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Abstract

We study a class of quasi-linear parabolic equations defined on a separable Hilbert space, depending
on a small parameter in front of the second order term. Through the nonlinear semigroup associated
with such equation, we introduce the corresponding SPDE and we study the asymptotic behavior of its
solutions, depending on the small parameter. We show that a large deviations principle holds and we
give an explicit description of the action functional.
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1. Introduction

Consider the partial differential equation

ax®
dt

(1) = AX®(t) + b(X®(t)), X“(0) =z € H, (1.1)

defined on a separable Hilbert space H, endowed with the scalar product (-, )y and the corresponding
norm || - ||g. Here A : D(A) C H — H is the generator of a strongly continuous semigroup and
b: D(b) C H — H is some non-linear mapping. Next, consider the following stochastic perturbation of
(1.1)

AXZ(t) = [AXZ(t) + b(XZ(1))] dt + Veo(XE(H) AW, X2(0) = € H, (1.2)

where ¢ > 0 is a small parameter, Wy, ¢t > 0, is a cylindrical Wiener process and o is a mapping, defined
on H and taking values in some space of bounded linear operators defined on the reproducing kernel of
the noise into H. We assume that the differential operator A, the coefficients b and ¢ and the noise W;
are such that both (1.1) and (1.2) are well-posed.

If the parameter € is small, the trajectories of the perturbed system (1.2) remain close to those of the
unperturbed system (1.1) on any bounded time interval. In particular, if there exist a domain G C H
and a point g € G such that any trajectory of (1.1) starting in G remains in G and converges to xg,
as time goes to infinity, then with overwhelming probability the trajectories of (1.2) starting from any
x € G enter any neighborhood of z(, before eventually leaving the domain GG because of the effect of the
noise. As know this is a consequence of the large deviations of X, (¢) from X (¢) which are described by
the action functional

T
() = ;inf{ | el g = X}
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where we have denoted by X*¥ the solution of the controlled version of (1.1)

dX ¢
di

(t) = AX®2(t) + b(X2(1) + o(X™7(1)e(t),  X*¥(0) =z,
and by the quasi-potential
V(zg,z) =inf {Ir(f) : f€ C([0,T); H), f(0) =z, f(T)=z, T >0}.

It is known that the stochastic PDE (1.2) is related to the linear Kolmogorov equation on the Hilbert
space H

Diuc(t,x) = %Tr [o0* (2)D2uc(t,z)] + (Az + b(z), Duc(t,x))y, x€ H, t>0, 13)
u0,2) = g(e), we H. |

Actually, under suitable conditions on the operator A, the coefficients b and o and the initial condition g,
equation (1.3) admits a unique classical solution u., which can be written in terms of the linear transition
semigroup Pf associated with (1.2). Namely

ue(t,x) = Pig(z) =Eg(X(t,z)), t>0, =€ H.

In particular, the description of the small noise asymptotics of the solutions of equation (1.2) provided
by the theory of large deviations allows to give a detailed description of the long-time behavior of the
solutions of infinite dimensional PDE (1.3).

In [11], Freidlin and Koralov have considered more general stochastic perturbations of the dynamical
system (1.1), when H = R, A = 0 and b : R? — R? is a Lipschitz-continuous mapping. They have
introduced the following quasi-linear parabolic problem

d d
Oyue(t,z) = % Z a; j(z,uc(t,x)) Osjuc(t, z) + Zbi(x) diue(t,z), z€ R ¢>0, (1.4)
i,j=1 i=1 :

uc(0,2) = g(z), =€ R

where a;;(x,r) = (00%);5(z,r), and by invoking the classical theory of quasi-linear PDEs, they have
shown that, under reasonable assumptions on the coefficients f and o, equation (1.4) admits a unique
classical solution u.. Next, for every t > 0 and x € R?, they have introduced the following randomly
perturbed system

dX5(s) = b(XE"(s)) ds + Ve a (X (s), uc(t — s, X" (s))) dBs, w5
X5*(0) = =, .

where By, t > 0, is a d-dimensional Brownian motion. As in the linear case, the PDE (1.4) and the SDE
(1.5) are related by the following relation

uc(t, x) = Eg(Xo" (1)) = Tig(), (1.6)

but now T¥ is a non-linear semigroup. This is in fact the reason why equation (1.5) can be seen as a
non-linear perturbation of the deterministic system.

The study of the large deviation principle and of the quasi-potential for (1.5), has allowed Freidlin
and Koralov to study the long-time behavior of the solutions to equation (1.4), restricted to the domain
G (that now is a bounded domain in R?) and endowed with the boundary condition u.(t,x) = g(x), for
every x € 0G. In this case

ue(t, @) = Bg(XE=(t A 72),

where 7% is the first exit time of X%* from the domain G. In particular, the asymptotic description of 7%

in terms of the quasi-potential has made possible to study the asymptotic behavior of u. on exponential

time scales t(e) ~ exp(A/e). Freidlin and Koralov’s idea is to introduce a family of linear equations

obtained from (1.4) by freezing the second variable in oo* and putting it equal to a constant ¢. This

allows them to describe the asymptotics of u.(exp(A/€), ), for different values of A € (0, 00), in terms of
2



some function ¢(\) obtained from Vg (c), the minimum of the quasi-potential in G for the linear problem
corresponding to ¢, and from g(z*(c¢)), where x*(c¢) is the point of G where the quasi-potential attains
its minimum, for different values of c.

The present paper represents the beginning of a longer term project where we aim to develop an
analogous theory for infinite dimensional dynamical systems described by PDEs. As in the finite dimen-
sional case studied in [11], also here, as a first and fundamental step, we need to be able to study the
well-posedness of the following quasi-linear equations

Diu(t,z) = %Tr [00* (2, uc(t, ) Diuc(t, x)] + (Az + b(z), Duc(t,x))y, x€ H, t>0,
(1.7)
uc(0,z) = g(x), z€ H,

However, unlike in finite dimension, where a well-established theory of deterministic quasi-linear PDEs
is available, it seems that the current literature does not provide any Hilbert space counterpart to such
classical theory, and everything has to be done.

In our analysis we will proceed in several steps and here we are considering the case when o :
H xR — L(H) is Lipschitz continuous and there exist a bounded and non-negative symmetric operator
@, a continuous mapping f defined on H x R with values in the space of trace-class operators and a
constant > 0 such that

c*o(x,r)=Q+4d f(x,r), =x€ H, reR.

This allows to rewrite equation (1.7) as

Diue(t,x) = Leue(t, z) + %Tr [ f(z,u)(t, ) D2u(t, z)| + (b(z), Duc(t, ),
u(0,2) = g(x), =€ H,

where

Lep(a) = 5T [QD2p(w)] + (A, Dop(w)) 1.

In particular, if we denote by R§ the Ornstein-Uhlenbeck semigroup associated with the operator L., we
can rewrite equation (1.7) in mild form as

ue(t, ) = Rig(x) + / R, (5T [0F (uc(s, ) D2uc(s, )] + (b(), Ducls, D) (@) ds.— (18)

We can then introduce the stochastic PDE

dXb(s) = [AX:"”(S) + b(Xil(s))] ds +ea (X5 (s), uc(t — s, X5"(s))) dWs, 19
Xt (0) = , '

where W, is a cylindrical Wiener process in H, defined on some stochastic basis (2, F, {F; }1>0,P). Due
to the regularity of the coefficients and of the function u., we can show that there exists § > 0 such
that, for every § < ¢ and for every ¢t > 0 and € H, equation (1.9) admits a unique mild solution in
L2(Q;C([0,t]; H)). Moreover, we show that, as in the finite dimensional case, the quasi-linear equation
(1.7) and the stochastic PDE are related through formula (1.6) and, in particular, a maximum principle
holds for equation (1.7).

It is worth noticing that as a consequence of the Markov property, the following relation holds

ue(t — 5, X0 (5))) = E(g(X ™" (t = 5)))| ,_xeoe (o) = El9(X7(1)|55),

for every s € [0,t] and € H, so that equation (1.5) reads as

dXP7(s) = [AXE"(s) + b(XL7(s))] ds + Vea (XD (s), E(g(XE“(1))|Fs)) AW, (L.10)
X5 (0) = z. '



Setting Y% (s) := E(g(X5*(t))|Fs)), the equation above can be further rewritten as a coupled forward
backward infinite dimensional stochastic system

dXb(s) = [AX:’I(S) + b(Xﬁ“"(s))] ds ++eo(XE"(s), Y1 (s))) dWs, 0<s<t

—d, Y (s) = —Z5%(s)dWs, 0<s<t

(1.11)
YEE(t) = g(Xo* (1))
XL (0) = .
Coupled forward-backward systems of stochastic equations of the general form
AX(s) = B(X(5), Y (5), Z(s))ds + o(X(s), Y () dWs,  0<s <1
—d.Y (s) = (X (s),Y(s), Z(s)) ds — Z(s)dW,,  0<s<t w12

Xe(o) =,

have been extensively studied in the finite dimensional case, see [19] where several results are collected.
Since [1], it has been clear that arbitrary forward-backward stochastic systems do not always admit
a solution. Different techniques have been developed to prove existence and uniqueness both locally
in time and in arbitrarily long time intervals. In particular the classical theory of PDEs, applied to
the corresponding nonlinear Kolmogorov equations, offers a wide range of results stating well posedness
of system (1.12) (see, for instance [19] [14] or [15]) that include existence and uniqueness of a global
solution to the finite dimensional analogue of system (1.11) when o is not degenerate. In the infinite
dimensional case, in which large part of the analytic techniques are not available any more, very few
results on existence and uniqueness of a solution to system (1.11) in arbitrary time interval are at hand
(for local existence and uniqueness see [13]). It seems that the techniques more likely to be extended
in infinite dimensions are the ones introduced in [20] where quantitative conditions on dissipativity of b
and bounds on the Lipschitz norm of ¢ and g are required. Such restrictions go in the same direction
as the condition on § that we have to impose here, see above. We finally notice that, if we show that
system (1.11) is well posed, then we can define a candidate solution to the PDE (1.7) by setting

Ue(t — 5,€) = E(Y"" ()| X""(s) = §)

but, unless we have a satisfactory analytic theory for equation (1.11), the proof that . is the unique
solution of (1.7) (in which formulation?) is still to be done and does not seem obvious at all. Once
such relation would be understood, it could also be possible to study the large deviations principle, see
below, for more general nonlinear perturbations of (1.1) defined through systems like (1.12) (see [5] for
a similar approach in the finite dimensional case where the connection between . and equation (1.11) is
a straight-forward consequence of existence and uniqueness of a regular solution to (1.11) and Ito rule).

As we mentioned at the beginning of this introduction, we are interested in applying our results to the
study of the asymptotic behavior of (1.9) and (1.7), as € | 0. This is a multi-step project and here we are
addressing the problem of the validity of a large deviation principle for the trajectories of the solutions of
equation (1.9). Thus, in the last section of our paper we prove that the family of laws {£(X?")}ce (0,1
satisfies a large deviation principle in the space C([0,¢t]; H), which is governed by the action functional

1 t
1es00) = g it { [ e ds : X(6) = X4(0). s € 0.1},
0
where X%* is the unique mild solution of problem
X'(s) = AX(s) + b(X(5)) + 0(X(5),9(Z¥ ) (t = 5)))(s),  X(0) ==,

and for every y € H
ZY(s) = ey +/ eMAY(ZY(r)) dr-.
0
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2. Notations and preliminaries

Throughout this paper, H is a separable Hilbert space, endowed with the scalar product (-, )y and
the corresponding norm || - || . In what follows we shall introduce some notations and preliminary results
(we refer to [2], [7] and [16] for all details).

2.1. Operator spaces

We denote by L£(H) the Banach space of all bounded linear operators A : H — H, endowed with the
sup-norm

Al gy = sup [|Az||a.
lzllm<1

An operator A € L(H) is symmetric if it coincides with its adjoint A*, that is if (Az,y)y = (x, Ay)m,
for all z,y € H. Moreover, it is non-negative if (Az,z)y > 0, for all z € H. We shall denote by £+ (H)
the subspace of all non-negative and symmetric operators in L(H).

