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Describing Images using Qualitative Models
and Description Logics
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University Jaume I, Castellón, Spain

Our approach describes any digital image qualitatively by detecting re-
gions/objects inside it and describing their visual characteristics (shape
and colour) and their spatial characteristics (orientation and topology) by
means of qualitative models. The description obtained is translated into a
description logic (DL) based ontology, which gives a formal and explicit
meaning to the qualitative tags representing the visual features of the objects
in the image and the spatial relations between them. For any image, our
approach obtains a set of individuals that are classified using a DL reasoner
according to the descriptions of our ontology.

Keywords: qualitative shape, qualitative colours, qualitative orientation, to-
pology, ontologies, computer vision

1 Introduction

Using computers to extract visual information from space and interpreting it in a
meaningful way as human beings can do remains a challenge. As digital images
represent visual data numerically, most image processing has been carried out by
applying mathematical techniques to obtain and describe image content.

From a cognitive point of view, however, visual knowledge about space is quali-
tative in nature. As Freksa (1991) mentions: The retinal image of a visual object
is a quantitative image in the sense that specific locations on the retina are stim-
ulated by light of a specific spectrum of wavelengths and intensity. However, the
knowledge about a retinal image that can be retrieved from memory is qualitative.
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We cannot retrieve absolute locations, wavelengths and intensities from memory.
We can only recover certain qualitative relationships between features within the
image or between image features and memory features. Qualitative representa-
tions of this kind are similar in many ways to “mental images” (Kosslyn, 1994;
Kosslyn et al., 2006) that people report on when they describe what they have
seen from memory or when they attempt to answer questions on the basis of visual
memories. Moreover, there are other cases in human cognition where the input
available are also qualitative in nature, such as verbal descriptions of a village
layout, route directions, and shape descriptions (Forbus, 2008).

In recent years, there has been an emphasis on developing new and more po-
werful qualitative spatial and temporal reasoning mechanisms for applying in real
world applications (Bhatt et al., 2010). However, extracting qualitative/semantic
information from images as human beings can do is still an unsolved problem
in computer vision. The approach presented here can describe any digital image
qualitatively and then store the results of the description as facts according to an
ontology, from which new knowledge in the application domain can be inferred
by the reasoners. The association of meaning with the representations obtained by
robotic systems, also known as the symbol-grounding problem, is still a prominent
issue within the field of Artificial Intelligence (AI) (Kuhn et al., 2007; Williams,
2008; Williams et al., 2009). Therefore, in order to contribute in this field, the
first application on which our approach has been tested is extracting semantic in-
formation from images captured by a robot camera in indoor environments. This
semantic information will support robot self-localization and navigation in the fu-
ture.

As Palmer (1999) points out, in an image, different colours usually indicate
different objects/regions of interest. Cognitively, this is the way people process
images. Therefore, in our approach, a graph-based region segmentation method
based on intensity differences (Felzenszwalb and Huttenlocher, 2004) 1 has been
used in order to identify the relevant regions in an image. Then the visual and
spatial features of the regions are computed. The visual features of each region are
described by qualitative models of shape (Falomir et al., 2008) and colour, while
the spatial features of each region are described by qualitative models of topology
(Egenhofer and Al-Taha, 1992) and orientation (Hernández, 1991; Freksa, 1992).

We have adopted description logics (DL) (Baader et al., 2003) as the formalism
for representing the low-level information from image analysis and we have cho-
sen OWL 22 (Horrocks et al., 2003; Cuenca Grau et al., 2008), which is based on
the description logic SROIQ (Horrocks et al., 2006), as the ontology language.
This logic-based representation enables us to formally describe the qualitative fea-
tures of our images. Our system also includes a DL reasoner, enabling objects
from the images and the images themselves to be categorized according to the

1More details in: http://people.cs.uchicago.edu/ pff/segment/
2Ontology Web Language: http://www.w3.org/TR/owl2-syntax/
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definitions incorporated into the ontology schema, which enhances the qualitative
description of the images with new inferred knowledge.

Description logics are fragments of first order logic, therefore they work under
the open world assumption (OWA) (Hustadt, 1994), that is, unlike databases, they
work under the assumption that knowledge of the world is incomplete. In this
paper, the suitability of the OWA for our domain is analyzed and the cases where
additional reasoning services or the closed world assumption (CWA) would be
necessary are detected. Moreover, a partial solution for our setting is proposed.

The remainder of this paper is organized as follows. Section 2 describes the
related work. Section 3 summarizes our approach for qualitative description of
images. Section 4 presents the proposed ontology-based representation of quali-
tative description of images. Section 5 shows the tests carried out by our approach
in a scenario where a robot navigates and then the results obtained are analysed.
Finally, Section 6 explains our conclusions and future work.

2 Related Work

Related studies have been published that extract qualitative or semantic informa-
tion from images representing scenes (Socher et al., 1997; Lovett et al., 2006;
Qayyum and Cohn, 2007; Oliva and Torralba, 2001; Quattoni and Torralba, 2009).

Socher et al. (1997) provide a verbal description of an image to a robotic ma-
nipulator system so it can identify and pick up an object that has been previously
modelled geometrically and then categorized qualitatively by its type, colour, size
and shape. The spatial relations between the predefined objects detected in the
image are also described qualitatively. Lovett et al. (2006) propose a qualitative
description for sketch image recognition, which describes lines, arcs and ellipses
as basic elements and also the relative position, length and orientation of their
edges. Qayyum and Cohn (2007) divide landscape images using a grid for their
description so that semantic categories (grass, water, etc.) can be identified and
qualitative relations of relative size, time and topology can be used for image des-
cription and retrieval in databases. Oliva and Torralba (2001) obtain the spatial
envelope of complex environmental scenes by analysing the discrete Fourier trans-
form of each image and extracting perceptual properties of the images (natural-
ness, openness, roughness, ruggedness and expansion) which enable classification
of images in the following semantic categories: coast, countryside, forest, moun-
tain, highway, street, close-up and tall building. Quattoni and Torralba (2009) pro-
pose an approach for classifying images of indoor scenes in semantic categories
such as bookstore, clothing store, kitchen, bathroom, restaurant, office, classroom,
etc. This approach combines global spatial properties and local discriminative in-
formation (i.e. information about objects contained in the places) and uses learn-
ing distance functions for visual recognition.

