
Received 25 January 2024; revised 26 April 2024 and 2 June 2024; accepted 7 June 2024. Date of publication 11 June 2024; date of current version 17 July 2024.

Digital Object Identifier 10.1109/OJITS.2024.3412820

A Big Data Architecture for Digital Twin Creation of
Railway Signals Based on Synthetic Data

GIULIO SALIERNO 1, LETIZIA LEONARDI 1, AND GIACOMO CABRI 2 (Senior Member, IEEE)
1Department of Engineering “Enzo Ferrari,” University of Modena and Reggio Emilia, 41125 Modena, Italy

2Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy

CORRESPONDING AUTHOR: L. LEONARDI (e-mail: letizia.leonardi@unimore.it)

ABSTRACT Industry 5.0 has introduced new possibilities for defining key features of the factories of
the future. This trend has transformed traditional industrial production by exploiting Digital Twin (DT)
models as virtual representations of physical manufacturing assets. In the railway industry, Digital Twin
models offer significant benefits by enabling anticipation of developments in rail systems and subsystems,
providing insight into the future performance of physical assets, and allowing testing and prototyping
solutions prior to implementation. This paper presents our approach for creating a Digital Twin model in
the railway domain. We particularly emphasize the critical role of Big Data in supporting decision-making
for railway companies and the importance of data in creating virtual representations of physical objects
in railway systems. Our results show that the Digital Twin model of railway switch points, based on
synthetic data, accurately represents the behavior of physical railway switches in terms of data points.

INDEX TERMS Big data, digital twin, machine learning, synthetic data, railway industry, artificial
intelligence.

I. INTRODUCTION

THE RAILWAY industry, with its vast legacy systems,
generates massive volumes of heterogeneous data from

various assets like locomotives, tracks, signals, and critically,
railway switch points. Switch points are key components
in railway operations, responsible for controlling the route
of trains by allowing them to be guided from one track
to another. Given their pivotal role, switch points demand
continuous predictive maintenance and monitoring to ensure
safety and reliability. The inherent complexity of data gener-
ated by switch points, arising from a multitude of sensors and
control systems produced by different manufacturers over
decades, necessitates the development of accurate Digital
Twin (DT) models. These digital twins can aptly simulate
the conditions and potential failures of railway switch points
by leveraging the available data. In this digitized era, a
Digital Twin is conceptualized as a sensor-empowered digital
representation of a tangible entity.
In this paper, we present our approach to creating a Digital

Twin model specifically for railway switch points. The choice

The review of this article was arranged by Associate Editor Yihui Wang.

of switch points as the focus stems from their critical
importance in railway operations and the challenges involved
in effectively utilizing the heterogeneous data generated
by these assets. Our Digital Twin model aims to provide
a virtual representation of physical railway switch points,
enabling simulation, monitoring, and predictive maintenance
capabilities.
The advent of next-generation sensing capabilities within

the factories of the future is paving the way for revolutionary
opportunities in the manufacturing sector. The value derived
from Big Data, once thought to be far-fetched, is now being
harnessed due to the proliferation of both smart technologies
and the Internet of Things (IoT). The railway industry,
in particular, has discerned the significance of harnessing
information from this expansive Big Data to elevate various
sectors, encompassing maintenance, safety, and customer
satisfaction. The escalating emphasis on sustainable railway
transport further underscores the pivotal role of data analytics
in the realm of railway operations.
With the challenges at hand, this paper ventures to propose

a tailored Big Data architecture. The primary objective is
to cater to the unique demands of managing the vast and

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/

342 VOLUME 5, 2024

HTTPS://ORCID.ORG/0000-0002-9617-4448
HTTPS://ORCID.ORG/0000-0003-4035-8560
HTTPS://ORCID.ORG/0000-0002-4942-2453

diverse railway data, subsequently facilitating the streamlined
development of Digital Twin models that can provide
predictive insights. This architecture, in its essence, seeks
to:

• facilitate the seamless aggregation and integration of
data originating from diverse legacy systems;

• undergo preprocessing procedures aimed at enhancing
the quality of sensor data by filtering out noise;

• offer customized data access mechanisms optimized for
the advancement of Digital Twin frameworks;

• enable the scalable simulation of railway infrastructure
assets via Digital Twin technologies;

• easy the development of predictive maintenance strate-
gies by leveraging asset simulations.

In the grander scheme, the architecture is designed to
resonate with the distinctive scale, variety, and analytical
requisites of railway systems. It does share an affinity with
conventional lambda architectures; however, custom inclu-
sions like the Digital Twin Layer imbue it with advantages
peculiar to the railway industry. While the methodologies
and techniques elucidated herein have the potential to be
extrapolated to other intricate industrial environments with
a substantial legacy infrastructure, the primary emphasis
remains on optimizing this architecture for the multifaceted
world of railway data and the accompanying Digital Twin
prerequisites.
The overarching ambition of this endeavor is to concep-

tualize and actualize a big data architecture that can adeptly
ingest, process, and dissect data pertaining to railway switch
points. This data will be the cornerstone upon which a
Digital Twin model, encapsulating both raw and synthetic
data, will be sculpted. Although this case study emphasizes
railway switch points, the architectural framework conceived
has the latitude to foster the genesis of other Digital Twin
models, and by extension, applications rooted in predictive
maintenance [1].

II. RELATED WORK
The huge potential of Big Data in the railway sector is
confirmed by different works that identify that sector as an
optimal domain for the application of Big Data solutions.
The literature has identified the main features to cope with
Big Data applications in the railway sector. Specifically [2]:

1) in terms of volume of data, hundreds of TB/day by
different sources for the European railway system;

2) heterogeneity of the sources of information;
3) peculiarity of predictive algorithms for maintenance

planning and its optimization and, in general, for
decision-making applications.

These features justify identifying appropriate solutions and
tools for the deployment of a Big Data infrastructure in this
complex scenario, especially to cope with asset maintenance
in the perspective of Industry 5.0.
The survey in [3] demonstrates that the use of Big

Data into railway transportation systems can be classified

on the basis of its applications. The authors describe that
most works were carried out on railway vehicles, tracks, or
signaling equipment. The authors’ results demonstrate that
most of the work focuses on data analysis of vehicle data
(53%) while only few works (11%) propose applications
for the analysis of signal equipment. Motivated by these
results, we investigate the design of a Big Data infrastructure,
especially focused on the DT model creation and analytics
of objects composing the railway yard.
From Big Data architecture applications, authors in [4]

propose a cloud-based Big Data architecture for real-time
analysis of data produced by onboard equipment of high-
speed trains. A framework for smart railway passenger
stations by using Digital Twin technology is proposed by
authors of [5] which focus on the importance of aspects
related to business needs, architecture, data collection,
model development, and potential applications for effective
enablement of a DT model for the railway domain.
Recent studies have also highlighted the potential of

Digital Twins and advanced technologies in shaping the
future of railway systems. The work by [6] presents a survey
of experts on the technologies, challenges, and opportunities
for the railway system towards 2050, underscoring the
importance of integrating cutting-edge technologies like
Digital Twins, IoT, and AI. Additionally, researchers have
explored the implementation of model-oriented approaches
for the safe integration of GNSS-based virtual balises in
ERTMS/ETCS Level 3 [7], and the application of control
methods for virtual coupling in railway operations [8].
These advancements demonstrate the growing significance of
Digital Twin and related technologies in shaping the future
of the railway industry.
On the adoption of synthetic data, authors of [9] highlight

their importance for condition monitoring of railway Digital
Twin HVAC (Heating, Ventilation and Air Conditioning)
systems. In this work, the DT of a HVAC system is
augmented with synthetic data to overcome the lack of real
data. Thus, the state of degradation is inferred by using a
DT hybrid-model of the HVAC system composed both of
real and synthetic data.
Recent explorations in Digital Twin concepts for railways

have highlighted a critical need for enhanced data collection
and integration, particularly for the effective implementation
of AI and Machine Learning models. This need justifies the
proposal for a comprehensive big data architecture, designed
to gather, process, and utilize data specifically for railway
signals. Such an architecture would be instrumental in fully
enabling the creation and optimization of AI models.
The current integration of artificial intelligence in railway

Digital Twins is limited, often focusing on applications
like predictive maintenance. However, advancements in AI,
especially in areas like explainability, causality, and reason-
ing, present an untapped potential to revolutionize railway
Digital Twins. By fully harnessing these AI advancements,
Digital Twins can evolve from passive monitoring systems
to proactive, collaborative decision-making tools for human

VOLUME 5, 2024 343

SALIERNO et al.: BIG DATA ARCHITECTURE FOR DT CREATION OF RAILWAY SIGNALS

operators. This evolution is particularly crucial given that
existing models typically cater to basic signaling systems
and fall short in integrating with more advanced systems
like the European Train Control System (ETCS). This
gap is significant as it leads to a misalignment with the
comprehensive requirements of railway signaling systems,
including adherence to speed restrictions and movement
authorities [10].
These identified limitations in scale, integration, and

intelligence underline the need for the proposed railway
Digital Twin architecture of this work. By leveraging a big
data architecture that incorporates cloud-based microservice
architectures, Internet-of-Things integration, and physics-
informed machine learning, the proposed system aims
to address these challenges. This innovative approach is
targeted to surpass the limitations of current models, offering
a more robust, scalable, and intelligent solution for railway
systems, especially in the realm of signal processing and AI
model development.

