased from VWR 
(Radnor, PA, USA). Δ9-Tetrahydrocannabivarin (Δ9-THCV), Δ9-THC, 
cannabidivarin (CBDV), CBD, CBG, cannabinol (CBN), cannabichro
mene (CBC), cannabigerolic acid (CBGA), Δ9-THCA, and CBDA were 
purchased from Sigma-Aldrich as Cerilliant certified analytical 

Table 1 
Description of the analyzed hemp varieties (denomination, flower type, time of flowering, and collection dates).  

Variety Flower type Time of flowering Collection date 

Rovigo (RO) Rutigliano (BA) Battipaglia (SA) Libertinia (CT) 

Carmagnola Dioecious Late 29–09 9–09 8/9-09 16–09 
CS Dioecious Late 29–09 8–09 8/9-09 14–09 
Fibranova Dioecious Late 29–09 15–09 8/9-09 14–09 
Fibrante Dioecious Late 29–09 16–09 8/9-09 14–09 
Eletta Campana Dioecious Late 29–09 24–08 8/9-09 16–09 
Carmaleonte Monoecious Medium 02–09 11–08 11–08 20–07 
Codimono Monoecious Medium 09–09 4–08 17–08 29–07  
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standards (Sigma-Aldrich, Milan, Italy). Phytocannabinoid stock solu
tions were prepared at 100 μg mL− 1 in H2O/MeOH 90:10 (v/v). A 
phytocannabinoid working mix solution was prepared at 10 μg mL− 1 in 
H2O/MeOH 90:10 (v/v), aliquoted, and stored at − 20 ◦C for further use. 

Apigenin, apigenin 7-O-glucoside, biochanin A, 3-caffeoylquinic 
acid, caffeic acid, diosmetin, epicatechin, eriodyctiol, ferulic acid, hes
peretin, kaempferol, luteolin, myricetin, naringenin, p-coumaric acid, 
procyanidin B1, procyanidin B2, rutin, quercetin, quercetin 3-O-gluco
side, and taxifolin analytical standards were purchased from Merck. 
Phenolic compounds stock solutions were prepared at 10 μg mL− 1 in 
H2O/MeOH 90:10 (v/v). A phenolic compound working mix solution 
was prepared at 0.5 μg mL− 1 in H2O/MeOH 90:10 (v/v), aliquoted, and 
stored at − 20 ◦C for further use. 

2.2. Plant material and experimental design 

Seven hemp Italian varieties, five dioecious (Carmagnola, CS, 
Fibranova, Fibrante Eletta Campana) and two monoecious (Carmaleonte 
and Codimono) were used, all registered in the Italian/EU register of 
plant varieties and characterized by a prevalence of CBDA (chemotype 
III) and a THCA level below 0.2%. The field experiments were carried 
out between spring and autumn 2021 in four farms belonging to the 
Council for Agricultural Research and Economics – Research Center for 
Cereal and Industrial Crops and Research Center Agriculture and Envi
ronment. One experimental farm was located in northern Italy (Rovigo, 

Lat 45◦ 04′45,4″ N; Long 11◦45′57,3″ E), two were located in southern 
Italy (Battipaglia, Salerno; Lat. 40◦34′56.604″N; Long. 14◦58′50.232″E; 
Rutigliano, Bari; Lat.40◦59′32.4″N; Long 17◦02′03.2″E), and one in 
insular Italy (Libertinia, Catania; Lat. 37◦32′25″N; Long. 14◦34′41″E) 
(Fig. 1). 

The experimental plot consisted of three replicated parcels of 20–25 
m2 each for every variety with a sowing density of 100 plants m2. Irri
gation was performed only if necessary, during the early vegetative 
stage, therefore depending on the different climatic conditions of each 
site, except for the Libertinia site where no additional water was sup
plied to the growing plants. Meteorological information (temperature 
and rainfall) was collected during the whole period of cultivation in the 
four sites (Table S1). Sowing dates differ from Libertinia (April 2nd) to 
the other sites (from April 26th in Rovigo to April 30th in Battipaglia and 
Rutigliano). Flower type, flowering time, and collection dates are re
ported in Table 1. 

Sample collection was done according to the procedure described in 
CE Regulation n.809/2014 as it is described hereafter. About 20–30 days 
from the full flowering, the main apical 30 cm female or monoecious 
inflorescence (comprising also floral bracts, leaves, stems, and seeds) 
was taken from at least 9 plants/repetition (n = 3) for each variety and 
dried at 30–35 ◦C, at dark. Dried inflorescences and floral bracts were 
separated manually from stems and seeds, and 20 g material was finally 
shredded with a 1 mm diameter sieve and kept in the dark and at a 
temperature lower than 20 ◦C before processing. 