We believe that all the studies described above provide evidence for the effec-

3



4 Z. Falomir et al.

tiveness of using qualitative/semantic information to describe images. However,
in the approach developed by Socher et al. (1997), a previous object recognition
process is needed before qualitatively describing the image of the scene the robot
manipulator has to manage, whereas our approach is able to describe the image of
the scene in front of the robot without this prior recognition process because the
object characterization is done afterwards using the definitions of our ontology.
The approach of Lovett et al. (2006) is applied to sketches, while our approach is
applied to digital images captured from the real robot environment. Qayyum and
Cohn (2007) use a grid to divide the image and describe what is inside each grid
square (grass, water, etc.), which is adequate for their application but the objects
are divided into an artificial number of parts that depend on the size of the cell,
while our approach extracts complete objects, which could be considered more
cognitive. The approach of Oliva and Torralba (2001) is useful for distinguishing
between outdoor environments. However, as this approach does not take into ac-
count local object information, it will obtain similar spatial envelopes for similar
images corresponding to the indoor environments where our robot navigates, such
as corridors in buildings. The approach of Quattoni and Torralba (2009) performs
well in recognizing indoor scenes, however it uses a learning distance function
and, therefore, it must be trained on a dataset, while our approach does not require
training.

There are related studies in the literature that examine the possible benefits
and challenges of using description logics (DL) as knowledge representation and
reasoning systems for high-level scene interpretation (Neumann and Möller, 2008;
Dasiopoulou and Kompatsiaris, 2010). Neumann and Möller (2008) also present
the limitations of current DL reasoning services in a complete scene interpretation.
In addition, they give some useful guidelines for future extensions of current DL
systems. Nevertheless, the use of DLs in image interpretation is still presented
as an open issue (Dasiopoulou and Kompatsiaris, 2010) because of their inherent
open world semantics.

Only a few approaches, using DL-based ontologies to enhance high-level image
interpretation, can be found in the literature (Maillot and Thonnat, 2008; Johnston
et al., 2008; Schill et al., 2009; Bohlken and Neumann, 2009). Maillot and Thon-
nat (2008) describe images using an ontology that contains qualitative features of
shape, colour, texture, size and topology and apply this description to the classifi-
cation of pollen grains. In the work by Maillot and Thonnat (2008), the regions to
describe inside an image are segmented manually using intelligent scissors within
the knowledge acquisition tool, while in our approach they are extracted auto-
matically. For the ontology-backend, Maillot and Thonnat (2008) perform, as in
our approach, a good differentiation of three levels of knowledge; however, they
do not tackle the open world problem of image interpretation. Johnston et al.
(2008) present an ontology-based approach to categorize objects and communi-
cate among agents. This approach was innovatively tested at the RoboCup tourna-
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ment where it was used to enable Sony AIBO robots to recognize the ball and the
goal. Similarly to our approach, the authors adopt description logics to represent
the domain entities and they use a reasoner to infer new knowledge. In contrast to
our approach, the lighting conditions are controlled in the RoboCup tournament
and the shape and colour of the objects to search for (ball and goal) are known a
priori and are easy to locate using colour segmentation techniques. Moreover, this
work does not address the problems related to the open world assumption. Schill
et al. (2009) describe an interesting scene interpretation approach that combines
a belief theory with an OWL-like ontology based on DOLCE (Gangemi et al.,
2002). Identified objects are classified into the ontology concepts with a degree
of belief or uncertainty. This approach could be considered as complementary to
ours, and future extensions may consider the introduction of uncertainty. Bohlken
and Neumann (2009) present a novel approach in which a DL ontology is com-
bined with the use of rules to improve the definition of constraints for scene in-
terpretation. The use of rules enables them to combine the open world semantics
of DLs with closed world constraint validation. However, the use of rules may
lead to undecidability and so their use should be restricted (Motik et al., 2005;
Krötzsch et al., 2008). Our approach implements a simpler solution, although it
would be interesting to analyze extensions involving the use of rules. Finally, it
should be noted that our DL-ontology is not designed for a particular type of robot
or scenario. It is based on a general approach for describing any kind of image
detected by a digital camera.

Other interesting approaches are those that relate qualitative spatial calculus
with ontologies (Bhatt and Dylla, 2009; Katz and Cuenca Grau, 2005). Bhatt and
Dylla (2009) modelled spatial scenes using an ontology that represents the topo-
logical calculus RCC-8 and the relative orientation calculus OPRA. In contrast
to our approach, they do not address the problem of extracting and describing ob-
jects contained in digital images and their ontology is not based on DL. Katz and
Cuenca Grau (2005) exploit the correspondences among DL, modal logics and
the Region Connection Calculus RCC-8 in order to propose a translation of the
RCC-8 into DL.

Despite all the previous studies combining the extraction of qualitative/semantic
information and its representation using ontologies, the problem of bringing to-
gether low-level sensory input and high-level symbolic representations is still a
big challenge in robotics. Our approach is a small contribution to meeting this
challenge.

3 Our Approach for Qualitative Description of Images

The approach presented in this paper describes any image qualitatively by describ-
ing the visual and spatial features of the regions or objects within it.

For each region or object in the image, the visual features (Section 3.1) and

5



6 Z. Falomir et al.

the spatial features (Section 3.2) are described qualitatively. As visual features,
our approach describes the shape and colour of the region, which are absolute
properties that only depend on the region itself. As spatial features, our approach
describes the topology and orientation of the regions, which are properties defined
with respect to other regions (i.e. containers and neighbours of the regions).

A diagram of the qualitative description obtained by our approach is shown in
Figure 1.

Figure 1: Structure of the qualitative image description obtained by our approach.

3.1 Describing Visual Features of the Regions in the Image

In order to describe the visual features of the regions or objects in an image, we
use the qualitative model of shape description formally defined in (Falomir et al.,
2008), which is summarized in Section 3.1.1, and a new model for qualitative
colour naming based on the Hue, Saturation and Lightness (HSL) colour space,
which is defined in Section 3.1.2.

3.1.1 Qualitative Shape Description

Given a digital image containing an object, our approach for Qualitative Shape
Description (QSD) first automatically extracts the boundary of this object using
colour segmentation (Felzenszwalb and Huttenlocher, 2004).

From all the points that define the boundary of each of the closed objects ex-
tracted, a set of consecutive points are compared by calculating the slope between
them. If the slope between a point Pi and its consecutive point Pi+1, denoted by
s1, and the slope between Pi and Pi+2, termed s2, are equal, then Pi, Pi+1 and
Pi+2 belong to the same straight segment. If s1 and s2 are not equal, Pi, Pi+1 and
Pi+2 belong to a curved segment. This process is repeated for a new point Pi+3,
calculating the slope between Pi and Pi+3 (s3), and comparing that slope with s1
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Describing Images using Qualitative Models and Description Logics 7

and so on. The process stops when all the consecutive points of the boundary are
visited.
P is considered a relevant point if: (1) it belongs to a straight segment and it

is the point at which the slope stops being constant; or (2) it belongs to a curved
segment and it is the point at which the slope changes its sign.

