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Abstract

In recent years, there has been significant research interest in the automatic 3Dreconstruction and modeling of indoor scenes from capture data, giving rise toan emerging sub-field within 3D reconstruction. The primary goal is to convert aninput source, which represents a sample of a real-world indoor environment, intoa model that may encompass geometric, structural, and/or visual abstractions.
Within the scope of this thesis, the focus has been on the extraction of geometricinformation from a single panoramic image, either by using only visual data or aidedby very sparse registered depth information. This particular setup has attracted alot of interest in recent years, since 360◦ images offer rapid and comprehensivesingle-image coverage and they are supported by a wide range of professionaland consumer capture devices, which makes the data acquisition process bothefficient and cost-effective. On the other hand, despite the 360◦ coverage, inferringa comprehensive model from mostly visual input in preseence of noise, missingdata, and clutter remains very challenging. Thus, my research has focused onfinding clever ways to exploit prior information, in the form of architectural priorsand data-driven priors derived from large sets of examples, to design end-to-enddeep learning solutions to solve well-defined fundamental tasks in the structuredreconstruction pipeline. The tasks on which I have focused are, in particular, depthestimation from a single 360◦ image, depth completion from a single 360◦ imageenriched with sparse depth measurements, and 3D architectural layout estimationfrom a single 360◦ image. While the first two problems produce pixel-wise inputin terms of a dense depth map, the latter consists in the reconstruction, from theimage of the furnished room, of a simplified model of the 3D shape of the boundingpermanent surfaces of a room.
As a first contribution towards reconstructing indoor information from purely visualdata, I introduced a novel deep neural network to estimate a depth map from asingle monocular indoor panorama. The network directly works on the equirectan-gular projection, exploiting the properties of indoor 360-degree images. Starting



from the fact that gravity plays an important role in the design and construction ofman-made indoor scenes, the network compactly encodes the scene into verticalspherical slices, and exploits long- and short-term relationships among slices torecover an equirectangular depth map directly from an equirectangular RGB image.
My second contribution expands this approach to the common situation in whichwe receive as input a single equirectangular image registered with a sparse depthmap, as provided by a variety of common capture setups. In this approach, depthis inferred by an efficient and lightweight single-branch network, which employs adynamic gating system to process together dense visual data and sparse geometricdata. Furthermore, a new augmentation strategy makes the model robust todifferent types of sparsity, including those generated by various structured lightsensors and LiDAR setups.
While the two preceding contribution focus on the estimation of per-pixel geometricinformation, my third contribution has tackled the problem of recovering the 3Dshape of the bounding permanent surfaces of a room from a single panoramicimage. The method also exploits gravity-alighted features, but within a significantlydifferent setup, dictacted by the fact that not only we need to separate walls,ceilings, and floor, but we need to recover the plausible shape of invisible areas. Theproposed approach, differently from prior state-of-the-art methods, fully addressesthe problem in 3D, significantly expanding the reconstruction space. In particular,a graph convolutional network directly infers the room structure as a 3D meshby progressively deforming a graph-encoded tessellated sphere mapped to thespherical panorama, leveraging perceptual features extracted from the input image.Gravity-aligned features are actively incorporated in the graph in a projectionlayer that exploits the recent concept of multi head self-attention, and specializedlosses guide towards plausible solutions even in presence of massive clutter andocclusions.
The benchmarks on publicly available data show that all three methods are on paror better with respect to the state-of-the-art.
Keywords: Visual Computing, Computer Vision, Computer Graphics, Spherical Cap-ture, Omnidirectional Capture, Panoramic Capture, Equirectangular Projection, 3DReconstruction, Indoor Environment, Monocular Vision, Depth Estimation, DepthCompletion, 3D Layout Estimation.
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List of Figures

2.1 Comparing conventional perspective capture with 360◦ capture.Fig. 2.1a shows a perspective image that is a transformation fromthe equirectangular image, Fig. 2.1b. Both images are from theMatterport3D dataset [6]. . . . . . . . . . . . . . . . . . . . . . 292.2 Matterport High Resolution 360◦ Cameras. These 360◦ camerasare fast and affordable to capture small to medium spaces in 3D us-ing Matterport (this picture belongs to here matterport.com/cameras/360-cameras). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.3 Equirectangular mapping. A spherical projection by a 360◦ camerais directly transformed to a 2D equirectangular projection. Theintensity value from the point P of the spherical representation,where θ ∈ [0,2π) and φ ∈ [0,π), is mapped to an integer pixel po-sition (x,y) of a width(w)×hight(h) equirectangular image where
x = θw

2π
,y = φh

π
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.4 Omnidirectional image representations. Fig. 2.4a shows a sphericalimage, Fig. 2.4b its equirectangular projection and Fig. 2.4c itscube-map projection. The original image is from the Matterport3Ddataset [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.5 Structured light scanners. Structured light scanners use trigonomet-ric triangulation by a projector to display a series of linear patternsonto an object. Then, by analyzing the distortions of these linesor dots is determined the depth, Fig. 2.5a. Although, the capturescan have some artifacts such as lots of missing areas when has alarge depth as Fig. 2.5c shows, which is a depth map captured bystructured-light sensor (Matterport Pro 3D camera, Fig. 2.5b). . . 32
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2.6 LiDAR scanner. Here is shown two LiDAR scans (Light DetectionAnd Ranging). Fig. 2.6a which has, in general, the following specifi-cations: 16 beams/lasers, a full 360◦ horizontal FOV and 30◦ verticalFOV. Fig. 2.6b is a Heron LiDAR which has 2 Velodyne VLP-16, oneon top of the other and oriented 45◦ down, this Heron LiDAR scanis from GEXCEL company (gexcel.it/it) which is explained in moredetailed in Chapter 4. As an example, the sparse depth capturedby a Heron LiDAR is shown in Fig. 2.6c, having two groups of 16beams/lasers that each Velodyne VLP-16 has captured. Each sparsescan takes about 300 milliseconds and produces about 16% of pix-els with valid depth. . . . . . . . . . . . . . . . . . . . . . . . . 332.7 A mobile backpacked RGB+LiDAR acquisition system. This mobilebackpacked LiDAR acquisition system is equipped with a Garminspherical camera on the top for the RGB panoramic capture and,below, it has a Heron LiDAR (i.e., 2 Velodyne VLP-16, see Fig. 2.6)for the sparse panoramic depth capture. This mobile backpackedsystem is a product that belongs to GEXCEL company (gexcel.it/it)and data generated by this have been used in this thesis (Chapter 4). 342.8 Different kinds of sparse depth. Fig. 2.8a is a depth map capturedby structured-light sensors (Matterport Pro 3D camera), has lots ofmissing areas when rooms are large, surfaces are shiny or thin, andstrong lighting is abundant. Fig. 2.8b is a depth map captured by aLiDAR setup (two Velodyne VPN-16 shifted of the vertical directionwith different direction) has lots of valid information but only for afew stripes, where obtains horizontal 360◦ depth information butstill has narrow vertical FOV. In both captures are represented inblack color the holes/missing area. . . . . . . . . . . . . . . . . 352.9 Pixel by pixel depth estimation. Here is shown an equirectangularimage (the image on the left), its registered depth map (the depthmap on the right), and into both captures are represented a redbox pointing out one pixel depth estimated from the RGB image.The sample is from the Matterport3D dataset [6]. . . . . . . . . . 352.10 Types of occlusions in interiors. Here is shown an equirectangularimage (first figure on the left) with its layout representation (theothers two figures). The layout representation is the room’s interiorbounded by the walls, ceilings, and floor. The colored layout is aroom that has occlusions from walls (red) or from furniture (yellow). 36
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2.11 Dealing with occlusions. Here is shown an equirectangular image,its layout representation (a room’s interior delimited by walls, ceil-ing and floor), and pointing out one pixel from the RGB image thathas to estimate the shape by occluded structure itself, being multi-ple intersections and thus multiple values, one for each intersectedwall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.12 Architectural priors. A list of architectural priors used in 3D recon-struction, in order of complexity (image courtesy of Pintore et al.,CVPR 2023 [9]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 372.13 Manhattan Room Layout Reconstruction from a Single 360◦ image.In this comparative study introduce the prior MW used previouslyin perspective view to full-panoramic view. This figure belongsto [49]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382.14 Equirectangular image aligned to the gravity vector. Camera isaligned with an horizontal-ground plane. . . . . . . . . . . . . . 39
3.1 Network architecture. Our architecture is scalable with respectto the input resolution. In Fig. 3.1a, to simplify comparison withother methods, we show an example with an input image havingsize 3×256×512. A ResNet50 encoder [62] extracts four layersat different resolutions. From each resolution layer we obtain asliced feature map of 256×512 (purple blocks in Fig 3.1a, detailsin Fig. 3.1b). By concatenating the resulting four layers we obtain asingle bottleneck with 512 slices and 1024 features, which is refinedusing a RNN scheme (cyan blocks). The decoder proceeds symmet-rically, producing a depth map at the same input image resolution.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573.2 Detailed illustration of the SliceNet architecture. This illustrationcomplements the architectural view provided in the paper. The net-work uses an encoder/decoder structure. The encoder is presentedin Fig. 3.2a, while the decoder is presented in Fig. 3.2b. The last 4levels of the encoder are sliced, keeping the horizontal dimensionunchanged and compressing the vertical one (Fig. 3.2a). From theresulting sliced sequence (1024× 1× 512), we recover long andshort term information through a LSTM module (Fig. 3.2b). Thefinal depth map is recovered by following steps symmetrical tothose used for encoding reduction. . . . . . . . . . . . . . . . . 60
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3.3 Qualitative comparison on real-world datasets. Depth maps areinferred from real-world captured RGB data (Matterport3D [6]).The first column is the input RGB image (Fig. 3.3a), the second oneis the depth estimated by BiFuse [81] (Fig. 3.3b), the third one is thedepth estimated by our method (Fig. 3.3c), and the fourth one is theground-truth depth acquired by the instrument (Fig. 3.3d). Blackpixels are missing samples in the ground-truth depth. All methodshave been compared using the same original datasets and setting,without any further pre-process or alignment step. . . . . . . . . 643.4 Qualitative comparison on synthetic datasets. Depth maps areinferred from synthetic data (360D [80]). We show in the firstcolumn the rendered RGB image (Fig. 3.3a), the estimated depthby OmniDepth [71] (Fig. 3.4b), by our method (Fig. 3.4c) and therendered ground-truth depth (Fig. 3.3d). Black pixels are invalidpixels not rendered by the raytracer. . . . . . . . . . . . . . . . . 653.5 Qualitative performance. We present additional qualitative perfor-mance on Stanford2D3D [109] and Structured3D [108]. . . . . . . 663.6 Loss function qualitative comparison. Example of qualitative ef-fects depending on gradient loss (Sec. 3.3). . . . . . . . . . . . . 683.7 Special cases. First row: results on almost-outdoor environment.Second row: one of the worst cases in our tests. . . . . . . . . . 693.8 Real-world datasets vertical misalignment. The average inclina-tion with respect to the gravity vector of the Stanford2D3D [109]dataset is about 0.36 degrees, while the average misalignment ofthe Matterport3D [6] dataset is about 0.61 degrees. Outliers aremainly due to inaccurate line detection and classification of thealignment tool [47]. . . . . . . . . . . . . . . . . . . . . . . . . 70
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4.1 Different kinds of sparse depth. First image (from the left): depthmap captured by structured-light sensors (Matterport Pro 3D cam-era) has lots of missing areas when rooms are large, surfaces areshiny or thin, and strong lighting is abundant. Second image: adepth map captured by a LiDAR setup (two Velodyne VPN-16 shiftedof the vertical direction with different direction) has lots of valid in-formation but only for a few stripes. Third image: depth informationmay also come from triangulated features in purely image-basedpipelines; indoor environments, however, have lots of flat texture-less surfaces, and reliable features, here detected from SIFT, may bevery sparse. Fourth image: a typical input from low-cost structuredlight sensors with sparse measurements only for a small subsetof the captured camera pixels; for synthetic training, a typical ap-proach is to use a Bernoulli distribution to sparsify inputs [135]. . . 744.2 Network architecture. Our network is constituted by a single-branch encoder-decoder, which processes together the dense visualand sparse geometric data. A residual-gated encoder takes as input4 channels (RGB + sparse depth) returning fused features at differ-ent resolution. Multi-resolution features are compressed, flattenedand passed to a MHSA- single layer module (i.e., bottleneck). De-coding proceeds symmetrically to the encoder, but without usinggating, to reach the final output resolution. . . . . . . . . . . . . 794.3 Qualitative results on Matterport3D-SD dataset [93]. Maskedsamples in the results are missing samples in the ground truth. . 844.4 Qualitative performance on S3D-SD with a LiDAR configuration
with 32 beams and on real mobile LiDAR indoor capture. Qual-itative results with the same setup of Tab. 4.2. Our results arecompared to the Huang et al. [95] approach trained with the sameequirectangular augmented S3D-SD dataset with varying sparsitypatterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854.5 Qualitative performance on S3D-SD with different input depth
sparsity patterns. Qualitative results using simulated input fromlow-cost depth cameras using Bernoulli sampling and simulatedinput from SfM/stereo pipelines, using a SIFT detector to placesamples. Our results are compared to the Huang et al. [95] approachtrained with the same equirectangular S3D-SD dataset. . . . . . . 86
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4.6 Qualitative performance on S3D-SD by point cloud (PC). In theseexamples, 3D point clouds are obtained by unprojecting depthmaps, using the same setting of Tab. 4.2, and visualizing them froma standard point of view. Note how the proposed approach im-proves reconstruction especially in regions where clear geometricstructures from the architectural layout are present. . . . . . . . 864.7 Mobile RGB+LiDAR setup. To test our approach on a real-worldpanoramic RGB+LiDAR acquisition, we exploit a backpacked mobilescanner equipped with a full-view panoramic camera for the RGBcapture and two LiDAR heads for sparse depth capture. Ground-truth dense depth for each pose is provided by reprojecting datacoming from multiple poses of a static scanner. . . . . . . . . . . 884.8 Performance with variable sparsity level. The graph depicts thevalue of δ1 as a function of input depth sparsity for our methodand for the best competing method [95]. Continuous lines repre-sent models trained with our augmentation strategy. Dotted linesshow the same models but trained without augmentation (i.e., 40degrees sparse coverage with 32 active beams) . . . . . . . . . . 944.9 Bad case. Results on almost-outdoor environment. Sparse sam-ples from outdoor part, not properly masked, negatively affect thewhole reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1 Method overview. From a single cluttered panoramic image, ourend-to-end deep network recovers, at interactive rates, a water-tight 3D mesh of the underlying architectural structure. The graphconvolutional network, trained using indoor-specific losses, exploitsmulti-scale gravity-aligned features and active pooling to deform atessellated sphere to the correct geometry. Reconstructed modelsmay include curved walls, sloped or stepped ceilings, domes, andconcave shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . 1005.2 Layout occlusion. Left: panoramic image. Middle: room shape,with occlusions from walls (red) or from furniture (yellow). Only31% of the surface of interest is visible. Right: plausible 3D recon-struction generated by our method. . . . . . . . . . . . . . . . . 101
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5.3 Deep3DLayout pipeline. Our end-to-end deep learning techniquemaps an equirectangular image to a 3D mesh representing thebounding surface or the room. Two GCN blocks deform an input ico-sphere (Sec. 5.3.1) by offsetting its vertices (see Sec. 5.3.2). The firstblock starts from a first pooling of the GAF features F∗(n,d) to re-turn a low-res estimation of the mesh M∗(V ∗,Ei). This low-res rep-resentation M∗ is then refined to poll refined GAF features F∗(4n−
6,d), which drive the second GCN block. The output of the secondblock is the final refined mesh model M(V (4n−6,3),E(4m,2)). . 1025.4 Effect of MHSA. Qualitative difference in not using (left) or using(right) the MHSA transformer when pooling image features. . . . 1075.5 Effect of FPSL. The first two images shows the difference in usingor not the feature-preserving smoothness loss (FPSL - Eq. 5.11);the second two images show the difference in using or not thesharpness loss (SL - Eq. 5.7). . . . . . . . . . . . . . . . . . . . . 1115.6 Qualitative comparison. Qualitative comparison on publicly avail-able datasets. We show the input image, the ground truth model,our prediction, our prediction in overlay with ground truth, com-petitor prediction in overlay with ground truth and the 2D floorplancomparison (grey ground truth, blue ours, red competitor). The pre-sented scenes contains multiple connected rooms partially visiblefrom a single point-of-view, as well as non-MWM corners, curvedwalls and ceiling. Fig.5.6h full ground truth, including the dome,was recovered from the Matterport3D [6] meshes. . . . . . . . . 1165.7 Qualitative comparison on non-MWM scenes. Qualitative com-parison on non-MWM scenes (Pano3DLayout). We show the inputimage, the ground truth model, our prediction, our prediction inoverlay with ground truth, competitor prediction in overlay withground trutht and the 2D floorplan comparison (grey ground truth,
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The scientific work in this thesis has been performed mostly within the internationalframework of EVOCATION (Advanced Visual and Geometric Computing for 3D Cap-ture, Display, and Fabrication) project, a leading European-wide doctoral Collegiumfor research in Advanced Visual and Geometric Computing for 3D Capture, Display,and Fabrication supported by European Union’s H2020 research and innovationprogram grant 813170 (October 2018-May 2023). The consortium participants arethe University of Rostock (UNIRO), the Center for Research, Development and Ad-vanced Studies in Sardinia (CRS4), the University of Zurich (UZH), the Italian NationalResearch Council (CNR), the Technical University of Vienna (TUW), Fraunhofer IGD(FHG-IGD), and the two companies Holografika (HOLO) and GEXCEL.
The objective of the EVOCATION research network was, on one hand, to equipthe enrolled Early-Stage Researchers (ESR) with the right combination of research-related and transferable competencies, and, on the other hand, to foster, by sci-
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entific exchange and collaboration, the development of new technologies andknowledge around four interconnected interdisciplinary themes:
• Innovation in visual and geometric acquisition and processing. The focus,here, was on two separate challenging use cases, that led to well-definedresearch lines. The first one was dedicated to scalable mass-digitizationof shape and appearance of large collections of 3D objects with complexmaterials, with special emphasis on cultural heritage objects. The secondone was concerning the introduction of solutions for fast mobile capture oflarge environments and for creating semantically-rich representations, witha particular focus on complex indoor environments.
• Innovation in interactive data-intensive visualization. In this context, theproject studied solutions both to enable the exploration of massive dataat interactive rates, and to provide useful navigation tools supporting theexploration of complex acquired objects with semantically-rich annotations,beyond pure raw-data inspection, with a special focus on flat, but visuallyreach objects (e.g., paintings and bas-reliefs).
• Innovation in computational fabrication. This research line concerned fabri-cation and 3D printing technologies, both to expand the design space and toensure a higher quality reproduction of acquired models.
• Innovation in display systems. The goal, here, was to improve visual replica-tion and understanding of 3D data and associated information through novelhigh-bandwidth display environments, including high-density ubiquitous dis-plays, large high-resolution displays (LHDs), novel multi-user computational3D displays capable of fully matching human perceptual capabilities (lightfield displays), and multi-display environments.