An operator A € L(H) is called an Hilbert-Schmidt operator if there exists an orthonormal basis
{ei}ien of H such that

> |l AeiF < oo
i=1
The subspace of Hilbert-Schmidt operators, denoted by Lo(H), is a Hilbert space, endowed with the

scalar product
oo

<A, B>L2(H) = Z(Aei,Bei>H.

i=1

As know n, for every B € Lt(H) there exists a unique C' € £(H), denoted by /B such that C? = B.
Thus, for any A € L(H) we can define
A| := VA A

We recall that an operator A € L(H) is compact if and only if |A| is compact. Moreover, if A is
a symmetric compact operator, then there exists an orthonormal basis {e;}ien of H and a sequence
{@;}ien converging to zero such that Ae; = «e;, for all i € N. With these notations, we say that a
compact operator A € L(H) is nuclear or trace-class if there exists an orthonormal basis of H consisting
of eigenvectors of |A| corresponding to the eigenvalues {«; }ic N, such that

00
E oy < 00.
i=1

In particular, if the operator A is symmetric, it is nuclear if and only if there exists an orthonormal basis
of H consisting of eigenvectors of A corresponding to the eigenvalues {«; }icn, such that

o0

Z || < 0.

i=1

We denote by £1(H) the set of nuclear operators.
It is possible to prove that for every A € L1(H) the series

TrA = Z(Aei, eV H
i=1

does not depend on the choice of the orthonormal basis {e;};cn. Moreover, a symmetric operator
A belongs to £1(H) if and only if the series above converges absolutely for every orthonormal basis
{ei}ien. The space £1(H) is a Banach space, endowed with the norm

Al z, ) = Tr[A],

and
ITrAl < [|Allz, (m)- (2.1)

5



It is possible to prove that £1(H) C Lo(H) C L(H) with
[Allecery < NAlleony < Alley
and for j = 1,2 it holds
IAB|| ¢,y < | Alle; )l Blley,  1ABllg; iy < IBlle;mnllAllem-
Moreover, if A, B € Lo(H), then AB € £,(H), with
IAB| ¢,y < N[ Allcomy | Bllcoca)-

Finally if E and K are arbitrary Banach spaces we denote by £!(K; F) the space of I-linear bounded
operators K! —+ E. When [ = 1 and E = K we just denote £!(K; E) by £(K). Finally when K is an
Hilbert space and E = R we identify £!(K;R) with K and £2(K;R) with £(K).

2.2. Functional spaces

If E is an arbitrary Banach space, endowed with the norm || - ||z, we denote by By(H; E) the space
of Borel and bounded functions ¢ : H — E. By(H; E) is a Banach space, endowed with the sup-norm

lello = sup [lo(z)]|e-
xe H

Moreover, we denote by Cy(H; E) the closed subspace of uniformly continuous and bounded functions.

For every integer n > 1, we denote by C}'(H; E) the space of all functions ¢ € Cy(H; E) which are
n-times Fréchet differentiable, with uniformly continuous and bounded Fréchet derivatives D'y : H —
LY(H; E) for all I < n. We have that CJ'(H; E) is a Banach space, endowed with the norm

lelln = llello + > 11D lo-
=1

Next, for every ¥ € (0,1) we denote by CY(H; E) the space of all functions ¢ € Cy(H; E) such that

ey = sup 12@ =Wz _
ewer |z —yll%
T#Y

CP(H;E) is a Banach space, endowed with the norm

lells = llello + [#]s-

Finally, for every integer n € N and ¢ € (0,1), we denote by Cp*’(H; E) the space of all functions
¢ € CJ'(H; E) such that

Dn _Dn n .
[D"¢lg == sup 1D p(x) oWl e (m:2)

@€ H lz = yll%
TAY

< 0

O™ (H; E) is a Banach space, endowed with the norm

n
lelln+o = liello + D 1D ¢llo + [D™0lo = llolln + [D"¢]o.
=1

Notice that in case E = R, we simply write By(H) instead of By(H; E), and for every o > 0 we write
C{(H) instead of C(H;R).

Now, we want to see how classical interpolatory estimates for functions defined on R™ are still valid
for functions defined on the infinite dimensional Hilbert space H. To this purpose, we recall that, as
shown in [7, Theorem 2.3.5], for every 0 < a < 8 < «y there exists a constant ¢ = ¢(«, 3,7) > 0 such that
for every p € C}(H)

=8 B-a
lells < cllella llelly - (2:2)

However, in what follows we will need the following additional interpolatory estimates.
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Lemma 2.1. Let us fit 9 € (0,1). Then, for every p € C}(H) we have

[elo < evollello™ 1D, (2.3)
and, for every p € (0,9)
1=9 Y=p
[elo < [elp " [1Dello " (24)

Moreover, for every o € C¥(H) we have

0 1
ID?¢llo < c2,0 | Depllg™ (D] 5™, (2.5)

" B2 ek
[1Dello < esollello™ [D7ls™ (2.6)

Proof. Let us fix p € C}(H) and z,y € H. Then, for every 9 € (0,1) we have

[

1
ez +y) — e(@)] < 2lellg™ /0<D<P(x+/\y),y>Hd/\ <2|lello™" IDell5 llyllz,

so that (2.3) follows. In an analogous way we deduce (2.4), since

Y—p
1—p p(1—-9)

Yl -

1
@+ 1) — o(@)| < [PlE / (Dl + Ay),y) s dA

Now, if we fix ¢ € CZ(H), for every u > 0 and z,z € H, with ||z]z = 1, we have

2
ela+pz) = o(a)+ (Do), ) + - (D?p(2)2, 2)n
(2.7)

i / (1= 1) (D2l + ryuz) — D2p(a))z, 2 dr.

By proceeding as in [7, proof of Theorem 2.3.5], we use (2.7) to prove (2.5). Actually, thanks to (2.7) we
have

= [(D*0(2)z,2)u| <o+ pz) — () — p(Dp(x), 2)u| + > °[D%¢ly [ (1—r)r? dr,
0

2
[D*¢llo < " ID¢llo + co p” [D>¢ly,  p>0.

If we take the minimum over p > 0, we get (2.5).
Finally, by using again (2.7), we have

p [(Dep(x), 2)u| < lp(x + pz) — ()| + % [(D*¢(2)z, 2)u | + MQW[D%]@/O (1 =)’ dr,

so that, in view of (2.5), we get

2 C2,.9 10 ™ 12, 1T 1497792
[1Dgllo < o llello+ =5 [1Dello™ [D7ly™ + cop ™" [D ¢y
2 1 1407 )2
< % llelo+ 51Dl + eon™? (D2,
This implies that
4
ID¢llo < 2 liello +con 7 [D>¢lo, 1> 0,
and if we minimize once again with respect to u > 0 we obtain (2.6). O



Remark 2.2. As a consequence of (2.3), (2.5) and (2.6), we have that for every ¢ € (0, 1) there exists
some ¢y > 0 such that for every ¢ € CZ™(H)

[elo ID*¢llo < o llello [D*@o- (2.8)

Indeed, from (2.5) and (2.6), we have

9

2 T2 w2 T e=) 9 (2, e
D < D D < D 2.9
[D%¢llo < c2,0 | cawllelle™ (D705 (D¢l <comegy llpllg™ (D70l (2.9)

Moreover, thanks to (2.3) and (2.6) we have

1+9 1 9 2 P
o < cuo el (can Il (D717 ) = v el (D257
Therefore, if we combine together this last inequality with (2.9), we obtain (2.8).

2.8. The Ornstein-Uhlenbeck semigroup

By following [7, Chapter 6], we recall here some results about the Ornstein-Uhlenbeck semigroup and
the associated Kolmogorov equation.
Let A: D(A) C H — H be the generator of an asymptotically stable Cp-semigroup e*4. We assume
that there exist M,w > 0 such that
||etA||L(H) S Me_wt.

Moreover let @ be an operator in L1 (H). For every ¢ > 0 we define

t
Q¢ ::/ Qe ds,
0

and we assume that Q; € £1(H), for every ¢t > 0. Thus, we can introduce the centered Gaussian measure
Ng, defined on H with covariance )¢, and we can define

Ripla) = [ pleha+y)No,(dy),  a€ H, t=0 (2.10)

for every ¢ in By(H). Ry is the Ornstein-Uhlenbeck semigroup associated with A and Q. In what follows,

we assume that
eA(H) c Q*(H), t>0, (2.11)

and we define
A= QA t>o0,

where @, /2 is the left pseudo-inverse of Qtl /2,

As shown e.g. in [7, Theorem 6.2.2], as a consequence of assumption (2.11) we have that Ryp €
Cy°(H), for every ¢ € By(H) and t > 0, and for every n € NU {0} there exists some ¢,, > 0 such that

D" Repllo < cn A2 (mry lollo
Moreover, if we fix o € (0,1) and assume ¢ € C*(H) we have
[D" Regla < cn Al 112 a1y (€l (2.12)
so that we conclude that for all & € [0,1) and ¢ € Cy(H)
ID" Replla < n [Aellz () lelltcs ¢8>0, (2.13)
where, for every t > 0 and a € (0, 1),

lellea = (lello + e [¢]a) - (2.14)



For every n € NU {0} and 0 < oo < 8 < 1 and for every ¢ € C’b*B(H) and t > 0 we have, by the
interpolation inequality (2.2) applied to the function D™ R;¢ with constants respectively 8, 1+a, 1+ :

n n —« n 1—(B—«
ID"Rigllira < D" Regll§ " ID" Rl
n — n n 17(13704)
= | D"Re|5~* (ID"Regllo + [|ID™ " Reep| 5) :
Hence, thanks to (2.13), we get
o n(B— a n n 1-(B—a)
10" Reliva < el IAEE o5 (e A2 o + e NAEER Il )
n n+l—(f—a
o (I 2y + el @)

In particular, recalling that ||[Dv|a < [[¢]lat1, ¥ € C1F*, and D"Ry;¢ = DD" ' R;¢ this allows to

< Ca,fB,n H‘P

conclude that for every n € N and 0 < o < <1 and for every ¢ € C’f(H)

1D" Raplla < can (Il + 1802 ) Nl

t5- (2.15)
Next, we recall that in [7, Proposition 6.2.9] it is shown that for every ¢ € C}(H) and z € H

Tr [QD*Ryp(x)] = /H<QZ Y2y A Qe Dyp(etha + y)) i No, (dy),

so that, if we assume that
AQer € Lo(H), (2.16)

we have .
sup IQD?Reo(@) ey < 1AeQe™ |leoany IDllo, ¢ > 0.
HAS
Therefore, since QD?Ry¢p = QD? Ry j5(Ry/2(¢)), (2.15) allows to conclude that for every ¢ € Cl?(H)

sUp [1QD*Regp(@) e an) < € 1Ae2Qe™ s (1 + 1Al ) lells, ¢ 0. (2.17)

Moreover, we recall that in [7, Proposition 6.2.5] it is shown that if the operator Ay A has a continuous
extension A;A to H, for every t > 0, then for every ¢ € By(H) and x € H

DRp(x) € D(AY),  [[A"DRipllo < [[AsAlle(my llello, ¢ >0. (2.18)

Now, we introduce the parabolic equation in H
1
Dyu(t,x) = 5 Tx [@D2u(t,x)] + (z, A*Dyu(t, )y,  u(0,z) = p(z). (2.19)

Definition 1. A function u : [0,+00) X H — R is a classical solution of problem (2.19) if

1. w is continuous in [0, +00) X H and u(0,-) = ¢.

2. u(t,") € CZ(H), for allt >0, and QD2u(t,x) € L1(H), for allt >0 and z € H.
3. Dgyu(t,z) € D(A*), for allt >0 andz € H.

4. u(-,x) is differentiable in (0,+00) for every x € H and u satisfies equation (2.19).

In [7, Theorem 6.2.4] it is shown that if we assume conditions (2.11) and (2.16) and we assume that
the operator A;A has a continuous extension to H, then for every ¢ € By(H) the function

u(t,x) = Ryp(x)

is the unique classical solution of equation (2.19).