Note that the points of a boundary that are considered consecutive are those
separated by a pre-established granularity step. For example, if the granularity
step is k, the first point considered (Pi) will be point 1 of the set of boundary
points (PSet(1)), Pi+1 will be point k of the set of boundary points PSet(k),
Pi+2 will be PSet(2k), Pi+3 will be PSet(3k), etc. This granularity step is set
by experimentation as a function of the edge length of the described object: if the
edges are long, the granularity step will have a larger value; if they are short, the
granularity step will have a smaller value.

Finally, a set of relevant points, denoted by {P0 ,P1 ,....PN }, determines the
shape of the object. Each of those relevant points P is described by a set of four
features <KECP , AP or TCP , LP , CP>, which are defined below.

The first feature is the Kind of Edges Connected (denoted by KEC) and it
indicates the connection occurring at the relevant point P. This feature is described
by the following tags:

- line-line, if the point P connects two straight lines;
- line-curve, if P connects a line and a curve;
- curve-line, if P connects a curve and a line;
- curve-curve, if P connects two curves; or
- curvature-point, if P is a point of curvature of a curve.

If KEC is a line-line, line-curve, curve-line or curve-curve, the second feature
to consider is the Angle (denoted by A) at the relevant point. The angle is a quan-
titative feature that is discretized by using the Angle Reference System or ARS =
{◦, ALAB , AINT } where, degrees (◦) indicates the unit of measurement of the an-
gles; ALAB refers to the set of labels for the angles; and AINT refers to the values
of degrees (◦) related to each label. In our approach the ALAB and AINT used are:

ALAB = {very acute, acute, right, obtuse, very obtuse}
AINT = {(0, 40], (40, 85], (85, 95], (95, 140], (140, 180]}

On the other hand, if KEC is a curvature-point, the second feature is the Type
of Curvature (denoted by TC) at P which is defined by the Type of Curvature Ref-
erence System or TCRS = {◦, TCLAB , TCINT }, where ◦ refers to the amplitude
in degrees of the angle given by the relation between the distances da and db (see
Figure 2(a) where the type of curvature of the relevant point Pj is shown with
respect to the relevant points Pj−1 and Pj+1 ), that is, Angle(Pj )=2 arctg(da/db),
TCLAB refers to the set of labels for curvature; and TCINT refers to the values of
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degrees (◦) related to each label. In our approach the TCLAB and TCINT are:

TCLAB = {very acute, acute, semicircular, plane, very plane}
TCINT = {(0, 40], (40, 85], (85, 95], (95, 140], (140, 180]}

(a) (b)

Figure 2: Characterization of Pj as: (a) a point of curvature, and (b) a point
connecting two straight segments.

The third feature considered is the compared length (denoted by L) which is
defined by the Length Reference System or LRS = {UL, LLAB , LINT }, where
UL or Unit of compared Length refers to the relation between the length of the
first edge and the length of the second edge connected by P, that is, ul = (length of
1st edge)/(length of 2nd edge); LLAB refers to the set of labels for compared length;
and LINT refers to the values of UL related to each label.

LLAB = {much shorter (msh), half length (hl), a bit shorter (absh), similar length
(sl), a bit longer (abl), double length (dl), much longer (ml)}

LINT = {(0, 0.4], (0.4, 0.6], (0.6, 0.9], (0.9, 1.1], (1.1, 1.9], (1.9, 2.1], (2.1,∞)}

The last feature to be considered is the Convexity (denoted by C) at point P,
which is obtained from the oriented line built from the previous point to the next
point and by ordering the qualitative description of the shape clockwise. For
example from Figure 2(b), if point Pj is on the left of the segment defined by
Pj−1 and Pj+1, then Pj is convex; otherwise Pj is concave.

Thus, the complete shape of an object is described as a set of qualitative de-
scriptions of relevant points as 3:

[[KEC0, A0 | TC0, L0, C0], . . . , [KECn−1, An−1 | TCn−1, Ln−1, Cn−1]]

where n is the total number of relevant points of the object.
Finally, note that the intervals of values that define the qualitative tags repre-

senting the features angle, type of curvature and compared length (AINT , TCINT

3Ai | TCi denotes that the angle or the type of curvature that occurs at the point Pi .
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and LINT , respectively) have been calibrated according to our application and
system.

3.1.2 Qualitative Colour Description

Our approach for Qualitative Colour Description (QCD) translates the Red, Green
and Blue (RGB) colour channels into Hue, Saturation and Lightness (HSL) coor-
dinates, which are more suitable for dividing into intervals of values correspond-
ing to colour names.

In contrast to the RGB model, HSL is considered a more natural colour re-
presentation model as it is broken down according to physiological criteria: hue
refers to the pure spectrum colours and corresponds to dominant colour as per-
ceived by a human; saturation corresponds to the relative purity or the quantity
of white light that is mixed with hue; and luminance refers to the amount of light
in a colour (Sarifuddin and Missaoui, 2005). Furthermore, as W3C mentions4,
additional advantages of HSL are that it is symmetrical to lightness and darkness
(which is not the case with HSV, for example). This means that: (i) in HSL, the
saturation component takes values from fully saturated colour to the equivalent
grey, but in HSV, considering the value component at the maximum, it goes from
saturated colour to white, which is not intuitive; and (ii) the lightness in HSL al-
ways spans the entire range from black through the chosen hue to white, while in
HSV, the value component only goes halfway, from black to the chosen hue.

From the HSL colour coordinates obtained, a reference system for qualitative
colour description is defined as: QCRS = {UH, US, UL, QCLAB1..5, QCINT1..5}
where UH is the Unit of Hue; US is the Unit of Saturation; UL is the Unit of Light-
ness; QCLAB1..5 refers to the qualitative labels related to colour; and QCINT1..5

refers to the intervals of HSL colour coordinates associated with each colour label.
For our approach, the QCLAB and QCINT are the following:

QCRSLAB1 = {black, dark grey, grey, light grey, white}
QCRSINT1 = {[0 ul, 20 ul[, [20 ul, 30 ul[, [30 ul, 40 ul[, [40 ul, 80 ul[, [80 ul, 100 ul[ /

∀ UH ∧ US∈[0, 20]}

QCRSLAB2 = {red, yellow, green, turquoise, blue, purple, pink}
QCRSINT2 = {]335 uh, 360 uh] ∧ [0 uh, 40 uh], ]40 uh, 80 uh], ]80 uh, 160 uh], ]160

uh, 200 uh], ]200 uh, 260 uh], ]260 uh, 297 uh] ]297 uh, 335 uh] / ∀ UL ∈ ]40, 55] ∧ US
∈ ]50, 100]}