More details on the project are available at the project web site (www.evocation.eu).
As an ESR and Marie Sklodowska-Curie Fellow in the project, my research trajectoryfocused mostly on the first research theme, and more precisely on the automatic3D reconstruction of indoor environments from panoramic images.
With this fellowship, I was also enrolled as PhD Student in the Computer ScienceProgram at the Department of Mathematics and Computer Science at the Universityof Cagliari under the kind tutoring of Prof. Riccardo Scateni.
My topic was inserted in a specific research project under the first research theme,devoted to ”Scalable Reconstruction and Exploration of Complex Indoor Environ-
ments”, where the goal is to study techniques to apply prior knowledge for theautomatic extraction of structured representation of interior environments from
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incomplete and noisy sampled data. For my thesis, I specifically focused on inferringa maximum amount of information from a single omnidirectional image, using onlyvisual data, eventually enriched with very sparse depth information.
The work described in this thesis received funding from the European Union’sHorizon 2020 research and innovation program under the Marie Sk lodowska-CurieActions Innovative Training Network (MCSA-ITN) grant agreement No 813170, aswell as from Sardinian Regional Authorities for projects connected to CRS4 Visualand Data-intensive Computing activities.
Eva AlmansaCagliari, ItalyNovember — 2023.
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Chapter 1

Introduction

The automatic 3D reconstruction and modeling of indoor scenes has
attracted a lot of research in recent years, making it an emerging well-
defined sub-field of 3D reconstruction. The aim is to transform an input
source containing a sample of a real-world interior environment into a
compact structured model containing geometric, structural, and/or visual
abstractions. In this thesis, I have concentrated on extracting informa-
tion from panoramic images, since they provide the quickest and most
complete single-image coverage and are supported by a wide variety of
professional and consumer capture devices that make acquisition fast
and cost-effective. This chapter outlines the scientific motivation behind
this research, provides a brief summary of research achievements, and
presents the organization of this thesis.

1.1 Background and motivation

The automated reconstruction of 3D models from acquired data (e.g., images ordepth measurements) has been one of the central topics in computer graphicsand computer vision for decades. The growth of this field can be attributed tothe simultaneous alignment of scientific, technological, and market developments.These developments now align with the widespread accessibility and increasingaffordability of high-quality visual and 3D sensors, which are coupled with expandedopportunities for large-scale data processing.
In this context, the automatic reconstruction of indoor environments is gaining wideattention. As detailed in a well-established survey [1], the focus has been on the
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creation of specialized techniques for very common and very structured multi-roomenvironments, such as residential, office, or public buildings. This is because theconstruction, management, and analysis of those buildings is common in diversefields such as architecture, civil engineering, digital mapping, urban geography,and real estate [2]. Commercial solutions in these areas range from virtual tourscreators (e.g., 3DVista [3]), to systems that support the construction process (e.g.,
StructionSite [4] or Reconstruct [5]), to general solution for sharing and exploringstructured models (e.g., Matterport [6]).
In this sub-field of general 3D reconstruction, 3D representation of an interiorscene must be inferred from a collection of measurements that sample its shapeand/or appearance, exploiting and/or combining sensing technologies ranging frompassive methods, such as single- and multi-view image capture setups, to activemethods, such as depth cameras, optical laser-based range scanners, structured-light scanners, and LiDAR scanners [7, 1].
Within the EVOCATION project (MCSA-ITN grant agreement 813170), in which I havecarried out my dissertation work, the research team has extensively analyzed theresearch domain in a survey published in Computer Graphics forum [1], and hasillustrated the main techniques in a SIGGRAPH Course [8] and a CVPR Course [9].Since these works have been the start of my journey into 3D reconstruction of indoorenvironments, and have also become well-established surveys in the researchcommunity, I will frequently refer to those summaries for an extended view of thedomain that goes beyond the scope of this thesis.
All 3D indoor reconstruction techniques aim to transform an input source containinga sample of a real-world interior environment into a compact structured modelcontaining geometric and/or information at an application-specific level of abstrac-tions. Since many variations exist, the first points to be defined are, therefore, thetargeted input and output of this research.
The input data can be obtained from a variety of sensors. Visual input (e.g., pho-tographic images) has attracted a lot of interest, due to the abundance of meansto acquire it, the ease of capture, and its low cost. A single perspective image,however, provides a very narrow view, and capturing multiple images complicatescapture and requires multi-image registration. For this reason, in recent years, 360◦

capture has emerged as a very appealing solution, since it provides the quickestand most complete single-image coverage and is supported by a wide variety ofprofessional and consumer capture devices that make acquisition fast and cost-effective. While pure 360◦ visual input is, possibly, the most widespread capturemethod, (semi-)professional indoor capture techniques have also witnessed theemergence of synchronized depth and visual 360◦ capture devices, that augment
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dense image data with sparse depth information. Such solutions, for instance, havewidespread use in the real-estate domain [1].
Extracting geometric and/or structural information of an interior model from asingle 360◦ image, eventually augmented with sparse data, has also attracted alot of research in recent years and has lots of practical applications that requiredifferent pipelines, as discussed in Pintore et al. [1]. Two fundamental problemsthat have emerged in this context, and form basic building blocks in most, if not all,reconstruction pipelines are depth estimation, which consists to augment the inputvisual representation with per-pixel data consisting in the distance of the visiblepixel from the viewer, and 3D architectural layout estimation, which consists ininferring from the image of a furnished room the 3D layout surface determined byjoining the walls, ceilings, and floor that bound the imaged room’s interior [1].
Despite the wide context provided by a spherical panorama, without prior assump-tions, these fundamental reconstruction problems remain, however, ill-posed, sincean infinite number of solutions may exist that fit the under-sampled or partiallymissing data provided by a single image, even if enriched with a few depth measure-ments. For this reason, very specific geometric priors have been proposed in thepast for structural and geometric recovery in indoor environments (see Chapter 2).These solutions, however, are typically very restrictive in terms of supported roomshapes, and also rely on the ability to extract specific visual features in the images(e.g., corners or edges), which may be difficult in the typical indoor environmentsdominated by large featureless walls and big occluded areas due to furniture. Inrecent years, data-driven solutions that discover hidden relations from large datacollections have shown that many priors imposed by pure geometric reasoningapproaches can be relaxed [7, 1].
Considering all of the above, the research comprising this thesis has been focusedon deep learning solutions based on monocular panoramic image analysis for the re-construction and representation of indoor environments, either using it standaloneor eventually combining it with sparse geometric information. The main hypothesisunder which this thesis is performed is that selected capture and architecturalpriors can be effectively combined with data-driven solutions to create indoorreconstruction techniques that outperform specific indoor reconstruction methodsbased on geometric reasoning, as well as generic data-driven 3D reconstructionsolutions that are not indoor-specific.
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1.2 Objectives

Based on aforementioned considerations, further expanded in Chapter 2, I setas a goal of this thesis to advance the state-of-the-art in the reconstruction frompanoramic images by answering the following questions:
1. How to better associate pixel-wise geometric information to a single panoramic

image of an interior model.Depth estimation from a single image is a classic problem in computer visionand many solutions exists. However, the aim is to study ways to exploit thepeculiar characteristics of the data source (a single panorama) and of theimaged environment (an interior one, e.g., a room). By exploiting priorsstemming from this restriction, and combining them with data-driven priorsthat can be learned from large collections of data, the expectation is to obtaindeep-learning-based solutions that outperform generic ones. Network struc-ture, loss functions, and training methods will be the targets of the researchdiscussed in this thesis.
2. How to improve the previous approach in the presence of limited geometric

information.Since purely visual capture is inherently ambiguous, many efforts have beendevoted to solutions that also exploit capture devices that provide synchro-nized high-resolution depth and color data. Due to the limitations of thesedevices, however, the input geometric information is typically much sparserthan the visual input. For this reason, many solutions to depth estimationand infilling problems have been presented (see 2). The goal of this researchline is to push the boundary by exploiting priors that are typical of indoorenvironments. By doing that, we expect to improve the performance ofmethods that perform depth estimation on general environments, as wellas of methods that perform infilling of small holes taking into account thecharacteristics of the neighborhood.
3. How to extract layout information from a single panorama.The goal, here, is to go beyond the simple extraction of per-pixel depth,transforming a single image of a furnished room into the 3D layout surfacedetermined by joining the walls, ceilings, and floor that bound the room’s in-terior. The problem is a fundamental one for many applications, for instanceas a building block to produce building information models, and is very chal-lenging, due to the intrinsic characteristics of indoor environments, wherefurniture and other indoor elements mask large areas of the structures ofinterest, and concave room shapes generate vast amounts of self-occlusions.
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The aim, here, will be to extend the deep-learning solutions developed fordepth estimation to layout estimation. It is expected that the different na-ture of the problem will lead to different data representations and networkstructures. On the other hand, the expectation is that the knowledge gainedon indoor-specific priors for depth estimation could also provide a guide inthis context.
1.3 Achievements

The solutions proposed in this thesis have achieved to improve the state-of-the-artin all the three identified research lines. Novel deep-learning methods have beenthus proposed for depth inference, depth densification, and layout estimation.
My main results and contributions to the state of the art are the following:

• An innovative end-to-end technique for deep dense depth estimation from
a single indoor panorama (Chapter 3). The method, introduced in a CVPR2021 contribution [10], predicts the depth map starting from a single indoor
360◦ image. Since gravity plays an important role in the design and construc-tion of interior environments, world-space vertical and horizontal featureshave different characteristics in most, if not all, man-made environments.The proposed solution, therefore, leverages the peculiar characteristics ofgravity-aligned images of indoor environments in the network design. Myprime contribution was to the methodology, implementation, testing, andvalidation of the developed method. In particular, I participated in the dis-cussions that led to the introduction of the methods, contributed to theirimplementation, and ran the tests of the methods and competitors’ imple-mentation, generating the results and analyzing them.

• A novel approach for deep panoramic depth prediction and completion
for Indoor Scenes (Chapter 4). The method, published as an article in theComputational Visual Media journal [11], with myself as a joint first author,expands over the previous approach by also exploiting optional sparse depthinformation, without any assumption on the sparsity pattern. The end-to-enddeep learning solution to jointly perform real-time dense depth predictionand completion from single-shot indoor 360◦ captures. The input is a singleequirectangular image registered with a sparse depth map, as provided by avariety of common capture setups. This method, the first to work directly onequirectangular images of indoor environments, introduces several specificnovelties, including a dynamic gating system to process together dense vi-sual data and sparse geometric data and a new augmentation strategy that

25



increases robustness to different types of sparsity, including those generatedby various structured light sensors and LiDAR setups. My contribution to thiswork was major and concerned with the conceptualization, methodology,implementation, testing, and validation of the developed method. In par-ticular, I jointly invented the method with Giovanni Pintore, implementedmajor portions of the system, created code for generating synthetic datasetsand using them for training and testing, created code for integrating real-world data acquired with a mobile scanner, ran the tests of the methods andcompetitors’ implementation, generating the results and analyzing them. Iconsider this contribution the primary one in this thesis. It is also interestingto note that, beyond solving the sparse-to-dense problem, the proposednetwork design is also suitable for pure depth estimation.
• An innovative solution for 3D reconstruction of an indoor layout from a

single omnidirectional image (Chapter 5). The method, presented at SIG-GRAPH Asia 2021 and published in ACM Transactions on graphics [12] targetsthe recovery of the 3D shape of the bounding permanent surfaces of a roomfrom a single panoramic image, using a graph-convolutional network capableto infer a tessellated bounding 3D surface from a single 360-degree image.Differently from prior solutions, the problem is fully addressed in 3D, signifi-cantly expanding the reconstruction space of competing solutions comprisingthe prior state-of-the-art. My prime contribution was to the conceptualiza-tion, methodology, implementation, testing, and validation of the developedmethod. For this work, in particular, I participated in the discussions that ledto the introduction of the methods, contributed to the creation of testingdatasets, and ran the tests of the methods and competitors’ implementation,generating the results and analyzing them.
In addition, during the course of my thesis, I have also contributed to an additionalwork [13], that I have not included in the thesis since I have only contributed tothe validation of the approach by performing tests on standard benchmarks anduser-captured data. The work introduces a novel light-weight end-to-end deepnetwork that, from an input 360◦ image of a furnished indoor space automaticallyreturns an omnidirectional photorealistic view and architecturally plausible depthof the same scene emptied of all clutter. While my contribution to that work waslimited, it shows an important direction for future work, i.e., mixing the per-pixeland layout extraction problems in solutions that also strive to synthesize visualdata.
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1.4 Organization

This thesis is based on the results that I have published in EVOCATION projectdeliverables [14, 15, 16], articles [12, 11], and conference proceedings [10]. I haveorganized them in order to show in a natural and coherent order all the outcomesobtained. Following is a brief overview of each chapter:
• Chapter 1 (this chapter) introduces the topic and motivation for this Ph.D.dissertation, describes my objectives, and summarizes my results.
• Chapter 2 provides a general background for the thesis, providing a widerview of previous approaches.
• Chapter 3 describes the technique I have introduced for inferring depth froma single panoramic image using and end-to-end deep-learning solution;
• Chapter 4 describes how additional sparse depth information can be ex-ploited to significantly improve depth reconstruction, while remaining withinend-to-end deep learning techniques and without making assumptions onspecific sparsity patterns;
• Chapter 5 illustrates how architectural and data-driven priors can be exploitedto infer plausible 3D layout information from a single panoramic image;
• Chapter 6 provides a conclusion and short summary of the achievements,a critical discussion of the results obtained and of how they advance thestate-of-the-art, as well as some reflections on future lines of work.
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Chapter 2

General background

Before presenting the thesis contribution, I provide here relevant back-
ground information on panoramic capture, on the targeted reconstruc-
tion problems, and on the priors that are typically employed to cope with
noise and ambiguities, also covering publicly available panoramic indoor
datasets that can serve to define data-driven priors. I will the provide
a brief survey of the state-of-the-art on the specific targeted tasks, i.e.,
depth estimation, depth completion, and layout estimation, and conclude
with the identification of open problems and of the hypotheses behind
the solutions that will be detailed in the forthcoming chapters.

2.1 Introduction

Reconstruction of interior structures is a well-defined topic which has attractedsignificant interest recently. In this field, the aim is to extract information froman input source to convert it into a representation of the imaged models thatoptimizes certain application-specific characteristics. The field is very vast, and Irefer the reader to established surveys for a general introduction and coverage ofthe state-of-the-art [1]. In this thesis, as discussed in Chapter 1, I focus on monocular360◦ input, and tackle the three fundamental problems of depth estimation, depthcompletion in presence of sparse depth information, and 3D architectural layoutinformation.
Before presenting in the next chapters the methods and results obtained on thesetasks, I provide here relevant background information and motivation for the direc-tion taken. First, I will briefly introduce methods and tools for panoramic capture
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and panoramic image representation, covering both the pure visual case (Sec. 2.2)and the presence of extra depth (Sec. 2.3). Then, I will characterize the depth esti-mation and completion problems and differentiate them from the layout estimationproblems (Sec. 2.4), before introducing the priors that are typically employed tosolve make them tractable (Sec. 2.5), introducing both geometric and data-drivenones. Since the work will concentrate on methods that learn from large sets ofexamples, I will briefly introduce the main concepts behind deep learning solutions(Sec. 2.6), before analyzing the state-of-the-art in the areas covered by this thesis(Sec. 2.7). I will then summarize the characteristics of the available annotated publicdatasets that can serve to train, validate and test data-driven solutions (Sec. 2.8).

(a) Perspective image (b) Equirectangular image

Figure 2.1: Comparing conventional perspective capture with 360◦ capture. Fig. 2.1a shows a
perspective image that is a transformation from the equirectangular image, Fig. 2.1b. Both images
are from the Matterport3D dataset [6].

2.2 Omnidirectional image capture

A wide variety of solutions exists for capturing 3D information on indoor environ-ments, ranging from mobile laser scanners to active depth sensors [1]. Amongthe many possibilities, purely image-based methods are very important, not onlybecause cameras provide a very widespread, practical, and affordable solution, butalso because visual information is paramount for a variety of applications, rangingfrom navigation, location awareness, as-built-, and existing-condition reconstruc-tions [17]. For this reason, many efforts have been devoted to exploit captured visualinformation, either alone or in conjunction with some registered depth information(Sec. 2.3).
Pure visual capture and processing is one of the most well-researched topics. Usinga classic camera with a limited field-of-view, however, does not provide enoughinformation for achieving plausible full-room reconstruction, and forces users to
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employ multi-view methods, that increase capture efforts [18]. Moreover, classicapproaches based on multi-view stereo [19] and structure-from-motion (SfM) [20]do not, by themselves, provide complete solutions in indoor environments, due tothe abundanced of clutter and non-cooperative textureless and reflective surfacesthat make feature detection, triangulation, and surface reconstruction difficult ininterior environments [1].

Figure 2.2: Matterport High Resolution 360◦ Cameras. These 360◦ cameras are fast and af-
fordable to capture small to medium spaces in 3D using Matterport (this picture belongs to
here matterport.com/cameras/360-cameras).

For these reasons, in recent years, 360◦ capture, also known as panoramic, spherical,or omnidirectional capture, has attracted a lot of attention, since it provides thequickest and complete single-shot coverage [21, 1, 22]. Fig. 2.1 provides a comparisonbetween a perspective and panoramic view of an indoor environments.
While a panoramic image with a 360◦ horizontal viewing angle and 180◦ verticalviewing angle can be obtained by many means, including stitching of a sequenceof photos captured with a mobile phone [23], modern commodity spherical cam-eras have become very widespread and increasingly popular in many applicationfields [24]. Fig. 2.2 shows, for instance, a set of 360◦ cameras that are usable withthe popular Matterport industrial interior capture, reconstruction, and touringsystem.
With such cameras, with a single click, a user obtains a full-view image with thesame efforts needed to take a single regular photo, since the processing (e.g.,stitching of multiple fish-eye views) is performed fully internally before deliveringthe output. The captured content has the benefits that it has a full-view, capturingthe light intensity of the entire surrounding environment in a single-shot and at(approximately) the same instant. The camera design and processing methodstypically ensure, also, that there is a single (effective) center of projection, and thatuniform resolution is maintained in the horizontal direction, which is difficult toachieve with the stitching of multiple casually captured images [25, 26]. From the
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processing point of view, the spherical camera can be modeled as a unit sphere withno intrinsic parameters, and the capture is thus determined fully by the extrinsicparameters [21].

Figure 2.3: Equirectangular mapping. A spherical projection by a 360◦ camera is directly transformed
to a 2D equirectangular projection. The intensity value from the pointP of the spherical representation,
where θ ∈ [0,2π) and φ ∈ [0,π), is mapped to an integer pixel position (x,y) of awidth(w)×hight(h)
equirectangular image where x = θw

2π
,y = φh

π
.

(a) Spherical capture (b) Equirectangular projection (c) Cube-map transformation

Figure 2.4: Omnidirectional image representations. Fig. 2.4a shows a spherical image, Fig. 2.4b
its equirectangular projection and Fig. 2.4c its cube-map projection. The original image is from the
Matterport3D dataset [6].

Nevertheless, the sphere is not isomorphic to a plane, and representing the captureas an image typically involves a mapping transformation. While some camerasprovide access to the original unstitched images, that provide the highest resolutioncapture, the most common approach, that has become a de-facto standard in indoorcapture and processing, is to extract from the device an equirectangular projectionsampled into a regular rectangular 2D grid [27], obtaining what is often called a full
panoramic image (Fig. 2.3).
Other projections can also be used to mitigate spherical distortion. For example,the cube-map projection (i.e., projecting around the sphere a 90◦ vertical and 90◦horizontal FOV to each face of the six faces of the cube) (Fig. 2.4) is often usedas a representation for image viewing, e.g., in WebXR environments or popular
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streaming viewer (e.g., YouTube 360 video format - YouTube 360 video format(see paulbourke.net/panorama/youtubeformat/). Other popular formats, includetangent image projections [28, 27], are covered in a recent survey [21].
Since equirectangular images are device-independent and supported by most, ifnot all, the devices, we set as a goal in this thesis to provide solutions that directlytake as input an equirectangular image, without conversion to other intermediateformats, and, where relevant, also provides output (e.g., depth) in an equirectangu-lar format. It should be noted that, in contrast to other formats such as cube maps,the equirectangular representation provides full continuity along the horizontaldirection, and that the reduction in resolution and singularity at the poles are notthat relevant in gravity-aligned indoor capture, as the low-res/discontinuous areoccurring directly above or below the capturing camera, in areas that are typicallymasked by the capture device (floor) or presenting not important information (ceil-ing). As we will see, relying on gravity-aligned capture will be a fundamental aspectof the introduced approach, that will be exploited for the design of all solutions,and that is guaranteed by most capture protocols.