III. RAILWAY INTERLOCKING SYSTEM AS DATA SOURCE
The primary motivation of adopting a Big Data architecture
is the huge volume of data produced by Railway Systems
as Computer-based Interlocking systems. A Computer-based
Interlocking System (CIS) is a complex safety-critical system
that guarantees the absence of critical safety conditions, such
as trains occupying the same track.
In particular, CIS communicates with sensors that monitor

the state of the points in the railway yard via duplex
communication. Moreover, CIS sends commands to each
smart board, which controls the corresponding physical
point on the line and collects data about its status. The
collected data is written into CIS data storage as log files in
XML format, which contain semi-structured data describing
the point’s behavior upon an issued command. This paper
focuses on the data produced by the commands requested
for the railway switch points. As the CIS controls only
points under its governance, multiple CIS control a complete
railway line that produces different log files according to the
points under their governance. According to this complexity,
multiple CIS produces large volume of data that must be
collected and processed.
In the current version, the system can gather voltage-

time and current-time parameters. In a future version further
parameters can be considered, such as weather-related ones.
The complexity is anyway given by the quantity of data
gathered.
The proposed Big Data architecture takes into account the

complexity of the railway domain and enables data ingestion
from different data sources (i.e., multiple CIS) by defining
data flow processes, as described later in Section V. A
high-level communication schema between the CIS and the
physical level is shown in Figure 1.

Raw data collected from sensor boards connected to
railway switch points include different information that can
be summarized as follows:

FIGURE 1. High-level representation of communication flows between CIS and
railway signal sensors.

FIGURE 2. Plot of data sample representing a switch point movement.

1) timestamps = {(t1, c1), (t2, c2), . . . , (tn, cn)}. Each
time value ti represents the operation time of the
command ci assigned by the logging server and
recorded by the smartboard;

2) information about the smartboard which collects the
data. A smartboard S collects the data from a channel
number cn using a sampling frequency of f ;

3) information about the action requested by the inter-
locking. The interlocking requests an action of type
m, which involves a total of ntot movements, and the
current movement is ncur;

4) a list of raw values representing Power Voltage
supplied to the switch points over time is given by
V = [v1, v2, . . . , vn] at times t = [t1, t2, . . . , tn] to
execute the movement.

For example, in Figure 2, we present samples collected
from a railway switch point. These samples contain different
types of information that produce three distinct curves:

344 VOLUME 5, 2024

• The ReferenceCurve, denoted by I = [i1, i2, . . . , in], is
a discrete sample curve representing the point’s current
drain over time, generated upon the command requested
by a CIS. This curve is used to derive the other two
curves at times t = [t1, t2, . . . , tn].

• PreAlarmSample: a pre-threshold curve that is com-
puted by adding an intermediate threshold value tth to
the ReferenceCurve, i.e.,
PreAlarmSample = [i1 + tth, i2 + tth, . . . , in + tth]

• AlarmSample: an alarm curve that is computed by
adding a dynamic alarm threshold talarm to the
PreAlarmSample, i.e.,
AlarmSample = [i1+tth+talarm, i2+tth+talarm, . . . , in+
tth + talarm]

Therefore, the PreAlarmSample and the AlarmSample
curves are dynamically computed based on the
ReferenceCurve values. These curves represent threshold
values above which the working conditions of the points are
potentially anomalous and must be considered indications
of potential failures.
As shown in the ReferenceCurve, the highest power

consumption is typically observed at the beginning, i.e.,
when starting the engine and releasing the switch lock.
During the actual movement of the tongue rails, the electric
current consumption remains nearly constant at a medium
level. At the end of the switch movement, the electric current
decreases, and when the switch tongues are locked back, the
motor shuts down, and the measured electric current returns
to zero amperes [11].

This XML data, represented in Figure 3, demonstrates
the intricate nature of railway sensor data, also in our
current version that consider only voltage-time and current-
time parameters. The data encapsulates various timestamps
marking the operation times of commands logged by the
server. Additionally, details about the smartboard–such as
channel numbers and sampling frequencies–are outlined.
Vital information regarding the interlocking actions, includ-
ing the type of action and the details about movements, is
also encompassed.
Furthermore, the data provides sensor metrics, particularly

power voltage and current measurements, both supplied with
distinct timestamps. Such diverse and intricate data not only
highlights the complexity of railway sensor data but also
showcases the variance in types and formats of readings–
ranging from timestamps to integers and from commands to
floating-point values.
Processing and drawing meaningful conclusions from this

extensive array of sensors demand a robust framework. Our
proposed big data architecture is meticulously designed to
cater to and simplify the handling of such heterogeneous
and multifaceted railway sensor data.

IV. A BIG DATA FRAMEWORK FOR RAILWAY SIGNAL
DATA
The railway industry relies heavily on various physical
assets, including locomotives, tracks, signals, and switch

FIGURE 3. Sample XML representation of the data including current samples with
values.

points, to ensure the safe and efficient operation of railway
networks. Railway switch points, in particular, play a crucial
role in directing trains from one track to another, thereby
facilitating smooth transitions and route adjustments. As
such, the condition and performance of switch points are
of paramount importance for ensuring operational reliability
and safety within railway systems.
Traditionally, the maintenance and monitoring of railway

assets have been carried out through manual inspections
and periodic assessments. However, with the advent of
advanced sensor technologies and data analytics, there is
a growing opportunity to leverage data-driven approaches
for predictive maintenance and real-time monitoring of
railway infrastructure. By harnessing the vast amounts
of data generated by sensors installed on railway assets,
it becomes possible to gain valuable insights into asset
health, performance trends, and potential failure risks. In
this section, we provide a comprehensive overview of the
proposed Big Data framework for handling railway signal
data. The framework is designed to address the challenges
associated with managing the large volume of data generated
by multiple switch points in a railway yard while facilitating
the development of Digital Twin models for predictive
maintenance and optimization.

VOLUME 5, 2024 345

SALIERNO et al.: BIG DATA ARCHITECTURE FOR DT CREATION OF RAILWAY SIGNALS

The proposed Big Data architecture implements funda-
mental steps for a Big Data pipeline. In particular, this
architecture is designed to provide the following capabilities,
including the ability to design Digital Twin models:

1) Data ingestion: The architecture is capable of ingesting
data from various sources, such as sensors, switches,
and other devices, in real-time or batch mode adopting
Apache NiFi.

2) Data storage: The architecture is designed to store the
massive amount of data generated by the switch points
in a distributed file system, such as Hadoop Distributed
File System (HDFS).

3) Data processing: The architecture provides tools for
processing the data, including batch processing with
Hadoop MapReduce.

4) Data analysis: The architecture supports data analysis
using machine learning algorithms, statistical models,
and other data analytics techniques.

5) Data visualization: The architecture provides visual-
ization tools to enable users to interactively explore
and visualize the data.

6) Digital twin modeling: The architecture is also
designed to enable the development of Digital Twin
models, which are virtual representations of physical
assets, systems, or processes. This allows for predictive
maintenance, optimization, and other advanced analyt-
ics use cases.