Fig. 1. Location of the four experimental fields.  
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2.3. Sample preparation 

For the extraction of phytocannabinoids from hemp biomass sam
ples, the protocol form the German Pharmacopoeia was employed [33]. 
Extraction with 45 mL EtOH was carried out on 500 mg of finely 
grounded freeze-dried hemp biomass in three cycles and the combined 
extracts were brought to 50 mL final volume with fresh EtOH in a 
volumetric flask. The solution was filtered through a 0.45 μm regener
ated cellulose filter and a 100 μL aliquot was diluted with 900 μL of 
mobile phase (acetonitrile/H2O, 60:40, v/v, both with 0.1% formic 
acid). 

Phenolic compounds were extracted following the protocol of Pellati 
et al. [34] with some modifications. Briefly, 500 mg of each freeze-dried 
hemp sample was extracted with 10 mL acetone/H2O/acetic acid 
(70:29.5:0.5, v/v/v), sonicated for 15 min in an ice bath, and then 
centrifuged for 10 min at 2000×g. The supernatant was collected, and 
the procedure was repeated once. The supernatants were mixed and 
concentrated to 4.5 mL using a Speed-Vac SC 250 Express (Thermo 164 
Avant, Holbrook, NY, USA). Then, 500 μL of MeOH was added to the 
sample, and the final extract solution (H2O/MeOH, 90:10, v/v) was 
filtered through a 13-mm Acrodisc Syringe filter with a 0.2 μm GH 
Polypro membrane (Pall, Ann Arbor, MI, USA). Finally, the extract was 
aliquoted and stored at − 20 ◦C for further analysis. For both extractions, 
process blank samples were obtained following the described extraction 
procedures on a solvent sample. 

2.4. UHPLC-HRMS untargeted analysis 

Untargeted data acquisition was performed following the recom
mendations of the metabolomics Quality Assurance and Quality Control 
Consortium (mQACC) [35]. Intra-study quality control (QC) samples 
were obtained by pooling 20 μL of each of the 84 hemp extracts. Distinct 
pooled QC samples were prepared for phytocannabinoids and phenolic 
compounds. 

A Vanquish Core System equipped with a binary pump, a vacuum 
degasser, thermostated autosampler (4 ◦C), a column compartment 
(30 ◦C), and a diode array detector was interfaced to an Exploris 120 
Orbitrap mass analyzer (Thermo Fisher Scientific, Bremen, Germany) 
with a heated electrospray ionization (HESI) source for phytocannabi
noid analysis. The chromatographic parameters were adapted from a 
previously validated method with slight modifications [36,37]. The 
separation was achieved on a Poroshell 120 EC C18 column (100 × 3.0 
mm I.D., 2.7 μm particle size, Agilent Technologies, Santa Clara, USA) 
with a gradient elution of acetonitrile from 60% to 95% in 15 min and an 
isocratic step at 95% acetonitrile held for 3 min, then a washing step of 4 
min at 98% acetonitrile and a re-equilibration step at 60% acetonitrile 
for further 4 min. The flow rate was maintained at 0.5 mL min− 1 

throughout the entire run (26 min). The HESI parameters were set as 
follows: capillary temperature, 390 ◦C; vaporizer temperature, 150 ◦C; 
electrospray voltage, 3.8 kV; sheath gas, 70 arbitrary units; auxiliary 
gas, 5 arbitrary units; S lens RF level, 70. In full-scan mode the param
eters were set as follows: resolution, 60,000 FWHM (full width at half 
maximum) at m/z 200; scan range, m/z 50–750; maximum injection 
time, 54 ms; isolation window, m/z 0.7. In DDA mode the following 
parameters were employed: resolution, 15,000 FWHM; maximum in
jection time, 22 ms; isolation window, m/z 1.2; stepped NCE (normal
ized collision energy), 20-40-100 [36,37]. The injection volume was 5 
μL. The analyses were acquired with Xcalibur 3.0 (Thermo Fisher Sci
entific) and processed using TraceFinder 5.0 (Thermo Fisher Scientific). 