3. Assumptions and main results
3.1. Assumptions
In what follows, we shall make the following hypotheses.

Hypothesis 1. 1. The mapping o : H x R — L(H) i4s Lipschitz continuous and there exist an
operator Q € LT (H), a continuous mapping f: H x R — L1(H) and a constant § > 0 such that

oc*o(z,r)=Q+d f(x,r), x€ H, reR (3.1)
2. For every fized x € H, the function f(x,-) : R — L,(H) is differentiable. Both f and O,f are

Lipschitz continuous in both variables, uniformly with respect to the other. Moreover

sup. 1f (@ r)leyny <c(+]Irl),  reR (3.2)
xre

Remark 3.1. (1) Let H = L?(0), for some smooth and bounded domain O C R?, with d > 1. Let
{ei}ien be an orthonormal basis of H and let {\; };c v be a sequence of non-negative real numbers. We
assume that e; € L*(0), for every i € N, and

D il (o) < oo (3.3)

i=1

For every z,y € H and r € R, we define
[f(x,r)y]({) = Zfl(‘r(g)ar))\ZQ% ei>H6i(€)7 5 € Oa
i=1

for some continuous functions f; : R x R — R such that §;(s,-) : R — R is differentiable, for every s € R
and ¢ € N. We assume that both f; and 0,f; are Lipschitz continuous in both variables, uniformly with
respect to the other variable, and uniformly with respect to ¢ € N. Moreover, we assume that

sup sup [fi(s,7)] < c(1+]r]), r e R. (3.4)
ieN seR

With this choice of H and f, we have that condition 2 in Hypothesis 1 holds.
Indeed, since f;(-,7) : R — R is Lipschitz continuous, uniformly with respect to r € R and ¢ € N, for
every ¢,y € H and r € R we have

1f (e 7) = f(y, )l

< Z ([f(z,r) = Fly,r)less i) | < Z Ai (il () r) = Fily (), )l e e m

<D MR ()r) = Ry, )l alleill LA < ellz —ylla Y- Ailleill L= (o)-
i=1

i=1

In particular, thanks to (3.3), we can conclude that f(-,7) : H — L1(H) is Lipschitz continuous,
uniformly with respect to r € R. Moreover, thanks to (3.4), the same argument also yields (3.2). In
view of our assumptions, the same is true for 9, f.

The Lipschitz continuity of f(z,-) and 9, f(x,-) : R = £1(H) with respect to r, uniform with respect
to x € H, is proved in a similar way. However, in this case (3.3) is not required and we only need the

weaker condition -
i=1

(2) In case H is an arbitrary Hilbert space, we fix T'€ £1(H) and A : H x R — R and we define
flx,r) = Xa,r)T, (x,r)€ HxR.

If we assume that A and 0, \ are Lipschitz continuous in both variables, uniformly with respect to the
other, then Hypothesis 1 2. is satisfied.
10



Now, we see some consequences of Hypothesis 1.

Lemma 3.2. For any function ¢ : H — R we define
Fo)(x) = f(z,¢(x), x€ H. (3.5)
Then, under Hypothesis 1 we have that F maps CY(H) into CP(H;L1(H)) and for every ¢ € CY(H)
IE(@)llo < c(1+ llollo) - (3.6)
Moreover for every ¢1, @2 € CY(H) it holds
1E(p1) = F(@2)lly < e (X + llenlls + lle2llo) lor = @2llo- (3.7)
Proof. Due to (3.2), if p € CJ(H) we have

1E(@)lo < sup 1f (@, p(@))ler ) < e (L +lello) - (3.8)

Moreover, for every z,y € H
1 (2, p(x)) — £ (g0 )) L, o
< If (s o(@) = £y @@, ) |1 o) = £ o @) T
HIF @ 0(@) — £ @) e < clle =yl (14 lelld™) +elo(@) - o()]

<cle—ylE @+ llels™ +elo) < clle—ylE L+ llello + [elo),

so that
[F(@)]o < c 1+ llello + [©lo) - (3.9)

This, together with (3.8) allows to conclude that F(p) € CY(H) and (3.6) holds.
Concerning (3.7), for every ¢1,p2 € CP(H) we have

[F(p1) = F(e2)llo = s [f(z,p1(2)) = fz,p2(2)) |2,y < cller — e2llo- (3.10)
Moreover, for every x,y € H we have
(f(z,1(2)) = f(z, 02(2))) = (f(y: 1) — [y, 92(¥)))
= /O [v(se1 + (1 = 8)p2) () (1 — 2)(x) = Y(sp1 + (1 = 8)p2)(y) (1 — @2)(y)] ds,

- / (s + (1 - 8)p2)(@) (1 — 92)(@) — (1 — 92) (v)] ds

+/O [Y(s1 + (1 = 8)p2)(z) — v(sp1 + (1 = 8)p2)(y)] (1 — 2)(v) ds,

where we have defined

This implies that:

7@ 01(2) — £ 2(@)) — (Fw010)) ~ £ 220 Loy
<lo=yl" [ [Intser + (= s)ea)loler = ealo + Blsor + (1= s)ealy o1 = ool s

and consequently that:

o) = Frpa)lo < /0 (sor + (1= s)g2)llo ds o1 — wallo.
11



Since, we are assuming that 0, f, like f, is Lipschitz continuous with respect to each variable, uniformly
with respect to the other, and is clearly uniformly bounded, by using the same arguments we have used
to prove (3.8) and (3.9), we have

[v(s1+ (L =8)p2)llo < c(L+slpillo + (1= 35) lp2ll9),
and hence
[F(p1) = Fp2)lo < c(I+ llprllo + llwzllo) o1 — 2]l

This, together with (3.10), implies (3.7).
O

Hypothesis 2. 1. The operator A : D(A) € H — H generates a Cy-semigroup e and there exist
M,w > 0 such that
le" | ey < Me™™". (3.11)

2. If Q is the operator introduced in Hypothesis 1 and if we define
t *
Q¢ ::/ e*AQe* ds, t>0,
0

we have that Q; € L (H), for everyt > 0.
3. For everyt > 0, we have
e (H) C QY2 (H). (3.12)

4. If we define
A= Qe >0,

(see the discussion after (2.11)) there exists some A > 0 such that
Aoy S c(EAD) T2 M 1> 0. (3.13)

5. For every t > 0 we have that A;Qe'*” € Lo(H) and for every 9 € (0,1) there exist By < 1 and
ay > 0 such that

ko (t) = 1A Qe || o (||At||1;(f,) + 1) <c(tA1)Premoot 0. (3.14)
Hypothesis 3. For every (x,r) € H xR and t > 0 we have
oz, r) € Lo(H).
Moreover, )
"o (@, r)|lcomy < c(tEAD)™T 1+ ||lz|a+1|r]), >0, (3.15)
and for every (z,r),(y,s) € H xR

le o (z,7) = 4oy, s)ll e < c (AT (o —ylla+Ir—sl), ¢>0. (3.16)

Remark 3.3. Let {e;};cn be an orthonormal basis in H and assume that Ae; = —a;e; and Qe; = v; e;,
for every i € N, with oy, v; > 0, and «; T +00, as i — co. By proceeding as in [7, Example 6.2.11], we
have that _

Qie; = 2% (1 — 6720‘”) e, €N,

3

so that Q¢ € L£1(H) if and only if
R (3.17)
Moreover,
2 v —a;t 1/2 oy
Ae; = (OW)> t_l/Qe_Ttei, i€ N.
Yi

(1 _ 672(1.;15
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In particular, if v; > v > 0, we have

HAtHL(H) <ct” 1/2 771 ’ t> Oa
so that (3.13) holds. Furthermore,
e —2a;t
* Q; ;e v 1 —92a
18 Qe ™ Wy =23 ~ga—y < etTeT (318)
i=1

Moreover if «; ~ iP for some p > 0 then

N2 = Z e B TP, (3.19)
Thus (3.16) hold whenever p > 2 and o is Lipschitz. Moreover, (3.15) follows since

sup \|€tA0(070)||%2(H) < o0.
>0

In the special case when A is the realization of the Laplace operator in an interval, endowed with
Dirichlet boundary conditions, we have that a; ~ i? and (3.17) is satisfied, for every choice of Q € L£(H).
If we assume that @ = I, we have that (3.13) holds. Moreover, thanks to (3.18) we have

9 a1 (1-9)t Q14

186Qe ™ lleyan (Al +1) < er72emt (17750 1) < e(ran) 0D,

and Condition (5) in Hypothesis 2 holds for every ¢ € (0,1). Also notice that in this case Hypothesis 3
is satisfied, due to (3.19) with p = 2.

Hypothesis 4. The mapping b: H — H is Lipschitz continuous and bounded.

3.2. Main results

As we have done in Section 2 for the linear Kolmogorov equation (2.19), we introduce here the notion
of classical solution for the quasi-linear problem

Diuc(t,x) = %Tr [0 0 (2, uc(t, ) D2uc(t, z)] + (Az + b(z), Duc(t,z))y, z € D(A),
(3.20)
ue(0,2) = g(x), x€ H.

We recall, see (3.1), that the above equation depends on parameter ¢ and can be rewritten as:

Diu(t,z) = gTr [(Q+ 0f(z,uc(t,2)))D2uc(t, )] + (Az + b(z), Duc(t, )y, =z € D(A),
ue(0,2) = g(x), x€ H.

Definition 2. A function u, : [0,4+00) x H — R is a classical solution of problem (3.20) if the following
conditions are satisfied.

1. It is continuous in [0,4+00) x H and u.(0,-) = g.

2. ue(t,") € CZ(H), for allt >0, and QD?u.(t,z) € L1(H), for all (t,z) € (0,+00) x H.
3. ue(-,x) is differentiable in (0, +00), for every x € D(A).

4. It satisfies equation (3.20), for every (t,z) € (0,400) X D(A).

In what follows, for every ¢ € (0,1), 0 < 9 < n < 1, p € (0,1/2) and T > 0, we denote by
Ce.0((0,T); CZTP(H)) the space of all functions u € C([0 T], CY(H))NC((0,T]; CZ+Y (H)) such that

o= sup ([t )+ e A DDt o+ ADTEDZu(r o) < o
te (0,T

13



Theorem 3.4. Assume Hypotheses 1 to 4, and fix an arbitrary g € C(H), for some n € (1/2,1).
Moreover fix 9 € (0,1 —1/2) and we define

1—(n—19
g Lz =9) (3.21)
2
Then there exists § > 0 such that for every 6 < 4§, e € (0,1) and T > 0 there exists a unique classical
solution ue € Ce p,((0,T); CFT(H)) for equation (3.20).
Finally

Hu€||€7.97n,19,T < Ce,5 |an7 €e (07 1)v (322)

for some constant c. 5 > 0 independent of T" > 0.

Next, for every € > 0, we fix arbitrary ¢ > 0 and x € H and we introduce the following stochastic

PDE
dX(s) = [AX(s) +b(X(s)) + 0(X(s), uc(t — s, X(5))) (s)] ds

+Vea(X(s),uc(t — s, X (s))) dWs, (3:23)

X(0)= =

Here Wy, t > 0, is a cylindrical Wiener process on H, defined on the filtered probability space (2, F, {F; }+>0, P),
such that for every h,k € H and t,s > 0

E (Wi, h) g (W, k)i = (t A s) (h, k) g,
and ¢ is a predictable process in L?(2; L?(0,t; H)).

Definition 3. An adapted process X;’fg € L?(Q;C([0,t]; H)) is a mild solution for equation (3.23) if for
every s € [0,1]

t,x _ sA ° s—r)A t,x ° s—r)A t,x t,x
X%E(s) = o+ /0 e(5=7) b(X%e(r)) dr + /0 els=m) J(X%e(r),ue(t -, X%E(r))) o(r) dr
(3.24)

S
Ve [ eI (e~ 1 X ) W
0

Theorem 3.5. Suppose that Hypotheses 1 to 4 hold, and fiz any g € CJ(H), withn € (1/2,1), e € (0,1)
and 0 € [0,0), where § is the constant introduced in Theorem 3.4. Moreover, fix an arbitrary predictable
process in L*(Q; L*(0,T; H)) such that

t
/ lo(s) [ ds <o, P—as., (3.25)
0

Jor some M > 0. Then equation (3.23) admits a unique mild solution X4% € L*(Q;C([0,t]; H)), for
every x € H andt > 0.

