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Abstract. The huge amount of information some of the new optical satellites
developed nowadays will create demands to quickly and reliably compensate for
changes in the atmospheric transmittance and varying solar illumination condi-
tions. In this paper three different forms of affine transformation models (gen-
eral, particular and diagonal) are considered as candidates for rapid compensation
of illumination variations. They are tested on a group of three pairs of CHRIS-
PROBA radiance images obtained in a test field in Barrax (Spain), and where
there is a difference in the atmospheric as well as in the geometrical acquisi-
tion conditions. Results indicate that the proposed methodology is satisfactory
for practical normalization of varying illumination and atmospheric conditions in
remotely sensed images required for operational applications.

1 Introduction

Nowadays, there are satellites that are able to acquire images from the same site every
day with a high spatial resolution (FORMOSAT−2). Other satellites with similar ca-
pabilities will be launched in the next future (like SENTINEL− 2, [14]). A limiting
factor in this series exploitation is the need to compensate for illumination effects due to
the changing atmospheric transmittance conditions and solar illumination angles. Cor-
rections are typically made using an atmospheric radiative transfer code. The problem,
however, is typically the lack of information about the actual atmospheric status (water
vapour, aerosols type, etc.). For some systems it is possible to derive this information
from the acquired data itself, but this is not always the case (For the MERIS satellite,
for instance, this is possible, but not for the SPOT satellite). An alternative would be to
consider it from an illumination change assessment (normalization type compensation
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strategy) point of view, where the surface has not been altered, where only the scattering
events in the atmosphere would be considered (the absorption affects would be removed
by other methods). This approach is currently used in the MERIS/ENVISAT products
[15]. A methodology following this strategy is presented in this paper, where the only
information available should be an image taken as reference.

Healey et al theoretically proved [1], [2], that a change in the illumination conditions
could be modeled by an affine transformation model. There exist three main different
types of affine transformation models. The simplest one is given by a diagonal (matrix)
transform of the feature space (diagonal model) [3]. This model, which corresponds
to the so-called von-Kries adaptation in human colour vision [4], may be generalized
considering a non-diagonal matrix transform (particular model) [5], and adding to this
model an offset, i. e., a translation vector (general model) [6].

In this paper we analyze the applicability of the three different types of affine trans-
formation models and compare their performance using a group of radiance images
from the CHRIS-PROBA satellite acquired during July the 12th and July the 14th

2003 over Barrax (Spain). The combination CHRIS-PROBA provided multi-spectral
and multi-angular images of this test site [8]. This paper is built on the research made
by Latorre Carmona et al on atmospheric compensation (using affine compensation
models) [17] for the case of synthetically radiance images generated using the 6S code
[7]. The organization of the paper is as follows: Section 2 introduces the three affine
compensation models. Section 3 analyses the assumptions made in the paper with those
made by the 6S code for atmospheric correction. Section 4 presents the methodology
used to register the images and presents and discusses the atmospheric compensation
results obtained. Conclusions can be found in Section 5.

2 Affine illumination compensation

Assume a vector x ∈ RD
+ representing a measurement from a D bands linear multispec-

tral sensor. The application of a transformation model is therefore valid whether x is
considered as the radiance reaching the sensor, or the response of this sensor. Under a
change in the illumination characteristics this vector will undergo a change x → �x. The
most general affine transformation model considers that both x, �x are related through:
�x = B · x+ t [9]. In this equation, B is a D×D matrix and t is a D× 1 vector. If the
vector t is considered zero, the transformation model would be: �x = A · x, where A
would also be a D×D matrix. This is the camera model considered by Healey et al [1].
Under certain conditions of the spectral response of the sensors [3], matrix A may be
approximated as a diagonal matrix. The three models will be called hereafter general,
particular and diagonal affine models.

One step in the application of the method to obtain the parameters of the general
affine transformation model is the assessment of the inverse matrix of the matrix F ob-
tained after the Cholesky decomposition of the covariance matrix of the data (x). This
assessment may present numerical instability problems due to some characteristics in
the signal shape, as it can be the abrupt change in this shape in some specific spectral
ranges (for instance, when dealing with the radiance coming from a vegetated surface).
The inverse matrix can be obtained applying the Truncated Singular Value Decomposi-
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tion (t − SV D) technique [12]. For more details about the methods used to apply the
three affine models, see the Appendix A and [16], [9]. The t− SV D technique can be
found in the Appendix B.