(a) Structured-light sensor (b) Matterport Pro 3D
camera

(c) Depth map

Figure 2.5: Structured light scanners. Structured light scanners use trigonometric triangulation by a
projector to display a series of linear patterns onto an object. Then, by analyzing the distortions of
these lines or dots is determined the depth, Fig. 2.5a. Although, the captures can have some artifacts
such as lots of missing areas when has a large depth as Fig. 2.5c shows, which is a depth map captured
by structured-light sensor (Matterport Pro 3D camera, Fig. 2.5b).

2.3 Augmenting single-shot panoramas with depth informa-
tion

Since visual input alone, especially in the monocular case, is inherently ambiguous,combining active scanners with passive cameras to acquire jointly shape and colorhas been studied for a long time [29, 30]. This topic has gained increased attention,recently, due to the numerous affordable solutions that are emerging both in the
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(a) Velodyne VLP-16 (b) Heron LiDAR (c) Sparse depth captured by a Heron
LiDAR

Figure 2.6: LiDAR scanner. Here is shown two LiDAR scans (Light Detection And Ranging). Fig. 2.6a
which has, in general, the following specifications: 16 beams/lasers, a full 360◦ horizontal FOV and
30◦ vertical FOV. Fig. 2.6b is a Heron LiDAR which has 2 Velodyne VLP-16, one on top of the other and
oriented 45◦ down, this Heron LiDAR scan is from GEXCEL company (gexcel.it/it) which is explained
in more detailed in Chapter 4. As an example, the sparse depth captured by a Heron LiDAR is shown
in Fig. 2.6c, having two groups of 16 beams/lasers that each Velodyne VLP-16 has captured. Each
sparse scan takes about 300 milliseconds and produces about 16% of pixels with valid depth.

professional field (e.g., backpacks [31]) and consumer markets (e.g., consumer RGB-D cameras [32]). RGB-D cameras are compact systems that (virtually) acquire RGBimages along with per-pixel depth information, while scanner solutions typicallyemploy separate geometric and visual capture subsystems (e.g., LiDAR and RGBcamera) that are later synchronized and merged together. In this context, struc-tures can be recovered from data fusion [33, 34]. Several solutions are specificallydesigned for indoor captures [31], since outside captures often have a too highdepth range for several active methods or highly illuminated environment [35, 36].While the majority of works are focused on small-FOV perspective poses [37] orplanar projections for outdoor acquisitions[38, 39], in this thesis we only discussthe devices that can enrich omnidirectional images with some depth information.
Available solutions include combining (panoramic) cameras with structured-lightsensors (e.g., Fig. 2.5) or LiDAR (Light Detection And Ranging) scanners (e.g., Fig. 2.6and Fig. 2.7), that both can provide, as output of the capture process, an equirect-angular depth image aligned with the color image. However, in both cases, theamount of depth information that can be recovered with each captured color imageis very limited. For instance structured-light sensors are at lower resolution thancomparable visual cameras, are very sensitive to illumination variations, and sufferfrom short ranging distance. Longer ranging LiDAR sensors are more robust and ac-curate, but can only provide extremely sparse measurements at real-time rates [30],typically only on a few stripes. Sparsity patterns of the depth signal, moreover, are
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Figure 2.7: A mobile backpacked RGB+LiDAR acquisition system. This mobile backpacked LiDAR
acquisition system is equipped with a Garmin spherical camera on the top for the RGB panoramic
capture and, below, it has a Heron LiDAR (i.e., 2 Velodyne VLP-16, see Fig. 2.6) for the sparse panoramic
depth capture. This mobile backpacked system is a product that belongs to GEXCEL company
(gexcel.it/it) and data generated by this have been used in this thesis (Chapter 4).

very different depending on the depth sensing technology (see Fig. 2.8).
We therefore set as a goal for this thesis to evaluate how we can exploit the higherquality visual signal to improve quality of the depth signal that is coming from thedepth sensors, in a way that is robust to density pattern variations.

2.4 Targeted indoor reconstruction problems

The goal of any 3D indoor reconstruction pipeline is to transform the input sourceinto a problem-specific representation that contains geometric and/or structuralinformation on the scene. We have seen that the input, in this thesis, is a singlepanoramic image, represented in equirectangular format, eventually enriched witha second aligned equirectangular image that contains depth information for someof the pixels. The expected output depends on the specific targeted problem, that isthe extraction of a dense equirectangular depth map (with or without the supportof sparse depth information) or of an architectural 3D layout. Both problemscan be interpreted as ill-posed inverse problems, since, due to the presence ofoutliers, noise, and missing data many plausible reconstruction can produce anindoor environment fully compatible with the measurements. For these reasons,the research community has proposed many solutions [40, 1], that all rely on theintroduction and exploitation of prior knowledge (Sec. 2.5).
The nature of these problems is similar, in the sense that the input and the targetedenvironment are the same, there are also some important differences. First of all,
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(a) Depth map by a Matterport camera (b) Sparse depth captured by a Heron LiDAR

Figure 2.8: Different kinds of sparse depth. Fig. 2.8a is a depth map captured by structured-light
sensors (Matterport Pro 3D camera), has lots of missing areas when rooms are large, surfaces are
shiny or thin, and strong lighting is abundant. Fig. 2.8b is a depth map captured by a LiDAR setup (two
Velodyne VPN-16 shifted of the vertical direction with different direction) has lots of valid information
but only for a few stripes, where obtains horizontal 360◦ depth information but still has narrow
vertical FOV. In both captures are represented in black color the holes/missing area.

Figure 2.9: Pixel by pixel depth estimation. Here is shown an equirectangular image (the image
on the left), its registered depth map (the depth map on the right), and into both captures are
represented a red box pointing out one pixel depth estimated from the RGB image. The sample is
from the Matterport3D dataset [6].

dense depth reconstruction and depth completion must produce per pixel informa-tion that is associated with the corresponding color (and eventually sparse depth)information present at the same pixel. Layout estimation, by contrast, requiresto further parse the imaged space into the structural elements that bound its ge-ometry [1] (e.g., floor, ceiling, walls, etc.). This task is very challenging, due to theintrinsic characteristics of indoor environments, where furniture and other indoorelements mask large areas of the structures of interest, and room shapes generatevast amounts of self-occlusions (see Fig. 2.10). Thus, 3D layout reconstruction ismore complex than depth estimation, since it does not simply assign a depth toeach visible pixel, but must extrapolate large portions of the invisible structure,which can be occluded not only by objects but by the structure itself, leading tomultiple intersections per view ray (see Fig. 2.11). For this reason, we cannot expectto encode the output of 3D architectural layout estimation into a single value perpixel, but we must devise a representation that is simple enough to be extracted
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Figure 2.10: Types of occlusions in interiors. Here is shown an equirectangular image (first figure on
the left) with its layout representation (the others two figures). The layout representation is the room’s
interior bounded by the walls, ceilings, and floor. The colored layout is a room that has occlusions
from walls (red) or from furniture (yellow).

from the very partial information we have as input, while expressive enough torepresent important classes of indoor environments.

Figure 2.11: Dealing with occlusions. Here is shown an equirectangular image, its layout representa-
tion (a room’s interior delimited by walls, ceiling and floor), and pointing out one pixel from the RGB
image that has to estimate the shape by occluded structure itself, being multiple intersections and
thus multiple values, one for each intersected wall.
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2.5 Prior knowledge

Extracting geometric information from monocular input, even with the full contextprovided by 360◦ capture, is inherently ambiguous and is particularly complex inindoor settings characterized by large texture-less surfaces, abundance of clutter,and severe occlusions [1]. Thus, indoor reconstruction requires very wide contextinformation and must exploit very specific geometric priors for structural recov-ery [1].

Figure 2.12: Architectural priors. A list of architectural priors used in 3D reconstruction, in order of
complexity (image courtesy of Pintore et al., CVPR 2023 [9]).

Fig. 2.12 summarizes, in order of complexity, the most commonly geometric pri-ors used in indoor for surface reconstruction. They include Floor-Wall (FW) [41],composed by a single flat floor and straight vertical walls; cuboid (CB) [42], being asingle room of cuboid shape; Indoor World Model (IWM) [43], with a single hori-zontal floor, a single horizontal ceiling, and vertical walls that meet at right angles;
Manhattan World (MW) [44], an IWM without the restriction of a single floor andceling; Atlanta World (AW) [45], similar to MW, without the restriction of wallsconnecting at right angles; Vertical Walls, and Atlanta-World model with possiblysloped ceilings and floors [45], and piecewise planarity, that simply bounds theinterior with large planar surfaces [46].
Relying on architectural priors makes it possible to reduce the solution space,making reconstruction more tractable. For instance, methods based on the IWMassumption [47] can rely on finding and extruding a 2D floor plan, whose walls areforced to be aligned with one of the two principal directions. This makes it possibleto derive solutions that detect simple structures by simply looking for a limitednumber of corners [47, 48] (Fig. 2.13). On the other hand, this sort of approach hasalso several important limitations. First of all, methods that only employ geometricreasoning based on the matching of features detected in images with possiblereconstructions compatible with the prior are heavily dependent on the number
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and quality of detected features, and only the most restrictive priors (e.g., thosebased on MW assumptions) are robust enough to cope with the typical amountof missing/inconsistently-detected features that may occur in typical panoramicimages of furnished rooms [1]. These priors, however, are representative onlyfor a restricted class of rooms, since, for instance, non-orthogonal walls are notuncommon. Moreover, while solely relying on geometry reasoning can producesolutions for the layout detection problem, it can only serve as a support for thedepth estimation problem, since non-permanent structures do not typically followstrict arrangements that can be modeled with simple rules.
Recent research trends have shown that data-driven solutions that discover hiddenrelations from large data collections, and in particular those based on deep learning,have shown that many priors imposed by pure geometric reasoning approaches canbe relaxed [1]. I will also pursue this research line in this thesis, where relaxed geom-etry priors will be used not as as a basis for geometry reasoning based on detectedfeatures, but to drive the design of effective networks and training structures.

Figure 2.13: Manhattan Room Layout Reconstruction from a Single 360◦ image. In this comparative
study introduce the prior MW used previously in perspective view to full-panoramic view. This figure
belongs to [49].

In particular, one prior that will be consistently used throughout this thesis is theassumption that capture of the scene through an equirectangular image is alignedto the gravity vector (i.e., camera is placed on an horizontal-ground plane, seeFig. 2.14). Gravity-aligned capture is a very common setup, and all the public 3Dindoor datasets (Sec. 2.8) commonly used for training and testing reconstructionsolutions appear to have very small orientation deviations. Even in cases where
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this assumption is not verified at capture time, several orthogonal solutions existto gravity-rectify images in a pre-processing step (e.g., [50, 51, 52]), simplifying thepractical application of gravity-oriented methods. Thus, it is rational to assume thatgravity-aligned processing of images can directly exploit gravity-aligned world-spacefeatures [52].
Moreover, all the designs presented will take into account that gravity plays animportant role in the design and construction of interior environments, and, thus,world-space vertical and horizontal features have different characteristics in most,if not all, man-made environments. For instance vertical and horizontal lines withdifferent characteristics appear both in boundary surfaces (e.g., walls, floor) andin furniture (tables, desks, ...). This will allow us to design networks that performdifferent operations along the vertical and horizontal directions. In particular,vertical lines are very common in the scene, and are practically not deformed in theprojection while the horizontal ones are more so. Moreover, most 360◦ capturesetups have a much more regular coverage along the horizontal than on the thevertical direction because of masking effects [6]. Because of these characteristics,we expect that it will be possible, for each scene region along the dominant verticaldirection, to find specific relations to the others by both short-term and long-termspatial dependencies that encode construction constraints typical of certain scenecharacteristics (e.g., symmetries, spacing, and so on) [53, 54, 45].

Figure 2.14: Equirectangular image aligned to the gravity vector. Camera is aligned with an
horizontal-ground plane.

2.6 Basic components of a deep learning solution

Research in structured interior reconstruction has focused its efforts on buildingmodels based on data-driven approaches by applying inherent concepts of indoorsto guide the transformation of an input using deep learning architectures to achievethe desired target. A definition complete of what is deep learning is beyond the
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scope of this thesis, although a few strokes of the most interesting concepts arementioned, to go into more detail, I refer the reader to a classic book [55] for awide coverage. I only summarize here the main components.
Basically, deep learning is a specific type of machine learning, which a machinelearning algorithm is able to learn from data. One definition of learning by Alpay-din [56], is: ”A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E”. The meaning of these concepts,in terms of a machine learning system, are, tasks described how it should processan example (e.g., regression, task that given an input has to predict a number -for us it will be depth estimation or layout estimation); performance evaluatesthe abilities of the algorithm (e.g., accuracy which measures the correct outputof the model directly related to the total number of examples); and experienceby the information that can extract during the learning process (e.g., supervisedlearning process which the target is known and labeled, otherwise it is, for instance,unsupervised learning process).
Most of the deep learning algorithms follow a basic structure which is combiningthe specification of a dataset, a cost function, an optimization procedure, and amodel. In our context, the model will be a neural network, whose behavior isdetermined by the set of parameters (weights and biases) that shape the mappingfrom the model input (for us equirectangular images that store color and eventuallysparse depth) and the expected network output (for us the dense depth map for thedepth estimation and completion problems, or the room boundary representationfor the layout estimation problem).
Generally, the whole dataset (i.e., a collection of examples) is composed by threesub-sets, training, validation, and test sets; having the assumptions that eachexample, from each sub-set, is independent and identically distributed [55]. Thus,training/validation sets are used during the training process which trains a modelby measuring a training-set (i.e., by training error), while validation-set is usedto evaluate the performance of the model after each iteration. The test-set, incontrast, is used during the generalization process of unobserved inputs, i.e., thisprocess is for applying a model on previously unseen inputs, different than those onwhich the model was trained, computing what is called the generalization error [55].
During the training process an optimization is applied by altering the input, whichis the task of either minimizing or maximizing some function. That function iscalled the objective function, or criterion. The objective function is also calledcost/loss/error function when is minimizing it (e.g., in linear regression, one costfunction could be to compute the mean squared error between the prediction
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and the target). Performing the learning process is caused by the cost functionwhich usually includes at least one term and, also, may includes additional terms,such as regularization terms (e.g., adding to the linear regression cost function aweight decay, also known as L2 regularization or ridge regression). A definitionof regularization by Goodfellow et al. [55]: ”Regularization is any modification we
make to a learning algorithm that is intended to reduce its generalization error but
not its training error”.
Most regularization strategies are based on regularization estimators by trading in-creased bias for reduced variance, i.e., low variance without increasing enormouslybias based on constraints and penalties, limiting the capacity of a model by normpenalties. In fact, one of the major research efforts is to find an effective balancebetween optimization and regularization strategy [55].
In this context, most approaches related to structured interior reconstruction havefocused on an optimization process, measuring just the training process, in order toanalyze novel ways of inquiring the relevant information from the input as well asidentify a balance between optimization and regularization; considering that thesemodels have to manage a huge amount of data to learn an output which causes afairly high training time even though with GPU-accelerated computation.

2.7 Related work and proposed advances

The general concepts of deep learning have been already applied to the threefundamental tasks in computer vision tackled in this thesis, which are depth es-timation, sparse to dense depth estimation, and reconstruction of the boundarysurface of a room, all of them from a single omnidirectional image taken insideit. In the following, I discuss the approaches that are most closely related to thesolutions that I introduced in this work. I refer the reader to recent surveys for ageneral coverage of 3D reconstruction in interior environments [1, 30, 40, 21].
2.7.1 Depth estimation from perspective images

Before discussing the works directly applied to omnidirectional images, that are thefocus of this thesis, I briefly summarize earlier works on perspective images, sincethey have predated works specific to panoramic capture, introducing many compo-nents that have later been adapted to the task, and have also been used directly inpanoramic settings by splitting a panoramic image into multiple perspective views.
Learning-based monocular depth estimation was introduced over a decade ago(e.g., Make3D [57]), becoming, thus, in a fundamental task in computer vision.
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While early solutions used various combinations of feature detection, matching,and geometric reasoning, in recent years, a large body of deep learning methods arebeing proposed for handling this traditional ill-posed problem under less restrictiveconstraints [58]. This emergence deep learning as well as the availability of large-scale 3D datasets, has contributed to significant performance improvements.
Eigen et al. [59] were the first to use CNNs for regressing dense depth maps froma single image in a two-scale architecture, where the first stage—based on the
AlexNet feature encoder—produces a coarse output and the second stage refinesthe prediction. Their work was later extended to additionally predict normalsand labels with a deeper and more discriminative model, based on VGG featuresencoder, and a three-scale architecture for further refinement [60].
Laina et al. [61], instead, combined ResNet [62] with an up-projection module forupsampling. They also proposed the reverse Huber [63] loss to improve depthestimation. This baseline, named FCRN, has become of common use even in thecase of panoramic images.
Lee et al. [64], instead, predicted depth from several cropped images combined inthe Fourier domain. Conditional Random Fields (CRF) are also often exploited torefine prediction [65, 66, 67, 68].
Fu et al. [69] use dilated convolution to increase the receptive field and apply theordinal regression loss to preserve the spatial relation among neighboring classes.Unsupervised training for depth estimation is instead performed using photometricloss [18, 70].
However, it has been shown that, without specific adaptations, the direct applica-tion of these solutions to 360◦ depth estimation of indoor environments producessub-optimal results [71]. For this reason, research has started focusing on methodsto exploit the wide geometric context present in omnidirectional images.
2.7.2 Depth estimation from a single omnidirectional image