In what follows, the solution of the uncontrolled version of equation (3.23), corresponding to ¢ = 0,
will be denoted by X!*.

Once proved Theorem 3.5, we are interested in studying the limiting behavior of X% as € | 0. More
precisely, we want to prove that for every fixed t > 0 and x € H the family {{(X}")}cc (0,1) satisfies
a large deviation principle in the space C([0,t]; H) (with speed €) with respect to a suitable action
functional I; , that we will describe explicitly. For all definitions and details we refer e.g. to [9] and [12].

In order to state our result, we have to introduce some notations. First, we introduce the unperturbed

problem
Z'(s) = AZ(s) +b(Z(s)), Z(0)=ye H. (3.26)

Since we are assuming that b: H — H is Lipschitz continuous, for every T' > 0 and y € H there exists
a unique ZY € C([0,T]; H) such that

ZY(s) = ¥y + / eMAY(ZY(r)) dr-.
0
14



Next, for every # € H,t > 0 and ¢ € L?(0,t; H) we introduce the controlled problem
X'(s) = AX(5) + b(X (5)) + 0(X(s),g(Z¥ O (t = 9)))p(s),  X(0) = . (3:27)

In Section 8 we will see that under the same assumptions of Theorem 3.5, equation (3.27) admits a
unique mild solution Xi;”” € C([0,t]; H). This will allow to state the last main result of this paper.

Theorem 3.6. In addition to the conditions assumed in Theorem 3.5, suppose that g : H — R is
Lipschitz-continuous. Moreover, suppose that the semigroup et is analytic. Then, for every fized t > 0
and x € H the family {L(X1")}ee 0,1) satisfies a large deviation principle in the space C([0,t]; H), with
speed €, with respect to the action functional

I (X)) = % inf{/O le(s)||3 ds = X(s) = X;’m(s)7 s € [O,t]}, (3.28)

where X;’” is the unique mild solution of problem (3.27).

4. The well-posedness of the stochastic PDE (3.23)

In this section we will, for the moment, assume that, for some T'> 0,7 € (1/2,1) and 9 € (0,7—1/2),
0 < 1/4, and € € (0,1) there exists a solution u. € C,,,((0,7]; CZ*”(H)) for equation (3.20). We will
show how this allows to prove Theorem 3.5 for every t € (0,T].

We fix t € (0,T], a predictable process ¢ € L*(Q;L?(0,t; H)) satisfying (3.25), a regular enough
function 4 defined on [0,¢] x H and we consider the stochastic equation in [0, ¢]

dX(s) = [AX(s) +b(X(s)) + o(X(s),9(t — 5, X(5)))p(s)] ds

V(X (s), 0t — s, X (5)) AW, (4.1)

For every s € [0,t] and x € H, we define

Yi(s,z) = o(x,¥(t — s,x)). (4.2)
Definition 4. We say that a process X € L?(;C([0,t]; H)) is a mild solution of equation (4.1) if for
all s € [0,¢] it holds:

X(s):= o+ /OS eIAY(X (1)) ds + /OS eCIAS (r, X (1)) (r) dr

+1/e / eCIAS, (r, X (1)) AW,
0

Theorem 4.1. Suppose that Hypotheses 1 to 4 hold. Fix n € (1/2), ¢ € (0,1), ¥ € (0,n —1/2)
and define o by (3.21). Moreover, fix an arbitrary predictable process ¢ € L?(; C([0,t]; H)) verifying
(3.25) and function ¢ € Cep,((0,T];C2YY(H)). Then equation (3.23) admits a unique mild solution
X € L*(;C([0,t]; H)), for every x € H .

Proof. We start by noticing that a process X € L?(Q;C([0,t]; H)) is a mild solution of equation (4.1)
if it is a fixed point of the mapping A; ¢ defined by

A (X)(s) = eSAr + /05 e(s_T)Ab(X(r)) ds + /OS e(s_T)AEt(r, X(r)) p(r)dr

+v/e / eCTIAS (r, X (1)) AW,

0

According to Hypothesis 3, for every 7 > 0, s € [0,¢] and x,y € H we have

le™ (Se(s,2) = Sels,9)) Lo < e (7 AL)TT (Jo =yl + (e = s,2) = d(t = s,)])-
15



Since ) € Ce o ((0,T); CET(H)), we have
Yt =s,2) =Pt —s,9)| < [Datp(t = s,)llo |z = yllm

<e 2 ((t =) Al omo,rle =yl

so that

™ (Su(s,2) = R, ) Loy < (T AT (L4 2((t =) AL blleomor) o —ylla.  (43)

Now, for every 8 > 0 we denote by X (H) the Banach space of all H-valued predictable processes

X such that
||XH:2K5,,,(H) = sup e P E|X(s)||%4 < oc.
s€ [0,t]

In what follows, we need to show that A; . maps the space Kp(H) into itself and, for some 8 > 0, is
a contraction. In fact, we are only going to prove the contraction property, as the proof that A; . maps
Kp,(H) into itself follows from analogous arguments.

If X1,X5 € Kp(H), in view of (4.3) and (3.25) we have

2

/ T IA [, (r, X (1)) — Su(r Xa(r)] () dr

i
0

H

< [ [ im0 - s ) ar [ et an

= Cme/OS((S =) AD)TE (L e20((E = 1) AT o) I1X () = Xo ()| dr

s 1 — — s
< eMX — Xall, o / (5 =) AD)H (T e22((t =) A1) 2212 0.1) € .
0

Since we are assuming that ¢ < 1/4, for every s € [0, ]

/ (s =) AD)T2 (L4 e72((t =) A1) 2212 5 0.0) € P07 dr < ccpals),
0

for some continuous increasing function ¢, g : [0,¢] — [0, 4+00) such that

lim sup ccp.(s) =0.
B—o0 g¢ [0,¢]

Therefore, we pick 51 = 81(¢,t) > 0 such that

1
CM sup o als) < 5
s€ [0,t] 6
we have
s 2
—Bis (s—r)A 1 9
sup e " E e [Be(r, X1(r)) = Ze(r, Xa(r))] p(r) dr|| < 21X = Xalle, oy
s€ [0,¢] 0 H

Moreover by (4.3) with 7 = s —r and s = r, we have:

2
x|

/O T DA, (1) X (1)) — Sa(r, Xa(r))] AWy

H

< [ (= ADF 0= 1) A) IR ) BIX () — Xl dr

S 1 _ _ .
< el X1 - XalZ, oo / (=) ALD)H (L4 e22((t =) AL) 22, o) € dr.
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Then, by proceeding as above

2
sup e P E ’
s€[0,t]

/OS A [, (r, X1 (1) — Si(r, Xa(r))] AWV,

H
1 2
<3 X1 = Xollse, ,cm)-

Finally, due to the Lipschitz-continuity of b, we have that there exists 82 > 0 such that that

2
sup eﬁzSE‘
s€ [0,t]

/Os p(s—m)A [B(X1(r)) — b(X2(r))] dr

1
<glXi- Xallk,, . can)-
H

Therefore, if we take 3 := 31 V B2 , we have that A; . is a contraction in K +(H) and its fixed point is
the unique mild solution of equation (4.1).

Finally, by using a stochastic factorization argument, it is possible to prove that X;’I belongs to
L2(Q;C([0,t]; H)) (for all details about stochastic factorization see [8, Subsection 5.3.1]). O

Remark 4.2. If we still assume that, 7> 0, n € (1/2,1) and ¥ € (0,7 —1/2), o < 1/4, and € € (0,1)
but now we also suppose that u, € Ce,,((0,T]; C£T7(H)) is a solution for equation (3.20) and we set
1) = u, in Theorem 4.1 then, for all ¢ € (0, 7], the process X provided Theorem 4.1 is the process X;ﬁ
required in Theorem 3.5.

5. Local existence of mild solutions for the quasi-linear problem

In this section we will prove that the quasi-linear problem (3.20) admits a local mild solution, for
every € € (0,1).

In view of (3.1) and (3.5), problem (3.20) can be rewritten as

Dyu(t,x) = Leue(t,x) + %’H 6 F(ue)(t,x)Dgug(t,x)] + (b(z), Duc(t,x)) m, 51)
ue(0,2) = g(x), z€ H,

where L. is the linear Kolmogorov operator
€
Lep(z) = ;Tr [QDZp(x)] + (Az, Dygp(a)) 1.

As we have recalled in Subsection 2.3, see, in particular (2.18) and (2.19) for the definition of operator
L., for every ¢ € By(H) the unique classical solution of the linear problem

Dtve(tvx) = Leve(t7x)7 06(075(;) = (,0(-'15),

is given by the Ornstein-Uhlenbeck semigroup
wlt.) = Rigla) = [ ple o +1)Nog, (dy).

Before proceeding with the study of equation (5.1), we show how, in view of Hypothesis 2, the
properties of the Ornstein-Uhlenbeck semigroup described in Subsection 2.3 apply to the semigroup Rj.
Thanks to (3.11) and (3.13), inequality (2.13) gives for every n € NU {0} and 6 € (0,1)

ID"RS@llp < cnoe 2(t A1) 2e | @llte, t>0, €€ (0,1), (5.2)

where
lellee == (lello + e [elo) -
Moreover, thanks again to (3.11) and (3.13), inequality (2.15) gives for every n € Nand 0 <9 <p <1

(p=0) n—(p—0)
2

ID"Riwllo < cnppe ™ = (EA1)" el >0, €€ (0,1). (5-3)
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Finally,
IR ello < lello,  [Riwly < e “[elp,  €>0. (5-4)
By (2.4), with 0 = o and p = 3, we have
1—
[Rigla < |IDRspll i [Rtw]é :

so that, thanks to (5.3) , with 6 =0, p = 8 and n = 1, and (5.4), with p = 3, we get

[REpla < cape 7 (EA1) T e t>0, ec (0,1), (5.5)
for some wq g > 0. In particular, due to (5.4), this implies
IR plla < (cas +1) € T (EA) 5 t>0, e€ (0,1). (5.6)

Now, we introduce the notion of mild solution for equation (3.20).

Definition 5. A function u. € C([0,400); H) such that uc(t,-) € CZ(H), for every t > 0, is a mild
solution for problem (3.20) if for every (t,z) € [0,4+00) x H

wtoa) = Rigla) + [ R, (5T [FF (s, )D2uc(s,)] + (), Dus (s )) ) (o) .
0
For every R>0,n € (1/2,1),0 € (0,5 —1/2), p € (0,1/4), T > 0 we define

Yol = {ue Copy((0,T);CFO(H))

and for every v € HZ’I;ﬁ o and 6 > 0 we define

t
Les(v)(t,x) ::/ R;_7es(v,s)(x)ds, te [0,T], xz€ H,
0

where

Ye.s(v,s)(x) == %Tr [6F (v(s, ))(:E)ng(s,x)] + (b(x), Dv(s,x)) u.
In particular, u. is a mild solution for problem (3.20) if and only if
ue(t, x) = Rig(x) + Tes(ue)(t, x).
First, we investigate the dependence of 7. s on v € %ng 0.7

Lemma 5.1. For every v € Y° T and 6 >0

gn 9
[Yes(v, 8)]lo < ce? @6R(1+R) (s A1)t 4 ce®R(sA1)72,  se (0,7) (5.7)

Moreover, for every vy, vq € 92’50 o andd >0

7e,5(v1,8) = Yes (v2, 8) ||l < ¢ €296 R(1+ R) (s A1)~ Doy (s,-) — va(s, )|

+ced(1+ R)||D2vy(s,-) — D2vy(s,-)||9 + ¢||Davi(s, ) — Dyva(s,-)|ls-
Proof. In view of (3.6) and Hypothesis 4, we have
Ives (v, $)llo < cedl|F(u(s,))llo 1DZv(s,)llo + bl [ Dsv(s, o
< ced (L+ s, )llo) [DZv(s, o + c[[Dav(s, ),

and since we are assuming that v € Hg n.0,7> this implies (5.7).
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Next, if v, v € 92’1;”19 o and § > 0 we have

1Yes(v1,8) = Yes (2, 8)llo < ced | F(vi(s, ) = Fva(s, )l [I1D7vs(s, o

+eed || F(va(s,-))llo | D3vi(s, ) = Dva(s, o + [Ibllo | Dovi(s, ) = Dovals, ).
Thus, according to (3.6) and (3.7),

17e.6(0158) = ve,5(v2, 8)lo

< cedors,) —va(s, o (L+ [lvals, o + llva(s, o) [ DZva(s, )l

+eed (L4 [[oa(s, )llo) [ DZvi(s, ) — D3va(s, )llo + ¢ | Dovi(s, ) = Dava(s, )llo-

Recalling that vy, vy € 92’71;’1977“, this implies (5.8).