The storage Layer is tasked with managing the vast
volumes of data generated by switch points and other
railway assets. Leveraging distributed file systems such
as the Hadoop Distributed File System (HDFS), it offers
a robust and fault-tolerant storage platform capable of
accommodating diverse data types and formats. Moreover,
the Storage Layer preserves the raw, immutable sensor data
in its original format, ensuring data integrity and traceability
for subsequent analytics tasks. The storage Layer is tasked
with managing the vast volumes of data generated by switch
points and other railway assets. Leveraging distributed file
systems such as the Hadoop Distributed File System (HDFS),
it offers a robust and fault-tolerant storage platform capable
of accommodating diverse data types and formats. Moreover,
the Storage Layer preserves the raw, immutable sensor data
in its original format, ensuring data integrity and traceability
for subsequent analytics tasks. The architecture shown in
Figure 4 takes the Lambda Data architecture [12] as a
reference model and is composed of four plus one layers,
briefly explained in the following and fully described in
Section V.
The Storage Layer is responsible for implementing data

storage and contains the storage platform, which provides a
distributed and fault-tolerant file system. This layer should
store data in its original form, and new data will be created
from the upper layers.
The storage Layer is tasked with managing the vast

volumes of data generated by switch points and other railway

FIGURE 4. Stack for Railway Big Data Management: Architectural Layers and
Technologies.

assets. Leveraging distributed file systems, such as the
Hadoop Distributed File System (HDFS), offers a robust and
fault-tolerant storage platform capable of accommodating
diverse data types and formats. Moreover, the Storage Layer
preserves the raw, immutable sensor data in its original
format, ensuring data integrity and traceability for subsequent
analytics tasks.
The Processing Layer is responsible for executing data

manipulation and transformation tasks to prepare the raw
sensor data for analysis and modeling. Leveraging tech-
nologies, such as Hadoop MapReduce, facilitates batch
processing of large datasets, enabling data aggregation,
filtering, and feature extraction. By transforming raw data
into structured datasets, the Processing Layer lays the
groundwork for advanced analytics and modeling tasks
further downstream.
The Service Layer serves as the interface between end-

users and the underlying data and analytics infrastructure.
This layer provides a suite of analytics services and tools,
including machine learning algorithms, statistical models,
and data visualization capabilities, to support various use
cases such as predictive maintenance, anomaly detection,
and performance optimization. By empowering users to
interactively explore and analyze railway signal data, the
Service Layer facilitates data-driven decision-making and
operational excellence within railway systems.
At the pinnacle of the framework lies the Digital Twin

Layer, which enables the creation and management of
virtual replicas of physical assets, systems, or processes
within railway networks. By synthesizing data from multiple
sources and leveraging advanced modeling techniques, the
Digital Twin Layer provides a holistic view of asset health,

346 VOLUME 5, 2024

performance, and operational conditions. Through virtual
simulations and predictive analytics, Digital Twins empower
railway operators to proactively identify maintenance needs,
optimize asset utilization, and enhance overall system
resilience. The Digital Twin Layer is responsible for creat-
ing and storing virtual objects based on the data collected,
processed, and stored in the Storage and Processing Layers.
The enriched model generated from the processed data can be
used for running simulations, studying performance issues,
generating possible improvements, and creating synthetic
data for further analysis. The Digital Twin Layer enables the
generation of virtual models by emulating a physical object
with appropriate methods or functions, reading object data
from the Processing Layer, storing it into internal attributes
of the objects, and encapsulating everything into a Python
class. A Python object as a class instance can be used
in external simulation programs for probing data or for
optimizing internal parameters.
In addition to the above described layers, the Ingestion

Layer acts as an interface between the architecture and the
external data source. It implements all tasks for data ingestion
from the external data store and is based on ingestion tools,
which allow the definition of data flows. A data flow consists
of a variable number of processes that transform data by
creating flow files that are moved from one process to
another through process relations.
The Big Data architecture, described in the following, has

the goal of enabling Digital Twin creation even if it shares
many similarities with the general Lambda architecture
reference model. However, there are some key differences in
terms of the specific characteristics and goals of our proposal.
The major difference is that the goal is not just to

process and analyze large volumes of data, but also to
create and maintain accurate Digital Twin models. Digital
Twins are virtual replicas of physical objects, systems, or
processes that can be used for simulation, monitoring, and
optimization. To achieve this, the Big Data architecture for
Digital Twin creation needs to include additional components
and processes that are specific for Digital Twin modeling.
Therefore, in terms of achieving interactions between the

Digital Twin models and the Big Data architecture, our
proposed architecture includes a separate layer called the
Digital Twin Layer, as we have already shown. This layer
is responsible for handling the communication between data
stored by the Big Data architecture and the Digital Twin
models. It enables the DT models to access and analyze
the data from the Big Data architecture and also allows
the models to update the data in real-time based on their
simulations and predictions.
Compared to the Lambda reference architecture, the addi-

tion of the Digital Twin Layer provides a more streamlined
and efficient way to create and maintain DT models. It allows
for a more seamless integration between the data processing
and modeling components of the architecture, and enables
more advanced applications such as predictive maintenance
and real-time optimization.

FIGURE 5. Layered architecture with communication flows between the key
components.

Figure 5 represents the layered architecture of the system,
highlighting the key components and their communication
flows. At the base is the CIS Infrastructure, which serves
as the underlying data ingestion mechanism using Nifi
DataFlow. The Ingestion Layer receives the data from the
CIS Infrastructure, and then passes it on to the Storage Layer
for persistence.
The data stored in the Storage Layer is then accessed by

the Processing Layer, where various data processing tasks
are performed, such as with TensorFlow and MapReduce.
The results of the data processing are then made available to
the Service Layer, which integrates the processed data and
provides services to the Digital Twin Layer.

VOLUME 5, 2024 347

SALIERNO et al.: BIG DATA ARCHITECTURE FOR DT CREATION OF RAILWAY SIGNALS

The Digital Twin Layer represents the virtual model
space, where the integrated services and data are consumed
to enable the Digital Twin functionalities. The arrows
between the layers indicate the directional flow of data and
communication between the components.
This layered architecture allows for modular design,

scalability, and flexibility in the system, enabling efficient
data ingestion, processing, and integration to support the
digital twin capabilities.
The proposed architecture enables Digital Twin (DT)

creation through several key capabilities tailored to the
requirements of virtual modeling. Firstly, the Digital Twin
Layer provides a dedicated interface for developing and
accessing virtual representations of physical assets using
processed sensor data. This layer contains specialized appli-
cation programming interfaces (APIs) and data structures
engineered explicitly for DT models. Secondly, the Storage
Layer is designed to preserve raw, immutable sensor data
in order to construct accurate historical simulations within
the DT. It also permits storing multiple copies of datasets
at varying aggregation levels to support the needs of DT
development.
Additionally, the Processing Layer implements essential

data transformations by extracting key features from the
raw sensor streams. This vital preprocessing step adapts
the data into structured datasets better suited for training
and updating DT models. Furthermore, the Service Layer
supplies interactive tools such as notebooks that empower
iterative development of DT models utilizing the processed
data. This layer enables rapid prototyping and refinement
of the virtual models. Several additional processes and
components are vital to fully support the DT development
lifecycle. These include modules for mapping virtual models
to physical assets, synchronizing bidirectional data flows
to maintain model accuracy, configuring simulations to
recreate operational conditions, evaluating model fidelity, and
monitoring asset status. Other critical elements are digital
thread trackers relating DT events to physical counterparts,
physics-based models capturing engineering knowledge for
precise DT behavior, and prediction engines forecasting asset
maintenance needs.
In summary, the proposed architecture is tailored to DT

creation through dedicated layers for preparing, storing,
and accessing data, as well as tightly integrating data
pipelines with modeling tools. The additional processes
and components address the end-to-end requirements for
virtual modeling, from physical asset mapping to operational
monitoring.
The introduction of a dedicated Digital Twin Layer in the

architecture promotes enhanced streamlining and efficiency
in constructing and maintaining DT models through several
mechanisms. Firstly, the consolidation of all DT-specific
logic into a single modular layer enables improved separa-
tion from generic data processing components, promoting
organized architecture. Secondly, optimizations such as
data representations and application programming interfaces

TABLE 1. URI stack for a single resource.

custom-engineered for virtual entities accelerate develop-
ment. Thirdly, the unified interface concurrently servicing
data pipelines and modeling tools simplifies integration and
maintenance. Fourthly, efficient access to preprocessed data
avoids repeated raw transformation, expediting model build-
ing. Fifthly, abstraction of physical details enhances model
reusability across assets, improving scalability. Sixthly, coor-
dinated bi-directional data flows ensure model accuracy via
synchronization to current data. Finally, common interfaces
for model management reduce lifecycle complexity. In
summary, the dedicated Digital Twin Layer creates an opti-
mized pipeline between data and models via enhancements
explicitly targeting efficiency in virtual entity creation, usage,
and maintenance.

V. ARCHITECTURE IMPLEMENTATION
The architecture was implemented using components of
the Hadoop framework,1 which is a distributed processing
system that enables distributed processing of large data sets
across clusters of computers using commodity hardware. In
the following, we detail all the layers introduced in the above
section: i) Storage Layer, ii) Processing Layer, iii) Service
Layer, iv) Digital Twin Layer and v) Ingestion Layer.