One of the main limitation of single-image methods lies, in fact, in the restrictedfield of view (FOV) of conventional perspective images, which inevitably resultsin a limited geometric context [72]. With the emergence of consumer-level 360◦cameras, a wide indoor context can now be captured with one or at least few shots.As a result, much of the research on reconstruction of indoors from sparse imageryis now focused in this direction, even for directly recovering the room layout underspecific conditions [73, 74, 54, 45].
In the specific case of depth estimation, a first approach is to convert an omni-
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directional image into a cube-map [75], both to deal with the distortion of anequirectangular projection and to take advantage of the consolidated monocularestimation techniques mentioned above.
To make the network aware of the distortion, spherical convolution methods havebeen also proposed [76, 77, 78, 79]. Tateno et al. [77], for example, demonstratedthe effectiveness of distortion-aware convolution, compared to standard convolu-tion, to improve depth estimation and segmentation on panoramic images.
Following this trend, Zioulis et al. [71] adopted the spherical layers of Su et al. [76] fordepth estimation in the indoor environment, and proposed a large-scale syntheticdataset consisting of 22,096 re-rendered images from four existing datasets [80].Wang et al. [81] proposed, instead, a two-branch network, respectively for theequirectangular and the cube-map projection, based on a distortion-aware en-coder [71] and the FCRN decoder [61].
Recently, several orthogonal works [82, 83, 84, 85] have exploited the correlationamong depth, room layout, and semantics to improve prediction. Such promisingsolutions require much additional input for training (e.g., annotated room layout,normal maps and semantic segmentation), and exploit a depth estimation baselinebased on one of the above-cited approaches. All the above methods bring back thespherical projection to a standard projection to apply encoding-decoding schemesdesigned for conventional images (e.g., FCRN [61]), while this thesis introduces ascheme designed for equirectangular projections of indoor scenes (Chapter 3).
2.7.3 Depth estimation from a single omnidirectional image with associ-

ated sparse depth

Sparse-to-dense depth completion with the support of a guiding RGB image hasbeen the focus of much research [30]. The majority of works focus, however, onsmall-FOV perspective poses [37] or planar projections for outdoor acquisitions[38,39]. In this thesis, I only discuss the approaches that can be directly applied oreasily adapted to panoramic indoor environments.
In order to upsample and complete a sparse depth signal, generic scene methodsthat rely on registered RGB-based appearance as guidance either devise customconvolutions and propagate confidence to consecutive layers [86], or use content-dependent and spatially-variant guiding convolutions [87]. Alternative sourcesof information that are exploited for depth completion may also include confi-dence masks and object cues [88]. Cross-guidance between the RGB and depthencoders [89] has also been used. Moreover, to avoid the depth mixing typically
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induced by the standard MSE loss, a binned depth representation trained using across-entropy loss has been shown to be beneficial [90].
Recently, BIPS [91] proposes a bi-modal (RGB-D) panorama synthesis framework tojointly synthesize panoramic RGB and depth. Similar to the work presented in thisthesis (Chapter 4), BIPS considers different kinds of sparsity patterns in depth input.However, the goal of BIPS is to provide realistic image inpainting and a complete 3Dmodel for many applications (i.e., including layout), jointly synthesizing color anddepth from partial input, rather than focusing on depth prediction and completion.
Even though deep learning has been widely used for inpainting of indoor scenes,extensions of those networks to color guided depth completion are still uncom-mon [39]. One of the main reasons is that large-scale training sets are not readilyavailable for captured indoor RGB-D images paired with dense depth images. Asa result, most methods for depth estimation have been classically trained andevaluated only for pixels that are captured by commodity RGB-D cameras [92].From this data, they can, at-best, learn to reproduce observed depths, but notcomplete depths that are unobserved, which in indoors have significantly differentcharacteristics. To address this issue, Zhang et al. [93] introduced a new datasetbased on the large-scale Matterport3D [6], which provides 105k RGB-D imagesaligned with dense depth images computed from multi-view reconstructions in72 real-world environments, and proposed a hybrid solution to estimate surfacenormals and solve for indoor depth via a final global optimization. The method,however, has speed limitations and does not scale for different kinds of sparsity(see Sec. 4.1).
More recently, pure deep-learning solutions have been proposed for color guideddepth completion. Cheng et al. [94] proposed an approach in which a low-FOVdense depth camera is registered with an omnidirectional camera, and the densedepth from the limited FOV is extended to the rest of the recorded omnidirectionalimage through a convolutional network. This thesis tackles, instead, the moregeneral problem of omnidirectional sparse-to-dense depth estimation without anyregion in which a dense estimation is provided. This problem is tackled by severalrecent works. Huang et al. [95] exploited an inpainting self-attention network [96]to generate the dense depth map and a dedicated U-Net [97] to preserve depthboundary information. Skip connections [97] are also used in their method to adaptthe generic inpainting network to the specific depth prediction task and to betterrecover fine-grained details. In this thesis, I will propose to handle more generalsampling patterns inside a much faster solution (Chapter 4).
Park et al. [98] proposed an interactive Non-Local Spatial Propagation Network(NLSPN) that predicts non-local neighbors for each pixel and then aggregates rele-
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vant information using the spatially-varying affinities. To maximize the utility fromthe sparse source, Huang et al. [99] proposed a Sparse Signal Superdensity (S3)framework, tested for stereo sparse-guidance, for which expands the depth valuefrom sparse cues while estimating the confidence of expanded region. Specificallytargeted for guided monocular depth completion, Guizilini et al. [100] introducedSparse Auxiliary Networks (SANs) to process the sparse signal separately from thedense RGB signal. Their pipeline consists of two parallel branches for the twosignals, connected at encoder and decoder level by direct feature fusion.
With a similar decoupled design, Liu et al. [101] advance the pure depth predictionnetwork RectNet [71] to support a SLAM-based reconstruction system where thescattered data are SLAM-SfM features. The method, however, costs 311 GFLOPs fora 512×256 image, while the solution presented in Chapter 4) takes 38.2 GFLOPsfor a 1024×512 image.
These recent purely data-driven methods achieve state-of-the-art performancemainly on perspective views and at the cost of a significant computational cost(see Tab. 4.1). In this thesis, I propose, instead, a much leaner indoor solution forpanoramic images, showing how the proposed design can cope with a variety ofdense sampling patterns and density and can achieve high accuracy even withoutany fine-tuning after a training on synthetic data (Chapter 4).
2.7.4 3D layout estimation from a single omnidirectional image

Since man-made interiors often follow very strict rules, as discussed in Sec. 2.5,early methods used geometric reasoning to match image features to simple con-strained 3D models. In particular, most methods target variants of the ManhattanWorld model (MWM: horizontal floors and ceilings, vertical walls meeting at rightangles) [102], such as the Indoor World model (IWM: MWM with single horizontalceiling and floor) [103] or the Atlanta World model (AWM: vertical walls with singlehorizontal ceiling and floor) [45]. In this context, Hedau et al. [42] successfullyanalyzed the labeling of pixels under a cuboid prior, while Lee et al. [47] exploitedthe IWM to infer 3D structures by analyzing detected corners.
Zhang et al. [72] were among the first to exploit 360◦ captures to overcome thelimitation in contextual information present in regular field-of-view (FOV) shots.They proposed a whole-room 3D context model mapping a full-view panoramato a 3D cuboid model of the room through Orientation Maps (OM) [47] for thetop part and a geometric context (GC) analysis for the bottom part [104]. Xu et al.[105] extended this approach to the IWM. Yang et al. [106], instead, proposed toinfer a MWM room shape from a collection of partially oriented super-pixel facets
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and line segments. A wide variety of follow-ups used similar approaches [1]. Theeffectiveness of these geometric reasoning methods is, however, heavily dependenton the count and quality of extracted features (e.g., corners, edges or flat patches).More and more research is thus now focusing on data-driven approaches [49].
Recently, several data-driven solutions have shown the capability to infer depth froma single interior image [81, 107, 10]. While these methods have been shown to copewith large amounts of clutter, they cannot produce seamless 3D boundary surfacesin case of self-occlusions, since they can only generate a single 3D position per viewray. For this reason, layout-specific approaches are being actively researched.
As noted by Zou et al. [102], most current data-driven layout reconstruction methodsbasically share the same pipeline: a MWM pre-processing (e.g., based on theapproach of Zhang et al. [72]), the prediction of layout elements in image space anda post-processing for fitting a regularized 3D model to the predicted 2D elements.
Prominent examples are LayoutNet [73], which predicts the corner probability mapand boundary map directly from a panorama and HorizonNet [54], which simplifiesthe layout as three 1D vectors that encode, at each image column, the positionsof floor-wall and ceiling-wall boundaries, and the existence of wall-wall boundary.The 2D layout is then obtained by fitting MWM segments on the estimated cornerpositions. DuLaNet [74], instead, fuses features in the original panoramic viewand in a ceiling-plane projection, to output a floor plan probability map, which istransformed to a 2D floor plan by a MWM regularization. Several recent extensionshave further improved the performance of the HorizonNet baseline. In particular
Led2Net [103], which currently has the best performance in various benchmarks,augments the representation with the rendered depth maps of the panoramahorizon, recovering IWM environments. Moreover, several recent methods exploitthe correlation of depth, layout, and semantics to improve their joint prediction. Inparticular, Zeng et al. [85] exploit layout, full depth and semantic information toestimate a layout depth map for fitting an IWM layout. Typically, these methods re-quire heavy pre-processing, such as detection of main Manhattan-world directionsfrom vanishing lines analysis [49, 72, 47] and related image warping, or complexlayout post-processing, such as Manhattan-world regularization of detected fea-tures [73, 54, 74]. AtlantaNet [45] removed these constraints by requiring thatinput images are roughly aligned with the gravity vector, and predicting the roomlayout under the less constrained AWM by combining two scaled projections of thespherical image, respectively on the horizontal floor and ceiling planes. Gravity-alignment capture, also exploited in this work, is a very common setup, and, asdemonstrated by prior works [10, 107], all the public 3D indoor datasets commonlyused for training and testing reconstruction solutions, both synthetic [80, 108] and
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real [109, 6], appear to have very small orientation deviations. Even in cases wherethis assumption is not verified at capture time, several orthogonal solutions existto gravity-align images at a low cost in a pre-processing step (e.g., [50, 110, 52]),simplifying the practical application of gravity-oriented methods.
The restriction to very constraining priors (MWM, IWM, or AWM) makes it possibleto employ various forms of projections and simplifications, but limits the class ofmodels that can be inferred and makes the inference less robust in case of majorocclusions, which require full 3D reasoning to be resolved [111].
Differently from prior solutions, in this thesis, I will show how to infer a watertight3D mesh from the panoramic image using a 3D approach (Chapter 5). This solutionhas been the subject of recent data-driven 3D object reconstruction methods [112,113, 114] but has not been applied to the interior reconstruction realm, which bearsvery significant differences with respect to object reconstruction. In particular, ob-ject reconstruction methods assume an external perspective view of an unclutteredobject, while this thesis target an interior full panoramic view of a cluttered envi-ronment. We must thus learn to separate clutter from structure and we cannot relyon simple projections to associate multi-scale image features to vertices, but wemust learn to select local and non-local features depending on context. Moreover,we must take into account the peculiar shape of typical indoor structures, made offew large connected surface components. This has led to novel contributions interms of network structure and loss functions (Chapter 5).

2.8 Available large data collections

Data-driven solutions must exploit large collections of data to learn hidden relationsas well as to test the effectiveness of reconstruction. A remarkable number of freelyavailable datasets containing indoor scenes have been published in the recent yearsfor the purpose of comparing and/or training learning-based solutions. Many ofthem have been acquired with RGB-D scanners, due to the flexibility and low costof this solution, being collected on these detailed established surveys [21, 1, 22] ofwhich just the most used for benchmarking and also others recently published arementioned as example in this Chapter.
In the following, I summarize the characteristics of major publicly available panoramicdatasets. Tab. 2.1 and Tab. 2.2 show a simplified information of each one, whileTab. 2.3 lists all the published datasets used in this thesis.

• Matterport3D Dataset [6]: A large-scale dataset which provides 10,800panoramic views RGB-D images from 194,400 RGB-D images of 90 building-
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scale scenes. Annotations are provided with surface reconstructions, cameraposes, and 2D and 3D semantic segmentations.
• Stanford2D-3D-S Dataset [109]: The dataset is collected in 6 large-scale in-door areas that originate from 3 different buildings of mainly educationaland office use, captured by using the same Matterport system of the Matter-port3D dataset [1]. The dataset contains over 70,000 RGB images, along withthe corresponding depths, surface normals, semantic annotations, globalXYZ images (all in forms of both regular and 360◦ equirectangular images) aswell as camera information. It also includes registered raw and semanticallyannotated 3D meshes and point clouds.
• 360D Database [80]: This database offers a synthetic benchmark. It con-tains 35,977 panoramas rendered by path-tracing scenes from two syntheticdatasets (SunCG and SceneNet) and two realistic datasets (Stanford2D3D and
Matterport3D). In this case, we adopted the splitting provided by Zioulis etal. [71]. The original SunCG data is no longer available for downloading dueto legal reasons.

• Structured3D Dataset [108]: A large-scale photo-realistic synthetic dataset,containing 3.5K house designs created by professional designers with a vari-ety of ground truth 3D structure annotations, including 21,000 photo-realisticfull-panoramic (i.e., 1024×512 equirectangular format) indoor scenes.
• CRS4/ViC Research Datasets [115]: Datasets that contain high-resolutionequirectangualar panoramas convering 360×180 full-view for a variety ofreal-world cluttered indoor scenes. The scenes include multi-room environ-ments, sloped ceilings, walls not aligned on rectangular coordinate system,and more challenge features. Also, the height of the camera is provided,being 170 cm from most datasets.
• SUN360 Database [116]: This dataset contains 80 categories and 67,583panoramas, all of which have a resolution of 9104×4552 pixels and covera full 360◦ × 180◦ visual angle using equirectangular projection. To buildthe core of the dataset, the authors downloaded a massive amount of high-resolution panorama images from the Internet, and manually labeled theminto different place categories.
• PanoContext Dataset [72]: This dataset contains 700 full-view panoramas forhome environments from SUN360 database [116], including 418 bedroomsand 282 living rooms. Being the data manually annotated. They provide atool which renders panoramic images and annotates several objects and its
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3D bounding box, being all of the objects standing on the ground, sitting onanother object, or attaching to a wall (i.e., none are floating).
• Zhang et al. [93] Dataset: Introduced a new dataset based on the large-scaleMatterport3D [6], which provides 105k RGB-D images aligned with densedepth images computed from multi-view reconstructions in 72 real-worldenvironments. This dataset contains 117,516 RGB-D images with renderedcompletions, which we split into a training set with 105,432 images and atest set with 12,084 images.
• Zillow Indoor Dataset (ZInD) [93]: A large-scale indoor dataset with 71,474panoramas from 1,524 real unfurnished homes. ZInD provides annotations of3D room layouts, 2D and 3D floor plans, panorama location in the floor plan,and locations of windows and doors. One particular characteristic of thisdataset is about the room layout data which follows a real-world distributionnot being just, as the mostly publicly available datasets, cuboid or Manhattanlayouts.
• Replica Dataset [117]: A dataset of 18 highly photo-realistic 3D indoor scenereconstructions at room and building scale. Each scene consists of a densemesh, high-resolution high dynamic-range (HDR) textures, per-primitive se-mantic class and instance information, and planar mirror and glass reflectors.Those scenes can be rendered within AI Habitat [118], specially on the AIHabitat Sim [119] which is a high-performance physics-enabled 3D simulatorthat achieves several thousand frames per second (FPS).
• PNVS Dataset [120]: A large-scale photo-realistic dataset upon Structured3Ddataset [108]. It is a stereo dataset that provides two type of camera trans-lations between a source camera position and its target camera position,getting an easy set and hard set. The easy set contains target panoramas withsmall camera translation between 0.2-0.3 meters, including 13,080 trainingimages and 1,791 testing images. The hard set contains target panoramas withlarge camera translations between 1.0-2.0 meters, including 17,661 trainingimages and 2,279 testing images.
• Rey-Area et al. [28] Database: A large-scale database based on Matterport3DDataset [6] and Replica Dataset [117]. From Matterport3D dataset, theyestimated the poses for the real skybox images relative to the mesh using

360◦ structure-from-motion [121], applying to a mixture of real and renderedskybox images at known camera positions. Then, using the estimated cameraposes and the provided scene mesh, rendered ground-truth depth mapswith pixel accuracy. Besides, they rendered 10 images and its registered
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depth maps for each of the 13 rooms from Replica Dataset [117], generatingrandom poses using the Replica360 renderer [122]. Thus, they provide twodatasets, a Matterport3D 360◦ dataset that consists of 9,684 RGB-D pairswith a resolution 2048×1024; and a Replica 360◦ 2K/4K that consists of 130RGB-D pairs rendered at 2048×1024 and 4096×2048.
• AtlantaLayout Dataset [45]: Contains rooms with curved walls or meeting atnon-right angles, dubbed Atlanta World (AW).
• Pano3DLayout Dataset [11]: A synthetic dataset that contains 106 morecomplex environments, not included in previous benchmarks, such as, for ex-ample, scenes with sloped or stepped ceilings, domes, and interconnectionsof different rooms.
• Indoor3Dmapping Dataset [123]: A dataset from a real LiDAR RGB-D acqui-sition (i.e., mobile device with 2 Velodyne VLP-16 and a registered Garminspherical camera) and a ground truth dense depth acquisition through a

FaroFocus3DX330T LS. It is acquired in a multi-floor and multi-room envi-ronment, providing equirectangular image projections aligned with denseground truth and sparse depth maps. Each sparse scan produces about 16%of pixels with valid depth.
In Chapter 3, depth estimation from an omnidirectional image, I will report resultsobtained on four publicly available datasets [109, 6, 80, 108] to facilitate comparison.These benchmarks were also adopted by the recent state-of-the-art works [61, 71,81] comparable with the method discussed in this thesis. Additionally, I presentthe performance of the introduced method on the recent Structured3D syntheticdataset [108] to support ablation and gravity-alignment robustness studies (i.e.,analyzing the performance by removing certain components to understand thecontribution of the component to the overall system).
In Chapter 4, sparse-to-dense estimation from RGB and sparse intput, in order tocover a large variety of use cases, I created a novel dataset leveraging on syntheticdata generated by sampling the large-scale Structured3D [108] photo-realisticsynthetic dataset. The main advantage of such a synthetic dataset is that it providesa fully accurate dense ground-truth for color and depth, which is not available withother common large-scale datasets, such as Matterport3D [6] or Stanford2D-3D-S [109], whose completeness, even if based on multi-view, is still limited by visibilityand sensor limitations. It is also possible, from synthetic data, to simulate a varietyof sensors.
In Chapter 5, layout estimation from a single panoramic image, in order to providea comparison with state-of-the-art work, I analyze results on standard publicly
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Table 2.1: Publicly available panoramic datasets. Each dataset/database has a particular visual data
(i.e., at least containing purely visual data); being a real/synthetic source (Source column); capturing
by a camera, manually modeling or rendering from other dataset (Camera column); having a number
of samples (#Images column); what layout distribution (when it has layouts) (Distribution column);
and its annotated information (Annotations column).

Dataset Source Camera # Images Distribution Annotations
Matterport3D [6] Real MatterportPro 3D 10,800 Real-World Surface reconstructions,2D/3D semantics,depths,camera poses
Stanford2D-3D-S [109] Real MatterportPro 3D 70,000 - Surface reconstructions,depths, surface normals,2D/3D semantics,camera poses
Structured3D [108] Synth ManualModeling 21,000 Cuboids,MWM Two light conditions,three clutters setups,layouts, depths,normals, albedo,instances, semantics,camera poses
CRS4/ViC [115] Real Tripod 191 cuboids,MWM,non-MWM

Layouts

PanoContext [72] Real Renderingsfrom [116] 700 Real-World Layout
Zhang et al. [93] Real Renderingsfrom [6] 10,800 - Depth
ZInD [93] Real Ricoh Theta(V and Z1) 71,474 Real-world Layout,2D/3D floor plans,windows/doors poses,camera poses
PNVS [120] Synth Renderingsfrom [80] 34811 Cuboids,MWM Stereo images,source depths,source layouts,stereo camera poses
AtlantaLayout [45] - - - Real-World AW layouts
Pano3DLayout [11] - - 106 Syth Depth,non-MWM Layouts
Indoor3Dmapping [123] Real Mobile device(2 VelodyneVLP-16 andGarmin sphericalcamera)

- Real-World Sparse depths,depths

Dataset Source Camera # Images Distribution Annotations
360D [80] Real/Synth Renderingsfrom [6, 109] 35,977 Real-World Depthnormals
SUN360 [116] Real Manual Modeling 67,583 Real-World Layout
Rey-Area et al. [28] Real/Synth Renderingsfrom [6, 117] 9,684/130 Real-World Depth,camera poses
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Table 2.2: Publicly available scene datasets. These datasets provide scene descriptions, from which a
rendering framework can generate the information required, for instance, panoramic image and its
registered depth.