QCRSLAB3 = {pale + QCRSLAB2}
QCRSINT3 = { ∀ UH ∧ US ∈ ]20, 50] ∧ UL ∈ ]40, 55] }
QCRSLAB4 = {light + QCRSLAB2}

4See the CSS3 specification from the W3C (http://www.w3.org/TR/css3-color/#hsl-color)
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QCRSINT4 = { ∀ UH ∧ US ∈ ]50, 100] ∧ UL ∈ ]55, 100] }
QCRSLAB5 = {dark + QCRSLAB2}
QCRSINT5 = {∀ UH ∧ US ∈ ]50, 100] ∧ UL ∈ ]20, 40]}

The saturation coordinate of the HSL colour space (US) determines if the
colour corresponds to the grey scale or to the rainbow scale: QCRSLAB1 and
QCRSLAB2, respectively, in our QCRS. This coordinate also determines the in-
tensity of the colour (pale or strong). The colours in the rainbow scale are consi-
dered the strong ones, whereas the pale colours are given an explicit name in
QCRSLAB3. The hue coordinate of the HSL colour space (UH) determines the
division into colour names inside each scale. Finally, the lightness coordinate
(UL) determines the luminosity of the colour: dark and light colours are given an
explicit name in QCRSLAB4 and QCRSLAB5, respectively.

Note that the intervals of HSL values that define the colour tags (QCINT1..5)
have been calibrated according to our application and system.

Colour identification depends on illumination, but HSL colour space deals with
lighting conditions through the L coordinate, which separates the lightness of the
colour while its corresponding hue or colour spectrum remains the same.

Finally, our approach obtains the qualitative colour of the centroid of each ob-
ject detected in the image and the qualitative colour of the relevant points of its
shape and the most frequent colour is defined as the colour of the object. Note
that colour patterns are not handled at all.

3.2 Describing Spatial Features of the Regions in the Image

The spatial features considered for any region or object in the image are its to-
pology relations (Subsection 3.2.1) and its fixed and relative orientation (Sub-
section 3.2.2). Orientation and topology relations describe the situation of the
objects in the two-dimensional space regardless of the proximity of the observer
(robot/person) to them. Moreover, topology relations also implicitly describe the
relative distance between the objects.

3.2.1 Topological Description

In order to represent the topological relationships of the objects in the image, the
intersection model defined by Egenhofer and Franzosa (1991) for region configu-
rations in R2 is used.

However, as information on depth cannot be obtained from digital images, the
topological relations overlap, coveredBy, covers and equal defined in Egenhofer
and Franzosa (1991) cannot be distinguished by our approach and are all substi-
tuted by touching.
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Therefore, the topology situation in space (invariant under translation, rotation
and scaling) of an object A with respect to (wrt) another object B (A wrt B), is
described by:

Topology = {disjoint, touching, completely inside, container}

Our approach determines if an object is completely inside or if it is the con-
tainer of another object. It also defines the neighbours of an object as all the other
objects with the same container. The neighbours of an object can be (i) disjoint
from the object, if they do not have any edge or vertex in common; (ii) or touching
the object, if they have at least one vertex or edge in common or if the Euclidean
distance between them is smaller than a certain threshold set by experimentation.

3.2.2 Fixed and Relative Orientation Description

Our approach describes the orientation of the objects in the image using the model
defined by Hernández (1991) and the model defined by Freksa (1992).

A Fixed Orientation Reference System (FORS) is defined by using the model
by Hernández (1991), which obtains the orientation of an object A with respect to
(wrt) its container or the orientation of an object A wrt an object B, neighbour of
A. This reference system divides the space into eight regions (Figure 3(a)) which
are labelled as:

FORSlabels = {front (f), back (b), left (l), right (r), left front (lf), right front (rf),
left back (lb), right back (rb), centre (c)}

In order to obtain the fixed orientation of each object wrt another or wrt the
image, our approach locates the centre of the FORS on the centroid of the ref-
erence object and its front area is fixed to the upper edge of the image. The
orientation of an object is determined by the union of all the orientation labels
obtained for each of the relevant points of the object. If an object is located in all
the regions of the reference system, it is considered to be in the centre.

A Relative Orientation Reference System (RORS) is defined by using Freksa
(1992) double cross orientation model. This model divides the space by means of
a Reference System (RS) which is formed by an oriented line determined by two
reference points a and b. The information that can be represented by this model
is the qualitative orientation of a point c wrt the RS formed by the points a and b,
that is, c wrt ab (Figure 3(b)). This model divides the space into 15 regions which
are labelled as:

RORSlabels = {left front (lf), straight front (sf), right front (rf), left (l),
identical front (idf), right (r), left middle (lm), same middle (sm), right middle

(rm), identical back left (ibl), identical back (ib), identical back right (ibr),
back front (bf), same back (sb), back right (br)}

11
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(a) (b)

Figure 3: Models of Orientation used by our Approach for Image Description.
(a) Hernandez’s orientation model; (b) Freksa’s orientation model and its iconical
representation: ’l’ is left, ’r’ is right, ’f’ is front, ’s’ is straight, ’m’ is middle, ’b’
is back and ’i’ is identical.

In order to obtain the relative orientation of an object, our approach establishes
reference systems (RORSs) between all the pairs of disjoint neighbours of that
object. The points a and b of the RORS are the centroids of the objects that make
up the RORS. The relevant points of each object are located with respect to the
corresponding RORS and the orientation of an object with respect to a RORS is
calculated as the union of all the orientation labels obtained for all the relevant
points of the object.

Note that, as we have already mentioned, in our approach, orientation relations
between the objects in the image are structured in levels of containment. The fixed
orientation (Hernández, 1991) of a region is defined with respect to its container
and neighbours of level, while the relative orientation of a region (Freksa, 1992)
is defined with respect to its disjoint neighbours of level. Therefore, as the spatial
features of the regions are relative to the other regions in the image, the number
of spatial relationships that can be described depends on the number of regions
located at the same level of containment, as shown in Table 1. The advantage
of providing a description structured in levels of containment is that the level of
detail to be extracted from an image can be selected. For example, the system can
extract all the information in the image or only the information about the objects
whose container is the image and not another object, which could be considered a
more general or abstract description of the image.

The reason for using two models for describing the orientation of the objects or
regions in the image is the different kind of information each provides. According
to the classification of reference frames by Hernández (1991), we can consider
that:

• the reference system or frame in the model developed by Hernández (1991)
is intrinsic because the orientation is given by some inherent property of
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Table 1: Spatial features described depending on the number of objects at each
level

Spatial Features Described Objects within the same container
1 2 > 2

Wrt its Container Topology x x x
Fixed Orientation x x x

Wrt its Neighbours Topology - x x
Fixed Orientation - x x
Relative Orientation - - x

the reference object. This property is defined by our approach by fixing
the object front to the upper edge of the image. Therefore, the orientations
provided by this model are implicit because they refer to the intrinsic orien-
tation of the parent object or the object of reference. Here, implicit and
intrinsic orientations coincide as the front of all the objects is fixed to the
same location a priori. Therefore, the point of view is influenced by the
orientation of the image given by an external observer.