A. STORAGE LAYER: DATA GOVERNANCE AND
LOGICAL ORGANIZATION
The Storage Layer is based on the data lake concept [13].
A critical aspect of a data lake is preserving data in their
original format. The Extract, Load, and Transform (ELT)
process of a data lake stores data in its raw format and
automates the process of extracting new insights from it.
This implies that multiple copies of a single object can exist
with varying aggregation levels and metadata.
Preserving data in their original format is crucial to avoid

scenarios where the data on the platform become unusable
due to complexity, size, variety, or a lack of metadata. To
achieve this, we adopt a URI abstraction mechanism that
simplifies data access and establishes a data governance
policy. A Uniform Resource Identifier (URI) is a character
sequence that uniquely identifies resources on the platform.
For example, at the Storage Layer, a resource’s URI is its
absolute pathname.
To avoid the need for defining multiple URIs for each

resource, which can be used by multiple components at
different architectural layers, we abstract URI access for data
retrieval. As a result, the RealURI points to a resource stored
on the distributed file system while abstracting its physical
location. A RealURI is bound to a single VirtualURI,
which abstracts the specific pathnames used by a particular

1https://hadoop.apache.org

348 VOLUME 5, 2024

TABLE 2. URI abstractions for storage resources.

implementation of distributed file systems. A VirtualURI is
an optional URI created when a Processing Layer or Service
Layer component uses a resource stored on the file system.
For example, the URI stack for a single resource is

presented in Table 1, where each resource is identified by:
the smartboard identifier, the channel number in which a
point is attached, and the point number.
The separation enables modularity and loose coupling

between layers. The Storage Layer only handles RealURIs.
The mapping between RealURI and VirtualURI is main-
tained in a lookup registry by the Processing Layer. This
registry assigns a unique VirtualURI for every RealURI so
other layers do not need to know the physical location details.
The PresentationURI is created on demand by the Service

Layer to provide custom views of the VirtualURI data for end
users. This on-the-fly creation of PresentationURIs prevents
tighter coupling between layers. Only the VirtualURI persists
across architecture layers for consistent data access. An
analogous URIs stack shown in Table 1, is adopted to
provide data access to the applications. As an example,
the VirtualURI refers to the resource at a platform level,
while the PresentationURI represents a table view of the
data created by the Apache HIVE2 in the Processing Layer.
The full URIs stack adopted by the applications at each
architectural layer is reported in Table 2. It is important to
note that while resources can be assigned to an unbounded
number of PresentationURIs depending on the type of
components that use the data, the VirtualURI is mandatory
and refers to a single RealURI.
Figure 6 depicts the logical organization of folders and

data in the Storage Layer that is structured into three different
areas:

1) Landing Zone, which is the area where raw data is
stored after the ingestion phase.

2) Gold Zone, which is the area where cleaned and
aggregated data is stored after processing. This area
also maintains a view of data and DT model artifacts.
Additionally, copies of data at different granularity
levels (raw, pre-processed, and results folders) are kept
for further analysis or produced as results of queries.

3) Dev Zone, which is the area where end-users and
analysts access data through the data catalog (where
URI resources are stored), train analytical models, and
query data.

In the following, we describe the semantics of the folder
structure:

2https://hive.apache.org

• Raw: The initial repository for incoming data, typ-
ically raw files emanated from source systems. The
SMART_IO directories collect both data inputs and
outputs referred to each board on a specific channel
represented by their corresponding folders.

• Projects: Diverse directory structures dedicated to
orchestrating the distinct workflows of diverse projects.
In particular, the Artifacts directory is a repository
designed for storing analytical outcomes and relevant
outputs primed for dissemination. Data are organized for
production usage and analysis via “Hive Tables” stored
in the corresponding directory enabling SQL-based data
accesses.

• Users: Representing the analysts involved in various
projects. Each user has its own corresponding directory
(Working Directory) which may be tethered to a specific
project. In addition, Data Catalogue is a repository
containing metadata describing data belonging to a
specific project.

The directional arrows elucidate the data’s progression: from
its raw ingestion phase, through preprocessing, culminating
in the analysis results. The intermediary folders within
SMART_IO bolster data isolation, ensuring replicability for
each specific analyst or project. The hierarchically-structured
directories intuitively segment the lake, organizing it into
logical domains and facilitating data flow. This meticulous
arrangement empowers a multitude of users to synergistically
partake in the analytical process while adhering to governed
protocols.
The Storage Layer was implemented using the Hadoop

File System (HDFS), a fault-tolerant distributed file system
that provides high data availability. HDFS stores raw data
in its original format as provided by the Ingestion Layer’s
tasks, as shown in Figure 7. The ingestion tasks extract data
and metadata and aggregate them into a specific folder on
HDFS that represents the data for a particular point.
Data representing point behavior (see Section III) are

stored in their original format as XML files. Therefore,
these data must be processed and transformed to create new
datasets, which is the task of the Processing Layer.

B. PROCESSING LAYER: DATA TRANSFORMATION AND
AGGREGATION
The Processing Layer is a critical component of our proposed
architecture, responsible for transforming the raw XML files
into a more usable format and aggregating them into relevant
datasets. This transformation is accomplished through the
coordination of two main components.
The first component is a dataset builder module that

processes the raw data and extracts relevant features (see

VOLUME 5, 2024 349

SALIERNO et al.: BIG DATA ARCHITECTURE FOR DT CREATION OF RAILWAY SIGNALS

FIGURE 6. Hierarchical Logical Structure of HDFS.

FIGURE 7. Ingestion pipeline to store data and metadata on the Storage Layer.

Figure 8). This module parses the XML files, extracts the
attributes, and aggregates them into CSV files using various
aggregation functions (min, max, avg). The aggregated data
is then written back to the Hadoop Distributed File System
(HDFS) in the directory of the original data.
The second component of this layer is responsible for

importing the aggregated CSV files into HIVE tables,
thereby facilitating subsequent data analysis. HIVE, a data
warehousing tool provided by the Hadoop stack, employs a
SQL-like language (HIVEQL) for querying data. To import

data into HIVE tables, we define a general schema that aligns
with the structure of the switch point data. This schema,
derived from the aggregated CSV files created by the dataset
builder module, represents a generic switch point data in the
following structure:

smart_board_number_point_number_agg
(RecordSampleTime DATE,
MovTime FLOAT,
current_mA FLOAT,
voltage_V FLOAT)

These tables store aggregated data containing extracted
features from the raw data. These features include: 1) times-
tamps indicating when the samples were collected, 2) the
estimated time to complete an operation, 3) the average
electric current (in mA) issued by the point, and 4) the
average voltage (in V). Features 2), 3), and 4) are obtained
by aggregating single measurements contained in the original
data.
Furthermore, we define a HIVE table to store raw switch

point data in table format, which is structured as follows:

smart_board_number_point_number_raw
(RecordSampleTime DATE,
MovementNumber INTEGER,
MovementDestination BOOLEAN
current_mA FLOAT, voltage_V FLOAT)

350 VOLUME 5, 2024

FIGURE 8. Class diagram of the dataset builder module.

This table stores metadata information, including
MovementDestination, which represents the type of
movement executed by the switch point (Normal or
Reversal), and MovementNumber, representing the total
number of movements executed since its initialization. These
efficient transformation and organization of data play a vital
role in facilitating subsequent stages of model creation and
analysis.
The motivation for segregating aggregated data into

the Gold Zone while maintaining the Dev Zone for
modeling activities follows prudent data governance prac-
tices for production-grade analytics pipelines. The Gold
Zone contains carefully curated datasets that have under-
gone transformations and aggregations from raw inputs
via Extract-Load-Transform (ELT) processes. This zone
houses cleansed and structured data engineered to serve
as reliable information assets for downstream analytics
and monitoring applications. In contrast, the Dev Zone
provides an environment for data scientists and analysts
to freely explore data, construct models, execute ad-hoc
queries, and conduct various experimentations without risk
of compromising the integrity of the data in the Gold Zone.
By keeping aggregated datasets within the governance of
the Gold Zone, accidental modifications or deletions during
exploratory work are avoided. This separation also enables
enforcement of appropriate access controls on production
data resources. Meanwhile, the flexibility of schema and
storage in the Dev Zone empowers users to join, sample, and
modify data as required for modeling innovation without the
constraints of hardened schemas typical of the Gold Zone.
In summary, the proposed segregation balances the critical
needs of safeguarding production data quality via the Gold
Zone while enabling exploratory creativity in the Dev Zone.