For phenolic compound analysis, a Vanquish binary pump H 
(Thermo Fisher Scientific, Bremen, Germany), equipped with an auto
sampler and controlled temperature column compartment, was used for 
chromatographic separation on a Kinetex XB C18 column (100 × 2.1 
mm, 2.6 μm particle size, Phenomenex, Torrance, USA). The mobile 
phases were H2O/HCOOH (99.9:0.1, v/v; phase A) and ACN/HCOOH 
(99.9:0.1, v/v; phase B) and were mixed with the following gradient: 

5–15% phase B in 10 min, 15–35% phase B in 15 min, 35–50% phase B 
in 5 min; at the end of the gradient, a washing step at 95% phase B for 5 
min and a re-equilibration step at 5% phase B were performed. The 
column was maintained at 40 ◦C with a constant flow of 600 μL min− 1. 
The chromatographic system was coupled to a hybrid quadrupole- 
Orbitrap mass spectrometer Q Exactive (Thermo Fisher Scientific) 
with a heated ESI source, operating in negative ion mode under the 
following conditions: the capillary temperature was set at 275 ◦C, spray 
voltage at 2500 V (− ), auxiliary gas heater temperature at 300 ◦C, 
sheath gas at 50 a.u. (arbitrary units), auxiliary gas at 15 a.u., sweep gas 
was 3 a.u., and S-Lens RF level was 50 (%). MS data were acquired in the 
range 150–1000 m/z with the following parameters: resolution (full 
width at half maximum, FWHM, at m/z 200) of 70,000, automatic gain 
control (AGC) target value was 200,000, the maximum ion injection 
time was 100 ms, and the isolation window width was 2 m/z. MS2 
fragmentation was performed was conducted in the Top 5 data- 
dependent acquisition (DDA) mode with a resolution (FWHM, at m/z 
200) of 35,000, with AGC target value at 100,000 and dynamic exclu
sion set to 3 s. Stepped collision energy (CE) fragmentation was achieved 
in the HCD cell at three-stepped 20-40-60 normalized collision energy 
(NCE). Raw MS/MS data files were acquired by Xcalibur software 
(version 3.1, Thermo Fisher Scientific). 

Raw MS/MS data files were acquired by Xcalibur software (version 
3.1, Thermo Fisher Scientific). 

Samples were injected in a randomized order and the chromato
graphic worklist is schematized in Supplementary Material Table S2. For 
system suitability testing, the column stability and performance were 
tested before and after each analytical section using solvent blank 
samples (H2O/MeOH, 90:10, v/v) and working mix standard solutions. 
System conditioning, consisting of ten consecutive pooled QCs sample 
injections, preceded the process blank sample injection for background 
subtraction, which allowed to discard of both the contaminants present 
in extraction solvents, mobile phases, and the HPLC-MS system and the 
compounds subjected to high carry-over effects (more than 10%), which 
may alter peak areas, possibly resulting in biased statistical analysis. 
After further system reconditioning with ten more QCs samples, ran
domized samples were run in groups of five, followed by a QC injection. 

2.5. Data preprocessing and compound identification 

The.raw data obtained by the analysis of samples, QCs, and the 
process blank were preprocessed using the software Compound 
Discoverer version 3.1 (Thermo Fisher Scientific). The phytocannabi
noid data were preprocessed using a modified version of a customized 
data processing workflow that was previously set up in a previous paper 
[13]. Similarly, the phenolic compound runs were preprocessed using a 
homemade workflow on Compound Discoverer [17]. However, two 
distinct preprocessing were set up for flavonoids and phenolic acids, 
resulting in three distinct data matrices obtained for the following 
chemometric analysis. Data preprocessing allowed feature alignment, 
background removal, adduct definition and grouping, molecular for
mula annotation, and QC-based normalization. 

Phytocompounds (phytocannabinoids, flavonoids, and phenolic 
acids) were identified using a suspect screening approach previously 
described that is based on the use of homemade databases and software- 
assisted spectral annotation [13,17]. Details on the data preprocessing 
on Compound Discoverer are reported in the Supplementary Material as 
well as the nomenclature of the identified phytocannabinoids that was 
given according to the literature. Data for the tentatively identified 
compounds are summarized in Tables S3–S5 with the related confidence 
level according to Schymanski et al. [38]. 

2.6. Chemometric strategies for data processing 

When multivariate data are acquired according to an underlying 
experimental design, the effect of the controlled factors and their 
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interaction can be evaluated by multivariate generalizations of the 
classical Analysis of Variance (ANOVA). In particular, when dealing 
with a high number of correlated variables, as in metabolomic studies, 
the most popular of such techniques is ANOVA-simultaneous component 
analysis (ASCA) [39]. ASCA works by decomposing the mean-centered 
data matrix Xc into the additive contributions of individual effect 
matrices accounting for each term of the experimental design, according 
to the ANOVA scheme. For instance, in the present study where the 
experimental design involves two factors, site, and variety, the ANOVA 
decomposition takes the following form: 

Xc =Xvar + Xsite + Xint + Xres  

where Xvar and Xsite are the matrices accounting for the effect of site and 
variety, respectively, Xint the effect matrix corresponding to their 
interaction, and Xres collects the residuals, i.e., the variability not 
explained by the additive ANOVA model. 