Scene Dataset Source # Scenes How to render
Replica [117] Photo-realistic 18 AI Habitat Sim [119],Replica360 renderer [122]

Table 2.3: Publicly available panoramic used in this thesis. I also mention what split of the dataset is
consider in this work.

Dataset Splitting
Matterport3D [6] Wang et al. [81]
Stanford2D-3D-S [109] Wang et al. [81]
Structured3D [108] Zheng et al. [108]
Zhang et al. [93] Pintore et al. [45]
Pano3DLayout [11] Pintore et al. [11]
Indoor3Dmapping [123] Pintore et al. [11]
360D [80] Zioulis et al. [71]

available datasets [72, 109, 49, 108], containing thousands of indoor scenes andcommonly adopted for benchmarking 3D layout recovery [54, 45, 107, 103, 85]. How-ever, due to the focus of prior works, these benchmarks mostly consisted of MWMstructures [102]. Since the method introduced in this dissertation is more general,the testing set has been extended with the publicly available AtlantaLayout [45]dataset, which also contains rooms with curved walls or meeting at non-right angles.In addition, we prepared a specific dataset, called Pano3DLayout, containing morecomplex environments, not included in previous benchmarks, such as, for example,scenes with sloped or stepped ceilings, domes, and interconnections of differentrooms.

2.9 Wrap-up

Considering all of the above, I have focused the research on deep learning solutionsbased on panoramic image analysis for the reconstruction and representation ofindoor environments, either using it standalone or eventually combining it withsparse geometric information. The main challenge is that we have to reconstructsuch a model from very partial input, be it images alone or with sparse depthmeasurements, with lots of noise, holes, and clutter. Thus, this thesis is focused
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on finding clever ways to rapidly inferring geometry or layout from corrupted andminimal input (i.e., one image per room), without requiring users to do more thana single acquisition or to manually edit models. Specially, this thesis is focusedon depth estimation from a single panoramic image (Chapter 3), sparse-to-denseestimationfrom a single panoramic image and its registered sparse depth map(Chapter 4) , and layout estimation from a single panoramic image (Chapter 5). Allof these solutions will be designed as end-to-end networks, converting equirect-angular input to the desired output. All the networks will be trained through asupervision learning process, exploiting large amounts of data on which the groundtruth desired output is known.

2.10 Bibliographic notes

Several portions of this chapter have been taken from my contribution published inEVOCATION project deliverables [14, 15, 16], that I have later expanded in this thesis.These portion include the definitions of the problems and references to benchmarkdatasets. The survey of related work is adapted from the related work sections ofthe articles that I have publised in journals [12, 11] and conference proceedings [10].
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Chapter 3

Deep estimation of dense depth
information of an interior
environment from a single
omnidirectional image

As a first contribution towards reconstructing indoor information from
purely visual data, I introduce in this chapter a novel deep neural network
to estimate a depth map from a single monocular indoor panorama. The
network directly works on the equirectangular projection, exploiting the
properties of indoor 360-degree images. Starting from the fact that
gravity plays an important role in the design and construction of man-
made indoor scenes, we propose a compact representation of the scene
into vertical slices of the sphere, and we exploit long- and short-term
relationships among slices to recover the equirectangular depth map.
Our design makes it possible to maintain high-resolution information
in the extracted features even with a deep network. The experimental
results demonstrate that our method outperforms current state-of-the-
art solutions in prediction accuracy, particularly for real-world data.

3.1 Introduction

Understanding the 3D layout of an indoor scene from images is a crucial task in manydomains [124, 1, 8]. Fast depth estimation from single images is a fundamental
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sub-problem, as associating metric information to visual data is paramount fora variety of applications, including mobile Augmented Reality platforms, indoormapping, autonomous navigation, 3D reconstruction, and scene understanding.
Since estimation of depth from single images is inherently ambiguous, all solu-tions must rely on prior information to guide reconstruction towards plausiblearchitectural shapes that fit the input. In this context, we have recently seen anextraordinary development of data-driven methods that learn these priors fromexample data.
Early approaches were designed for a camera with a conventional limited field-of-view (FoV) (e.g., FCRN [61]). In recent years, however, 360◦ capture has emerged asa very appealing solution, since it provides the quickest and most complete single-image coverage and is supported by a wide variety of professional and consumercapture devices that make acquisition fast and cost-effective [125]. Since adaptingmonocular depth estimation models designed for traditional images to 360◦ depthestimation has been shown to produce sub-optimal results [71], specific 360◦ solu-tions have been recently introduced. In this context, many recent works [77, 71, 126]have adapted perspective depth estimation methods to omnidirectional imageryby proposing various types of distortion-aware convolution filters. However, fewof them have explored the large-FoV nature provided by 360◦ images, which canprovide, in one shot, the full-geometric context of an indoor scene [72].
In this work, we introduce a novel deep neural network solution, called SliceNet,which predicts the depth map of an indoor 360◦ image leveraging the characteristicsof a gravity-aligned equirectangular projection of an interior scene. Since gravityplays an important role in the design and construction of interior environments,world-space vertical and horizontal features have different characteristics in most,if not all, man-made environments. Our network design starts from the assumptionthat capture of the scene through an equirectangular image is aligned to the gravityvector (i.e., camera is placed on an horizontal-ground plane), too, and, thus, it isrational to assume that gravity-aligned processing of images can directly exploitgravity-aligned world-space features [52]. In our network, an input equirectangularimage is partitioned into vertical slices by performing a contractive encoding toreduce the input tensor only along the vertical direction, resulting in a compactand flattened sequence of slices made of a set of features. To preserve globalinformation, we perform slicing over four different resolution levels, concatenatingthe result at the end (Sec. 3.2). This sequential representation enables the use of aconvolutional long short-term memory (LSTM) network [127] to recover, with lowcomputational overhead, long- and short-term spatial relationships among slices.Decoding proceeds symmetrically with respect to encoding, thereby increasing only
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the vertical resolution of the feature map, until the target resolution is reached(Fig. 3.1a).
Our contributions are summarized as follows:

• We introduce a slice-based representation of an omnidirectional image thatdirectly exploits the characteristics of the equirectangular projection of anindoor scene, without the need for distortion-aware convolution and transfor-mation [71, 81], multi-branch architectures [81, 84] or additional informationand priors [84]. Our representation based on vertical slices is very robust, asdemonstrated by the important advantage in performance achieved in real-world cases (e.g., Stanford2D3D [109] and Matterport3D [6]), where a largearea around the poles of the panorama is not acquired by the instrument(see Sec. 3.4.3 for details).
• We specialize and refine feature flattening, which has proven to be effectiveto regress one-dimensional tensors [54], for bi-dimensional depth encoding.In particular, we introduce an asymmetric contraction of the input tensorbased on vertical slicing at different resolutions, so that the resulting featuremap is flattened along a single direction (in our case, the sphere horizon),and we merge slices at different resolutions, so as to exploit deeper levelswith larger receptive fields to capture global information, while at the sametime exploiting higher resolution layers to preserve high-frequency details(Sec. 3.2). Our ablation study (Sec. 3.4.4) demonstrates the advantages ofour approach.
• We introduce, for depth estimation from a single image, a LSTM multi-layermodule to effectively recover long and short term spatial relationships be-tween slices in the presence of a large number of features per slice dueto the concatenation of multiscale representations. With this architecturalchoice, the decoder is simple and follows the same multi-layer scheme ofthe encoder with a vertical upsampling rather than a vertical reduction. Wedo not need, in particular, the chaining of up-projection blocks [62], makingit easier to scale the method to different input resolutions. The ablationstudy (Sec. 3.4.4) confirms the benefits of the method by comparing differ-ent decoder configurations with or without LSTM and chaining up-projectionblocks.

We tested our network on both synthetic and real datasets [109, 6, 71, 80, 108].Our experimental results (Sec. 3.4) demonstrate that our method outperformscurrent state-of-the-art methods [61, 71, 81] in prediction accuracy, especially whenworking on real-world scenes. Exploiting gravity alignment leads to an efficient
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network structure, without significant limitations on the applicability of the ap-proach. As mentioned, gravity-aligned capture is a very common setup, and, asdetermined by our tests, Sec. 3.4.4, all the public 3D indoor datasets commonlyused for training and testing reconstruction solutions, both synthetic [80, 108] andreal [109, 6], appear to have very small orientation deviations. Even in cases wherethis assumption is not verified at capture time, several orthogonal solutions existto gravity-rectify images in a pre-processing step (e.g., [50, 51, 52]), simplifyingthe practical application of gravity-oriented methods. Moreover, as demonstratedby our ablation study (Sec. 3.4.4), our method is robust to small variations of theinclination.

(a) (b)

Figure 3.1: Network architecture. Our architecture is scalable with respect to the input resolution.
In Fig. 3.1a, to simplify comparison with other methods, we show an example with an input image
having size 3× 256× 512. A ResNet50 encoder [62] extracts four layers at different resolutions.
From each resolution layer we obtain a sliced feature map of 256× 512 (purple blocks in Fig 3.1a,
details in Fig. 3.1b). By concatenating the resulting four layers we obtain a single bottleneck with 512
slices and 1024 features, which is refined using a RNN scheme (cyan blocks). The decoder proceeds
symmetrically, producing a depth map at the same input image resolution.

3.2 Network architecture

Almost all CNNs for this task follow an encoder-decoder architecture [61]. Sucha structure contains a contractive encoding part that progressively decreases theinput image resolution through a series of convolutions and pooling operations,giving higher-level neurons large receptive fields, thus capturing more global infor-mation. As the target depth map is a high resolution image, the decoder regressesto the desired output by upscaling this representation. Our work introduces severalimportant novelties in this structure.
Figure 3.1a illustrates the structure of our network for a 256× 512 input. Notethat our architecture is scalable with respect to the input resolution. In Sec.3.4we provide results with the same input sizes adopted by recent state-of-the-art
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methods [61, 71, 81], including 512×1024 resolution.
The first part of our network is devoted to extracting relevant low/mid/high-levelfeatures from the input tensor. To do that, we exploit ResNet-50, a deep neuralnetwork that supports, through a residual learning framework, the training ofvery deep networks without degradation problems [62]. Differently from otherapproaches [61, 71, 81], we exploit not only the deepest layer of ResNet, but thelast four layers, processing them in parallel, in order to build a multi-resolutionspatial representation, discussed in detail below. Following our gravity-alignedmodel, we recover from these 4 layers (Fig. 3.1a, red), 4 representative slice layers(Fig. 3.1a, green), having all the same size of 256×512 (i.e., 256 features for 512slices). Figure 3.1b illustrates how we produce the sliced representation from theResNet layer. First, we reduce the vertical dimension by a factor of 8 throughan asymmetric convolution module with stride (2,1) (A-Conv), applied 3 times,contains a 2D convolution, a batch normalization module and a Parametric RectifiedLinear Unit [128] PReLU(x) :=max(0,x)+a∗min(0,x), where a is the coefficient ofleakage learned during training. We selected PReLU instead of commonly adoptedReLU and Leaky-ReLU to minimize the vanishing gradient problems that are commonin depth estimation. This kind of adaptive activation leads to convergence evenon datasets with very different characteristics (e.g., real-world acquisition withmissing parts or synthetic rendering whih high levels of noise). Sliced encoding isthen completed by horizontally interpolating each feature map to have the samenumber of slices (i.e., 512), and by vertically reshaping the features to the targetsize (i.e., 256).
Finally, the four layers are concatenated in a single sequence (i.e., 1024× 512),obtaining 1024 features for each of the 512 vertical slices of the input sphere. Inthis way, we obtain a bottleneck representation that exploits deeper levels withlarger receptive fields to capture global information, and higher resolution layersto preserve high-frequency details.
It should be noted that both indoor scenes and equirectangular projections haveparticular properties that we exploit in our design. For example, vertical lines arevery common in the scene, and are practically not deformed in the projection whilethe horizontal ones are more so. Because of these characteristics, we expect eachslice sequence along the dominant vertical direction be related to the others byboth short-term and long-term spatial dependencies [53, 54, 45]. Thus, we startour decoder by feeding such a sequence to a RNN multi-layer block [127]. In ourcase, we use a bi-directional LSTM (long-short term memory) having 512 hiddenlayers, which outputs a timestep of size 2×512 for each of the 512 slices, so thatthe final output is a feature map having the same size of the RNN block input,
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i.e., 1024×512. Once reshaped to 1024×1×512, this flattened representationcan be upsampled to the desidered output size (i.e., 1×256×512) by followingsteps symmetrical to those used for encoding reduction. Actually, thanks to theflattened encoding and RNN features refinement, our network does not requirethe chaining of skipping up-projection blocks for upsampling, such as FCRN [61],also common in other recent works [81]. Our decoder, instead, consists of n layers,where for each layer we perform an upsampling of a factor of two of the heightonly, followed by a convolutional module A-Conv identical to that of the reductionphase (2D convolution and PReLU activation), but with stride (1,1). In the exampleof Fig. 3.1a, the decoder consists of n = 8 layers, in order to achieve the targetedvertical resolution (i.e., 2n = 256), and the resulting map is a tensor of 1×256×512representing the depth prediction for each of the input pixels. We also testeddifferent upsampling modules adapted to our data encoding, (e.g., FCRN [61]) butexperiencing lower performance, given our particular slice-based model. Numericaldetails are exposed in the ablation study in Sec. 3.4.4.
3.2.1 Detailed network architecture description

Fig. 3.2 provides details on all the individual network components and is aimed tocomplement the general description provided in the paper. Our deep convolutionalneural network (CNN) architecture takes as input an equirectangular RGB imageand outputs a registered depth image at the same resolution of the input. Thedetailed structure of the network is illustrated in Fig. 3.2. The network uses anencoder/decoder structure. The encoder is presented in Fig. 3.2a, while the decoderis presented in Fig. 3.2b.
The first 8 layers of the network consist of a standard ResNet encoder (Fig. 3.2a).The results presented in the paper are obtained with a ResNet50, but we verifiedthat very good performances can also be obtained and with ResNet18 and ResNet34,with a considerable increase in terms of speed. The last 4 levels of the encoder aresliced, keeping the horizontal dimension unchanged and compressing the verticalone. This way, we accumulate a series of features associated with each elementof the horizontal dimension (i.e., a slice). In order to merge the features, comingfrom different resolution levels and associated to the same slice, we interpolatethe 4 maps so that they have the same horizontal dimension (i.e., 512). We thenreshape and concatenate the 4 maps so as to obtain a single-sequential bottleneck(i.e., 1024×512).
The decoder (Fig. 3.2b) exploits a bi-directional LSTM with 512 hidden layers, whichoutputs a time-step of size 2× 512 for each of the 512 slices. So, that the finaloutput of this block is a feature map having the same size of the RNN block input,
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(a) Encoder

(b) Decoder

Figure 3.2: Detailed illustration of the SliceNet architecture. This illustration complements the
architectural view provided in the paper. The network uses an encoder/decoder structure. The encoder
is presented in Fig. 3.2a, while the decoder is presented in Fig. 3.2b. The last 4 levels of the encoder
are sliced, keeping the horizontal dimension unchanged and compressing the vertical one (Fig. 3.2a).
From the resulting sliced sequence (1024× 1× 512), we recover long and short term information
through a LSTM module (Fig. 3.2b). The final depth map is recovered by following steps symmetrical
to those used for encoding reduction.

i.e., 1024×512. Once reshaped to 1024×1×512, this flattened representationis upsampled to the desired output size (i.e., 1× 256× 512) by following stepssymmetrical to those used for encoding reduction.

3.3 Loss function and training strategy

Similarly to other recent state-of-the-art solutions (e.g., BiFuse [81]), we build ourobjective function on top of the robust Adaptive Reverse Huber Loss (BerHu) [63]:
Bc(e) :=

{
|e| |e| ≤ c

e2+c2

2c |e|> c
(3.1)

where e is the error term and the parameter c determines where to switch from L1to L2. In order to set the c value adaptively, we follow the same approach of Laina
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et al. [61], so that c is set, in every gradient step, to 20% of the maximal error ofthe current batch. When applied to the depth maps, e = Di j −D∗
i j at each pixel

(i, j), where D and D∗ are, respectively, the predicted and the ground-truth depthmaps. Since one of the typical problems encountered in predicting depths usingconvolutional networks is the loss of small details [61, 71], which is particularlynoticeable when dealing with higher resolution images, we introduce an additionalterm by applying BerHu also to the gradient components obtained by convolvingthe maps with Sobel filters of width 3 to approximate the horizontal derivatives
∇xD and ∇xD∗ and the vertical ones ∇yD and ∇yD∗. Consequently, the full lossfunction L that guides our training is:

Lc1,c2(D,D∗) =Bc1(D−D∗)+

Bc2(∇xD−∇xD∗)+

Bc2(∇yD−∇yD∗)

(3.2)
With a little abuse of notation, we intend the application of the function to the mapas the sum of results on each individual pixel. The parameter c that determines theshape of each function Bc is computed at each batch independently for the depthterm (c1) and the two gradient terms (i.e., c2 is independent from c1 and sharedfor the x and y gradient terms). Moreover, in order to gracefully handle large areaswith missing samples common in real-world data (e.g., the upper and lower partsof the hemisphere are not sampled by the instrument, as in Matterport [6]), wetake the common approach [71] of ignoring errors on missing areas with a per-pixelbinary mask.
In all experiments, we obtain the best performance when training with the loss inEq. 3.2, even compared to other robust solutions [71], experiencing a noticeabledifference when training and comparing with real-world datasets [109, 6], whichcontain noticeable amounts of noise. The gradient-based component improvesimage sharpening, as shown in the comparison presented in Sec. 3.4.4 and Fig. 3.6.
3.4 Implementation and results

Our approach is implemented using PyTorch 1.5.1 and has been tested on a largevariety of indoor scenes. Source code and models will be made available to thepublic.
3.4.1 Datasets

In this paper, we report results obtained on four publicly available datasets [109,6, 80, 108] to facilitate comparison. These benchmarks were also adopted by the
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Table 3.1: Quantitative performance on real and virtual world datasets. We show our performance
evaluated on standard metrics and compared to the recent state-of-the-art approaches. In all cases
our approach outperforms the competition.