C. SERVICE LAYER: DATA ACCESS AND MODEL
CREATION
The Service Layer, also known as the Presentation Layer,
encapsulates the tasks required to build analytical models,
graphically visualize data, and set up Digital Twin (DT) mod-
els. To accomplish these tasks, we leverage the capabilities
of Jupyter notebooks,3 a comprehensive solution designed to

3https://jupyter.org

support the scientific computing workflow, from interactive
exploration to publishing detailed computation records.
Jupyter notebooks organize code into cells, which contain

chunks of code that can be individually edited and executed.
The output from each cell appears directly below the
cell and is stored as part of the document [14]. With
support for a variety of programming languages, Jupyter
notebooks can integrate numerous open-source tools for data
analysis, including but not limited to Numpy,4 Pandas,5 and
Matplotlib.6

These tools provide the capability to parse structured data,
perform data manipulation, and visualize data using built-in
libraries. Particularly, the Pandas’ DataFrame data structure
is widely adopted as the input format for many analytical
models provided by machine learning libraries such as scikit-
learn7 and SciPy.8

In the development of the DT model representation of
a railway switch point, we employed pure Python. For the
generation of synthetic data, we utilized the TensorFlow
framework,9 a robust platform that supports comprehensive
machine learning and deep learning workflows. This inte-
grated environment offers a flexible and accessible platform
for the creation, training, and refinement of analytical mod-
els, making it an integral part of our proposed architecture.

D. DIGITAL TWIN LAYER: VIRTUAL OBJECT DESIGN
To effectively implement the Digital Twin (DT) Layer,
we adhered to a methodology composed of the following
steps [15], [16]:

• Defining Virtual Objects: The initial step in the process
involves the definition of the virtual objects, derived
from the data available in the Storage and Processing
Layers. These virtual objects serve as digital replicas
of physical entities or systems in the real world. It
is essential that these virtual objects encapsulate all
relevant details necessary for simulation or analysis.
This includes, but is not limited to, the object’s physical

4https://numpy.org
5https://pandas.pydata.org
6https://matplotlib.org
7https://scikit-learn.org/stable/index.html
8https://scipy.org
9https://www.tensorflow.org

VOLUME 5, 2024 351

SALIERNO et al.: BIG DATA ARCHITECTURE FOR DT CREATION OF RAILWAY SIGNALS

properties, its behavior under different conditions, and
the interrelations with other entities in the system. The
creation of a comprehensive virtual object provides a
foundation upon which high-fidelity simulations and
analyses can be built.

• Development of Algorithms or Models: Once the vir-
tual objects are defined, the next step involves the
development of algorithms or models that leverage
the processed data to instantiate these virtual objects.
The design of these algorithms needs to effectively
translate data into meaningful features that contribute
to a high-fidelity digital representation of the object
or system. This might involve a variety of methods,
such as machine learning techniques, statistical analysis,
and systems modeling, among others. The accuracy and
reliability of the virtual objects greatly depend on the
sophistication of these algorithms and models.

• Storing Virtual Objects: After the virtual objects are
created, they need to be stored in a manner that allows
easy and quick access to them by the other layers
of the architecture. This storage strategy may involve
the creation of dedicated databases or repositories,
defined with appropriate APIs or interfaces. These
APIs or interfaces should be designed to allow secure
and efficient querying and manipulation of the virtual
objects. Such an arrangement ensures that the Digital
Twins are readily available for further operations and
applications, providing the backbone for the subsequent
steps.

• Utilization of Virtual Objects: The final step in the pro-
cess involves the application of the virtual objects. They
can be used to run simulations that replicate real-world
scenarios, study performance under varied conditions,
identify potential improvements, and generate synthetic
data for further analysis. By leveraging the capabilities
of the Service Layer to emulate the behavior of the
physical entities and systems, the virtual objects serve as
inputs, effectively bridging the gap between the digital
and physical worlds. The insights gained from these
simulations and analyses can provide valuable inputs
for decision-making processes and future development.

E. INGESTION LAYER: DATA COLLECTION AND FLOW
MANAGEMENT
The Ingestion Layer is a crucial component of any data
pipeline and plays a pivotal role in data collection. This
layer has been implemented using Apache NiFi, a powerful
and reliable system designed to automate the flow of data
between systems. Apache NiFi is based on the principles of
flow-based programming, an approach that defines applica-
tions as networks of “black box” processes, which exchange
data across predefined connections by message passing.
Apache NiFi allows to design complex dataflows graph-

ically and handles failure recovery and data backpressure
seamlessly, making it an excellent choice for this layer of
the architecture. It offers many built-in Processors for data

ingestion, transformation, and distribution. Each Processor
has a specific role and can be configured to meet specific
needs. In addition, the Controller provides a variety of
services to the Processors and components involved in
data processing and flow management, such as offering
connection services to various data sources like relational
databases and FTP servers. In our specific use case, a data
flow extracts data from the CIS external sources and stores
it on the platform. This flow is not random but follows a
predefined route that describes the process of data extraction
and storage.
An example of such a data flow is one that combines data

from the external file system, as shown in Figure 9. This
particular flow reads files from a local file system, unpacks
them, and then writes the unpacked data into a specific folder
on the HDFS.
Each file that is read and unpacked is converted into a flow

file - the basic processing entity in NiFi. These flow files
then follow the data flow defined in NiFi and are eventually
written to the HDFS. This specific implementation shows
the power and flexibility of Apache NiFi in handling varied
data sources, different data types, and complex data flow
requirements. It also showcases how NiFi can interact with
other systems in the big data ecosystem, such as HDFS in
this case.
This ingestion mechanism ensures a reliable, efficient, and

traceable data collection process, laying a solid foundation
for subsequent stages in the data pipeline, such as processing
and analysis.
Before data can be employed in the analysis, it must be

transformed to fulfill the requirements of analytical models.
In this sense, the pre-processing of data is done by the
Processing Layer which implements all the tasks required to
build datasets from raw data.

VI. DESIGN AND EVALUATION OF A DIGITAL TWIN
MODEL FOR RAILWAY SWITCH POINTS
The design of a DT model requires identifying the char-
acteristics to be included in the digital objects, which will
determine the complexity and structure of the Digital Twin
model. In the proposed case study, we decided to model only
the basic characteristics of a railway switch point based on
the data detailed in Section III, for the sake of simplicity.
Figure 10 presents the DT model pipeline detailing the steps
followed during the creation of our Digital Twin model.
The first two steps involve data ingestion and processing,

which are detailed in Section V. Step 3 specifies the core step
for creating the DT model. A DT model should simulate the
behavior of the physical object and predict the behavior of its
physical counterpart. The last step is in charge of performing
simulations on the DT model created in the previous step.
In Figure 11, we present the diagram illustrating the

three primary classes plus one of the DT model. The
DigitalTwinModel class represents the abstract class
of a DT, which defines methods to access a data map,
process and update the data. The HIVE API class represents

352 VOLUME 5, 2024

FIGURE 9. Example of an Apache NiFi dataflow implementing the ingestion pipeline depicted in Figure 7.

FIGURE 10. DT Pipeline Creation.

the interface class that defines methods for accessing the
data stored on the HIVE tables described in the previous
section. It provides two methods to query and update the
data. The DTSwitchPoint class implements the physical
railway switch point as a DigitalTwinModel by defining
methods and a data structure that stores switch point data.
We provide essential parameters of the DTSwitchPoint

class, including electric voltage (V) and current (mA) values
over time related to the movement of a switch point, as
shown in Figure 12.
To simulate the behavior of switch points in terms of

electric current and voltage curves, we have extended the
DT model with a TimeGAN class by incorporating a
TimeGAN model [17]. The TimeGAN model can learn and
generate new synthetic data for these features. It is capable
of generating fully synthetic data by being trained on a
representation of the raw features as a time-series.
A Generative Adversarial Network (GAN) [18] consists

of two neural networks: a generator G and a discriminator
D. The generator takes a random noise vector z as input and
generates synthetic data x = G(z). The discriminator takes a
data sample x as input and produces a probability D(x) that
indicates whether the input data (generated by the generator)
is real or fake.
The two networks are trained adversarially: the generator

is trained to produce synthetic data that can deceive the

FIGURE 11. UML diagram classes of the railway switch point Digital Twin design.

discriminator, while the discriminator is trained to distinguish
real data from synthetic data. This is achieved by minimizing
the following objective function:

min
G

max
D

{
Ex ∼ pdata(x)