The entity of the effect of the individually designed terms, i.e., to 
what extent the experimental profiles are affected by the different levels 
of that particular factor, can be quantified by calculating the sum of 
squares of the corresponding effect matrix: 

Effj =
⃦
⃦Xj

⃦
⃦2 j={site, var, int}

where 
⃦
⃦Xj

⃦
⃦2 indicates the Frobenius’ norm of the corresponding matrix. 

The significance of the corresponding effect is evaluated by 
comparing the value of Effj to its null distribution which is non- 
parametrically estimated by permutation tests [40,41]. If a term is 
deemed to be statistically significant, the corresponding effect can be 
interpreted by calculating a PCA model of the corresponding effect 
matrix: 

Xj =TjPT
j  

where and are the scores and loading matrices calculated for the 
particular design term. Since effect matrices are made of mean experi
mental profiles corresponding to the different levels of the factor or 
interaction term, the scores plot will have as many points as the number 
of factor levels, so it will account for the between-level variation. 
Therefore, the significance of the difference among the levels of that 
factor or interaction can then be graphically appreciated by projecting 
the residual matrix onto the factor subspace, which will result in a new 
scores matrix T′

j, which will show as well the within-level variation [42]: 

T′
j =

(
Xj +Xres

)
Pj 

Bootstrapping [43,44] can instead be used to calculate the confi
dence intervals of the loadings to identify significantly contributing 
metabolites. 

3. Results and discussion 

3.1. Untargeted phytocompound identification 

In this work, eighty-four different cannabis samples (four experi
mental fields, seven different varieties, and three distinct samples per 
each field/variety combination) were analyzed by an untargeted 
metabolomics approach based on UHPLC-HRMS and suspect screening 
data analysis. For the two main classes of compounds (phytocannabi
noids and phenolic compounds), two distinct extraction procedures 
were employed. As such, a more selective extraction mixture for 
phenolic compounds, comprising 30% of water, allowed to minimize the 
co-extraction of phytocannabinoids, which would have likely resulted in 
separation and ion suppression issues. This analytical platform 
permitted the comprehensive characterization of compound classes of 
well-known structural complexity [17,45]. Phytocannabinoids, for 
instance, exist in several different structures, that arise from the ten 

main phytocannabinoid base structures in combination with numerous 
possible modifications on all three sections of a phytocannabinoid 
structure (i.e., the resorcinyl core, the terpenoid moiety, and the linear 
alkyl side chain) [12,13]. For both phytocannabinoids and phenolic 
compound data acquisition, negative ion mode (ESI(− )) was preferred 
to positive mode (ESI(+)), being the sole that permits the ionization of 
phenolic acids and the preferred method for untargeted phytocannabi
noid identification [12,13]. Moreover, as samples were analyzed in their 
native form (i.e., before decarboxylation processes), the presence of 
carboxyl groups on most phytocannabinoids was also expected to boost 
their ionization efficiency in the ESI(− ), which has also the advantage of 
generally lower background noise [46]. Our previous results on phenolic 
compounds in industrial hemp [17] demonstrated that the use of both 
polarities did not significantly raise the number of identified com
pounds, whereas it would have doubled the time for data acquisition and 
processing. Moreover, the obtention of two datasets per class of com
pounds with almost the same compounds but different peak areas would 
have caused several redundancies following the statistical analysis. For 
these reasons, data acquisition in the sole negative ion mode was 
preferred to a double acquisition. 

Following the suspect screening data processing, a total of 265 
phytocompounds were tentatively identified, including 54 phyto
cannabinoids, 134 flavonoids (including polymeric flavonoids), and 77 
phenolic acids. Identification data of the annotated compounds are re
ported in detail in Tables S3–S5, including retention times, accurate 
mass-to-charge ratios (m/z), mass errors, diagnostic product ions, level 
of identification [38,47], and IDs (i.e., C1–C54 for cannabinoids, 
F1–F134 for flavonoids, and P1–P77 for phenolic acids). Unsurprisingly, 
the number of annotated phytocannabinoids in the analyzed industrial 
hemp samples was significantly lower than previously reported for 
drug-type genotypes using the same analytical workflow due to the 
overall lower content of THC-type phytocannabinoids and their 
non-enzymatic derivatives (e.g., CBN- and CBT-type phytocannabi
noids) [13,30]. CBD-type, CBG-type, and cannabielsoin (CBE)-type 
phytocannabinoids were the most numerous, with 10, 9, and 9 anno
tated compounds, respectively. CBE-type compounds are non-enzymatic 
degradation products of CBD-type compounds, even though recent re
ports have highlighted the role of microbial enzymes in converting 
carboxylated CBG-type to carboxylated CBE-type compounds [48]. 
Other than CBDA (compound C36), which was the most abundant 
phytocannabinoid in all analyzed samples, several alkyl analogs were 
annotated, i.e., CBDOA (C1), CBDVA (C11), CBDBA (C18), CBDHA 
(C42), and CBDPA (C50), as well as three O-methylated compounds 
(C19, C41, C43), which were distinguished by their fragmentation pat
terns and retention times. Similarly, alkyl chain analogs and O-meth
ylated derivatives of CBG were annotated, as well as SesquiCBGA (C54), 
a longer prenyl chain analog of CBGA [49]. 