• in the model developed by Freksa (1992), an explicit reference system or
frame is necessary to establish the orientation of the point of view with res-
pect to the reference objects. Moreover, this reference system is extrinsic,
since an oriented line imposes an orientation and direction on the reference
objects. However, the orientation between the objects involved is invariant
to the orientation of the image given by an external observer, because even if
the image rotates, the orientations obtained by our RORS remain the same.

Therefore, in practice, considering both models, our approach can: (i) describe
the implicit orientations of the objects in the image from the point of view of an
external observer (robot camera) and regardless of the number of objects within
the image, and (ii) describe complex objects contained in the image (which must
be composed of at least three objects or regions) in an invariant way, that is, re-
gardless of the orientation of the image given by an external observer (which could
be very useful in a vision recognition process in the near future).

3.3 Obtaining a Qualitative Description of Any Digital Image

The approach presented here qualitatively describes any image by describing the
visual and spatial features of the main regions of interest within it.

In an image, different colours or textures usually indicate different regions of
interest to the human eye. Therefore, image region segmentation approaches are

13
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more cognitive than edge-based image segmentation approaches because the ex-
tracted edges are defined by the boundaries between regions and all of them are
closed (Palmer, 1999).

In our approach, the regions of interest in an image are extracted by a graph-
based region segmentation method (Felzenszwalb and Huttenlocher, 2004) based
on intensity differences complemented by algorithms developed to extract the
boundaries of the segmented regions. Felzenszwalb and Huttenlocher (2004) men-
tion that the problems of image segmentation and grouping remain great chal-
lenges for computer vision because, a useful segmentation method has to: (i)
capture perceptually important groupings or regions, which often reflect global
aspects of the image; and (ii) be highly efficient, running in nearly linear time in
the full number of image pixels. The approach developed by Felzenszwalb and
Huttenlocher (2004) is suitable for our approach because it meets the above cri-
teria and it also preserves detail in low-variability image regions while ignoring
detail in high-variability regions with adjustment of its segmentation parameters:
σ, used to smooth the input image before segmenting it; k, the value for the thres-
hold function in segmentation, the larger the value, the larger the components in
the result; and min, minimum size of the extracted regions in pixels enforced by
post-processing.

Once all the relevant colour regions of an image are extracted, image processing
algorithms that obtain the contour of each region are applied. Then, our approach
describes the shape, colour, topology and orientation of each region as explained
above. As an example, a digital image of the corridors of a building of our uni-
versity where our offices are located is presented in Figure 4 and its qualitative
description is presented in Table 2.

Figure 4: Schema of our approach for qualitative image description.

Figure 4 shows the original image and the image obtained after extracting
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the regions obtained by Felzenszwalb and Huttenlocher’s (2004) segmentation
method (using as segmentation parameters: σ = 0.4, k = 500 and min = 1000)
and the contour of these regions by our boundary extraction algorithms. Note that
some objects in the original image (such as the door sign, the door handles and
the electrical socket) are not extracted in the segmentation process because of their
small size (< 1000 pixels).

Table 2: An excerpt of the qualitative description obtained for the image in Figure
4.

[SpatialDescription,

[ 1, [Container, Image], [Orientation wrt Image: front, front left, back left, back],

[touching, 2, 8, 9, 13], [disjoint, 0, 3, 4, 5, 6, 7, 11, 12], [completely inside, 10],

[Orientation wrt Neighbours: [0, front right, right, back right, back], [2, left, back, back left], (...)

[Relative Orientation wrt Neighbours Disjoint: [[0, 4], rm], (...) [[4, 7], br, rf], (...) [[11, 12], rm, rf]]

](...)

[ 10, [[Container, 1] [Orientation wrt 1: left, back left, back],

[None Neighbours of Level] ]

](...)]

[VisualDescription,

[ 7, dark-grey,

[Boundary Shape,

[line-line, right, much shorter, convex]

[line-line, right, much longer, convex],

[line-line, right, half length, convex],

[line-line, right, much longer, convex],

[Vertices Orientation, front, back, back, front]],

], (...)

[ 10, dark-red,

[Boundary Shape,

[line-line, obtuse, half length, convex],

(...)

[line-line, very obtuse, similar length, convex]]

[Vertices Orientation, front, front, front right, right, back right (...) ]],

], (...)]

Table 2 presents an excerpt of the qualitative description obtained from the
digital image presented in Figure 4. Specifically, this table shows the qualitative
spatial description of regions 1 and 10 and the qualitative visual description of
regions 7 and 10. Note that the object identifiers correspond to those located on
the objects in Image regions.jpg in Figure 4.

The spatial description of region 1 can be intuitively read as follows: its con-
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tainer is the Image and it is located wrt to the Image at front, front left, back,
back left. Its touching neighbours are the regions 2, 8, 9, 13 (Note that some of
these are not technically touching but are closer to region 1 than the threshold set
by experimentation for our application). Its disjoint neighbours are the regions 0,
3, 4, 5, 6, 7, 11 and 12 and finally, object 10 is completely inside 1. The fixed
orientation of region 1 wrt region 0 is front right, right, back right, back, wrt
region 2 it is left, back, back left, wrt region 3 it is back right and in a similar
way, the fixed orientation of region 1 is described wrt all its neighbours of level.
Finally, the relative orientation wrt the disjoint neighbours of region 1 is given:
from region 0 to region 4, region 1 is located right middle (rm); from region 4 to
region 7, region 1 is located back right (br) and also right front (rf), from region
11 to region 12, region 1 is located right middle (rm) and right front (rf).

The spatial description of region 10 is also given in Table 2: its container is
region 1 with respect to which it is located at left, back left, back. Region 10 has
no neighbours of level, as it is the only region contained by region 1.

The visual description of region 7 in Table 2 shows that its colour is dark grey
and that the shape of its boundary is qualitatively described as composed of four
line line segments whose angles are all right and convex and whose compared
distances are respectively much shorter, much longer, half, much longer. Finally,
the orientation of its vertices with respect to the centroid of the region is in a
clockwise direction: front, back, back, front. Note that region 10 is described
similarly.

4 Formal Representation of Qualitative Descriptions

Our approach describes any image using qualitative information, which is both
visual (e.g. shape, colour) and spatial (e.g. topology, orientation). Here the use
of ontologies is proposed in order to give a formal meaning to the qualitative
labels associated with each object. Thus, ontologies will provide a logic-based
representation of the knowledge within the robot system.