[
logD(x)

]

+Ez∼pz(z)
[
log(1 − D(G(z)))

]}
(1)

where pdata(x) is the distribution of the real data and pz(z)
is the distribution of the random noise vector z. The first
term in the objective function maximizes the probability of
the discriminator correctly identifying real data, while the
second term maximizes the probability of the discriminator
incorrectly identifying synthetic data as real. The generator

VOLUME 5, 2024 353

SALIERNO et al.: BIG DATA ARCHITECTURE FOR DT CREATION OF RAILWAY SIGNALS

FIGURE 12. Switch Point features for DT model creation: voltage (up) and supplied
Power (down).

tries to minimize the second term by generating synthetic
data that can fool the discriminator.
During training, the generator and the discriminator are

updated alternately, with the generator updating to maximize
the objective function while the discriminator updates to
minimize it. The training process continues until the genera-
tor is able to produce synthetic data that is indistinguishable
from the real data by the discriminator.
We trained a TimeGAN model using raw data from an

operational switch point stored in a HIVE table. The training
dataset consists of 108,859 samples of the two features
collected between January 1st, 2018, and January 1st, 2019.
Figure 13 shows an aggregated view of the dataset per
day. The data points exhibit various characteristics, such
as periodicity, noise level, regularity of time steps, and
correlation across time and features.
By performing shift-sampling on our dataset every 669

rows, we obtain 108190 entries, each comprising 669 rows
and 2 features. We take a sliding window of size 669 and
move it along the rows of the dataset, shifting it by one
position at a time to obtain a set of 2D matrices, each with a
shape of 669 rows and 2 columns representing the features.

The sampling window size of 669 data points was chosen
to match the sampling rate of the sensors that monitor
the switch point. Therefore, a sampling window of 669
data points captures a complete movement of the physical
object. As a result, we obtained a dataset with dimensions of
(108190, (669, 2)), where the 108190 entries have 669 rows

FIGURE 13. Switch point features of the training dataset.

FIGURE 14. Switch point real and synthetic data comparison.

(i.e., timesteps) and 3 features. Before model training, we
applied data pre-processing to scale the columnar features
within a [0, 1] interval using a MinMax scaler. We performed
model training for 10000 iterations, as suggested by [17].
To evaluate the model’s performance, as there are no

established objective metrics for evaluating whether a GAN
is performing well during training (i.e., reviewing the
loss function is not sufficient), we followed an intuitive
visual approach [19] to judge the quality in terms of
distribution differences between synthetic and real data.
To perform a visual comparison between the datasets, we
applied the t-distributed Stochastic Neighbor Embedding (t-
SNE) algorithm to compare the distribution of the real and
synthetic data for visualization in a 2D low-dimensional
space, as represented in Figure 14.
The results show an overlap between the real and synthetic

data points, suggesting similar behavior between the data
collected from a real switch point and their corresponding
DT based on synthetic data. Therefore, generating synthetic

354 VOLUME 5, 2024

FIGURE 15. FID scores for different models. Lower is better.

FIGURE 16. Precision scores in percentage. Higher is better.

data to create a Digital Twin model of a physical object
is suitable for simulating its behavior as well as enabling
analytics in a simulated environment.
Furthermore, we have made a comparative analysis

with different models on the same dataset, evaluat-
ing ARIMA [20], LSTM [21], GAN, Conditional GAN
(CGAN) [22], Wasserstein GAN (WGAN) [23], WGAN
with Gradient Penalty (WGAN-GP) [24], DRAGAN [25],
Cramer GAN [26], Conditional Wasserstein GAN with
Gradient Penalty (CWGAN-GP) [27], Conditional Tabular
GAN (CTGAN) [28], Gaussian Mixture Model [29],
DoppelGANger [30] and TimeGAN. The evaluation results
span several key metrics: Frechet Inception Distance (FID)
(see Figure 15), Precision (see Figure 16), Recall (see
Figure 16), and Coverage (see Figure 18). These metrics
collectively provide insights into the quality, diversity, and
fidelity of the generated synthetic data. In details:
1. FID: Lower scores are better and indicate that

the synthetic data distribution closely matches the real

FIGURE 17. Recall scores in percentage. Higher is better.

data distribution. TimeGAN, LSTM, CTGAN exhibit the
lowest FID scores, making them highly suitable for appli-
cations requiring high fidelity, such as railway signal
simulation.
2. Precision: Higher scores indicate a greater ability of the

model to generate realistic and varied samples. TimeGAN,
CTGAN, and DoppelGANger show the highest precision,
making them excellent choices for generating a wide range
of realistic signal patterns as in railway simulation.
3. Recall: Higher recall suggests that the model can

generate a wide variety of data points from the target
distribution. Again, TimeGAN and DoppelGANger excel
in this aspect which is crucial for capturing the diverse
behaviors seen in railway signals.
4. Coverage: Higher coverage means the model can

generate samples that cover the entire data distribution.
CTGAN and CWGAN-GP perform well here, ensuring that
rare but critical signal patterns are not missed.
In any case, after the better performances of these two

models, TimeGAN model follows.
For the purpose of creating digital twins for railway

signal systems, considering the four metrics shown before,
TimeGAN surpasses other models for FID, Precision and
Recall. For the coverage, CTGAN and CWGAN-GP exhibit
a better performance, but they handle categorical variables
without taking into account temporal dimension. However,
for the goal of this study, we focus on TimeGAN because it
focuses on sequential data and it is particularly well-suited
for capturing temporal dependencies in railway signal data.
However, based on our experience, training a GAN-based

model to generate synthetic data is a time-consuming task.
Therefore, the establishment of a Big Data architecture –
like the one proposed in this work – is necessary to ingest
and process the volume of data and satisfy the constraints
of GAN models, which require parallelization to speed
up training and simplify DT model creation through deep
learning models.

VOLUME 5, 2024 355

SALIERNO et al.: BIG DATA ARCHITECTURE FOR DT CREATION OF RAILWAY SIGNALS

FIGURE 18. Coverage scores in percentage. Higher is better.

Synthetic data generated by a TimeGAN model can be
used in DT model creation to complement the raw data and
enable the creation of a more comprehensive and accurate
model of the physical object. In DT model creation, synthetic
data generated by using a TimeGAN model can be used to
augment and enrich the available raw data. Even though the
raw data may be enough, synthetic data can provide several
benefits:

• Increased Data Availability: In some cases, the raw
data available may be limited or incomplete. Synthetic
data generated using TimeGAN can be used to create
a larger dataset that is more representative of the real-
world scenario. This can help in better training machine
learning models.

• Improved Data Quality: Raw data can contain noise,
errors, or missing values, which can affect the
performance of machine learning models. Synthetic data
generated using TimeGAN can help in filling gaps in
the raw data, reducing noise, and improving the overall
quality of the data.

• Reduced Data Bias: Raw data can often be biased
towards certain patterns or trends. Synthetic data gen-
erated using TimeGAN can help in introducing new
patterns and trends, reducing the bias in the data.

• Scenario Generation: Synthetic data generated using
TimeGAN can be used to create different scenarios or
simulations, which can help in testing the robustness
and scalability of the DT model.

Therefore, the use of synthetic data generated by using
a TimeGAN model can help in creating more robust and
accurate DT models, especially when the raw data available
is limited, noisy, or biased.
A key novel contribution of this work is the integra-

tion of synthetic data generation capabilities within the
Digital Twin Layer to enhance representations of real-world

physical systems. While the overall procedure of creating
virtual representations follows well-established Digital Twin
development steps, this work uniquely integrates genera-
tive modeling techniques such as Generative Adversarial
Networks (GANs) to synthesize simulated data that augments
the available real-world data. Specifically, the Digital Twin
Layer leverages neural network-based approaches to learn
the underlying distributions and relationships in source
datasets and generate new representative synthetic data
points. This enables a significant expansion of the data
available to construct more comprehensive Digital Twin
models that incorporate a wider array of potential scenarios
(i.e., rare events as failures) beyond the limitations of real
historical data. By combining data-driven insights from real
system telemetry with the flexibility of artificially generated
data, the fidelity and robustness of the resulting Digital
Twin models can be improved considerably. The addition
of synthetic data generation capabilities demonstrates an
innovative way in which simulations of physical systems
can become more realistic through prudent blending of
real and artificial data within the Digital Twin development
process.
In this way, the integration of synthetic data creation

using modern generative techniques within the Digital
Twin Layer highlights a novel contribution to enhancing
virtual representations and generating more informed insights
compared to conventional reliance on real-world data alone.