The flavonoid composition of the analyzed industrial hemp samples 
was significantly more complex than the phytocannabinoid profile. As 
previously demonstrated [14,17], the most abundant flavonoids in 
C. sativa inflorescence were flavone derivatives (68 annotate com
pounds), either hydroxylated (i.e., apigenin, luteolin, tricetin) or 
methoxylated (i.e., acacetin, chrysoeriol, diosmetin). Flavone de
rivatives were determined both O-glycosylated and C-glycosylated (i.e., 
orientin, vitexin) and also O-acyl glycosylated (to acetic and malonic 
acid). Even cannflavins (F42–F44), the flavonoids unique to C. sativa 
that are known for their significant antioxidant activity [50], are 
effectively prenylated flavones. Other classes of flavonoids that were 
annotated are flavonols (i.e., isorhamnetin, kaempferol, quercetin) and 
flavanones (i.e., eriodictyol, hesperetin, naringenin, pinocembrin), with 
25 and 23 compounds, respectively. Furthermore, catechin (F45) and 
epicatechin (F60) were annotated alongside seven b-type procyanidin 
dimers and trimers (F36–41, F116). 

Most annotated phenolic acids were glycosyl derivatives of hydrox
ycinnamic acids (i.e., coumaric acid, caffeic acid, ferulic acid, and 
sinapic acid) and, to a lesser extent, hydroxybenzoic acids. Despite being 
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less numerous, hydroxycinnamoyl conjugates of quinic and shikimic 
acid had significant peak areas. The determination of the positional 
isomers of hydroxycinnamoyl quinic acids was based on the retention 
trends and fragmentation mechanisms discussed by Clifford [51] and 
Willems [52]. 3-Caffeoyl quinic acid (neochlorogenic acid, P9), the most 
abundant of these compounds, was annotated for its lower retention 
time and its balanced abundance of the product ions deriving from the 
quinic acid moiety (m/z 191.0563) and the caffeic acid moiety (m/z 
179.0351 and 135.0453). 5-Caffeoyl quinic acid (chlorogenic acid, P24), 
on the other hand, produced the quinic acid fragment at a significantly 
higher abundance, whereas 4-caffeoyl quinic acid (cryptochlorogenic 
acid, P29) was annotated thanks to its diagnostic ion at m/z 173.0455. 
Coumaroyl and feruloyl conjugates as well as the three dicaffeoyl quinic 
acid positional isomers (P75–P77) were tentatively identified with the 
same rationale, with each coumaroyl derivative being a pair of coumaric 
acid isomer derivatives. In Supplementary Material Fig. S1, the MS/MS 
spectra of the three caffeoyl quinic acids are shown, whereas Fig. S2 
shows the extracted chromatograms of the annotated hydroxycinnamoyl 
quinic acids. 

3.2. ASCA analysis of the phytocompounds 

The different phytocompounds were analyzed by ASCA, to evaluate 
the significance of the field location and cultivar effects. In the begin
ning, ASCA models were calculated separately on phytocannabinoids, 
flavonoids, and phenolic acids since its application on the entire dataset 
as it was would have been affected by the variability present from one 
block of data to the other, resulting in the unwanted situation that a data 
matrix of higher dimensions would contribute more to the model simply 

because it contains more variables. To obtain global results, this issue 
was overcome in a low-level data fusion fashion. Given the relatively 
numerous groups that were taken into consideration (4 geographical 
origins and 7 different strains), the statistical analysis was aimed at 
evaluating the role of minor constituents in discriminating cannabis 
samples and especially phenolic compounds that were never employed 
for the purpose rather than at identifying single markers. As such, 
instead of single marker compounds, trends in the abundance of classes 
of structurally related compounds were expected, in light of the struc
tural properties of the identified compounds (e.g., several conjugates of 
the same flavonoid). Regardless of the nature of the data, all ASCA 
models were calculated to inspect two distinct effects: the location and 
the variety. Significance has been evaluated by a permutation test, using 
104 randomizations. Before the analysis, data were preprocessed by 
log10 and mean-centering to remove off-sets. 