An ontology is a formal specification of a shared conceptualization (Borst et al.,
1997) providing a non-ambiguous and formal representation of a domain. Ontolo-
gies usually have specific purposes and are intended for use by computer appli-
cations rather than humans. Therefore, ontologies should provide a common vo-
cabulary and meaning to allow these applications to communicate with each other
(Guarino, 1998).

The aim of using a description logics (DL) based ontology is to enhance image
interpretation and classification. Furthermore, the use of a common vocabulary
and semantics is also intended to facilitate potential communication between agents.
The main motives for using DL-based ontologies within our system are:

• Symbol Grounding. The association of the right qualitative concept with
quantitative data (a.k.a. symbol grounding) and the precise relationships
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between qualitative concepts is still an open research line (Williams, 2008;
Williams et al., 2009). The description logic family was originally called
terminological or concept language due to its concept-centred nature. Thus,
DL-based ontologies represent a perfect formalism for providing high-level
representations of low-level data (e.g. digital image analysis).

• Knowledge sharing. The use of a common conceptualization (vocabulary
and semantics) may enhance communication between agents involved in
performing similar tasks (e.g. searching for a fire extinguisher in a univer-
sity environment). Moreover, the adoption of a standard ontology language
gives our approach a mechanism for publishing our qualitative representa-
tions of images so that they can be reused by other agents.

• Reasoning. The adoption of a DL-based representation allows our ap-
proach to use DL reasoners that can infer new knowledge from explicit
descriptions. This gives some freedom and flexibility when inserting new
facts (e.g. new image descriptions), because new knowledge can be automa-
tically classified (e.g. a captured object is a door, a captured image contains
a fire extinguisher).

In this section, we present QImageOntology5, a DL-based ontology to re-
present qualitative description of images (see Section 4.1), and how we have dealt
with the Open World Assumption (OWA) (Hustadt, 1994) in order to infer the
expected knowledge (see Section 4.2).

4.1 Three-Layer Representation for QImageOntology

QImageOntology has adopted DL and OWL as the formalisms for represent-
ing the qualitative descriptions extracted from the images. QImageOntology
was developed using the ontology editor Protégé 46. Additionally the DL rea-
soner HermiT7 was used for classifying new captured images and for inferring
new knowledge.

DL systems make an explicit distinction between the terminological or inten-
sional knowledge (a.k.a. Terminological Box or TBox), which refers to the ge-
neral knowledge about the domain, and the assertional or extensional knowledge
(a.k.a. Assertional Box or ABox), which represents facts about specific indivi-
duals. QImageOntology also makes a distinction between the general object
descriptions and the facts extracted from concrete images. Additionally, our ap-
proach includes a knowledge layer within the TBox dealing with contextualized
object descriptions (e.g. a UJI office door).

5Available at: http://krono.act.uji.es/people/Ernesto/qimage-ontology/
6Protégé: http://protege.stanford.edu
7HermiT: http://hermit-reasoner.com/
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This three-layer architecture is consistent with our purposes and image descrip-
tions are classified with the TBox part of QImageOntology. Moreover, the con-
textualized knowledge can be replaced to suit a particular scenario or environment
(e.g. Jaume I University, Valencia City Council). Thus, the three-layer architec-
ture is composed of:

• a reference conceptualization, which is intended to represent knowledge
(e.g. the description of a Triangle or the assertion of red as a Colour type)
that is supposed to be valid in any application. This layer is also known as
top level knowledge8 by the community;

• the contextualized knowledge, which is application oriented and is mainly
focused on the specific representation of the domain (e.g. characterization
of doors at Jaume I University) and could be in conflict with other context-
based representations; and

• the image facts, which represent the assertions or individuals extracted from
the image analysis, that is, the set of particular qualitative descriptions.

It is worth noting that the knowledge layers of QImageOntology are consi-
dered to be three different modules and they are stored in different OWL files.
Nevertheless, both the contextualized knowledge and the image facts layers are
dependent on the reference conceptualization layer, and thus they perform an ex-
plicit import of this reference knowledge.

Currently, the reference conceptualization and contextualized knowledge layers
of QImageOntology have a SHOIQ DL expressiveness and contain: 51 con-
cepts (organized into 80 subclass axioms, 14 equivalent axioms and 1 disjoint-
ness), 46 object properties (characterized with 30 subproperty axioms, 5 property
domain axioms, 10 property range axioms, 19 inverse property axioms, and 2 tran-
sitive properties), and 51 general individuals (with 51 class assertion axioms and
1 different individual axiom).

An excerpt of the reference conceptualization of QImageOntology is pre-
sented in Table 3: partial characterizations of an Object type, the definition of
a Shape type as a set of at least 3 relevant points, the definition of a Quadrilateral
as a Shape type with exactly 4 points connecting two lines and so on.

Table 4 represents an excerpt from the contextualized knowledge of QIma-
geOntology, where four objects are characterized: (1) the definition of the wall
of our corridor (UJI Wall) as a pale yellow, dark yellow, pale red or light grey
object contained by the image; (2) the definition of the floor of the corridor
(UJI Floor) as a pale red object located inside the image and located at back right,

8We have created this knowledge layer from scratch. In the near future it would be interesting to
integrate our reference conceptualization with standards such as MPEG-7 for which an OWL ontology
is already available (Hunter, 2001, 2006), or top-level ontologies such as DOLCE (Gangemi et al.,
2002)
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Table 3: Excerpt from the Reference Conceptualization of QImageOntology

α1 Image type v ∃is container of.Object type

α2 Object type v ∃has colour.Colour type

α3 Object type v ∃has fixed orientation.Object type

α4 Object type v ∃is touching.Object type

α5 Object type v ∃has shape.Shape type

α6 Shape type v > 3 has point.Point type

α7 Quadrilateral v Shape type u= 4 has point.line line

α8 is left v has fixed orientation

α9 Colour type : red

back left or back but not at front, front right or front left with respect to the cen-
tre of the image; (3) the definition of an office door (UJI Office Door) as a grey
or dark grey quadrilateral object located inside the image; (4) the definition of
a fire extinguisher (Fire Extinguisher) as a red or dark red object located inside
a UJI Wall. Note that the contextualized descriptions are rather preliminary and
they should be refined in order to avoid ambiguous categorizations.

4.2 Dealing with the Open World Assumption (OWA)

Currently one of the main problems that users face when developing ontologies is
the confusion between the Open World Assumption (OWA) and the Closed World
Assumption (CWA) (Hustadt, 1994; Rector et al., 2004). Closed world systems
such as databases or logic programming (e.g. PROLOG) consider anything that
cannot be found to be false (negation as failure). However, Description Logics
(and therefore OWL) assume an open world, that is, anything is true or false unless
the contrary can be proved (e.g. two concepts overlap unless they are declared as
disjoint, or a fact not belonging to the knowledge base cannot be considered to
be false). However, some scenarios such as image interpretation, where the set of
relevant facts are known, may require closed world semantics.