A. DEALING WITH ABNORMAL SCENARIOS
While the TimeGAN model was primarily used to generate
synthetic data that complemented the available real-world
data, its capabilities may be extended to accurately repre-
senting abnormal switch behavior as well. The key benefits
of integrating synthetic data generation, as highlighted in
the previous section, include increased data availability,
improved data quality, and reduced data bias. These charac-
teristics can be particularly valuable when modeling rare or
atypical scenarios that may not be well-represented in the
historical sensor data.
The paper [17] indicates that the synthetic data generated

by the TimeGAN model exhibits similar characteristics to
the real-world data, such as periodicity, noise levels, and
correlation across time and features. This suggests that
the model is able to capture the underlying dynamics and
patterns present in the training data, including potential
abnormal states of the switch. The visual comparison
using t-SNE further reinforces the similarity between the
real and synthetic data distributions, implying the model’s
ability to generate realistic representations of the system’s
behavior.
By leveraging the synthetic data generation capabilities

of the TimeGAN model, the Digital Twin development
process can be enhanced to incorporate a broader range of
scenarios, including those that may be considered abnormal
or rare in the real-world. This can be achieved by ensuring
the training data used to fit the TimeGAN model includes

356 VOLUME 5, 2024

examples of abnormal switch behavior, either from historical
records or through targeted data collection campaigns. The
resulting synthetic data can then be used to augment
the real-world data, leading to more comprehensive and
robust Digital Twin models that are better equipped to
simulate and analyze a wider range of potential operating
conditions.
Further investigation into the specific techniques and

strategies employed to ensure accurate representation of
abnormal switch behavior using the TimeGAN model would
be valuable. This could involve quantitative evaluation of the
model’s ability to generate realistic synthetic data for such
scenarios, as well as case studies demonstrating the impact
of this approach on the fidelity and predictive capabilities of
the resulting Digital Twin models. By addressing this aspect,
the integration of synthetic data generation within the Digital
Twin development process can be further strengthened,
ultimately leading to more accurate and reliable virtual
representations of physical systems.

B. CONSIDERATION ON ADOPTION OF SYNTHETIC
DATA FOR RAILWAY DIGITAL TWINS
The integration of synthetic data generation using the
TimeGAN model within the Digital Twin development
process represents a novel contribution to the railway
domain. In contrast to conventional approaches that rely
solely on real-world sensor data, this method offers several
key advantages.
Improved Data Representation: Existing Digital Twin

models in railways often face limitations in data availability,
quality, and representativeness. Real-world sensor data can
be prone to noise, errors, and biases, which can hamper the
fidelity of the virtual representations. The ability to generate
synthetic data using the TimeGAN model allows for a more
comprehensive and nuanced representation of the system’s
behavior, including rare or abnormal scenarios that may be
under represented in the historical data.
Enhanced Flexibility and Scenario Analysis: The synthetic

data generated by the TimeGAN model can be used to
create a wider range of simulated scenarios, enabling more
thorough testing and validation of the Digital Twins. This
flexibility is particularly valuable for evaluating the model’s
performance under various operating conditions, including
edge cases and unexpected events, which are crucial for
enhancing the robustness and predictive capabilities of the
virtual representation.
Reduced Reliance on Scarce Data: In some railway

applications, obtaining high-quality, comprehensive real-
world data can be challenging due to factors such as
sensor failures, environmental conditions, or limited access
to operational data. The synthetic data generation capability
can help overcome these limitations and reduce the reliance
on scarce real-world data, ultimately expanding the range of
applications where Digital Twin models can be effectively
deployed.

C. POSSIBLE FUTURE INVESTIGATIONS
To further enhance the performance and impact of the
proposed approach, the following areas can be examined in
future investigations:
Quantitative Evaluation of Synthetic Data Quality: While

the visual comparison using t-SNE provides a qualitative
assessment of the similarity between real and synthetic data,
a more rigorous quantitative evaluation would be benefi-
cial. This could involve statistical metrics, domain-specific
performance indicators, or other analytical techniques to
objectively assess the fidelity and representational accuracy
of the generated synthetic data. Potential metrics to consider
include distribution distance measures, feature-wise corre-
lation analysis, and domain-specific validation criteria to
ensure the synthetic data accurately captures the essential
characteristics of the real-world switch behavior.
Incorporation of Domain-Specific Knowledge: Exploring

ways to integrate domain-specific knowledge and expert
insights into the synthetic data generation process could
further improve the realism and applicability of the generated
data. This could involve techniques such as conditional
generation, where the TimeGAN model is conditioned
on domain-specific parameters or constraints to generate
synthetic data that aligns with expert understanding of
the system. Additionally, leveraging hybrid approaches that
combine data-driven modeling with physics-based models of
the railway system may help better capture the underlying
dynamics and produce more representative synthetic data.
Exploration of Alternative Generative Models: While

this work focuses on the use of the TimeGAN model,
investigating the potential of other generative modeling
techniques, such as variational autoencoders (VAEs) or
normalizing flows, may further enhance the synthetic data
generation capabilities and better capture the underlying
dynamics of railway systems. These alternative approaches
may offer unique advantages in terms of data quality, compu-
tational efficiency, or the ability to model complex temporal
and multivariate relationships present in railway sensor
data.
Integration with Predictive Maintenance and Anomaly

Detection: Exploring the synergies between the synthetic
data generation approach and predictive maintenance or
anomaly detection algorithms could lead to more robust and
reliable decision-making capabilities for railway operators.
The generated synthetic data could be used to train and
validate these algorithms, allowing for more comprehensive
testing and evaluation of their performance under a wider
range of scenarios, including rare or abnormal events that
may be difficult to observe in historical data.
By addressing these areas for improvement and fur-

ther leveraging the strengths of synthetic data generation
within the Digital Twin development process, the presented
approach can contribute to more accurate, flexible, and
impactful virtual representations of railway systems, ulti-
mately leading to enhanced operational efficiency, safety,
and decision-making in the railway domain.

VOLUME 5, 2024 357

SALIERNO et al.: BIG DATA ARCHITECTURE FOR DT CREATION OF RAILWAY SIGNALS

FIGURE 19. Container Architecture with CDH, Apache NiFi, and VM running Python
Objects of Digital Twin Models.

VII. ARCHITECTURE DEPLOYMENT
The architecture resulting from our approach described
above has been deployed in a test environment using
containerization technology (Figure 19).
In particular, we have used two separate containers.

In one container, we adopt a Cloudera10 pre-built image
implementing the Hadoop stack (including its fundamental
components HDFS, YARN, and HIVE), indicated as CDH
(Cloudera Distributed Hadoop) in the Figure 19, which
implement the three Storage, Processing and Service Layers,
as explained in Section V-A, B, and C. The other container is
based on Apache NiFi used to implement the Ingestion Layer
together with Processors and the Controller as explained in
Section V-E.
These two containers communicate over a virtual network,

allowing exchanging data in an isolated environment expos-
ing Web services to access the platforms and perform tasks.
The DT Layer has been implemented by a Python

environment that allows the execution of the instances of
the classes, described in Section VI, that realized the Digital
Twin Models, via a Virtual Machine (VM).
This deployment enables the scalability of the architecture

by moving containers on a distributed cluster.
A docker image containing the proposed platform is made

available for further testing.11

VIII. CONCLUSION
This paper introduces a novel approach to design a Digital
Twin (DT) model of a railway switch point. The derived
virtual objects are shaped by synthetic data, applying

10https://www.cloudera.com
11docker pull julio92sg/data:cloudera-hadoop-nifi

machine learning techniques to raw data collected from
physical entities. The proposed Big Data architecture tackles
several significant challenges that stem from the sheer
volume and complexity of data produced in the railway
domain, as well as the requirement to preserve and process
raw data from legacy systems.
Through our proposal, we addressed the heterogeneity of

data sources in railway systems by enabling the collection
of data from diverse objects such as semaphores, switches,
signals, and level crossings. Each of these objects produced
by various manufacturers presents different data formats and
communication protocols, adding complexity to the data
acquisition process.
The proposed architecture not only manages the stor-

age of raw data in its unmodified form, a necessity for
detailed analysis during system failures, but also handles
the transformation of this data for analytics and DT model
creation. Dealing with missing or erroneous data, which is
not uncommon, is also crucial to ensure the accuracy of the
resulting analytical models.
The case study demonstrates that the architecture can effi-

ciently collect, process, and transform raw data into a suitable
training dataset for Generative Adversarial Network (GAN)-
based DT model creation. The synthetic data generated by
the GAN accurately simulate the physical object’s behavior,
as shown by the overlapping distribution of real and synthetic
data as well by models comparison.
It is worth noting that despite existing signal processing

techniques for railway systems, DT technology offers unique
advantages. Digital Twins provide a virtual representation of
the physical asset, thereby allowing improved monitoring,
control, and optimization of its performance. Our DT model
for railway switch points can enhance existing signal pro-
cessing techniques, improving overall system performance,
and ensuring the safety and reliability of railway
systems.
We acknowledge that GAN training is a time-consuming

task that might necessitate further research for efficient par-
allelization and speed optimization, especially in scenarios
where real-time data processing is required. Nonetheless,
our research presents a promising solution for simulat-
ing the behavior of railway switch points, which can
also be extended to other domains with similar data
characteristics.