Dataset Method MRE MAE RMSE RMSE log δ1 δ2 δ3FCRN [61] 0.1837 0.3428 0.5774 0.1100 0.7230 0.9207 0.9731OmniDepth [71] 0.1996 0.3743 0.6152 0.1212 0.6877 0.8891 0.9578
Stanford2D3D BiFuse [81] 0.1209 0.2343 0.4142 0.0787 0.8660 0.9580 0.9860

Our 0.0744 0.1048 0.1214 0.0207 0.9031 0.9723 0.9894FCRN [61] 0.2409 0.4008 0.6704 0.1244 0.7703 0.9174 0.9617
Matterport3D OmniDepth [71] 0.2901 0.4838 0.7643 0.1450 0.6830 0.8794 0.9429BiFuse [81] 0.2048 0.3470 0.6259 0.1134 0.8452 0.9319 0.9632Our 0.1764 0.3296 0.6133 0.1045 0.8716 0.9483 0.9716FCRN [61] 0.0699 0.1381 0.2833 0.0473 0.9532 0.9905 0.9966

360D OmniDepth [71] 0.0931 0.1706 0.3171 0.0725 0.9092 0.9702 0.9851BiFuse [81] 0.0615 0.1143 0.2440 0.0428 0.9699 0.9927 0.9969
Our 0.0467 0.1134 0.1323 0.0212 0.9788 0.9952 0.9969

recent state-of-the-art works [61, 71, 81] comparable with our method. Matter-
port3D [6] and Stanford2D-3D-S [109] act as real-world examples. Similarly to Wanget al. [81], we used their official splitting and a resolution of 512×1024. 360D [80]offers instead a synthetic benchmark. It contains 35,977 panoramas renderedby path-tracing scenes from two synthetic datasets (SunCG and SceneNet) andtwo realistic datasets (Stanford2D3D and Matterport3D). In this case, we adoptedthe splitting provided by Zioulis et al. [71] and a resolution of 256× 512, whichis a common baseline for many approaches [61, 71, 81]. At the time of this writ-ing, the original SunCG data is no longer available for downloading due to legalreasons. Additionally, we present our performance on the recent Structured3D syn-thetic dataset [108] to support ablation and gravity-alignment robustness studies(Sec. 3.4.4).
3.4.2 Experimental setup and timing performance

We trained the network using the Adam optimizer [129] with β1 = 0.9, β2 = 0.999,on four NVIDIA RTX 2080Ti GPUs (11GB VRAM) with a batch size of 8 and a learningrate of 0.0001 for real-world data and 0.0003 for synthetic data. We adopt thespecific panoramic data augmentation proposed by Sun et al. [54]. With the givensetup, starting from default weight initialization, the best valid epoch was around60 for real-world data and 90 for synthetic data. The average training speed isabout 55ms/img for a 256× 512 input image and 117ms/img for a 512× 1024image. Single-GPU inference time is 74ms (13 fps) for a 1024×512 image and 44ms(23 fps) for a 512×256 input image, showing that our method can be integrated in
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interactive settings. It is important to note, in terms of computational complexity,that the best competing method, BiFuse [81], has 253M parameters and multi-branching, while our much simpler architecture has only 75M parameters, alsoleading to reduced inference time (e.g., 74ms vs. 616ms for a 1024×512 image).Additional details are provided in Sec. 3.4.4.
3.4.3 Quantitative and qualitative evaluation

We evaluated our method with the same error metrics used in prior depth esti-mation works [61, 71, 81]: mean absolute error (MAE), mean relative error (MRE),root mean square error of linear measures (RMSE), root mean square error of logmeasures (RMSE log scale invariant), and three relative accuracy measures δ1, δ2and δ3, defined, for an accuracy δn, as the fraction of pixels where the relativeerror is within a threshold of 1.25n. Tab. 3.1 illustrates our quantitative results, incomparison with the most recent state-of-the-art works for which source code ornumerical performance on the same data is available and using consistent trainingand testing setups. We compare with OmniDepth [71] (i.e., RectNet), BiFuse [81],as well as FCRN [61], which is the baseline of many current approaches (e.g., Bi-Fuse [81]). Our method outperforms the others in terms of accuracy for all metrics,more markedly in cases of real data (Matterport3D and Stanford2D-3D-S in Tab. 3.1).In the case of synthetic data (360D in Tab. 3.1), our method also improves overother approaches, although here differences are smaller, due to the fact that virtualrenderings guarantee uniform 2D sampling and very few discontinuities [71] (except,for example, for occlusions), to the benefit of methods based on symmetrical 2Dreduction and expansion. Figures 3.3, 3.4, and 3.5 illustrate qualitative results onreal and synthetic data. Figure 3.3 shows our prediction (Fig. 3.3c) on real-worldRGB images (Fig. 3.3a) taken from Matterport3D[6], compared to ground truth(Fig. 3.3d) and BiFuse [81], for which the pre-trained model on Matterport3D wasavailable. As we can see, our method finds a more accurate depth even in areaswith smaller and repetitive structural details (first row of Fig. 3.3), in the case oflarge environments (second row of Fig. 3.3), and also for non-Manhattan-Worldbut regular environments, as in the case of arched vaults (third row of Fig. 3.3).Figure 3.4 shows qualitative results on 360D synthetic data [80], compared withthe dataset creators’ method [71]. The highlighted details illustrate qualitativedifferences. In particular, our method can infer a detailed reconstruction for typicalman-made objects (Fig. 3.4, first row), even if they are far away (Fig. 3.4, secondand third rows),
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(a) RGB (b) BiFuse [81] (c) Our (d) Ground truth

Figure 3.3: Qualitative comparison on real-world datasets. Depth maps are inferred from real-world
captured RGB data (Matterport3D [6]). The first column is the input RGB image (Fig. 3.3a), the second
one is the depth estimated by BiFuse [81] (Fig. 3.3b), the third one is the depth estimated by our
method (Fig. 3.3c), and the fourth one is the ground-truth depth acquired by the instrument (Fig. 3.3d).
Black pixels are missing samples in the ground-truth depth. All methods have been compared using
the same original datasets and setting, without any further pre-process or alignment step.

3.4.4 Ablation and gravity alignment study

We present in this section the model ablation and computational costs (Tab. 3.2),and specific experiments showing the effectiveness of using the gravity-alignmentprior (Tab. 3.3).
Table 3.2: Ablation study. The ablation study, performed on the Structured3D dataset[108], demon-
strates how our proposed designs improve the accuracy of prediction. Results show only comparable-
stable cases that actually increase it. We show in the last row the full architecture setup. PReLU
activation provides identical benefits for each configuration in terms of convergence.

ResNet-50 Slicing LSTM Asym Grad Params MRE MAE RMSE RMSE
log δ1 δ2 δ3

23.5M 24.8M (last 1) - 6.3M No 54.6M 0.4712 0.5520 0.1596 0.0341 0.6845 0.8684 0.882423.5M 33M (last 4) - 6.3M No 62.8M 0.2990 0.5014 0.0775 0.0154 0.7045 0.8784 0.912423.5M 24.8M (last 1) 12.5M 6.3M No 67.1M 0.2988 0.4814 0.0750 0.0149 0.7702 0.8892 0.922223.5M 33M (last 4) 12.5M 6.3M No 75.3M 0.0147 0.1223 0.0558 0.0102 0.8854 0.9376 0.9492
23.5M 33M (last 4) 12.5M 6.3M Yes 75.3M 0.0147 0.1180 0.0549 0.0109 0.9085 0.9451 0.9502

Ablation study and complexity. Our ablation experiments are presented in Tab. 3.2.To test the key components of the approach, we use results obtained with Struc-tured3D [108], a synthetic dataset containing over 21,000 rendered rooms, thatinclude, among other features, uniformly sampled color and very accurate depthpanoramas. This very recent dataset has not yet been adopted by comparableworks (Sec. 3.4.3), but provides an additional valuable benchmark for our method.
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(a) RGB (b) OmniDepth (c) Our (d) Ground truth

Figure 3.4: Qualitative comparison on synthetic datasets. Depth maps are inferred from synthetic
data (360D [80]). We show in the first column the rendered RGB image (Fig. 3.3a), the estimated
depth by OmniDepth [71] (Fig. 3.4b), by our method (Fig. 3.4c) and the rendered ground-truth depth
(Fig. 3.3d). Black pixels are invalid pixels not rendered by the raytracer.

The design variations discussed in the ablation study are those that consistentlymatch decoder and encoder solution within our specific architecture and that bettercharacterize our approach. Since our network has a simple single-branch structure,the computational cost of the model is directly related to the number of parametersof the model and its components. We thus illustrate the computational complexityof our method by presenting our network partitioned into macro blocks with theirrespective parameters: the ResNet-50 features encoder block, the Slicing block(featuring slicing and asymmetric dimensional reduction), the LSTM block and the
Asym asymmetric upsample block. We also show the overall number of parametersfor each setup (i.e., Params). For each block, the number of parameters neededis independent of the input image resolution, except for the LSTM block and thelast upsampling, where the value indicated (i.e., 12.5M) is relative to the 256×512resolution, which would be 16.8M for 512×1024. The results in Tab. 3.2 show theimprovements obtained when using the last 4 ResNet layers, compared to usingonly the last one, in the Slicing block. Results at row 3 and 4, instead, show thebenefits of adopting LSTM bottleneck-features refinement, which are appreciablealready using only one ResNet output level, and become very consistent on thefull pipeline. In addition, we present a comparison on whether or not to use thegradient component in the loss function, which mainly affects the sharpening of
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(a) RGB (b) Prediction (c) Ground truth

Figure 3.5: Qualitative performance. We present additional qualitative performance on Stan-
ford2D3D [109] and Structured3D [108].

recovered depth details. Figure 3.6 shows a qualitative comparison between ourmodel trained without or with the gradient loss. Many details typical of indoorenvironments (i.e., wall corners, objects with repetitive patterns), are lost withoutthe contribution of the gradient component, even if from the point of view of theaverage numerical error the difference seems small. Since using the gradient, as forthe PReLU activation (Sec. 3.2), provides identical benefits with every configuration,we expose the gradient contribution only for the last configuration. In particular,PReLU does not directly affect the best performance obtainable on single datasetsbut, instead, the ability to efficiently converge on both real and synthetic datasets.As an example, similar performances can be obtained using ELU without batchnormalization on the synthetic OmniDepth dataset [80], but the same model wouldneed batch normalization to work with Matterport3D [6], as also discussed in previ-ous works [71, 81]. As shown in Tab. 3.2, each block adds a low and reasonable costto the model, having as a counterpart a substantial increase in performance. Interms of computational cost, a standard decoder for equirectangular image basedon FCRN [61], like the one adopted by BiFuse [81], needs about 38M of parameters,while the sum of our LSTM module (12.5M) and our actual decoder (6.3M) reaches
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18.8M of parameters in total.
Table 3.3: Gravity alignment study. We test the robustness of our method to horizontal ground plane
misalignment on Structured3D [108] and Matterport3D [6].

MRE MAE RMSE RMSE
log δ1

Structured3D 0◦ 0.0147 0.1180 0.0549 0.1012 0.9085Our ±2◦ 0.0217 0.1393 0.0658 0.1368 0.8776
±5◦ 0.0263 0.1601 0.0714 0.1430 0.8527

Matterport3D 0◦ 0.1764 0.3296 0.6133 0.1045 0.8716Our ±2◦ 0.2645 0.4205 0.7026 0.1334 0.7256
±5◦ 0.3032 0.4806 0.7720 0.1482 0.6879

Matterport3D 0◦ 0.2048 0.3470 0.6259 0.1134 0.8452BiFuse ±2◦ 0.3888 0.5378 0.9805 0.1852 0.6144[81] ±5◦ 0.4905 0.6899 1.0225 0.2250 0.5440
Gravity evaluation of benchmark datasets. Our method assumes that the cameratripod is placed on a horizontal plane [52], which is common practice for cap-turing an indoor scene. We verified such feature on the four common publiclyavailable datasets adopted above. All synthetic datasets [80, 108] are perfectlyaligned by design. For real-world datasets [109, 6], we exploited the alignmentpipeline of Zou et al. [73] to evaluate the misalignment with the ground plane.We found that the average misalignment with respect to the gravity vector of theStanford2D3D [109] dataset is about 0.36 degrees, while the average misalignmentof the Matterport3D [6] dataset is about 0.61 degrees (full statistics about gravitymisalignment in Sec. 3.4.6).
Robustness to gravity misalignment. Even if our method assumes to work withgravity-aligned scenes, we do not require perfect alignment, as demonstrated byour consistent results with the mentioned real-world datasets (Tab. 3.1). Moreover,we verified that the model, trained on the original aligned data, is robust to align-ment errors, even larger than those appearing in practice. To test the behavior ofour method in the presence of wider inclination errors, we exploit the Structured3Dsynthetic [108] dataset (such that the baseline is surely aligned to the ground plane)and Matterport3D [6] as real-world dataset. Starting from their initial baseline, wegenerate two new testing sets by randomly rotating the up vector of the camera,simulating a much wider misalignment to gravity — i.e., ±2◦ and ±5◦ maximuminclination error, as reported in Tab. 3.3. ±2◦ can be considered as a reliable errorbound for a manual alignment without any correction, while ±5◦ is a deliberatelywide range (additional tests are presented in Sec. 3.4.6). Results in Tab. 3.3 showthat our method produces reliable predictions even with significant camera mis-alignment. Performance on the Structured3D dataset reaches good accuracy in
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all cases and low error values still competitive with state-of-art results. E.g., δ1is above 0.9 for the aligned case and degrades by only 0.03 for the moderatemisalignment error of ±2◦ and 0.06 for the large misalignment error of ±5◦. Thedegradation obtained for Matterport3D are larger, but, by comparing the resultswith those in Tab. 3.1, we note that the results of our method on a dataset with
±2◦ error are still aligned with some of the state-of-the-art results obtained byother methods on perfectly aligned datasets. Moreover, we also present here theresults obtained with BiFuse [81], for which the pre-trained model was availablewith the same training set, showing a much larger degradation in performance fornon-gravity aligned data. This comparison shows how gravity alignment is also afundamental assumption for other methods. It should be noted that these largeerrors can be avoided in practice by imposing capture constraints or performing agravity-alignment pre-processing.

(a) Ground truth (b) No grad. (c) With grad.

Figure 3.6: Loss function qualitative comparison. Example of qualitative effects depending on
gradient loss (Sec. 3.3).

3.4.5 Special cases and limits

In our experiments, we have verified that our model returns consistent resultswith all the man-made environments present in the tested datasets [109, 6, 80,108], including scenes that can be defined as almost-outdoor (first row of Fig. 3.7).However, the quantitative and detailed performances depend on the ground truthdata adopted, which in the case of depth often have masked parts due to lack of datafrom the sensor or unresolved ambiguities, such as reflections and fatal occlusions.In the second row of Fig. 3.7, we show one of these examples, that is one of theworst cases in our testes. Here the ground truth depth has numerous discontinuitiesand missing samples due to reflections, which are not easily predictable by ourmodel. A large part of the structure is hidden by the insulating material.
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(a) Input (b) Ground truth (c) Out put

Figure 3.7: Special cases. First row: results on almost-outdoor environment. Second row: one of the
worst cases in our tests.

3.4.6 Detailed gravity-alignment study

We provide a detailed gravity-alignment study that shows that available bench-mark datasets are all well-aligned with respect to the gravity vector and that ourmethod is robust to small gravity misalignments. These additional results showthat our method can be directly applied in practice, even without recurring topre-processing [52].
Our approach starts from the assumption that gravity plays an important role inthe design and construction of interior environments, and that world-space verticaland horizontal features have different characteristics in most, if not all, man-madeenvironments. Based on this fact, we strive to exploit gravity-aligned world-spacefeatures by performing a gravity-aligned processing of images. This assumes thatinput equirectangular images are aligned to the gravity vector. While this assump-tion could be managed by gravity-aligning images before our pipeline, it is rationalto assume that, in most cases, captured images already meet these constraints. Toverify this fact, we performed a study of gravity-alignment of available datasets,and verified the robustness of our method to small misalignment.
Gravity-alignment evaluation of benchmark datasets. All the commonly availablesynthetic datasets [80, 108] are perfectly aligned by design, and they thus perfectlymeet the constraint.
The study, thus, focuses on real-world capture. A common practice for capturing anindoor scene is to place the camera on a tripod placed on a horizontal plane [52].This capture method is in fact adopted in all the datasets available for benchmarkingand also adopted in our work and the compared state-of-the-art methods [61, 71,81].
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For real-world datasets [109, 6] we exploited the alignment pipeline of Zou etal. [73] to evaluate the misalignment with the ground plane (see Fig. 3.8).
In our experiments we found that the average inclination, with respect to thegravity vector, is 0.36 degrees for the Stanford2D3D [109] dataset, while the averagemisalignment of the Matterport3D [6] dataset is 0.61 degrees.

(a) Stan f ord2D3D (b) Matterport3D

Figure 3.8: Real-world datasets vertical misalignment. The average inclination with respect to
the gravity vector of the Stanford2D3D [109] dataset is about 0.36 degrees, while the average
misalignment of the Matterport3D [6] dataset is about 0.61 degrees. Outliers are mainly due to
inaccurate line detection and classification of the alignment tool [47].

Indeed these values are really minimal, also considering that a significant part ofthe angular error is due to low accuracy detecting lines and estimating dominantdirection by the automatic alignment tool [47]. We can, therefore conclude thatavailable datasets all have a sub-degree accuracy with respect to gravity alignment.
Robustness to gravity misalignment. Even if our method assumes to work withgravity-aligned scenes, we do not necessary require a perfect alignment. In addi-tion to the results and comparison already presented in the paper, we show, forcompleteness, the results obtained by introducing various degrees of error in thealignment (0◦, ±2◦, ±5◦). We also performed a test, combining both training and
testing of Structured3D [108] with and without alignment to the ground plane.
Results in Tab. 3.4 demonstrate the consistency of our model and effectiveness ofour assumption, where the best performances are obtained the more the imagesare aligned with the ground plane, while the results do not improve even if a specifictraining is done on distorted data in order to find a better fit on the inclined images.Moreover, the method appears fairly robust to small alignment errors (≤±2◦), anddegrades as soon as input images are severely misaligned.
In other words, the effectiveness of the network is not given by the specific fittingof the training data with the expected result but by the consistency of the scene
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Train
incl.

Test
incl. MRE MAE RMSE RMSE

log δ1

0◦ 0◦ 0.0147 0.1180 0.0549 0.1012 0.9085
0◦ ±2◦ 0.0217 0.1393 0.0658 0.1368 0.8776
0◦ ±5◦ 0.0263 0.1601 0.0714 0.1430 0.8527
±2◦ 0◦ 0.0238 0.1516 0.0632 0.1288 0.8672
±2◦ ±2◦ 0.0250 0.1589 0.0716 0.1434 0.8464
±2◦ ±5◦ 0.0281 0.1716 0.0743 0.1501 0.8310
±5◦ 0◦ 0.0231 0.1530 0.0648 0.1245 0.8638
±5◦ ±2◦ 0.0250 0.1613 0.0721 0.1388 0.8438
±5◦ ±5◦ 0.02758 0.1697 0.0735 0.01422 0.8362

Table 3.4: Performance when training with misaligned images. We show, for completeness, the
results obtained by combining both training and testing with and without alignment to the ground
plane on the Structured3D dataset [108].

with our specific network architecture.

3.5 Conclusions

This chapter has introduced a novel deep neural network capable to rapidly esti-mate a depth map from a single monocular indoor panorama. The presented designexploits gravity-aligned features, characterizing man-made interior environmentsthrough a compact representation of the scene into vertical spherical slices. Weexploit long- and short-term relationships among slices to recover the equirectangu-lar depth map, and maintain high-resolution information in the extracted featureswithin a deep network. Our experimental results demonstrate that our methodoutperforms current state-of-the-art solutions in prediction accuracy, particularlyin the case of real-world data with noise and missing data.
While the current method targets monocular reconstruction, we plan to extend it tomulti-view in the context of structured 3D reconstruction of indoor environments.We are also looking at integrating it with interactive solutions, where we plan touse real-time depth estimation for volume and surface computation in AR settings.Moreover, while the approach was designed for indoor scenes, gravity alignment offeatures occurs also in other settings, especially man-made ones. We thus envisionan extension of our approach to outdoor environments, in particular urban scenes.
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3.6 Bibliographic notes

Most of the content of this chapter was presented in the CVPR 2021 contribu-tion [10] that I have co-authored, and for which I have significantly contributedto the methodology, implementation, testing, and validation of the method, asdetailed in Chapter 1. The work has been very well received by the computer visioncommunity (e.g., 59 citations on Google Scholar at the time of this writing). Variousworks have used our results as baseline to use for demonstrating advancements forthe state-of-art (e.g., [130, 131]), and several of them have proposed follow-ups andderivations e.g., [132]). In particular, SliceNet [10] and HoHoNet [107] are discussedin the recent survey by Gao et al. [133] as the methods that introduced the squeez-ing of the extracted feature maps into a horizontal 1D representation due to theassumption that indoor panoramas are aligned to the gravity vector, followed by therecovering of the dense depth map predictions in the equirectangular projection.Among the various follow-ups, several works [132, 134] have noted that our originalproposal of the slicing method ignores the latitudinal distortion property and thusis not suited to accurately predicting the depth near the poles. For this reason,Zheng et al. [134] proposed to perform bi-directional compression taking into ac-count spherical distortion, while PanoFormer [132] proposed a transformer-basedarchitecture that exploits tangent patches from spherical domain.