In our scenario, the OWA problem arose when characterizing concepts such
as Quadrilateral (see axiom α7 from Table 3), where individuals belonging to
this class should be a Shape type and have exactly four sides (i.e. four connected
points). Intuitively, one would expect that object1 from Table 5 should be classi-
fied as Quadrilateral according to axioms γ1−γ7 and α7 from Table 3. However,
the reasoner cannot make such an inference. The open world semantics have a di-
rect influence in this example since the reasoner is unable to guarantee that shape1
is not related to more points.
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Table 4: Excerpt from the Contextualized Descriptions of QImageOntology

β1 UJI Wall ≡ Object type u ∃has shape.Quadrilateral u
∃is completely inside.Imagetype u
(3 has colour.{pale yellow} t
3 has colour.{dark yellow} t
3 has colour.{pale red} t
3 has colour.{light grey})

β2 UJI Floor ≡ Object type u
∃is completely inside.Image type u
(3 has colour.{pale red} t
3 has colour.{light grey}) u
∃is back.Image u ¬(∃is front.Image)

β3 UJI Office Door ≡ Object type u ∃has shape.Quadrilateral u
∃is completely inside.Image type u
(3 has colour.{grey} t
(3 has colour.{dark grey})

β4 UJI Fire Extinguisher ≡ Object type u
∃is completely inside.UJI Wall
u(3 has colour.{red} t
3 has colour.{dark red})

Table 5: Basic image facts for a shape

γ1 Object type : object1

γ2 Shape type : shape1

γ3 has shape(object1, shape1)

γ4 has point(shape1, point1)

γ5 has point(shape1, point2)

γ6 has point(shape1, point3)

γ7 has point(shape1, point4)

In the literature there are several approaches that have attempted to overcome
the OWA problem when dealing with data-centric applications. These approaches
(Grimm and Motik, 2005; Motik et al., 2009; Sirin et al., 2008; Tao et al., 2010a,b)
have mainly tried to extend the semantics of OWL with non-monotonic features
such as Integrity Constraints (IC). Thus, standard OWL axioms are used to obtain
new inferred knowledge with open world semantics whereas ICs validate instan-
ces using closed world semantics. These approaches have also tried to translate
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IC validation into query answering using rules (e.g., SWRL, SPARQL) in order to
make use of the existing reasoning machinery. Nevertheless, as already discussed
in the literature, the use of rules may lead to undecidability, so the expressivity of
the rules must be restricted (Motik et al., 2005; Krötzsch et al., 2008).

Our approach has a partial and much simpler solution that overcomes the OWA
limitations for our particular setting. We have restricted the domain of interpreta-
tion for each image with the following OWL 2 constructors:

• Nominals. We consider that all the relevant facts for an image are known,
thus, for each image, QImageOntology concepts are closed using an ex-
tensional definition with nominals9. For example, the class Point type is
defined as a set of all points recognized within the image (see axiom γ8

from Table 6 for an image with only 7 points).

• Negative property assertion axioms explicitly define that an individual is
not related to other individuals through a given property. In our example,
the potential quadrilateral individual must have four connected points, but
there must also be an explicit declaration that it does not have any more
associated points (see axioms γ9 − γ11 from Table 6).

• Different axioms for each individual. OWL individuals must be explicitly
defined as different with the corresponding axioms, otherwise they may be
considered as the same fact, since OWL does not follow the Unique Name
Assumption (UNA). In our example points point1-point4 should be declared
as different (see axiom γ12) in order to be interpreted as four different points
for the quadrilateral individual.

Table 6: Closing the world for a shape

γ8 Point type v {point1, point2, point3, point4, point5, point6, point7}
γ9 ¬has point(shape1, point5)

γ10 ¬has point(shape1, point6)

γ11 ¬has point(shape1, point7)

γ12 point1 6≈ point2 6≈ point3 6≈ point4

It is worth mentioning that QImageOntology also defines, in its reference con-
ceptualization layer, disjoint, range and domain axioms in order to make explicit
that two concepts do not overlap and to restrict the use of the properties within the
proper concept (e.g. has point only links Shape type with Point type).

9It is well known that the use of nominals makes reasoning more difficult (Tobies, 2001); however,
in this case each image contains a relatively small number of individuals
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In summary, our approach proposes restricting/closing the world for each par-
ticular image using the above constructors within the image facts layer of QIma-
geOntology. The number of extra axioms to add is reasonable for our setting
where processed images contain about 200 concrete individuals with 150 class
assertions, 1700 object property assertions, 1000 negative property assertions and
5 different individual axioms.

5 Experimentation and Results

As explained in the previous sections, for any digital image, our approach obtains
a qualitative image description and a set of facts according to QImageOntology.
In Section 5.1, we present how our approach has been implemented and we also
describe the results obtained. In Section 5.2, the tests done in different situations
within our robot scenario and the evaluation method used are explained. In Section
5.3, the results obtained are analysed.

5.1 Implementation of Our Approach and Description of the
Results Obtained

Figure 5 shows the structure of our approach: it obtains the main regions or ob-
jects that characterize any digital image, describes them visually and spatially by
using qualitative models of shape, colour, topology and orientation and obtains a
qualitative description of the image in a flat format (see Table 2) and also as a set
of OWL ontology facts.

Figure 5: Method overview
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The ontology facts obtained (image facts layer), together with the reference
conceptualization layer and the contextualized knowledge layer have been auto-
matically classified using the ontology reasoner HermiT, although another rea-
soner (e.g. FaCT++10 or Pellet11) could have been used. The new inferred know-
ledge is intended to be reused in the near future by the robot in order to support
the decision-making process in localization and navigation tasks.

As an example, note that from the qualitative description of the digital image in
Figure 5 (shown in Table 2) and the contextualized descriptions shown in Table 4
the reasoner infers that Object 1 is a UJI Wall as it is a pale yellow object located
completely inside the image, that Objects 7 and 8 are UJI Office doors as they are
dark grey quadrilaterals located completely inside the image, that Object 10 is a
UJI Fire Extinguisher as it is a dark red object located completely inside a UJI
Wall (Object 1), and finally, that Object 12 is a UJI Floor as it is a pale red object
situated back left and back right with respect to the centre of the image.

5.2 Testing and Evaluating Our Approach

A collection of digital images extracted from the corridors of our building at
Jaume I University (UJI) (our robot scenario) have been processed by our ap-
proach and new information has been inferred. Table 7 presents a selection of the
tests, where images containing regions classified by our reasoner as UJI Walls,
UJI Office Doors, UJI Fire Extinguishers and UJI Floors are shown.