3.2.1. ASCA analysis of phytocannabinoids 
The ASCA model calculated on the phytocannabinoids data revealed 

that both the location and the cultivar effects (and their interaction) are 
significant (p < 0.001 for all). The model of the geographical field 
location effect required 3 Simultaneous Components (SCs), which 
explain 93.0%, 4.9%, and 2.1% of the total variance, respectively, 
whereas the one dedicated to the cultivar needed 6 latent variables, 
explaining the 65.2%, 16.8%, 10.3% 5.6%, 1.3%, and 0.80% of the total 
variance. 

The scores plots associated with these models can be observed in 
Fig. 2, where samples have been projected onto the space spanned by the 
first SCs when modeling the field location (Fig. 2A) and the cultivar 
(Fig. 2B). 

Fig. 2. Scores plot of the ASCA models of the geographical location (A) and cultivar (B) effects for the phytocannabinoid dataset.  
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The investigation of Fig. 2A makes it apparent that the samples 
collected in Rutigliano, falling at positive values of SC1, are clearly 
distinguishable from all the other presenting negative values of this 
component. Similarly, the second SC pointed out a peculiar composition 
of materials sampled from Libertinia compared to all the others. All 
variables contribute significantly to the first SC except compound C28 
(CBT isomer 3). The inspection of the loadings (Fig. S3) revealed that 
samples harvested in Rutigliano (SC1 > 0) presented the least amount of 
most phytocannabinoids (including all the major ones), whereas the 
samples collected in the Rovigo site showed generally the highest 
amounts. On the other hand, SC2 allowed the discrimination of samples 
harvested in Libertinia based on the higher content of several non- 
enzymatic deriving cannabinoids, such as CBNVA, CBNDA, CBNA, and 
several compounds of the CBE and CBT classes. 

Concerning the cultivar effect, the scores plot shows that the 
different cultivars are distributed along the first CS. In particular, Eletta 
Campana and Fibranova fell at positive values of SC1, Fibrante and CS 
around zero, and all the others (Codimono, Carmaleonte, and Carmag
nola) at negative values. The loadings associated with this component 
can be observed in Fig. 3; from this plot, it is possible to appreciate 
which compounds contribute to the diversification of the investigated 
materials. In the figure, red and blue bars represent significant and non- 
significant variables (the indexes correspond to those in Tables S3–S5), 
respectively. Among the significant ones, those presenting a positive 
score are the compounds whose concentration is higher in samples 
falling at positive values of SC1 (Eletta Campana and Fibranova) and 
lower in individuals presenting negative SC1-values, on the other hand, 
the phytocannabinoids having negative loadings on SC1 are highly 
contained in Camaleonte, Codimono, and Carmagnola, and then are at 
the poorest concentration in Eletta Campana. 

In general, samples of Eletta Campana showed the highest amount of 
most of the phytocannabinoids, especially O-methylated ones (com
pounds C19, C30, C41, C43, and C49). Interestingly, samples having SC1 
< 0 presented higher amounts of CBG-type phytocannabinoids (e.g., 
compounds C3, C39, and C54). Since CBG-type cannabinoids are the 
progenitor of the other classes [2], samples of Codimono, Carmagnola, 
and Carmaleonte may have a lower expression (or activity) of the en
zymes that convert CBG-type phytocannabinoids into other ones. Along 
the second SC (Fig. S4), samples follow a clear trend: Codimono and 
Eletta Campana fall at positive values of SC2 differing from all the other 
cultivars. The inspection of the loadings can be imputed to a higher 
concentration of varinoids (three carbon-chain phytocannabinoids [45], 
compounds C9, C11–C14). 

3.2.2. ASCA analysis of flavonoids 
Whether the site of cultivation and the cultivar were significant ef

fects on the composition of hemp flavonoids has been also investigated. 
Similarly, as before, both effects and their interaction were significant 
(p < 0.001 for all). The model of the geographical field location effect 
required 3 SCs, explaining the 58.5%, 28.8%, and 12.7% of the total 
variance. The scores plot is displayed in Fig. 4A, and its inspection 
confirmed samples harvested in Rutigliano and Libertinia presented a 
distinctive composition compared to the individuals grown in the other 
experimental fields. 