Remark 5.2. If for every fixed €,0 > 0 we define
acs(R,s) = €2 %R(1+R) (s A1)~@F3) L e 2R(sA1)7¢,  s>0, R>0,

and
aes(R,s) = €2 251+ R)?>(sA1)~(@+2) 4 e 2(sA1)72,  s>0, R>0,

due (5.7) and (5.8) we have that for every v, vy, ve € HZ’,?,&,T and s € (0,7]

[Ve.s(v; 8)llo < caes(R,s),

and
[Ve.6(v1,8) = Ve .5 (v, 8)|lo < caes(R,s) lvr — valle,gn0.7

Notice that for all 5 <1 and g > 0 and for all t > 0
t
/ ((t—s) A1) Pe =90, (R, s)ds
0
1 t 1
<e27%R(1+R) / (t—s) A1) Penlt=9)(s A 1)"(e+2) s
0

t
+6_9R/ ((t—s) A1) PemE=3) (s A1) ds,
0

and this implies that there exists some constant ¢ > 0 only dependent on 8 and p such that

t
/ ((t—s) A1) Pe#=3)q 5(R,s)ds < c(t A1)2~ (@A ez—e) (R, 1),
0

where ) )
Aes(R,t) :==0R(1+R) +e 2R(tAN1)=.

To get the above we have observed that, when ¢ > 1 the right hand side of (5.11) reduces to

cere {6]%(1 +R) + e_%R}
and (5.11) follows since
aes(R,s) < ez (s A1)~ (31 (5R(1 + R) + 67%R> ,

and .
sup/ ((t —s) A1) Pemlt=9) (5 A 1)_(%“’) ds < oo.
t>1J0o
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In the other case, that is when ¢ < 1, we have (t —s) A1 = (t — s), s € [0,] and

’ t
/(t—s)_ﬁe_ﬂ(t—s)ae’(s(R,s)dsS 6%_9(5R(1—|—R)/ (t—S)_BS_(LH_%) ds
0 0
t
+€_96R/ (t—s)_ﬁs_g ds
0

and . .
/ (t—s) Psm(et3) g < et Pots / (t —s)Ps72ds < ct=P-et!
0 0

by a standard change of variable.
In an analogous way

t
/ ((t—s) A1) Pe#=9)q (R, s)ds < c(t A1)~ @B e3—21 (R, 1), (5.12)
0

where ) )
les(R,t) :=8(1+R)? +e 2(t A1),

Next we prove the following estimates for I'c s on 9257197T'

Lemma 5.3. For every v e Yo 7 and €,0 € (0,1) it holds

o,n,9,
ITes(0)leomor < cAes(R.T) |50 (@ A1) =5 -2 (Tv1)+1]. (5.13)
Proof. Step 1. We have
ITes(@)(t)]ly < ce—F2"ex s(Rt) (E A1) 5272t v1), te [0,T). (5.14)

Proof of Step 1. In view of (5.6), applied for 8 =9 and « = 7, we have that, for every ¢t € [0, T]:

t neo [1 _n=v
ICes@)(®)]ly < / 1B s (0, )|l ds < ce T / (= 3) A D) [es(v, 8)]|o ds

t
<ce 2 /((t—s)/\l)_¥ae’5(R,s)ds.
0

Then, by adapting (5.11) to the case u = 0, we get

1=-(n—=29)

ITes(@) (Bl < ce T e A (R EAT) 7 2 (t V1),

and (5.14) follows.
Step 2. We have

(A 1)2 | DT s(v)(B)[lo < ce® [5 RO+ R)+ ¢ *R(tA1)7]. (5.15)

Proof of Step 2. According to (5.2), we have that
¢ 1 t 1
[ DR estwosilods <ot [ (= 5) AD NI (o) d,
0 0
Then, thanks to (5.9) and (5.11) we conclude
t 1 1
/ IDR;_ Ve s(v,9)||lods <ce 2(t A1) %27\ 5(R,1),

0

and (5.15) follows.
Step 3. We have ) )
(E A DT Do) (B)l0 < e BHON 5 (R, 1), (5.16)
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Proof of Step 8. By proceeding as in the proof of Step 2, we have, using (5.3) with n =2, a = 0 and
B =0:

t
ID*Tes(@) (Bl < ce '3 / ((t—s) A1) THFEe A0 5(R, 5) ds
0

<cetIenTet A1)t (R 1),

and this implies

(t A2 | DT 5(0) ()]0 < ce”GHITIN S(R ) (EAL)Z. (5.17)
Now, for every x,h € H and t € [0,T], we have
(t A1)+ 2| DT 5(v)(t, @ + h) — DT 5(0)(t,2) || oomy < ce” GTOTEN (R, ) (EAT1)%.
Hence, if we assume that ||h||%, > e (t A 1)/2 we get
(t A2 | DT 5(v)(t, @ + h) — DT (0)(t, @) ooy < ce GO 5(R, ) [|h] % (5.18)

When ||h||%;, < e(t A1)/2 we have

L t
D2I‘6’5(v)(t, x) = / D2RZ’}/5’5(U7 t—s)(xz)ds+ / D2R§76,5(v7t —s)(x)ds
0 e Rl

=t ae5(h,t,z) + be 5(h,t, ).

Due to (5.3), from (5.9) we have to evaluate the Holderianity

e HnlE
lacs(hts +h) = acs(h,t @) ey < ce' T2 / (s A D)2y (v, t = 5)|g ds
0

Rl
<cet3 / (s A1) 7 e M 5(Rt —s)ds < ce”GTON_s(R, 1) (EA1)~(@F3) 0|2
0

(5.19)
To get the last inequality we have observed that,

e HInly ,
/ (sA1)M2e Mo s(R,t — s)ds
0

e IRl

< e%_ﬁ’(SR(l + R)/ (s A 1)_1+%((t —$)A 1)_(9+%)6_’\s ds

Il
+e’9R/ (s AL)"IFE((t— 5) A1)"% > ds
0

and recalling that e~ !||h||% < (tA1)/2 <t/2 and hence (t —s) A1 >t/2 A1 we deduce that

HnlE ) )
/ (s A1) T2 0 s(Rt — s)ds <ce2 27T A 5(R,t) (t A1)~@T2) ||n||%.
0

As for b, 5(h,t,-), we have

beﬁg(h, t,xr + h) - be’g(h, t, :C)

t
_ / [D2Reve5(v,t — 5)(x + h) — DR 5(v,t — 5)(x)] ds.

IRl
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Hence, due again to (5.3), we have

||b5,5(hat7$ + h) - bE,S(hataz)”L(H)

t
< [ DR (ot = s)(a )~ DPREs(v.t = )@ ds
e A%
t
<c [ IRt = )lads
e A%
t
< ce*¥e%*@/ (s A1) e 3 ((t — s) A1)~ (eF DN, 5(R,t — 5) ds |||z
e~ hll%

Since we are assuming ||h||%; < € (t A 1)/2, we have
t 3—9 3\ 1
/ (s A1)~ 7 e 3 ((t—s) A1)"(eF3)) ds
e IRl

t/2 - . )
:/ (s 1)_¥e‘3“(<t—s)Al)“Q*é)dH/ (s A1) T e (1= s) A1)~ H) dy
571'%”%{ t/2

9
2

<c(tAD) @D B F T £t AL TOHOHE — ot A1) (eFD) (e%uhn;ﬁ” (A 1)—%)

<ce T (tAD) TR |n|
Moreover, in the same way we have
' 859 -3 15 - —1+9
/ o GAD T A s < e A bl
€ H

so that ) )
(t A1)2T2 b s(h,t, o+ h) — bes(h,t,2)| oy < ce” @TON (R, 8)|| R

This, together with (5.19) and (5.18), implies that for every h € H
(t A1) 2| DT 5(0)(t @ + h) — D*Tes(0)(t2) | oy < e GHON (R, 1) ||

Thus, thanks to (5.17), we obtain (5.16).
Conclusion. Estimate (5.13) is a consequence of (5.14), (5.15) and (5.16). O

Remark 5.4. From the proof of the previous lemma, we easily see that for every t € (0,7] and € € (0,1)

€7 [Les(0) (B)]y + €2(t A1)2[[DTes(v)(B)llo + €2 72(t A 1)2F 5| DD 5(0) (1)l
(5.20)

1-(m=9)

< eAes(R, 1) (e%*@(tm) : *@+1),

for some constant ¢ > 0 independent of T > 0. Indeed, in view of (5.5), with a = n and 8 = 6 and
(5.9), we have

t
T s(v)(t <ce 2 e~ wrmt=s)((t — sy A1)~ 5" Ye.5(v, 8)||9 ds
, n o ,

t
I / e~ =) ((t — 5) A1)~ "  a 5(R, 5) ds
0

1-(n—9)

< CAe,é(R,t)<€ 2 79(t/\1)%*9).

This, together with (5.15) and (5.16), implies (5.20).
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Now we are ready to prove the existence of a local mild solution.
Theorem 5.5. Fizn € (1/2,1) and 9 € (0,7 — 1/2) and define
1—(n—1
pim L2 =9) (5.21)
2
Then, there exist 01 such that for every e € (0,1) there exists T1(e) > 0 so that problem (3.20) has a
mild solution u. in Ce y,((0,Ti(€)]; 2V (H)), for every & < 6.
Proof. A function u. is a mild solution of equation (3.20) if and only if it is a fixed point for the mapping
Y 5 defined by
I‘Zé(v)(t) =Rig+T.s(v)(t), te[0,T].

Thus, we will prove the existence of a local mild solution for equation (3.20) by showing that there exist
some T, R > 0 and 6; > 0 such that Ff’ﬁ maps yek 7, into itself as a contraction, for every ¢ < d;.

2:m,9,
Thanks to (5.6) we have
1B:glly < cllglly- (5.22)

Moreover, thanks to (5.3)

(n—=9) 1-(n=9)

-
IDRig(w)(®)llo <ce™ = (A= e gl

(5.23)
—9 —9
ID?Rig(v)(t)llg < ce 0T A D)0 e g

Therefore, if we define p as in (5.21), we have that o € (0,1/4) and 1— ’72;9 — 0 =0, so from (5.22) and
(5.23), it follows

1 1 .
IRl + €2t AD2(IDREg(t)]lg + €2 2(¢ A 1)2T2 | D2 Rig(t)]|o < c|lglly- (5.24)

With o defined as in (5.21), together with (5.13) this implies that for every v € 92”}:’79’7«

||Fg,5(”) le.,omo,7 < cllglly +¢ |0 R(1+ R) + 6_%R(T A 1)%} (TV1).

In particular, if we first take R := 3c||g||,, and ¢’ > 0 small enough such that
R
C(S/ R(l + R) S §7

and then fix 77 < 1 small enough so that

[N

<

ce TR(T' A1) <

b

L
3

we conclude that for every § < ¢ and T < T

||F£’)5(v)

|€7Q7777197T <R,
so that I'Y ; maps 92’50 r into itself.