3 Comparison with standard atmospheric correction methods

There are two main atmospheric processes to take into account, the gaseous absorp-
tion and the scattering by molecules and aerosols. In this paper, the main interest is
in the scattering properties of the atmosphere. To isolate these changes from those of
absorption, the peak stripping method [13] was applied, but for absorption valleys. The
original method compares the value of channel i with the mean of its 2 direct neigh-
bours, i. e., mi =

y(i−1)+y(i+1)

2 , and if yi < mi then yi ← mi, and otherwise left
unchanged. In our case, the condition is if yi > mi then yi ← mi. This process is
applied iteratively. Figure 1(a) shows the transmittance due to gases (tg) in the spectral
interval [400, 1100]nm simulated using the 6S code for the US62 atmospheric model,
with an O3 (Ozone) content of 300 Dobson Units (DU) (i. e., 3 cm column) and the
water vapour column at 2.5 cm (values close to those directly obtained in Barrax during
the campaign made in June and July 2003 [8]). Figure 1(a) shows that main atmospheric
absorption valleys due to gases appear in the wavelength region: 680 ≤ λ ≤ 1000nm.
A technique to obtain a curve that may eliminate the atmospheric absorption valleys
would just consist of normalizing the radiance curve per pixel by the tg curve. How-
ever, this curve must be found first, and this can only happen if we know the atmospheric
composition at the time of acquisition or if it is modeled using a radiative transfer code
like 6S. The advantage the method we apply has is that no prior knowledge about the
atmosphere composition is necessary.

4 Results and discussion

A series of four images from CHRIS-PROBA were selected for the assessment of the
three illumination compensation algorithms. These images were acquired in July the
12th and July the 14th 2003 over Barrax (Spain). Image labeled 35A2 was acquired in
July the 12th 2003. It corresponds to a Flight Zenith Angle (FZA) = 0◦. This image
was selected as the reference image. Other three images obtained during July the 14th

2003 were considered as the images to be registered and compensated (called warp
images) in relation to the reference one (35A2). Its FZA are 0◦ (image labeled 3598),
+36◦ (image labeled 3599) and −36◦ (image labeled 359A). In Figure 1(b) a polar plot
showing the image acquisition geometry for July the 12th and the 14th is shown. These
images with a short time difference among them were selected in order to make sure
all changes in the radiance came only from the illumination and geometry acquisition
conditions, and not from changes in the surface (i. e., soil moisture or vegetation).

4.1 Image registration

Image 35A2 was taken as reference. The rest of the images were co-registered in re-
lation to this one, using Ground Control Points (GCPs) with sub-pixel precision. 100
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Fig. 1. (a) tg plot in the spectral interval [400, 1100]nm simulated using the 6S code using an
atmospheric model called US62. (b) Polar plot of the acquisition geometry.

points were used for each image, with an RMSE = 0.3 applying a 4th order polyno-
mial function. Re-sampling was made considering bi-cubic interpolation. A mask was
created to remove some clouds (and the corresponding shadows) that were detected
in the reference image. Other changes in the surface were included, like harvesting in
some crops during the two days of difference between the images. Figure 2 shows a
false colour RGB image of 35A2, 3598, and the result of the registration.

4.2 Scattering vs absorption

Clayton method was applied with two restrictions: (a) fixing some specific wavelengths,
so that the radiance for them was not updated on each iteration, (b) using two iteration
values, 40 for wavelengths λ ≤ 751nm and 120 for λ > 751nm, in order to preserve
the chlorophyll activity region valley. A part of the wavelengths that were not updated
were used to force the method not to smooth the chlorophyll absorption valley. The
rest were selected as the local maxima for a radiance pixel of the terrain whose radi-
ance curve were as flat and as smooth as possible. Figure 3(a),(b) shows the radiance
curves corresponding to a pixel from a potato crop (dry barley in (b)) area of Barrax test
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Fig. 2. 35A2, 3598, and registered images

site for the 35A2/3598 image pair, before and after the application of the absorption
valley removal strategy. The group of wavelengths (583nm, 605nm, 674nm) were not
updated during the application of the algorithm. Values higher than 30 for wavelengths
lower than 751nm created numerical instability problems in the assessment of the in-
verse matrix of the Cholesky decomposition of the covariance matrix of the pixel data,
which is needed to apply the general affine compensation model. A Truncated Singular
Value Decomposition Technique [12] was used to assess the inverse matrices. The value
of 40 was considered as an intermediate value allowing the elimination of absorption
peaks and conservation of the chlorophyll absorption valley, and the assessment of the
corresponding inverse matrices.