Indeed, contrary to all the other individuals, samples from Rutigliano 
presented positive scores for the first component. The inspection of the 
loadings (Fig. S5) revealed this is driven by a higher content of C-gly
cosylated compounds, such as in (iso)orientin and several derivatives 
(compounds F2–F6, F9-10), as well as methyl-luteolin C-glucuronide 
(F98) and tricetin C-hexoside (F126) and significantly lower content of 
proanthocyanidins (F110, F129-134). Among the other compounds with 
higher abundances in samples from Rutigliano, there were hydrox
yluteolin derivatives (F17-18) and some flavone glucuronides (F21, 
F128). On the other hand, samples from Libertinia, Battipaglia, and 
Rovigo presented higher concentrations in non-conjugated flavonoids 
(aglycones, i.e., F24, F40, F47, F59, F74, F82, and F111) and cannflavins 
(F36-38). Inspecting SC2 it appeared that samples from Libertinia were 
characterized by a higher content of conjugated flavonols (e.g., F71–73, 
F76–80, F114-117), whereas Battipaglia and Rovigo had the highest 
concentrations of proanthocyanidins. 

The ASCA model of the cultivar effect unveiled a strict link between 
flavonoid composition and cultivar. In fact, the inspection of the scores 
plot (Fig. 4B) revealed clear grouping tendencies, with strong overlap 
between Carmagnola and CS, and among Carmaleonte, Fibranova, and 
Fibrante is appreciable. Eletta Campana, Carmagnola, and CS fell all at 
positive values of SC1 (Fig. S6A), whereas all the others have negative 
values of this component. It is worth mentioning that, unlike the results 
for the different field locations, the ASCA models of the cultivars based 
on phytocannabinoids and flavonoids furnished quite different appear
ances. Codimono has the highest abundance of C-glycosylated com
pounds, whereas Eletta Campana had a significantly higher amount of 
O-methylated flavones (i.e., F20, F23, F41, F44, F100), that was in line 
with the result of O-methylated phytocannabinoids and possibly hints a 
superior activity of the enzymes involved in O-methylations. The load
ings plot of SC2 (Fig. S6B) showed a general trend for most flavonoids to 
be more abundant for higher SC2 values, with the cluster of Carmagnola 
and CS showing generally the lowest amounts. 

Fig. 3. Graphical representation of the loadings of the variables alongside the first simultaneous component of the ASCA model of the cultivar effect obtained for the 
phytocannabinoid dataset. 
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3.2.3. ASCA analysis of phenolic acids 
When ASCA is applied to the Phenolic acids data set, the cultivation 

site, cultivar, and their interaction resulted in significant effects (p <
0.001 for all). The model of the field location required 3 SCs, explaining 
43.5%, 37.6%, and 18.9% of the total variance, whereas the one asso
ciated with the cultivar needed 6 SCs for the explanation of 64.7%, 
18.7%, 7.3%, 4.6%, 2.4% and 2.2% of the variance, respectively. The 
scores plot associated with the model of the geographical field location 
effect depicted a different scenario concerning the previously discussed 
models. In fact, as observed in Fig. 5A, samples from Rutigliano and 
Battipaglia overlap, discriminating themselves from those harvested in 
Libertinia and Rovigo. Seemingly, flavonoids and phenolic acids were 
differently affected by the pedoclimatic conditions of hemp growth, with 
the latter much more apparently affected by the latitude (which is 
similar between Rutigliano and Battipaglia). 

The inspection of the loadings (Fig. S7) revealed the role of 
hydroxycinnamic acids conjugated with quinic acid. Samples from 
Rutigliano, in fact, were differentiated by lower levels of hydrox
ycinnamoyl conjugates in positions 3 and 5 and significantly higher 
amounts of conjugates in position 4 of quinic acid (P29, P36, P47, P61, 
P77). These results not only indirectly contributed to confirming the MS- 
based identification that was earlier described, but also enlightened a 
peculiarity in a set of samples that was not driven by the nature of the 
biomolecules but by their type of conjugation. On the other hand, the 
inspection of SC2 revealed that Rovigo has a peculiar composition of 
phenolic acids driven by a higher content in shikimic acid conjugates 
(P55, P68-69, P73). 

The interpretation of the scores plot associated with the model of the 
cultivar effect (Fig. 5B and S8) is less straightforward than the previ
ously discussed ones. The main difference which came out concerned 
Carmaleonte samples that showed significantly higher concentrations in 
dicaffeoyl quinic acids (Compounds P75-77) compared to all other 
cultivars. 