Now, if we fix v1,vs € 92’,5@% we have, in view of Definition 5 and estimates (5.3) and (5.6)

n—1y t _n=9
IT¢ 5 (v1) = T 5(02)le,omo.r < ce” 2 sup /((t—s)M) 7 ves(v1,8) = Yes(v2, 5)l0 ds
te(0,T] JO

[

t
+€2 sup (Ml)g/ e 3 ((t—5) A1) M|y 5(01,8) — Yes(v2, 8)|lo ds
] 0

te (0,7

t
+e3Te sup (EA1)FE / OB ((t = 5) A1) DI Iy s (01, 5) — e s (v, 5) | ds
te (0,7 0

1
+e30 sup (¢A1)2T2 [DPTY (v1)(£) — DT 5 (va) (1)]g = > 1si(e).
te (0.7] ’ ’ i=1
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Then, according to (5.10) and (5.12), we have, since n — 9 < 1.
I51(€) < cles(R,T) [lor — valleom,7- (5.25)
In the same way,

t
Iso(e) <ce® sup (A 1)9/ 67%(@ —s)A 1)_%67)‘(“8)%75(]%, s)ds ||vi — valle,p.n,0.7
] 0

te (0,7 (5.26)

< 0[6,5(R7 T)[jvr — ”2”6:9,77,19:T'
and

,[5’3(6)

t
<cet? sup (tA1)0FE / OB ((t - 5) A1) U= 0a, 5 (R, 5) ds ||v1 — valle g7
te (0,7 0

)
<ce2 e s(R,T)||vr — valle,on.0,7-

(5.27)
As for Is 4(€), due to (5.27), if we fix any z,h € H and assume ||h||% > €t/2 we have
T3 (A1)t DT s(v1)(t, @ + h) — DY (v2)(t, @) ¢ ()
(5.28)
<cer (tAD)2ls(R )01 — vallepmor < cles(Rat) o1 — vallepmorllh]%-

On the other hand, if we assume that ||h]|%, < et/2 we write
DQF‘Z(;(Ul)(t, x) — DQF*Z(S(WQ)(t7 x) = acs(h,t,x) + bes(h, t,x),
where
e IRl
aes(h,t,z) == / D?RE (Ye5(v1,t — 8) — Ye5(v2,t — 5)) ds,
0

and

t
be,s(h,t, z) =: / D2R§ (Ve,s(v1,t — 8) — Ye,5(va, t — 5)) ds.

il

Then, thanks to (5.10) and (5.12), we can proceed as in Step 3 of the proof of Lemma 5.3 and we obtain
that (5.28) holds also when e~ !||h||% < ¢/2. In particular, we obtain that

¥ E(t A1)2HE [DPTY 5(v1)(t) — DT 5(02) (1)) < cles(R, 1)1 — valle.gim,o.7

so that
Isa(e) < cles(R,t)[[vr — v2lle0,n,0,7 (5.29)

Therefore, if we combine (5.25), (5.26), (5.27) and (5.29), we obtain that
I\Fi’,g(vl) - Fg,g(w)”aamﬂ%T <cles(R,t)||vr — v2lle 00,7

This means that if we first choose d; < ¢’ such that

1
cé(14+R)? < 5

and then T} < T’ such that

1
ce 3 (Ty A1)2 < 5
we can conclude that I's ;, maps Hg’n’ﬁﬂ into itself as a contraction, for every § < 6. O
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6. Further properties of mild solutions of the quasi-linear problem

We will show that any mild solution u. of equation (3.20) that belongs to Ce ,,((0,T]; CgJ“ﬂ(H)) is
in fact a classical solution in the sense of Definition 2. Moreover, by using its probabilistic interpretation
in terms of equation (3.23), we will prove that a maximum principle holds for equation (3.20). This will
imply that the local mild solution we have found in Section 5 is the unique global classical solution of
Theorem 3.4.

We start by proving that QD?u.(t,x) is a trace-class operator.
Lemma 6.1. For everyt € (0,T] and x € H, we have that QD>u.(t,z) € L1(H).

Proof. If u. is a mild solution, with the notations we have introduced in Section 5 we have
ue(t,x) = Rig(x) + Les(ue)(t, ).

According to (2.17) we have that QD2RSg(z) € L1(H), for every e € (0,1),t > 0 and z € H, and
thanks to (2.17) and (3.14)

IQD2R;gllo < e,y (t/2) llglly-

Here ke, is the constant defined in (3.14) with @ replaced by /e Q. As far as I'c 5(u.) is concerned, if
R = ||ue||e,0,n,0,7, thanks to (2.17), (3.14) and (5.9), we have

1QD?T e 5(uc)(t, )l 2, (1)
. t

< / IQDIR;_ e s(uc,s) (@)l ¢,y ds < C/ feo (= 8)/2) lve,5(ue, 8)llo ds
0 0

t —s
<ce P / (t—=s)/2N 1)_/3'06_‘”( z )e_g+%(s A 1)_(9+%))\6,5(R, s)ds < c.(R,T).
0

This allows to conclude that QD2u,(t,x) € L£1(H) for every e € (0,1),t € (0,7] and x € H.
O

Next, we show that u. is differentiable with respect to ¢ € (0,7] and € D(A) and is a classical
solution of equation (3.20). In Subsection 2.3, we have seen that for every ¢ € By(H) and z € D(A)
the mapping

t e (0,400) = Rip(z) € R,

is differentiable and
DiRip(z) = LeRip(z),

See (2.18) and (2.19). Hence, since

t

wlta) = Rigw)+ [ R, (5T Pluc(s, ) Dlucls. )] + (). Ducls. Do ) (a) s

= ng(x) + Fg,é(ue)(tax)v

thanks to Lemma 6.1, for every € D(A) we can differentiate both sides with respect to ¢ > 0, and we
get

Diuc(t,x) =L Rig(z)+ ;Tr [0 F(uc(t, m))Dgue(t, x)] 4+ (b(x), Duc(t,z)) g + Lele s(ue)(t, z)

= Leu(t,z) + %Tr [6 F(ue(t, z))D?uc(t, )] + (b(z), Duc(t, z)) g

Thus, we have proven the following result.

Theorem 6.2. Under Hypotheses 1 to 4, if u. is a mild solution of equation (3.20) that belongs to
Ce.on((0,T); C2FP(H)), then it is a classical solution.
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Next, we show how any solution of equation (3.20) is related to the stochastic PDE (3.23).

Theorem 6.3. Assume Hypotheses 1 to 4. Then if ue € Ce ,,((0,T]; C§+ﬂ (H)) is a solution of equation
(3.20) and X2* € L2(;C([0,t]; H)) is a solution of equation (3.23), we have

uc(t, ) = BEg(X"(t)). (6.1)

Proof. The natural way to prove (6.1) is by applying the Ité formula to the function (s, x) € [0,¢]x H —
ue(t — s,x) and to the process X'*(s). However, we cannot do this directly first because u. satisfies
equation (3.20) in classical sense only for x € D(A) and second because X* is only a mild solution of
equation (3.23), and not a strong solution, as required when Itd’s formula is used. To overcome these
difficulties, we introduce a suitable approximation of u. and X%®, by adapting an argument introduced
in [8, Proof of Theorem 9.25].

For every m € N we define J,,, = m(m — A)~! and

Ue,m (t, ) = ue(t, Jmx), (t,x) € [0,T] x H.
Since Jppx — x, as m — 00, and u. € Cc,,((0,T7; C’l?'H9(H))7 we have that

lim  sup |uem(t, ) —ue(t,z)| = Um sup |uem(t, Jmx) —uc(t,z)] =0, x€ H. (6.2)
m=00 4c [0,T] M= 10,7

For all the details about the Yoshida approximants J,, we refer to [21]. Moreover,
Dotiem(t, ) = J5 Dyuc(t, Jmz),  D2ucp(t,2) = J5D2uc(t, Jpnx) Jom. (6.3)
Next, for every m € N we introduce the stochastic PDE

dX0p(s) = [AXER(s) + Tmb(XE7(5))] ds + VeTnZe(s, Xem, () AW,
(6.4)
X52(0) = Jp,

where ¥; is the operator introduced in (4.2) and W/™ is the projection of the cylindrical Wiener process
W, onto H,, := span{ej,...,en}t. By proceeding as in Section 4, we can prove that equation (6.4)
admits a unique mild solution X% € L*(Q;C([0,t]; H)). Since .J,, maps H into D(A) and W™ is a
finite dimensional noise, it is immediate to check that X!¥ is a strong solution. Namely, writing X,
in its mild form,

X02 (5) = A Tz + / DA T b(XET (1)) dr + / DA e Ty, X2 (1)) AW
0 0
we see that all the terms lives in D(A).

At the end of this section we will prove that

(s) = XL"(s)lm = lim  sup E[XLE(s) = X0"(s)llw = 0. (6.5)

€,m

lim sup E|.J,,X5*

€,m
mM—0 o [0,4] ’ m=00 5¢ [0,

Now we apply Ité’s formula to u,,, and X% and thanks to (6.3) we get

dsthe m(t — s, Xﬁjﬁl(s)) = —Dyu(t — s, JmXet:;'fl(s)) ds

+§Tr [T Dt = s, T X (8)) Tin (T Be (5, X3, (5))) (T e (5, X3 ()] ds

HATm X0 (5) + Jo,b(XE (), Daue(t = 5, Jm X i3 (5))) 1 ds

HVE( 5, De(s, X (5)) AW, Doue(t — 8, Jm X3 (5))) -

Therefore, recalling that u(t, =) satisfies equation (5.1), for every x € D(A), since J,, X!% (s) € D(A)
we have
dsue,m(t - S, X:’fn(s))
(6.6)

= V(I Eu(s, X5 (5)) AW, Dyue(t — s, Jyy XE () 1 + L 1(5) + I, o(5)] ds,
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where

€
Im,l

(s) = %Tr [T D3uc(t = 5, Jmn X (8)) T (T De (5, Xeog (1)) (T e (3, X7 ()))]

€
—5Tr [DZuc(t = 5, T XE5,(9)) (B (s, T X o7 () (Ba (s, T XE7 (9)))°]
and
I, 5(s) = (Jnb(XE0(s) = b(Im X7, (9)), Daie(t — 5, T X (5))) -
If we take the expectation of both sides in (6.6) and integrate with respect to s € [0,¢] we get
¢
Eg(JmXEE (1)) = tem(t, Jm) +/ E (I5, 1(s) + I5, 5(s)) ds.
0

In view of (6.2) and (6.5), recalling that g is bounded, we have that
lim Eg(J, X 5 () = Eg(XE" (1)), Hm e (t, Jinx) = uc(t, x).
m—oo ’ m—00

Moreover, since u, € Ce o,((0,T); C¥(H)), by using again (6.2) and (6.5) , since we have pointwise

and dominated convergence as m — +oo of all terms appearing in I, ; and I}, 5, we get

t
lim E (|Iﬁn1(s)| + |Ifng(s)\) ds = 0.
0

m—r oo

Therefore, if we take the limit of both sides in (6.7), as m — oo, we obtain (6.1).

Remark 6.4. Thanks to the representation formula (6.1) of u., we have that

sup |lue(t, -)llo < [lgllo-
t€ 0,7

Now, we conclude this section with the proof of (6.5).