4.3 Illumination compensation

Suppose two different point sets as N ×D matrices (A and B), corresponding to two
radiance images for two different illumination conditions. Considering also the case of
compensating the illumination change of the second image, the aim would be to trans-
form the second image B → �B into an image as close as possible to the first one. Thus,
being the first image the target image, the following relative frobenius index could be es-
tablished as a measure of the illumination compensation performance: FI = �A−�B�F

�A�F
,

where the Fobenius norm for a N ×D matrix X is: �X�F =
��N

i=1

�D
j=1 |xij |2. Ta-

ble 1 shows the compensation capability of the three affine models, for each one of the
pairs of images that were registered. The general and particular affine models are bet-
ter than the diagonal model for the three pairs of images. The relative frobenius norm,
before illumination compensation, for the case 35A2/3599 pair, was particularly low.
The highest frobenius norm before compensation was for the 35A2/3598 pair. That
may be due to the fact (see Figure 1(b)) that images 35A2 and 3598 are almost aligned
with the Sun, in the first case in opposition, and in the second case in conjunction.
This geometry generates high angular effects on the surface reflectance. These effects
are however minimized in the plane perpendicular to the Solar plane. Image 3599 is in
that plane, whereas image 359A is close to the principal plane. Therefore, difference
between images before compensation are lowest in the 35A2/3599 pair.

The capability of the three models when no information able to create masks is
available during/after acquisition was also tested. Table 2 shows the compensation re-
sults for the case when all the pixels in the images were considered. As in the previous
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Fig. 3. Result of the application of the absorption valley removal strategy to the radiance curves
of the reference and warp images for the case of a (a) potato crop pixel, (b) dry barley pixel,
selected from the 35A2/3598 CHRIS-PROBA image pair.

case, the relative frobenius norm, before illumination compensation, was low for the
case 35A2/3599 pair. The general affine model, for this pair gives a relative frobenius
norm higher than for the case before compensation. That was caused by the fact that
for a very small number of pixels the norm after compensation was higher than before
compensation, but not for the rest of the image pixels.

Illumination compensation between images on a pixel by pixel basis was also tested.
In this case, the ratio of the norm of the difference in the radiance vector between each
pixel in the reference image and the pixel in the registered and compensated image,
and the pixel in the reference image, was taken as the criteria. Figure 4 shows a colour
coded image for this ratio for the 35A2/3598 image pair. In all these cases, masks for
clouds and shadows had been applied. There is a general tendency to the reduction in
the difference between the images. However, there are some parts where this reduction
is lower. That is the case for the two circular crops on top of all the images of Figure
4, as well as for some small areas close to the pixels where a mask had been applied.
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Pair Before compensation x
�
= A · x+ t x

�
= A · x x

�
= diag(A) · x

35A2/3598 0.214 0.059 0.056 0.062
35A2/359A 0.192 0.051 0.048 0.056
35A2/3599 0.055 0.050 0.047 0.051

Table 1. Compensation results for the three affine models

Pair Before compensation x
�
= A · x+ t x

�
= A · x x

�
= diag(A) · x

35A2/3598 0.226 0.101 0.090 0.096
35A2/359A 0.206 0.093 0.086 0.092
35A2/3599 0.091 0.092 0.084 0.088

Table 2. Compensation results without applying the correction masks

In the case of the two circular crops, the difference could be attributed to a land-use
change, and not to an illumination or acquisition geometry change. Figure 5 shows

Fig. 4. Relative frobenius norm for the pair 35A2 and 3598 (a) Before Compensation. (b) General
affine compensation. (c) Particular affine compensation. (d) Diagonal affine compensation

the radiance curve for a group of four pixels for the reference image, for the image
to be compensated, and for the resulting compensated image after the application of
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the general affine model. Three pixels corresponded to crops of different nature (corn,
potato, and dry barley, Figure 5(a) to (c)). One pixel (Figure 5(d)) corresponded to one
of the two circular crops with the highest difference after illumination compensation.
In general terms, there is a small difference between the aim curve and the curve of the
compensated image in each plot which proves the capacity of the method. However,
last plot in Figure 5 shows that the general affine method is not able (nor the rest) to
compensate for the difference in the radiance curves for that particular pixel (of one of
the circular crops, please see Fig. 4(b)). This difference could be attributed to a surface
change for which no previous information was available.