3.2.4. ASCA analysis of low-level fused data 
Not surprisingly, the merged data model revealed that the field 

location and the cultivar were significant. The model of the former effect 
needed 3 SCs for the explanation of 79.1%, 13.7%, and 7.2% of the total 
variance, while the model associated with the cultivar required 6 SCs, 
explaining the 40.71%, 27.8%, 16.2%, 8.2%, 4.5% and 2.5% of the 
variance, respectively. The merged data model of the geographical field 
locations was similar to that of the sole phytocannabinoids and flavo
noids, even though the clusters were more compact. Based on these 
results, the pedoclimatic conditions of the experimental fields appeared 
to play a significant role in the overall phytocompound expression. The 
significant discrimination of samples from Rutigliano from all others on 
SC1 (Fig. 6A) can be hardly associated with the meteorological data in 
Table S2, since plants grew at similar temperatures compared to those 
from Battipaglia, and even if May and June (when the transition from 
vegetative to the reproductive stage is ongoing) were rainier than in the 
other sites, this could have not been affected the plant secondary 
metabolism at maturity. However, the higher total rainfall in September 
could have affected the total phytocannabinoid content at maturity 
which was lower in Rutigliano for all types of phytocannabinoids. This 

Fig. 4. Scores plot of the ASCA models of the geographical location (A) and cultivar (B) effects for the flavonoid dataset.  
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observation is in agreement with the ecological function of cannabinoids 
in protecting the plant against UV light and desiccation, as well as plant 
defense in general [2]. On the other hand, the peculiarity of samples 
from insular Italy (Libertinia) that is visible on SC2 and explained by 
higher concentrations of several flavonoids could be linked to the hotter 
and drier climate of that area. The effect of climate on the phenolic 
compound expression was previously studied by Kumar [53] and Kabtni 
[54], who both concluded that arid climates favor the biosynthesis of 
phenolic compounds. 

The merged data model of the hemp varieties (Fig. 6B) shows that 
samples belonging to the different cultivars spread along SC1, with 
Codimono and Carmaleonte at negative SC1 values, the non-overlapping 
cluster of Fibranova and Fibrante around zero, and Eletta Campana and 
the cluster of Carmagnola and CS at positive SC1 values. 

In contrast to the three previous models on the single phyto
compound classes, the merged model is the sole allowing the discrimi
nation between monoecious and dioecious varieties (SC1 < 0 for 
medium-flowering monoecious cultivars and SC1 around zero or > 1 for 
late-flowering dioecious ones), with a significantly higher concentration 
of O-methylated cannabinoids and flavonoids at more positive SC1 
values and larger amounts of several phenolic acids for monoecious 
varieties. 

Codimono and Carmaleonte have different genetic backgrounds and 
the two clusters are themselves well distinct along SC1. Instead, the 
genetic pool of the Italian dioecious varieties is partly shared as CS, 
Fibranova, Fibrante, and Eletta Campana derived from Carmagnola 
throughout different breeding programs [55]. Carmagnola is a Northern 

Italian landrace and is the oldest Italian hemp dioecious cultivar used by 
many breeders to develop hemp varieties. CS or “Carmagnola Selezio
nata” was selected directly from this landrace in the 1960s and the 
common background explains the cluster formed by these two varieties. 
Fibranova was selected from crosses among Carmagnola and Russian 
hemp strains to increase productivity and fiber quality while Eletta 
Campana was derived from a German variety and despite the common 
background is the more different one among the dioecious varieties as 
clearly appears also from the ASCA analyses of both single and fused 
data. Fibrante was obtained by mutagenesis of the pollen of Carmagnola 
and Fibranova and resulted in more similarities for phytocannabinoids 
and flavonoids to Fibranova. 

4. Conclusions 

The increasing spread of hemp and its derivatives has led to the need 
for analytical approaches for evaluating its composition beyond the 
focus on the major phytocannabinoids of C. sativa. In this regard, 
metabolomics has been proposed as a powerful tool for this purpose, 
leading to the coining of the term cannabinomics. As previously stated, 
cannabinomics must therefore be understood as an approach that ex
tends the analysis from phytocannabinoids to other classes of phyto
compounds [28]. In this work, an untargeted HRMS cannabinomics 
approach directed to major and minor phytocannabinoids, flavonoids, 
and phenolic acids was employed for evaluating the contribution of 
these classes of compounds in discriminating industrial samples based 
on their cultivar and geographical field location. Our results have 

Fig. 5. Scores plot of the ASCA models of the geographical location (A) and cultivar (B) effects for the phenolic acid dataset.  
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demonstrated that phenolic compounds not only can effectively 
discriminate hemp samples but they do so often in different ways 
compared to phytocannabinoids (especially in terms of the cultivar ef
fect). Moreover, a low-level fused model was built employing all 
tentatively identified compounds and demonstrated significantly better 
results in terms of group classification compared to the sole phyto
cannabinoids due to the quite similar phytocannabinoid profile of these 
chemotype III hemp varieties. As such, our study demonstrated the need 
for comprehensive cannabinomics approaches for evaluating the best 
conditions to meet the demands for material, food, and medicinal pur
poses. Further studies are needed for extending the classification models 
to other classes of compounds of industrial interest, such as terpenes and 
lipids. 
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