72



Chapter 4

Exploiting data fusion for deep
panoramic depth prediction and
completion for indoor scenes

While the previous chapter focused on purely visual data, here the focus is
on the common situation in which we receive as input a single equirectan-
gular image registered with a sparse depth map, as provided by a variety
of common capture setups. The goal is to jointly exploit the dense visual
channel and the sparse depth to infer a dense depth map. For that pur-
pose, an efficient data-driven solution is introduced. Depth is inferred
by a lightweight single-branch network, which employs a dynamic gating
system to process together dense visual data and sparse geometric data.
The design exploits the characteristics of typical man-made environments
to efficiently compress multi-resolution features and find short- and long-
range relations among scene parts. Furthermore, the training process
introduces a new augmentation strategy to make the model robust to dif-
ferent types of sparsity, including those generated by various structured
light sensors and LiDAR setups. The experimental results demonstrate
that the presented method provides interactive performance and outper-
forms state-of-the-art solutions in computational efficiency, adaptivity to
variable depth sparsity patterns, and prediction accuracy for challenging
indoor data, even when trained solely on synthetic data without any fine
tuning.
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4.1 Introduction

Integrated visual and depth capture of indoor environments is a key enabling com-ponent for a wide range of applications, including autonomous navigation, mobileaugmented reality, indoor mapping, and 3D reconstruction. In most situations,synchronized high-resolution depth and color data for the widest possible coveragearound the viewer should be fed with low latency to further processing and analysismodules [124, 1].
Depth estimation is a fundamental problem for which a variety of active and passivesolutions have been proposed over the past decades. While classic approaches ex-ploit the correlation among multiple views, acquired simultaneously (e.g., stereo) orover time (e.g., video), single-shot capture and depth estimation has also attracteda lot of attention, since it ensures the lowest latency, reduces system hardware andsynchronization burden, and offers basic building blocks for multi-view methods [40,58].
As current 360◦ cameras offer viable low-cost and energy-efficient solutions foromnidirectional single-shot indoor capture [24], many research efforts are cur-rently being focused on generating 3D from panoramic images. However, evenwith the full context provided by 360◦ capture, depth generation from monocularinput remains inherently ambiguous, and is particularly complex in indoor settingscharacterized by large texture-less surfaces, abundance of clutter, and severe oc-clusions [1]. Despite the very significant recent advances in this field, especiallywith emerging deep-learning solutions that exploit hidden relations discovered inlarge data collections [81, 107, 10], monocular depth estimation remains extremelychallenging.

Figure 4.1: Different kinds of sparse depth. First image (from the left): depth map captured by
structured-light sensors (Matterport Pro 3D camera) has lots of missing areas when rooms are large,
surfaces are shiny or thin, and strong lighting is abundant. Second image: a depth map captured
by a LiDAR setup (two Velodyne VPN-16 shifted of the vertical direction with different direction) has
lots of valid information but only for a few stripes. Third image: depth information may also come
from triangulated features in purely image-based pipelines; indoor environments, however, have
lots of flat texture-less surfaces, and reliable features, here detected from SIFT, may be very sparse.
Fourth image: a typical input from low-cost structured light sensors with sparse measurements only
for a small subset of the captured camera pixels; for synthetic training, a typical approach is to use a
Bernoulli distribution to sparsify inputs [135].
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Depth can also be measured with depth-sensing devices. Current depth sensorsexhibit, however, speed, cost, and resolution limitations that hamper their directusability for full-frame dense 360◦ capture in interior scenes. In particular, stereocameras require large baselines and tend to fail in texture-less indoor environments,structured-light sensors are at lower resolution than comparable visual cameras,are very sensitive to illumination variations, and suffer from short ranging distance.Longer ranging LiDAR sensors are more robust and accurate, but can only provideextremely sparse measurements at real-time rates [30]. Fig. 4.1 shows typical depthinformation provided by different low-latency techniques.
In view of these limitations, many research efforts have been devoted to exploitthe coarse information coming from depth sensing to improve the performance ofdepth prediction from RGB [30]. Sparse depth input, in particular, has shown to bevery useful to provide supervision at training time to pipelines that infer depth fromvisual data [59, 69, 136, 83]. More and more often, it is used at inference time [90,39] for guided and non-guided depth completion [30]. However, the sparse outputfrom various kinds of sensors imposes fundamental challenges on machine learningmethods, since data relevance is not uniform and further processing is required toeither reconstruct or ignore missing regions [99].
Because of this imbalance, depth prediction from dense RGB input and depthcompletion from sparse depth input have often been treated separately, and solvedwith different methods [98, 137, 138]. The few state-of-the-art solutions that tryto jointly tackle completion and prediction target outdoor planar [139] or smallfield-of-view (FOV) perspective [37] projections, and are not efficiently applicableto 360◦ indoor capture (Sec. 2.7 and Sec. 4.4).
In this work, we introduce an end-to-end deep learning solution to jointly performreal-time dense depth prediction and completion from single-shot indoor 360◦

captures. This method, the first to work directly on equirectangular images ofindoor environments, combines and extends state-of-the-art end-to-end deeplearning solutions, introducing several specific novelties. Our input is a singleequirectangular image registered with a sparse depth map, as provided by a varietyof common capture setups. We do not make assumptions on the sparsity structureof the input depth, which can range from the few dense stripes produced by LiDARsolutions to the regular and irregular point sampling produced by other activeand passive vision-based approaches. We expect, however, the images to beapproximately gravity-aligned, as in all common datasets available [6, 109, 108, 93,117, 80]. This condition is a de-facto standard for practically all indoor static andmobile acquisition setups, as they are equipped with automatic georeferencing andalignment systems [50, 110, 52, 107, 10]. It is worth noting that we can accommodate
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for large tolerances in gravity alignment. In our results (Sec. 4.4), we demonstratehow our system even works in the case of a backpacked LiDAR acquisition systemwith variable vertical tilt.
Assuming a rough gravity alignment allows us to optimize our network design.
The network is constituted by a single-branch encoder-decoder, which jointly pro-cesses dense visual data and sparse geometric data in an efficient way. The ini-tial residual encoder takes as input simultaneously 4 channels (i.e., RGB + sparsedepth), and, through a gating system, returns fused visual and geometric featuresat different resolutions. Such features are efficiently compressed and flattenedin an asymmetric way, by exploiting the intrinsic characteristics of gravity-alignedequirectangular projections of indoor scenes [10, 54]. In fact, since gravity playsan important role in the design and construction of interior environments, verticaland horizontal features have different characteristics in most, if not all, man-madeenvironments. Moreover, most 360◦ capture setups have a much more regularcoverage along the horizontal than on the the vertical direction because of maskingeffects [6]. As a result, we can exploit this anisotropy by compressing more on thevertical than on the horizontal direction. The resulting flattened features are refinedthrough a lightweight self-attention module [140], which, acting as a bottleneck,exploits the wide context provided by omnidirectional capture in order to find theshort- and long-range relations between parts of the scene which are typical ofman-made environment. Decoding proceeds symmetrically to the encoder, butwithout need for gating, to reach the final output resolution.
Our contributions are summarized as follows:

• We introduce a novel residual encoder for the sparse-to-dense image-drivenproblem, which exploits lightweight gated convolutions [141] to process densevisual data and sparse geometric data together in a single branch at verylittle cost (Sec. 4.3.1). This design results in a much faster and more versa-tile network, with respect to the current approaches that process the datausing multi-branch architectures and interconnections at various levels ofthe network [98, 100, 95, 93, 142]. Our encoder combines the advantagesof a gating system, to handle different types of input in a single encoder,and of a residual architecture [62], allowing us to use deeper networks withrespect to common inpainting solutions [143, 95], thanks to the efficientfusion and propagation of features at various resolutions and depth, withoutusing skip connections that would increase the computational burden of thenetwork [95]. As a result, the method meets real-time constraints even forthe highest image and depth resolutions (Sec. 4.4.2).

76



• We introduce asymmetric feature compression and flattening for depthcompletion of gravity-aligned indoor panoramic imaging (Sec. 4.3.2), ex-ploiting the intrinsic characteristics of equirectangular projections of indoorscenes [10, 107]. While gravity-aligned features have been employed ear-lier for depth estimation [10], they have not been used for designing depthcompletion networks. In this setting, this type of encoding remarkably max-imizes the visual and geometric information gathered from a panoramicinput, allowing, at the same time, the gathering of multi-resolution featuresand the use of a lightweight self-attention module (i.e., 1 layer, 4 heads) asbottleneck. Such an attention module allows the network to find the short-and long-range relations between parts of the scene, typical of man-madeenvironment and panoramic images [54], relating features both spatially andat various levels of network depth (Sec. 4.3.1). Other state-of-the-art ap-proaches, instead, employ dilated convolutions [95] as bottleneck, which arecommon in visual inpainting [143], renouncing to exploit deep-level featuresand, thus, losing part of the long-term information.
• We show how our approach is capable to handle a large variety of spar-sity patterns and delivers excellent results when trained on synthetic dataand applied to various real-world configurations with or without fine tuning(Sec. 4.4). In order to increase the robustness to various sampling patterns,we also complement approaches based on theoretical noise models for mod-erately dense and uniform RGB-D capture [144, 30] with a data augmentationmodule designed to model LiDAR behavior (Sec. 4.3.3). Such an augmentationis fundamental to increase the performance of our model in the LiDAR case,and increases also the performance of other methods, whose advertisedaccuracy was instead related to a specific capture pattern (Sec. 4.4.3).

We evaluated our approach on a variety of panoramic indoor scenes, rangingfrom commonly available panoramic indoor benchmarks [6, 93, 145] to novel real-world captures with mobile devices. Our results demonstrate that our approachoutperforms current state-of-the-art solutions in terms of speed and accuracy(Sec. 4.4).

4.2 Datasets

In order to cover a large variety of use cases, we created a novel dataset leveragingon synthetic data generated by sampling the large-scale Structured3D [108] photo-realistic synthetic dataset, containing 3.5K house designs created by professionaldesigners with a variety of ground truth 3D structure annotations, including 21,000
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photo-realistic full-panoramic (i.e., 1024 × 512 equirectangular format) indoorscenes. The main advantage of such a synthetic dataset is that it provides a fullyaccurate dense ground-truth for color and depth, which is not available with othercommon large-scale datasets, such as Matterport3D [6] or Stanford2D-3D-S [109],whose completeness, even if based on multi-view, is still limited by visibility andsensor limitations. For training purposes, we associate to each panoramic imageand ground truth dense depth a sparse depth created through a sampling processthat simulates a variety of setups. 50% of the depths simulate LiDAR setups, 25%RGB-D setups, and 25% data coming from SfM/stereo pipelines. The LiDAR setupsemulate multi-beam mobile devices, selecting with equal probability 0, 16, 32,48, 64, 80, and 96 beams on a rotating platforms. LiDAR simulation is performedby a parametric sampling process [146, 147, 148], using configurations mimicking
Velodyne devices with 30◦ to 40◦ vertical FOV. The 0-beam case is included tosimulate pure visual capture, while for the other multi-beam setups the depthcoverage ranges from 16 beams (6% of pixels having depth values) to 96 beams(38%). As an extreme case, we also include a case where we have no depth input(i.e., data is purely visual, and depth maps have 0% valid pixels. Representativeexamples are included in Fig. 4.4. Moreover, to evaluate the method on differentkinds of sparsity patterns, we simulate data coming from low-cost depth camerasusing Bernoulli sampling [144] and input from SfM/stereo pipelines using a SIFTdetector to place samples at feature locations. Training data is, thus, augmentedwith two parameterizations of Bernoulli samplings (24.68% and 6.17% of visiblepixels having a depth), as well as with two different SIFT settings (with 0.91% and2.99% valid depth pixels). Each of these 4 configurations comprise 12.5% of thetraining data. Representative examples are included in Fig. 4.5.
In order to validate the generalization capabilities of the model and the suitabilityof training on synthetic data, models trained on this dataset are tested both on S3Ddata and on completely novel data coming from other capture setups, includingreal-world ones.
Furthermore, as another important point of our work, we tested our model witha real-world sparse and challenging capture campaign, not included in any of thetraining datasets, but supporting a dense capture as dense ground truth. Thus, weproduce a novel dataset from a real LiDAR RGB-D acquisition (i.e., mobile devicewith 2 Velodyne VLP-16 and a registered Garmin spherical camera - Fig. 4.7) anda ground truth dense depth acquisition through a FaroFocus3DX330T LS. Eachsparse scan takes about 300 milliseconds and produces about 16% of pixels withvalid depth. We have acquired, in a multi-floor and multi-room environment, about
150 scenes in equirectangular format aligned with dense ground truth and sparsedepth maps. Note that the gravity alignment of the poses is directly the one
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provided by the tracking tools in the mobile device and has not been correctedthrough dense depth registration. This choice results in tilted sparse-dense pairs,which also provide us with a real-world benchmark to evaluate the robustness ofour system to misalignment with respect to gravity direction (see Sec. 4.1). We usesuch a real-world benchmark for testing without any fine tuning, after training on
S3D-SD, also demonstrating transfer-learning capabilities.

4.3 Network architecture and training

Figure 4.2: Network architecture. Our network is constituted by a single-branch encoder-decoder,
which processes together the dense visual and sparse geometric data. A residual-gated encoder
takes as input 4 channels (RGB + sparse depth) returning fused features at different resolution.
Multi-resolution features are compressed, flattened and passed to a MHSA- single layer module (i.e.,
bottleneck). Decoding proceeds symmetrically to the encoder, but without using gating, to reach the
final output resolution.

Our network is designed to directly infer a panoramic depth map from a singleequirectangular image registered with a sparse depth map. Fig. 4.2 illustrates itsstructure for a 512×1024 input map. The architecture, is, however, fully scalablewith respect to input resolution (Sec. 4.4).
The network input is given by the concatenation of the 3×512×1024 RGB imagewith the 1×512×1024 sparse depth map. On input, the RGB image is dense andcontains a color value for each pixel. Valid pixels in the sparse depth map containthe distance from the camera in metric scale, while invalid pixels contain a zero.
The feature extraction is performed by 5 layers, each one having a residual archi-tecture inside [62]. In order to process dense visual data and sparse geometricdata together, each block is built around specific gated convolutions. The indoorpanoramic format is also specifically handled through spherical padding and ELUactivations. Encoding layers are described in Sec. 4.3.1. Similarly to other state-of-the-art solutions for 3D from RGB data [107, 54, 10, 12], we start from the assumptionthat, in architectural indoor spaces, vertical and horizontal features have differentcharacteristics along and across the gravity direction. We apply such concepts in our
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context by compressing the extracted features (i.e., 4 deeper feature maps) throughan anisotropic contractive encoding that preserves the horizontal dimension andcompresses the vertical one (Sec. 4.3.2). The resulting 4 feature maps, containinginformation at different spatial and depth levels, are flattened and concatenatedin a single, sequential latent feature of feature dimension×sequence length. Theencoding of the latent feature as a sequence allows the network to use a multi-head self-attention module (MHSA) [140] as bottleneck, leveraging complementaryfeatures in distant portions of the image and depth measurements rather thanonly local regions to support reconstruction. This makes it possible to cope withlarge changes due to occlusions and to take into account the short- and long-rangerelations between parts of the scene typical of man-made environment. As a resultof these design choices, decoding proceeds very fast and without the need forskip connections, as it can just consist of a series of convolutions, upsampling andactivations until the output resolution is reached.
Our model is trained end-to-end supervised by sparse-dense depth map couples(Sec. 4.4.1), without specific assumptions on sparsity patterns, which are learnedfrom training data. In addition to use variable depth density for RGB-D situation,we introduce a LiDAR-specific augmentation module that generates parametricLiDAR capture patterns at run-time during training (Sec. 4.3.3).
4.3.1 Feature extraction

The joined feature encoding of the mixed RGB+depth input is performed by acascade of 5 blocks - i.e., 1 convolution-pooling block followed by 4 residual blocks.Given the spherical nature on the image, we adopt circular padding along thehorizon for convolutions, to overcome the longitudinal boundary discontinuity, andreflection padding to alleviate the singularities at the poles [149].
Each residual block follows the ResNet scheme, involving two convolutions and oneupsampling layer [62]. Here, for each convolution layer, we introduce a dynamicgating approach to efficiently process dense visual data and sparse geometric datatogether.
In a generic (vanilla) convolutional layer, for each pixel located at (y,x) in an inputfeature map Fn having n channels, the same filters are applied to produce theoutput for a generic convolutional filter.
However, the sparse depth channel does not contain all valid pixels, but for singlechannel tasks, like pure inpainting without RGB guidance, partial [150] convolutionscan be adopted to make the convolution dependent only on valid pixels. Indeed,such solution is not very efficient for our problem, since, essentially, partial convolu-
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tions act as single-channel hard-gating, heuristically classifying each spatial locationto be either valid or invalid, and setting to zeros or ones the mask in next layer nomatter how many pixels are covered by the filter range in previous layer [143].
In our case, instead, we introduce a multi-channel gated convolution approach,where a multi-channel soft mask is automatically learned from data, taking decisionsthat jointly consider the sparse depth and the dense color channel. While gatedconvolutions are often adopted for pure image synthesis combined with dilatedconvolutions [151, 152, 143], here we use such a soft masking to model a kind ofimplicit confidence for multi-source features.
For each gated convolutional layer, gated features F ′

m are:
Gm = conv(Wg1,conv(Wgk,Fn))
Fm = conv(Wf ,Fn)
F ′

m = σ(Gm)
⊙

ψ(Fm)
(4.1)

where σ is the Sigmoid function, whose output values are within [0,1], ψ is anactivation function (in this paper we use ELU [153] to remove the need for batchnormalization), Wg1, Wgk and Wf are different sets of convolutional filters, used,respectively, to compute the gates (Wg1, Wgk) and features (Wf ), and Fn is the inputfeature map.
In terms of computational complexity, the use of gated convolution should almostdoubles the number of parameters in comparison to a standard, vanilla convolu-tion [143]. To cope with this problem, we adopt here a lightweight solution, alsocalled depth-separable convolution [141], which reduces the number of parametersand processing time while maintaining the effectiveness. Thus, we decompose agated convolution soft mask Gm with kh × kw ×n×m into a depth-wise convolu-tion [141] (i.e., kh ×kw kernel) followed by a 1×1 kernel convolution. Such solutionhas only kh × kw ×n+n×m parameters, resulting in a less overall computationalcost for all the encoder without measurable loss in efficiency for our problem(Sec. 4.4.4).
Our encoder returns 4 feature maps having different depth and spatial size (Fig. 4.2),gathering fused information from both visual and geometric input. Beside datafusion, propagating these levels avoids using skip connections between encodersand decoders, such as those used by several other methods [95, 154, 98] to retrievefine-grained details, drastically reducing the computational complexity (see Tab. 4.1).At the same time, propagating this information together in a deep architecture isnot simple and requires an efficient compression system. To this end, we introduceda specific compression process described in Sec. 4.3.2.
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4.3.2 Feature compression and decoding