Lemma 6.5. If X' is the solution of problem (6.4), we have

lim sup E[J,X55(s) = X0¥(s)|[F = lim  sup E[ X7 (s) — X0 (s)|[3 = 0.
M0 5 [0,4] ' m=00 5 [0,t] ’

Proof. If we denote pem(s) == X2 (s) — X5%(s) and W™ := W, — W™, we have

€

Pem(s) = eSA(me —z)+ /S els—mA (me(Xé’fil(r)) — b(XZT(T))) dr
0
Ve [ A (S XU ) — Sl X))

e / DA, () X1 () ATV,
0

Therefore, since |||l ¢my < 1, we have

Elpem()|3 < cllImz — 3 + / El|pe.m ()13 dr
0
b [ EInbOXET() ~ BXE )y dr
0
tee / EfleC=4,7,, (Sy(r, XE2,()) = Su(r, X152 (1) |2, g0y dr

+60/ E|| et A8 (r, X0 (1)) = 7 DAS (r, X0V (1) |2 (1)
0

s 6
tee / ElleC45, (r, X0 (1) Spul|2, gy dr = 3 15,4(5),
0 =1
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where S,,, := I — P,, is the projection of H onto span{e, 1, emt2,-- -}
By proceeding as in Section 4, we have that

ma(s) < c(e) S((S — ) AD)TE (14 ((t = 1) A1) 720) Ellpe,m(r) 13 dr,
0

so that

Ellpem ()l < ce) A ((s =) A1) COFDE | pe (1) dr + Acm(s),

where
Aem(s) =1y, 1(8) + I, 3(8) + I, 5(5) + I, 6(5)-

Since 20+ 1/2 < 1, thanks to a generalized Gronwall’s inequality (see [22, Theorem 1]), this implies that
E‘lpe,m(s)”%{ <cetNem(s) S cetAem(t), s € [0,

and (6.9) follows if we can prove that

W}gnoo Acm(t) =0. (6.10)
It is immediate to check that
li_r>n Iﬁ%l + I;%:;(t) =0. (6.11)

Moreover, according to Hypothesis 3 and to the fact that w is bounded in [0,¢] x H, for every m € N we
have

T8 (r, X0 (r)) — €4S (r, XEP (1) L)

< 2|e I Ao (X (1), uet — 1, X0 0)|Leamy < ¢ (t =) 7F (L4 | X7 (1)) -

Then, since
lim ”Jme(t_T)AEt(rv ‘(:J(T)) - e(t_T)AEt(r7 ‘(£7$(T))||L2(H) =0,
m— o0

and since the mapping L
s€ [0, (t—s)77 (1+[X"(s)lm) € R,

belongs to L?(Q; L%([0,t])), by the dominated convergence theorem we have that
lim IS, 5(t) = 0. (6.12)
m— oo ’
In the same way, by the dominated convergence theorem we have also that

lim IS, () = 0. (6.13)

m— oo

Therefore, combining together (6.11), (6.12) and (6.13), we obtain (6.10) and we get

lim sup E[X!2 (s) — X0 (s)||F =0. (6.14)

M= s [0,]
Moreover, since || ||c(my < 1, we have
[ X (s) = Xe® ()l < 1 Xem(s) = X (s) |l + [ Tm X7 (s) = X7 ()|,
and due to (6.14), we have

limsup sup E ||JmX:;7fl(s) — Xﬁx(s)H%I < 2limsup sup E|J,, X "(s) — Xﬁx(s)H%{

m—00 se [0,] m—00 s€ [0,t]

Now, since
fm(8) =B |[J, X5 (s) — X5 (s)||%, s€[0,t], meN,

defines an equicontinuous sequence of functions, pointwise converging to zero, we have that they converge
to zero uniformly for s € [0,¢] and we can conclude that (6.9) holds. O
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7. Existence and uniqueness of global classical solutions for the quasi-linear problem

In Theorem 5.5 we have proved that for every n € (1/2,1) and 9 € (0,7—1/2), there exist 61,71 > 0
such that problem (3.20) has a mild solution u. in C. ,,((0,T1]; C*7(H)). In Section 6 we have shown
that such mild solution is in fact a classical solution. Our purpose here is first proving that u. is defined
on the interval [0, 7], for every T' > 0, and then proving that it is the unique solution.

We start with the following a-priori bound.

Lemma 7.1. There exists 63 € (0,01], that depends only on ||g||,, such that if ue is a mild solution of
(3.20) for some & < 32, belonging to Ce ,.,((0,T); CZT7(H)), with o given in (5.21), then

e (0,1), (7.1)

l[uelle. .o, <
for some constant c. s independent of T > 0.
Proof. In what follows, for any function v : [0,7] x H — R we define
Ne(w(t)) = [o(t, )]y + €t A2 Do(t,)lg + €2 (E A1) 2| D02, ) o-
With the notations we have introduced in Section 5, thanks to (6.8) we have
l[ue(t; o + Ne(ue(®)) < llgllo + Ne(Rig) + Ne(Tf 1 (ue)(8)) + Ne(T(ue) (1)), (7.2)

where

t ¢ It
saita) = [ R ga(us)@ds = § [ BT P Dou(s, )] ) ds
and . .
5 (u)(t, x) ::/ R;_ v2(u,s)(x)ds ;:/ R;_ (b, Du(s, ")) g (x)ds.
0 0
In (5.24) we have already shown that

sup Nc(Rig) < cllglly- (7.3)
t€ (0,7

Thus, in order to prove (7.1) we need to estimate Ne(I'5 ; (ue)(t)) and Ne(I's(ue)(t)).
Thanks to (3.8) and (6.8), we have

1 (ue(s, Nllo < e (14 [lue(s, )llo) < ¢ (X+llgllo),
and then
1751 (e, s)llo < c €8]l F (uc(s, )lloll D*uc(s, o < ced (1 + llgllo) [ D*ue(s, ). (7.4)
Moreover, due to (3.9) and (6.8) we have
[F(ue(s, )] < e (L+ [Jue(s, o + [ue(s, )]o) < (L +llgllo + [ue(s,)]v),
so that

M5 (ue, s)ly < ced[Fuc(s, )]l D?ue(s, )llo + ced||F(uc(s, ))llo[D?uc(s, )]s

< ced (1+ |lgllo) 1D?uc(s, )|l + ced [ue(s, ol D*uc(s, ) o-
According to (2.8) and (6.8), this implies

51 (e, $)lo < ced (L+lgllo) [ D*ue(s, )llo + ced [lue(s, -)llo[D?ue(s, )]o

< ced (14 [gllo) 1 D?uc(s, )o-
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Therefore, if we combine together (7.4) and (7.5) we conclude that

1751 (ues s)llo - < ced (1+llgllo) [1D%uc(s, )llo

<ced(1+lglo) e @2 (s AT N (ue(s, ).
By proceeding as in the proof of Lemma 5.3 (see also Remark 5.4), this allows to conclude

Ne(T5 1 (ue) () < e (1+lgllo) SUP]N(Ue( ), te [0,T]. (7.6)

se[0,t
Now, let us estimate N (T'§(u.)(¢)). We have, by direct computations taking into account Hypothesis

2 (ue, )l < ¢ ([1Duc(t, Yo + [1D*uc(t, o) -

Thus, according to (2.6) and (2.9) and thanks to Young inequality for every ¢ > 0 there exists k¢ > 0
such that

(e DS et NG [D2uelt, N3 + et Y3 [DPuct,))3) (7.7)

< L[D?uc(t, )]y + kellue(t,)o-

In view of (5.3), (5.5), (6.8) and (7.7), there exists some Ay > 0 and &, such that for every t € [0,T]
t
Ne(T5(uc)(t)) < 5%1/ ((t =) A1) e 2 [D2u(s, )]y ds
0
t
Flerg € (t/\l)g/ K093 (¢ — 8) A1) 3 [D%u(s, ] ds
0

t
+502,9,169+%(m1)g+%/ “Ao(t=9) =5 (£ — s) A1) [D2uc(s, )]y ds (7.8)
0

t
*“/e”mﬂkiﬁwf@Aniﬁwmm
0

< cle(et1/2) sup Ne(ue(s,-)) + chee™ =n z lgllo
s€ [0,t]

Notice that in the last inequality we put e~ (¢*1/2) because o + 1/2 > (1 4 99)/2. Moreover, in the first
inequality of (7.8) we have applied (5.5) with o = n and 8 = n— ¢ with ¢ arbitrarily small together with
(7.7) in the first term (recall that || - |1 is stronger than || - ||c) , (5.3) with n = 1 and p = 1 in the
second term and again (5.3) with n = 2 and p = 1 in the third term. Hence, if we plug (7.3), (7.6) and
(7.8) into (7.2), we obtain

Hue( )||0+N(ue( ))

0
<cllgly +e |61+ lgllo) + =&/ SI[?]N(UE( () + chee™F |lgllo,
se€ [0,t

where ¢ only depends on the costants of Hypotheses 1,2 and 3.
In particular if take ¢ = §e2t1/2 and 8, < §; such that

82 (2+ llgllo) < 1/2,

we obtain (7.1) for every ¢ < Js.

30



7.1. Conclusion of the proof of Theorem 3.4

Thanks to (7.1), by standard arguments we have that for every e € (0,1) the local solution we found
in Theorem 5.5 is in fact a global solution. Moreover, this global solution is unique. The arguments
used to get a global solution from a local one and the arguments used to get uniqueness are quite similar
and both rely on the a-priori bound (7.1). Even though they are well known in the literature, here, for
the reader’s convenience, we give the proof of uniqueness.

Indeed, if uy,us € Ce,p,((0,T]; CET7(H)) are two solutions of equation (5.1), for some fixed § < &,
we assume that

to:=sup{t € (0,7] : ui(s) =ua(s), s€ [0,¢]} <T.

With the same notations we have used in Section 5, we introduce the problem
u(t) =T75(u)(t) = R+ Tes(u)(t),  t>to, (7.9)
where ¢ := uq(to) = u2(tp). Due to (7.1), we have that

||‘PHT7 < Ces ”9”777

for some constant c. s > 0 independent of T" > 0.
R

As shown in Section 5, there exist R, 7 > 0 and § < &5 such that the mapping I'? s maps HZ n.0.t0,7

into itself as a contraction, for every & < §, where

R L =1. 9 . D
Yol = {ue Cognlltoto + 7 CZO(H)) = Jullemor < R},

and C. ,,((to,to + 7]; C2TP(H)) is the space of all functions u belonging to C([to,to + 7]; CY(H)) N
C((to, to + 7); CF™(H)) such that the norm

Hu”e,g,n,%tm?

= s (Jlult )l + €~ to) AD)Dault, Yo + e ((E ~ to) A1) H|D2u(t, )
te (to,to+7]

is finite. ~
. » . .. 4eR
In particular I'Y 5 has a unique fixed point in yg,w?,tof?

or, equivalently, equation (7.9) has a unique
solution on the interval [to, %o + 7]. This implies that

u1(s) = ua(s), s € [0,ty+ 7,

violating the definition of [0,ty] as the maximal interval where u; and us coincide.

8. The large deviation principle

In this last section we give a proof of Theorem 3.6. We follow the well-known method based on weak
convergence, as developed in [3]. To this purpose, we need to introduce some notations.

For every t > 0, we denote by L2 (0,T; H) the space L?(0,T; H) endowed with the weak topology,
and by P; the set of predictable processes in L?(2 x [0, t]; H), and for every M > 0 we introduce the sets

Seari={p€ LL(0,t; H) : |@ll26m) <M},
and
At,M = {Lp S j)t Lp e St’]\/[, P— a.s.} .

In Theorem 3.5 we have shown that for every M,¢t > 0 and ¢ € A and for every z € H and
€ € (0,1) there exists a unique mild solution X}% € L?(Q; C([0,t]; H)) for equation (3.23).
Next, we consider the problem

%(S) = AX(s) + b(X(s)) + o(X(5), 9(ZX(t = 5))p(s),  X(0) ==, (8.1)
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where, as we did in Section 3, for every y € H we denote by Z¥ the solution of equation (3.26). We
recall that X € C([0,¢]; H) is a mild solution for equation (8.1) if

X(s) = e+ /OS e(s_’")Ab(X(r)) dr + /03 e(s_T)AZt(X(r),r) p(r)dr, se€|0,t],

where for every y € H and s € [0,t] we have defined

Zi(y,8) = o(y, 9(2%(t = s)))-

In what follows, we show that the following result holds.

Proposition 8.1. Assume that g : H — R is Lipschitz-continuous. Then, under the same assumptions
of Theorem 3.5, for every t > 0 and ¢ € L?(0,t; H) and for every x € H, there erists a unique mild
solution X5* € C([0,t]; H) for equation (8.1).

Once proved Theorem 3.5 (see Section 4) and Proposition 8.1, we introduce the following two condi-
tions.