Our testing approach and evaluation method is described next. First, our robot
explored our scenario with its camera and more than 100 photographs were taken
at different locations and points of view with the aim of finding out what kind of
objects could be segmented and described by our approach. Walls, floors, office
doors, dustbins, fire extinguishers, electrical sockets, glass windows, etc. were
properly qualitatively described. The walls, the floor, the office doors and the fire
extinguishers were selected as the objects of interest and we adjusted the parame-
ters of the segmentation method to the specific lighting conditions of each test and
to define the minimum size of the objects to capture. Second, around 30 photos
containing those objects at different locations and points of view were selected
and described qualitatively and using description logics. The proper classification
of the ontology facts obtained in accordance with QImageOntology was checked
using Protégé as front-end and a HermiT reasoner. Around 80% of the selected
photos (25/30) were correctly classified and some borderline cases appeared be-
cause of:

• the adjustment of segmentation parameters: in some cases a door region
is joined to a wall region and extracted as a whole region whose shape is

10FaCT++: http://owl.man.ac.uk/factplusplus/
11Pellet: http://clarkparsia.com/pellet/
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not a quadrilateral, and therefore, a door cannot be characterized by our
approach.

• the colour identification: some extracted regions can be composed of more
than a colour, for example the same quantity of dark-red and black relevant
points or pixels can define a fire-extinguisher and, therefore, defining the
correct colour of the object in those cases is difficult, as our approach does
not deal with patterns.

5.3 Analysing Our Results

The results obtained show that our approach can characterize regions of images
in our robot scenario as walls, floors, office doors and fire extinguishers, under
different illumination conditions and from different points of view.

The extraction of the main regions in the image depends on the segmentation
parameters used (Felzenszwalb and Huttenlocher, 2004). These parameters are
adjusted in order to determine the level of detail extracted from the image. In our
tests, regions of small size (such as door signs or handles) are not extracted so
as to avoid obtaining much more detail than is needed for our characterization of
objects. However, the regions of all tested images that are most easily perceived
by the human eye have been obtained and described without problems.

The characterization of qualitative colours using our approach depends on the
illumination. This is the main reason that the colour of some objects is defined
with different colour names, for example, when identifying doors (grey or dark
grey) or walls (pale yellow, dark yellow or light grey). However, the colour names
used in the characterization of an object are very similar from a human point of
view and the use of different colour names in an object definition is not a problem
for our approach. Therefore, the problems involving different lighting conditions
are resolved in this way.

Moreover, it should be noted that our qualitative model for image description
provides much more information than is later used in the contextualized descrip-
tions of our ontology, which define new kinds of objects based on this informa-
tion. This is an advantage, as our system could apply this extra information to
the characterization of new regions or objects presented in other robot scenarios,
where more precise information may be needed in order to differentiate types of
regions or objects. For example, our approach has defined UJI Office Doors as
dark grey or grey quadrilaterals contained completely inside the image. This de-
finition could have been extended by adding that the relevant points of the quadri-
lateral must be located two at front and two at back with respect to the centroid of
the quadrilateral. Although this information is not needed by the system in order
to distinguish UJI Office Doors from other objects in our scenario, it could be used
in other scenarios in the future.
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Table 7: Some images of the corridors of our building containing UJI Fire Extin-
guishers, UJI Walls, UJI Office Doors and UJI Floor

Image Described Objects Inferred Information

Object 6 is a

UJI Fire Extinguisher.

Objects 1, 4, 5, 7, 8 and 9 are

UJI Walls.

Object 7 is a

UJI Fire Extinguisher.

Object 1 is a UJI Wall.

Object 3 is a UJI Office Door.

Object 10 is a

UJI Fire Extinguisher.

Objects 0-6, 9, 11, 12 and 13 are

UJI Walls.

Objects 8 and 7 are

UJI Office Doors.

Object 12 is a UJI Floor.

Object 10 is a

UJI Fire Extinguisher.

Objects 1-4, 6 and 16 are

UJI Walls.

Objects 12 and 13 are

UJI Office Doors.

Objects 6 is a

UJI Fire Extinguisher.

Objects 0-5 and 8 are UJI Walls.

Object 2 is a UJI Office Door.

Object 9 and 10 are UJI Floors.

Finally, as future applications in robotics, we believe that our approach could be
usefully applied for general and concrete robot localization purposes. By extend-
ing our approach for characterizing objects to a different scenario (e.g. laborato-
ries/classrooms/libraries or outdoor areas), it could be used for general localiza-
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tion, that is, for determining the kind of scenario the robot is navigating through.
Moreover, by defining a matching process for comparing qualitative descriptions
of images taken by the robot camera, we could recognize descriptions correspond-
ing to similar or possibly the same visual landmarks and those landmarks could
be used to localize the robot specifically in the world.

6 Conclusions

This paper presented a novel approach to represent the qualitative description of
images by means of a DL-based ontology. Description logics enable us to balance
the need for expressive power with good computational properties for our setting.
Our approach obtains a visual and a spatial description of all the characteristic re-
gions/objects contained in an image. In order to obtain this description, qualitative
models of shape, colour, topology, and fixed and relative orientation are applied.
These qualitative concepts and relations are stored as instances of an ontology
and contextualized descriptions that characterize kinds of objects are defined in
the ontology schema. Currently, we do not have a contextualized ontology defi-
nition for every possible object detected in an image (e.g. printer, office desk or
chair). Nevertheless, our approach can automatically process any random image
and obtain a set of DL-axioms which describe it visually and spatially.

Our approach has been tested using digital images of the corridors of our build-
ing at the university (our robot scenario) and results show that our approach
can characterize regions of the image as walls, floor, office doors and fire ex-
tinguishers, under different illumination conditions and from different observer
viewpoints.

As future work on the qualitative description of images, we intend to: (1) extend
our model in order to introduce distances captured by the robot laser sensor for
obtaining depth information for the images described; and (2) combine our model,
which can describe unknown landmarks, with an invariant feature detector, such
as SIFT (Lowe, 2004), for detecting known landmarks in the image. Moreover,
as further work on our DL-based ontology of images we intend to (1) integrate a
reasoner into the robot system, so that the new knowledge obtained can be pro-
vided to the robot in real time; (2) reuse non-standard reasoning services such as
modularization to improve scalability when dealing with images with a large set
of objects; (3) integrate our current ontology with other domain ontologies (e.g.,
DOLCE (Gangemi et al., 2002)) and standards such as MPEG-7 (Hunter, 2006);
(4) extend our current ontology in order to characterize other objects from other
robot environments.
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