REFERENCES
[1] I. Errandonea, S. Beltrán, and S. Arrizabalaga, “Digital twin for

maintenance: A literature review,” Comput. Ind., vol. 123, Dec. 2020,
Art. no. 103316, doi: 10.1016/j.compind.2020.103316.

[2] A. Thaduri, D. Galar, and U. Kumar, “Railway assets: A potential
domain for big data analytics,” Procedia Comput. Sci., vol. 53,
pp. 457–467, 2015, doi: 10.1016/j.procs.2015.07.323.

[3] F. Ghofrani, Q. He, R. M. Goverde, and X. Liu, “Recent applications
of big data analytics in railway transportation systems: A survey,”
Transp. Res. Part-C, Emerg. Technol., vol. 90, pp. 226–246, May 2018,
doi: 10.1016/j.trc.2018.03.010.

[4] Q. Xu et al., “A platform for fault diagnosis of high-speed train based
on big data,” IFAC-PapersOnLine, vol. 51, no. 18, pp. 309–314, 2018,
doi: 10.1016/j.ifacol.2018.09.318.

358 VOLUME 5, 2024

http://dx.doi.org/10.1016/j.compind.2020.103316
http://dx.doi.org/10.1016/j.procs.2015.07.323
http://dx.doi.org/10.1016/j.trc.2018.03.010
http://dx.doi.org/10.1016/j.ifacol.2018.09.318

[5] S. Kaewunruen and N. Xu, “Digital twin for sustainability evaluation
of railway station buildings,” Front. Built Environ., vol. 4, p. 77,
Dec. 2018, doi: 10.3389/fbuil.2018.00077.

[6] M. Nold and F. Corman, “How will the railway look like in 2050?
A survey of experts on technologies, challenges and opportunities
for the railway system,” IEEE Open J. Intell. Transp. Syst., vol. 5,
pp. 85–102, 2024, doi: 10.1109/OJITS.2023.3346534.

[7] O. Himrane, J. Beugin, and M. Ghazel, “Implementation of
a model-oriented approach for supporting safe integration of
GNSS-based virtual Balises in ERTMS/ETCS level 3,” IEEE
Open J. Intell. Transp. Syst., vol. 4, pp. 294–310, 2023,
doi: 10.1109/OJITS.2023.3267142.

[8] J. Xun, Y. Li, R. Liu, Y. Li, and Y. Liu, “A survey
on control methods for virtual coupling in railway operation,”
IEEE Open J. Intell. Transp. Syst., vol. 3, pp. 838–855, 2022,
doi: 10.1109/OJITS.2022.3228077.

[9] A. Gálvez et al., “Hybrid models and digital twins for condition
monitoring: HVAC system for railway,” in Proc. 10th EUROSIM
Congr. Model. Simul., 2019, p. 52.

[10] R. Tang et al., “A literature review of artificial intelligence applications
in railway systems,” Transp. Res. Part-C, Emerg. Technol., vol. 140,
Jul. 2022, Art. no. 103679, doi: 10.1016/j.trc.2022.103679.

[11] D. Fässler, “Time series models for predicting failure-relevant charac-
teristics of railway switches,” Ph.D. dissertation, Dept. Math. Econ.,
Ulm Univ., Ulm Germany, Jul. 2020.

[12] N. Marz, Big Data: Principles and Best Practices of Scalable Realtime
Data Systems. Sebastopol, CA, USA: O’Reilly Media, 2013.

[13] H. Fang, “Managing data lakes in big data era: What’s a
data lake and why has it became popular in data man-
agement ecosystem,” in Proc. IEEE Int. Conf. Cyber Technol.
Autom., Control, Intell. Syst. (CYBER), 2015, pp. 820–824,
doi: 10.1109/CYBER.2015.7288049.

[14] T. Kluyver et al., “Jupyter notebooks-a publishing format for
reproducible computational workflows,” in Positioning and Power
in Academic Publishing: Players, Agents and Agendas, F. Loizides
and B. Scmidt Eds. Amsterdam, The Netherlands: IOS Press, 2016,
pp. 87–90.

[15] A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin: Enabling
technologies, challenges and open research,” IEEE Access, vol. 8,
pp. 108952–108971, 2020, doi: 10.1109/ACCESS.2020.2998358.

[16] M. Grieves and J. Vickers, “Digital twin: Mitigating Unpredictable,
Undesirable Emergent Behavior in Complex Systems,”
Transdisciplinary Perspectives on Complex Systems. Cham,
Switzerland: Springer, 2017, pp. 85–113.

[17] J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series generative
adversarial networks,” in Advances in Neural Information Processing
Systems, vol. 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d Alché-Buc, E. Fox, and R. Garnett, Eds. Red Hook, NY, USA:
Curran Assoc., Inc., 2019.

[18] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,”
2016, arXiv:1701.00160.

[19] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training GANs,” in Proc. 30th Int.
Conf. Neural Inf. Process. Syst. (NIPS’16), 2016, pp. 2234–2242.

[20] J. D. Hamilton, “Front Matter,” in Time Series Analysis. Princeton,
NJ, USA: Univ. Press, 1994, pp. i–iv. [Online]. Available:
http://www.jstor.org/stable/j.ctv14jx6sm.1

[21] S. Hochreiter, J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997,
doi: 10.1162/neco.1997.9.8.1735. [Online]. Available: https://doi.org/
10.1162/neco.1997.9.8.1735

[22] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
2014, arXiv:1411.1784.

[23] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” 2017,
arXiv:1701.07875.

[24] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. C. Courville, “Improved training of Wasserstein GANs,” in
Advances in Neural Information Processing Systems, vol. 30, I. Guyon
et al., Eds. Red Hook, NY, USA: Curran Assoc., Inc., 2017.

[25] N. Kodali, J. Hays, J. D. Abernethy, and Z. Kira, “On convergence
and stability of GANs,” 2017, arXiv:1705.07215.

[26] M. G. Bellemare et al., “The Cramer distance as a solution to biased
Wasserstein gradients,” 2017, arXiv:1705.10743.

[27] C. Fabbri. “Conditional Wasserstein generative adversarial networks.”
2017. [Online]. Available: https://cameronfabbri.github.io/papers/
conditionalWGAN.pdf

[28] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
“Modeling tabular data using conditional GAN,” in Proc. 33rd Conf.
Neural Inf. Process. Syst., 2019, pp. 1–11.

[29] D. Reynolds, “Gaussian mixture models,” in Encyclopedia of
Biometrics. Boston, MA, USA: Springer, 2009, pp. 659–663,
doi: 10.1007/978-0-387-73003-5_196. [Online]. Available:
https://doi.org/10.1007/978-0-387-73003-5_196

[30] Z. Lin, A. Jain, C. Wang, G. Fanti, and V. Sekar, “Using GANs for
sharing networked time series data: Challenges, initial promise, and
open questions,” in Proc. ACM Internet Meas. Conf., New York, NY,
USA, 2020, pp. 464–483, doi: 10.1145/3419394.3423643. [Online].
Available: https://doi.org/10.1145/3419394.3423643

Open Access funding provided by ‘Università degli Studi di Modena e Reggio Emilia’ within the CRUI CARE Agreement

VOLUME 5, 2024 359

http://dx.doi.org/10.3389/fbuil.2018.00077
http://dx.doi.org/10.1109/OJITS.2023.3346534
http://dx.doi.org/10.1109/OJITS.2023.3267142
http://dx.doi.org/10.1109/OJITS.2022.3228077
http://dx.doi.org/10.1016/j.trc.2022.103679
http://dx.doi.org/10.1109/CYBER.2015.7288049
http://dx.doi.org/10.1109/ACCESS.2020.2998358
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/978-0-387-73003-5_196
http://dx.doi.org/10.1145/3419394.3423643

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