C1. Let {¢c}eso be an arbitrary family of processes in Ay ps such that

liH(l) ¢ =, in distribution in L2 (0,t; H),
e—

where L2 (0,t; H) is the space L?(0,¢; H) endowed with the weak topology and ¢ € At p. Then
we have
lim X% = X", in distribution C([0,¢], H).

e—0 P
C2. For every ¢, R > 0, the level sets ®, g = {I; , < R} are compact in the space C([0, t]; H), where we
recall that I, , is the functional defined in (3.28).

As shown in [3], Conditions C1. and C2. imply that the family {X/*}.c 1) satisfies a Laplace
principle with action functional I, , in the space C([0,¢]; H). As known, if I; , has compact level sets,
then the large deviation principle with action functional I; ;. is equivalent to the Laplace principle with
actional functional I; .. Hence, due to the compactness of the level sets ®; r stated in C2, the proof of
C1. and C2. is equivalent to the proof of Theorem 3.6.

8.1. Proof of Proposition 8.1

With the notation introduced above, a function in C([0,t]; H) is a mild solution for equation (8.1) if
it is a fixed point of the mapping A; defined for every X € C([0,¢t]; H) by

A(X)(s) == e*Aa + /0 ) eGIANX (1)) dr + /0 Se<S*T>A2t(X(r)7r)go(r) dr, se [0,t].

It is immediate to check that there exists a continuous increasing function x(s) such that for every
y1,y2 € H
1271 (s) = 2% (s)ller < 5(s) [lyr = w2lle, 52 0. (8.2)

Hence, since we are assuming that g : H — R is Lipschitz-continuous, according to Hypothesis 1 for
every y1,y2,h € H we have

IZe(yr,m) = Ze(ya, M)l < ¢ (L4 £(E =) [ly2 — g2l llhllm, — re (0,4

In particular, for every X, X, € C([0,t]; H) and s € [0,t] we have

1A (X1)(s) = Ae(Xo)(s) | SC/OS (L4 (45 =) o) a) 1X2(r) = Xo(r) ||z dr

< (lellz2am) + 1) X1 = Xollogo.n:m)-

This implies that A; : C([0,¢]; H) — C([0,t]; H) is Lipschitz continuous and by standard arguments we
conclude that A; has a unique fixed point.
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8.2. Preliminary results
Lemma 8.2. Under the same assumptions of Theorem 3.6, for every p > 1 we have

sup E sup [ X57, ()% < clt, M,p) (1 + [lz]%) (.3)
e€ (0,1) s€[0,t]
Proof. We have

S S
XLe (s) = ew+ / e TIAYXLET (r)) ds + /O e TIAS (r, XLE (1)) @e(r) dr

+\// (=AY, (1, XEE (r)) AW,

where ¥;  is the operator defined in (4.2). Hence, for every s € [0,¢] and p > 1 we have

b
X2 < cpllally + ey [ IXEE O dr+ ( [ o5 X Dy
v | [ et x e aw| e
0 H
(8.4)
According to Hypothesis 3, for every 7 > 0, s € [0,t] and € H we have
- _1
™ See (s, )12,y < ¢ (T AD) T2 ([lFr + fuet = s,2)° +1) .
Moreover, according to (6.1), we have
Sup ue(s, )] < gllo, €€ (0,1),
(s,2)€ [0,t]x H
so that )
sup ™Sy (s, 0) |2,y < ¢ (T AL)TE (J2]F + 1) (8.5)

e€ (0,1)
In particular, if p > 4
2 s
E suop]( [ I o X Dy o) < e [ BOXEON 1) (59
76 S

Now, if we fix p > 4, we can find o < 1/4 such that (o — 1)p/(p — 1) > —1. By using the stochastic
factorization, we have

[ et X ) W, = o [ eI =) Y () i,

0 0

where .
Vo (1) 1= / DA~ )70, (p, XE7(0) dIV.
Then, we obtain

p s (a—1)p p—1 s
] < Cay ( I dr) | et ar,
H 0 0

so that, thanks to (8.5) and to the fact that o < 1/4

/ eCTIAD, (r, X5T (1)) dW,
0

P

E sup
re [0,s]

/0 DS, (p, XLT () AW,

S Ca,p,t/ E||YQ7E(T)H§{ dT
H 0

<cop | E( [ = o (g ol + 1) dp) dr 67

< g ( [ & sw ||X;»:e<p>||zdr+1>.
0 p€E [0,7]
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Therefore, thanks to (8.4), (8.6) and (8.7),

B s X0 < cony lolfy + 1)+ [ B sup X7 )1 .
re [0,s] pe [0,

and Gronwall’s Lemma allows to conclude in case p > 4. The case p € [1,4] follows from the Holder
inequality.

O
Lemma 8.3. Under the same assumptions of Theorem 3.6, we have
lue(s, ) = g(Z%(s))| < e Ve (L + ||z[lm), s € [0,1]. (8.8)
Proof. Thanks to (6.1), we have
uc(s,z) —g(Z%(s)) = E(g(X2"(s)) — g(Z%(s))) ,
so that, since we are assuming that g is Lipschitz-continuous
|uc(s, x) = g(Z%(s))| < cE[|X2*(s) = Z*(s)| u-
Now, if we define p*(s) := X5%(s) — Z*(s), we have
S S
pr(s) = [ TN QET) = 2T dr Ve [T X2 () W
0 0
where 3 . is the operator introduced in (4.2). Due to (8.3) and (8.7), we have
Ellpe(s)llar < C/ Ellpe(r)lle dr + e Ve 1tz ) ,
0
and Gronwall’s lemma allows to conclude.
O

8.3. Proof of the validity of Condition C1.

Now, we are ready to prove condition Cl. Let {¢.}.>0 be an arbitrary family of processes in Ay ps
converging in distribution, with respect to the weak topology of L?(0,¢; H), to some ¢ € A . As a
consequence of Skorohod theorem (see e.g. [8, Theorem 2.4]), we can assume that the sequence {©¢}eso
converges P-a.s. to ¢, with respect to the weak topology of L?(0,t; H). We will prove that this implies
that

t,x t,x 2
lim Eszl[l&]llXW(S) = XS (s)llm =0, (8.9)

and in particular X5®_ converges in distribution to X5* in C([0,]; H). If we define

pe(s) = X7 (s) — X5"(s), s € [0.1],

Per€

we have

pele) = [ eI XL (1)~ WXL dr

+ /Ose“’”“ [0 (X52 ) uelt = 7, X2 (1)) elr) = o (X (1), (255" (=) ()] dr (510
s 3

++/€ / eI, (r, XEE(r) dWy =) T o(s)
0 k=1

For I ((s), due to the Lipschitz continuity of b, we have

()17 < Ct/o lpe(s)l7 ds. (8.11)



Concerning Is ((s), it can be written as

e [ ) = X2 00) — o (X0, (27O e = )] )

0
+ / A (X7 () 92550 (1= ) — o (X (1), (255 O ¢ )] i) di
s - 3
+ / TG (XL" (). 9 (27O (= 1)) (pelr) = olr) dr =2 Y Jiels)
0 k=1
According to (8.8), we have

[ T.e(s)l[m < C/OS (el + e Ve (L + [ XG2 (M)11)) e ()L dr,

so that

1T1,e() 17 < Ct,M/ llpe(r)ll; dr + € (1 + sup, IX57 |§1> : (8.12)
0 re [0,t

Moreover, thanks to (8.2), we have

1 Joe ()13 < crn / 12X — ) = ZXE O (& )3 dr < con / loe() 3 dr. (8.13)
0 0
Finally, for I .(s), thanks to (8.3) and (8.7) we have

E sup, [3,e(s)Fr < e (1+ [|2]|%) - (8.14)
se [0,

Therefore, if we plug (8.11), (8.12), (8.13) and (8.14) into (8.10), in view of (8.3) we obtain

E sup [pe(r)ll <CtM/ E sup [[pe(r)|f dp+coare(1+ alF) +E sup [[Js.e(s)ll%,

re [0,s] re [0,p) s€ [0,t]
and the Gronwall lemma gives
E sup [|pe(r)lf < conre (1+[|2)lF) + co,mE sup || Js.e(s)7 dr (8.15)
re [0,t] s€ [0,t]
Thus, if we prove that
limE sup ||Js.(s)|} =0, (8.16)

=0 ¢ [0,¢]

by taking the limit as € goes to zero in both sides of (8.15) we obtain (8.9).
Thanks to the stochastic factorization formula, for every 8 € (0,1) we have

J3.e(s) = 05/ (s — T)B_le(s_’“)AY@e(r) dr,
0

where
Ya,e(r) == /0 (r— p) P =PAG(XE%(p), g(Z5¢" O (t — p))) (#e(p) — #(p)) dp.

Due to the Young inequality, we get

t r p
Wy < cont | ([ 0= 02 loco) = ol ap) ar

t 2
2Bp
<ce,mp llpe — 30||Z[)‘2(07T;H) (/0 rpt2 dr)
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Hence, if 8 < 1/2, we have
1Y5.cllLe .11y < conap l0e = @llL20,m:m)-
Now, due to the analyticity of ¢4, we have that e*4 maps H into D((—A)?), for every v > 0, with
el ay = I(—AV e alla < ot Al
Thus, if 8 > a4+ 1/p the mapping

Y € LP(0,t; H) — G(Y) ;:/'(. — )Pt IAY () drr € CPTOVP([0,]; D((—A)Y))

is well defined and
IG(Y)lca—a-1/p(j0,4:D((=a)>)) < Y lLr(0,6m)- (8.17)
(see the computations in the proof of [6, Proposition A 1.1]). Therefore, since J3 . = c3 G(Yp,e) and
(8.17) holds, we conclude that if o + 1/p < 8 < 1/2, then

[ J3,ellcs—a-1/0(0,;D((~a)2)) < Ct,mp 9e — @llLzo,rmy, P —as.

Due to condition 3.12 and point (4) in Hypothesis 2, we have that
e = Q%N t>0,

for some A; € L(H), and since Qi /2 is compact, it follows that e** is compact. As shown in [10, Theorem
4.29] this implies that A has compact resolvent. Since (—A)“ is defined in terms of an integral in £(H) of
the resolvent (see [17, Definition 4.3]), this implies that (—A)® is a compact operator. In particular, this
means that C#~>~1/7(]0,t]; D((—A)%)) is compact in C([0, T]; H) and D(—A)*) is compactly embedded
in H.

Therefore, since p. — ¢, as € — 0, in L2 (0,t; H), we conclude that

611_1}1(1) ||J3,e||c([0,t};H) =0, P— a.s.

Moreover, since

sup ) | J3,cllcqo,g:m) < eare, P —aus.

e€ (0,1

by the dominated convergence theorem we obtain (8.16).

8.4. Proof of the validity of Condition C2
In the proof of Condition C1. we have seen that if ¢, converges P-a.s. to ¢, with respect to the weak
topology in L?(0,t; H), then (8.9) holds. In particular, this holds in the deterministic case, so that the

mapping
p € Ly(0.t: H) = Xg" € C([0,t]; H),

is continuous, and for every ¢ > 0
m {X;’w, p e St,c+6} = {X;’w, p e St,c} . (818)
e€ (0,1)
Moreover, for every ¢t > 0 and z € H the set 8; . is compact in L2 (0,¢; H), so that
{X57, e 8.} cC([0,1]; H) is compact.
Now, recalling the definition of I; ,, for every R > 0 we have

= {lix <R} ={X", €8, sr} (8.19)

Indeed, if X belongs to {X}” : ¢ € 8, s55}, then there exists ¢ € 8, 55 such that X = Xi—,’w, so that
I -(X) < R. On the other hand, if X € {I;, < R}, then for any ¢ > 0 there exists ¢, € St’\/ﬁJrE such
that X = X@f, and together with (8.18) this implies

xe () {xt7 ves, am)={X5" v 8 -
e€ (0,1)

Therefore, from (8.19) and the compactness of {X3", ¢ € 8, 57}, we conclude that Condition C2.
holds.
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