      
































      




























      

























      
































Fig. 5. Radiance curves of pixels of different crops for the reference, warp and warp after illumi-
nation compensation images

5 Conclusions

In this paper we have shown that the three affine compensation models (general, par-
ticular and diagonal) can be used to compensate for illumination variations in radiance
images due to changes in the atmosphere and acquisition conditions, being the par-
ticular affine model the best of the three. The methodology presented in this paper is
satisfactory for compensation of varying illumination and atmospheric conditions in
remotely sensed images required for operational applications.
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A Deduction of the illumination compensation formulae for the 3
affine models.

Let X and �X be two N ×D matrices representing two point sets, with N the number
of points in the set, and C and �C their covariance matrices. Applying the Cholesky
Factorization to C and �C, they can be written as: C = F · Ft and �C = �F · �Ft,
where Ft and �Ft are the transpose matrices of F and �F respectively. Points in the
data set are first whitened (only shown for the first group), i. e. y = F−1 · x, where
x = x − E{x}. This matrix may be ill-conditioned under some circumstances, and
a technique like Truncated Singular Value Decomposition can be used to assess them.
See Appendix B and [12] for details. Taking into account the previous equation, we
have: �F · �y = B · F · y, and creating a quadratic form of this last expression, the next
expression follows: �F · �Ft = B · F · Ft · Bt. In [10], they proved that an equation
of the form T · Tt = S · St has a solution of the form T = S · P, where P is an
orthonormal matrix. This will help finding the final relation y → �y. Applying this to
the expression of �F · �Ft and solving for B, we have: B = �F ·Pt ·F−1. Substitution of
B in �F · �y = B · F · y yields: �y = Pt · y.

The assessment of the P matrix in this context is known as the Orthogonal Pro-
crustes problem (see [11] for details). The solution matrix is P = V · Wt, where
V ·D ·Wt is the so-called Singular Value Decomposition of (Yt · �Y). Y and �Y are
N ×D matrices formed by the vectors y and �y of the data point sets. B is obtained re-
placing P in B = �F ·Pt ·F−1. Applying the Expectation Operator (E) to �x = B ·x+t,
we get t = E{�x}−B · E{x}.

The matrix A in the particular affine transformation model can be obtained using the
definition of the Moore-Penrose inverse. Following [3], for a D×N matrix Xt of points
under some reference illumination condition, denote by �Xt the corresponding matrix
when there is an illumination change. The matrix A that accomplishes: �Xt ≈ A · Xt

is: A=�Xt · [Xt]+.[Xt]+ is the Moore-Penrose inverse of matrix Xt (i. e., [Xt]+ =

X·(Xt ·X)−1). Considering [3]: Ad
ii = �Xt

i ·[Xt
i ]

+ =
�Xt
i ·Xi

Xt
i ·Xi

, where the single subscript
i denotes the ith matrix row and the double subscript ii denotes matrix element at row i
and column i.

B Truncated Singular Value Decomposition technique.

Let F ∈ Rm×n be a rectangular matrix with m > n. The Singular Value Decom-
position (SV D) of F is given by [12]: F = U · Σ · VT =

�n
i=1 uiσivT

i , where
U = (u1,u2, . . . ,un) and V = (v1,v2, . . . ,vn), are orthonormal matrices, and where
the numbers σi are called the singular values of F. If matrix F is ill-conditioned/rank
deficient, the closest rank-k approximation Fk to F would be obtained by truncating the
SV D expansion at k [12], i. e.:Fk =

�k
i=1 uiσivT

i , k ≤ n. Taking into account the
properties of the orthonormal matrices U and V (U−1 = UT , V−1 = VT ), the inverse
matrix of F is: F−1 = V ·Σ−1 ·UT =

�n
i=1 vi ·

�
1
σi

�
·uT

i , and and the closest rank-k

approximation, (F−1)k of F−1 would be given by [12]: (F−1)k =
�k

i=1 vi ·
�

1
σi

�
·uT

i .
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