In order to support an efficient gathering of information from the extracted features,taking into account the peculiar characteristics of indoor environments, we performa specifically designed feature compression exploiting our knowledge of preferentialdirections. We start from the assumption that gravity plays an important role inthe design and construction of interior environments, so world-space vertical andhorizontal features have different characteristics in most, if not all, man-madeenvironments. Moreover, the amount of information contained in the sphericalequirectangular projection degrades significantly going towards the poles, and evendisappears completely in the input depth due to the hardware limitations of theinstrument.
According to these assumption, we perform an anisotropic contractive encodingthat reduces the vertical direction while keeping the horizontal direction unchanged,so that separated vertical features can be better preserved. Specifically, we reducethe vertical dimension by a factor of 8 through an asymmetric convolution modulewith stride (2,1), applied 3 times, that contains a 2D convolution and an ELU module.We apply such a compression for each encoded feature map (i.e., 4 maps, Sec. 4.3.1).Finally, compressed features are reshaped to the same size and joined in a flattenedlatent feature, Ls = (l0 . . . ls), as a sequence of s feature vectors of dimension l(i.e., s horizontal size of the less deep feature map - s = 256 and l = 1024 for a
512×1024 input).
Such a compressed representation contains a variety of information about thegeometry of the scene, both local and non-local, which can be exploited to recovermissing depth samples. In our case, we aim to leverage complementary featuresin distant portions of the image rather than only local regions, to support bothdepth completion and recovery. To do that, we adopt a single-layer multi-headself-attention (MHSA) scheme [140]. Our self-attention module takes the latentfeatures L ∈ Rs×l as input, and outputs a self-attention weight matrix A ∈ Rs×s:

A = so f tmax
(
(LWq)(LWk)

T
√

l

)
(4.2)

where Wq,Wk ∈ Rl×l are learnable weights. The MHSA module has a particularlylightweight design with 4 heads and only 1 inner layer. We have verified experimen-tally that increasing the number of layers and heads does not affect performance.
Once passed to the MHSA module, the decoding of the latent feature (1×1× s inFig. 4.2) is very fast, through convolutions, upsampling modules, and ELU activations,until we reach the target output resolution (1×h×w in Fig. 4.2).
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4.3.3 Training strategy

During the training phase, we compute the weights of the network using a super-vised training approach that exploits databases matching indoor equirectangularimages with their correspondent sparse and dense depth maps (Sec. 4.4.2 fordatasets details).
Coping with variable distributions of sparse depth samples

The distribution of the samples of the sparse maps can vary considerably dependingon the acquisition methods. While sparse-dense datasets from structured-lightsensors are available [93], it is not so for LiDAR data, even if these sensors areincreasingly used also in indoor environments (Sec. 4.1). Generating those samplingpatterns cannot be simply done by generic noise models (e.g., [144, 30]), but musttake into account striping.
To this end, we adopt a sparsity simulation module to produce, under parametriccontrol, different types of LiDAR patterns starting from a dense ground truth. Sucha module can be used to generate specific, defined capture setup (e.g., 1 scan withfixed parameters), or to randomize sparsity at training time, thus augmenting thedata to make the model more robust to different inputs. Such a module extendsexisting generators [155, 146, 147] to provide run-time sparse samples extractedfrom ground truth dense depth maps.
Our sparsity simulator is driven by a limited number of parameters, that can beeventually randomized to augment data: the number of heads (sensors) and theirposition and orientation, and for each sensor, the horizontal aperture (i.e., 360degrees), the vertical aperture, and the number of laser beams (e.g., 16 for aVelodyne16-like device, etc.). Furthermore, a small 3D random noise is applied tosimulate real-device noise. Head aperture and beams parameters are bounded tomatch to realistic setups (e.g., beams are multiple of 16, etc.).
It should be noted that even a 0 beams case is contemplated during augmentation.This case allows the network to work even if there is no geometric input. In thiscase the prediction performance is aligned with that of recent state-of-the-artimage-based methods [10, 107] (Sec. 4.4).
Using this augmentation module as a complement to those based on noise models,in addition to increase robustness, allows us to avoid locking the training to aspecific device sampling pattern, since sparse data is generated from ground truthdense maps. In particular, as we will see in Sec. 4.4, differently from most previouswork, we can train the model on purely synthetic datasets, and apply it to real-world
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data captured with a specific device even without any fine-tuning.
Loss function

Independently from the type of sparse depth distribution, learning is driven by aloss function combining two data terms:
Ldata = Ld +Lss (4.3)

where Ld is the robust Adaptive Reverse Huber Loss (BerHu) [63], which has provento be effective in many recent works for panoramic depth estimation [81, 107, 10].To further take into account structural information, we add the structural loss Ls,based on the Structural Similarity Index Measure (SSIM) [156], which measures thepreservation of highly structured signals with strong neighborhood dependencies.Since SSIM is higher if the two compared images are more structurally similar, wedefine Lss = 1−SSIM(Dgt ,Dp), where Dgt is the ground truth dense depth and
Dp is the final inferred depth.

4.4 Results

Our approach is implemented with PyTorch 1.5.1 and has been tested on a largenumber of indoor scenes.
Source code and models will be available to the public at https: // github. com/
crs4/ PanoDPC .

(a) RGB IN [93] (b) Sparse IN [93] (c) Our (d) Ground Truth [93]
Figure 4.3: Qualitative results on Matterport3D-SD dataset [93]. Masked samples in the results are
missing samples in the ground truth.
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(a) RGB S3D-SD (b) Sparse S3D-SD (c) Huang et al. [95] (d) Our (e) Ground truth[108]

(f) RGB mobile (g) Sparse (h) Huang et al. [95] (i) Our (j) Ground truth
depth mobile

Figure 4.4: Qualitative performance on S3D-SD with a LiDAR configuration with 32 beams and on
real mobile LiDAR indoor capture. Qualitative results with the same setup of Tab. 4.2. Our results
are compared to the Huang et al. [95] approach trained with the same equirectangular augmented
S3D-SD dataset with varying sparsity patterns.

4.4.1 Benchmark datasets

Real-world capture of indoor environments is usually performed using a variety ofsettings, including panoramic cameras aligned with LiDAR-based setups (e.g., Velo-dyne) or stitching of structure-light-based sensors (e.g., Matterport). The limitationsof these devices for indoor use [30] makes it difficult to find data corresponding toall the various use cases coupled with reliable full-frame ground truth data.
For training purposes, we employ in this paper the standard Matterport3D-SD (i.e.,Matterport 3D sparse depth) [93] as well as a new dataset created on purpose thatbuilds on Structured3D [108], dubbed S3D-SD (i.e., Structured 3D sparse depth).
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(a) RGB S3D [108] (b) Sparse S3D (c) Huang et al. [95] (d) Our (e) Ground
Bernoulli truth [108]

(f) RGB S3D [108] (g) Sparse S3D SIFT (h) Huang et al. [95] (i) Our (j) Ground
truth [108]

Figure 4.5: Qualitative performance on S3D-SD with different input depth sparsity patterns. Qual-
itative results using simulated input from low-cost depth cameras using Bernoulli sampling and
simulated input from SfM/stereo pipelines, using a SIFT detector to place samples. Our results are
compared to the Huang et al. [95] approach trained with the same equirectangular S3D-SD dataset.

(a) RGB S3D [108] (b) Sparse (c) Huang et al. (d) Our PC (e) Ground
S3D-SD PC PC [95] truth PC [108]

Figure 4.6: Qualitative performance on S3D-SD by point cloud (PC). In these examples, 3D point
clouds are obtained by unprojecting depth maps, using the same setting of Tab. 4.2, and visualizing
them from a standard point of view. Note how the proposed approach improves reconstruction
especially in regions where clear geometric structures from the architectural layout are present.

Training and testing with Matterport3D-SD

Matterport3D was the first one to provide full-view indoor poses with paired sparseand dense depth maps, and for this reason, it has become a popular benchmarkin recent papers and surveys [95, 30, 98]. For the sake of comparison with otherresults, and to show the behavior of our method on high-quality structured-lightdata, we thus include an analysis of our performance by training and testing ourmethod on Matterport3D-SD compared to state-of-the-art works that use it. Thisdataset, however, is limited to a single kind of device operating in reasonablycooperative environments that ensure rather dense capture, so that even classical
86



infilling or hybrid data-driven solutions may be adopted with some success [30].Fig. 4.3 shows representative examples. For this reason, we complement thedataset with much more challenging examples that cover other setups and lesscooperative interiors.
Training and testing with S3D-SD

In order to cover a large variety of use cases, we created a novel dataset leveragingon synthetic data generated by sampling the large-scale Structured3D [108] photo-realistic synthetic dataset, containing 3.5K house designs created by professionaldesigners with a variety of ground truth 3D structure annotations, including 21,000photo-realistic full-panoramic (i.e., 1024 × 512 equirectangular format) indoorscenes. The main advantage of such a synthetic dataset is that it provides a fullyaccurate dense ground-truth for color and depth, which is not available with othercommon large-scale datasets, such as Matterport3D [6] or Stanford2D-3D-S [109],whose completeness, even if based on multi-view, is still limited by visibility andsensor limitations. For training purposes, we associate to each panoramic imageand ground truth dense depth a sparse depth created through a sampling processthat simulates a variety of setups. 50% of the depths simulate LiDAR setups, 25%RGB-D setups, and 25% data coming from SfM/stereo pipelines. The LiDAR setupsemulate multi-beam mobile devices, selecting with equal probability 0, 16, 32,48, 64, 80, and 96 beams on a rotating platforms. LiDAR simulation is performedby a parametric sampling process [146, 147, 148], using configurations mimicking
Velodyne devices with 30◦ to 40◦ vertical FOV. The 0-beam case is included tosimulate pure visual capture, while for the other multi-beam setups the depthcoverage ranges from 16 beams (6% of pixels having depth values) to 96 beams(38%). As an extreme case, we also include a case where we have no depth input(i.e., data is purely visual, and depth maps have 0% valid pixels. Representativeexamples are included in Fig. 4.4. Moreover, to evaluate the method on differentkinds of sparsity patterns, we simulate data coming from low-cost depth camerasusing Bernoulli sampling [144] and input from SfM/stereo pipelines using a SIFTdetector to place samples at feature locations. Training data is, thus, augmentedwith two parameterizations of Bernoulli samplings (24.68% and 6.17% of visiblepixels having a depth), as well as with two different SIFT settings (with 0.91% and2.99% valid depth pixels). Each of these 4 configurations comprise 12.5% of thetraining data. Representative examples are included in Fig. 4.5.
In order to validate the generalization capabilities of the model and the suitabilityof training on synthetic data, models trained on this dataset are tested both on S3Ddata and on completely novel data coming from other capture setups, including
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real-world ones.

Figure 4.7: Mobile RGB+LiDAR setup. To test our approach on a real-world panoramic RGB+LiDAR
acquisition, we exploit a backpacked mobile scanner equipped with a full-view panoramic camera for
the RGB capture and two LiDAR heads for sparse depth capture. Ground-truth dense depth for each
pose is provided by reprojecting data coming from multiple poses of a static scanner.

Validating on novel real-world captured data

Furthermore, as another important point of our work, we tested our model witha real-world sparse and challenging capture campaign, not included in any of thetraining datasets, but supporting a dense capture as dense ground truth. Thus, weproduce a novel dataset from a real LiDAR RGB-D acquisition (i.e., mobile devicewith 2 Velodyne VLP-16 and a registered Garmin spherical camera - Fig. 4.7) anda ground truth dense depth acquisition through a FaroFocus3DX330T LS. Eachsparse scan takes about 300 milliseconds and produces about 16% of pixels withvalid depth. We have acquired, in a multi-floor and multi-room environment, about
150 scenes in equirectangular format aligned with dense ground truth and sparsedepth maps. Note that the gravity alignment of the poses is directly the oneprovided by the tracking tools in the mobile device and has not been correctedthrough dense depth registration. This choice results in tilted sparse-dense pairs,which also provide us with a real-world benchmark to evaluate the robustness ofour system to misalignment with respect to gravity direction (see Sec. 4.1). We usesuch a real-world benchmark for testing without any fine tuning, after training on
S3D-SD, also demonstrating transfer-learning capabilities.
4.4.2 Experimental setup and computational performance

We trained the network using the Adam optimizer [129] with β1 = 0.9, β2 = 0.999,on four NVIDIA RTX 2080Ti GPUs (11GB VRAM) with a batch size of 8 and a learning
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rate of 0.0001. For all benchmarks we adopt their original splits. Our new real-world dataset is not used for training, but for testing after training on syntheticdata. With the given setup the best valid epoch was around 170 epochs for S3D-SDand Matterport3D-SD. The average training speed on 4 GPUs is about 105ms foreach 512×1024 input image and depth pair.
Table 4.1: Computational cost and performance. Our method is compared to the best performing
state-of-the-art competitors.

Method Size Params FLOPs↓ ms/frame↓Ma et al. [157] 512×1024 26.10 M 765.1 G 137GAENet [158] 512×1024 4.06 M 60.12 G 39PENet [159] 512×1024 131.67 M 487.4 G 167packNet+SAN [100] 512×1024 76.99 M 304.7 G 149NLSPN [98] 512×1024 26.23 M 829.86 G 167Huang et al. [95] 512×1024 13.10 M 1624.9 G 105Our 512×1024 22.11 M 38.2 G 16Our 1024×2048 44.14 M 211.7 G 67Our 2048×4096 132.22 M 1319.3 G 384

Tab. 4.1 shows our computational complexity stats, compared with several state-of-the-art methods for the inference of a 512×1024 image and depth map. Ourcomputational cost, in terms of GFLOPs, is significantly lower than for competingsolution. Note that this increased performance is also with respect to networks witha lower number of parameters but with a far more complex structure. Moreover,our method produces depth maps directly from equirectangular inputs without pre-or post-processing steps and can thus be directly integrated in production systemswithout additional overhead.
As a result, the inference performance of our network guarantees a low-latencygeneration of dense depth, and we can therefore support full instantaneous frame-by-frame depth map generation directly at acquisition. In our case, starting from a
512×1024 image and depth map, we infer depth in under 16ms on a single NVIDIARTX 2080Ti, which is much faster than a single rotation of typical LiDARs coveringa 360◦ view (e.g., 50ms to 200ms per rotation for a Velodyne VLP-16). The leannetwork structure also leads to a good scalability, as demonstrated by results withlarger images included at the bottom of Tab. 4.1. We can, in particular, generate2Kx4K depth images from equally-sized inputs in less than 0.4s.
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4.4.3 Quantitative and qualitative evaluation

We evaluated our method with the same error metrics which are common to priordepth prediction and completion works and surveys [30, 100, 93, 95, 160]: meanabsolute error (MAE), mean squared error (MSE), root mean square error of linearmeasures (RMSE) and three relative accuracy measures δn (n = 1,2,3), defined asthe fraction of pixels where the relative error is within a threshold of 1.25n. ForMAE, MSE, and RMSE, smaller is better (i.e., unit is meter), while for δn larger isbetter.
Table 4.2: Quantitative comparison on S3D-SD/LiDAR and real LiDAR capture. We show our perfor-
mance evaluated on standard metrics and compared to the recent state-of-the-art approaches which
are comparable with us. Here we present results simulating a 360◦ capture with 40◦ vertical FOV
(−30 to 10 degrees) and 32 active beams in the synthetic dataset, and results using a real mobile
device with 2 Velodyne VLP-16 and a registered Garmin spherical camera with ground truth obtained
using a Faro Focus3D X 330 TLS (see Sec. 4.4.1).

S3D-SD / LiDAR 32 beams
Method MSE↓ MAE↓ RMSE↓ SSIM↑ δ1↑ δ2↑ δ3↑GAENet [158] 0.086 0.394 0.160 0.149 0.466 0.753 0.889packNeSAN [100] 0.052 0.286 0.125 0.614 0.596 0.867 0.954Ma [157] 0.044 0.286 0.104 0.591 0.587 0.895 0.964PENet [159] 0.028 0.210 0.090 0.595 0.671 0.930 0.976NLSPN [98] 0.023 0.185 0.084 0.840 0.723 0.943 0.982Huang [95] 0.017 0.138 0.068 0.830 0.824 0.960 0.987Our 0.003 0.038 0.022 0.944 0.982 0.993 0.997

Mobile LiDAR 16+16 beams
Method MSE↓ MAE↓ RMSE↓ SSIM↑ δ1↑ δ2↑ δ3↑GAENet [158] 0.041 0.472 0.105 0.202 0.230 0.555 0.748packNeSAN [100] 0.027 0.404 0.078 0.539 0.278 0.603 0.842Ma [157] 0.018 0.366 0.051 0.434 0.424 0.723 0.895PENet [159] 0.010 0.252 0.035 0.512 0.578 0.835 0.969NLSPN [98] 0.011 0.260 0.035 0.746 0.610 0.841 0.937Huang [95] 0.009 0.197 0.030 0.745 0.763 0.886 0.947Our 0.003 0.088 0.024 0.822 0.922 0.986 0.997

We compare our results with state of the art solutions for both indoor or genericscenes, for which the full code was available [158, 100, 157, 159, 98, 95] and anend-to-end training with equirectangular format was possible. The methods wereadapted with minimal modifications to equirectangular images. We use 1024×512for all tests.
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Tab. 4.2 summarizes our performance and comparisons with related works usingthe augmented S3D-SD dataset to train every baseline compared (see Sec. 4.4.1),and LiDAR-specific examples for the inference. To select the training and the testingset, we adopt the official Structured3D split [108].
For synthetic tests, we considered all the simulated LiDAR configurations (i.e., 16to 96 beams and various FOVs) discussed in Sec. 4.4.1. In Tab. 4.2, for clarity, wesummarize only the results and comparisons for a 40◦ vertical FOV and 32 activebeams case, since other S3D-SD/LiDAR tests follow the same performance trend,see Fig. 4.8.
We also include results on the real-world scenes acquired with the mobile LiDARsystem (i.e., here named mobileLiDAR 16+16), compared to ground truth densedepth acquisition through a FaroFocus3DX330T LS (i.e., all models trained with
s3D LiDAR).
Both the real-world benchmark and the synthetic data limited to LiDAR are usedonly as a testing set, without any fine-tuning, thus providing evidence of transferlearning capability.
Despite our lower computational complexity, already discussed in Sec. 4.4.1, ourmethod outperforms competitors for every condition, showing that simply adapt-ing general purpose pipelines to the specific panoramic indoor problem leads tounsatisfactory results.
Fig. 4.4 presents qualitative results using the S3D LiDAR and mobile LiDAR test-setsadopted in Tab. 4.2. Here, we compare our method with the method of Huang etal. [95], which is the best performing among competitors in terms of quantitativeresults. In this case, with only a few stripes available from the scanner, our methodbenefits from its specific compression and information gathering features (Sec. 4.3.1)to recover more details in the final depth map.
Fig. 4.6 shows additional experiments, where geometric visualization is obtainedby unprojecting the depth map into 3D point clouds. Following the same setupof Tab. 4.2 and Fig. 4.4, we show, respectively: the RGB input (a); the sparse in-put depth as a point cloud Fig. 4.6(b); the point cloud Fig. 4.6 predicted by thebest competitor [95] (c); our prediction Fig. 4.6(d); and the ground truth pointcloud Fig. 4.6(e). The illustrations complements the other qualitative and quantita-tive results with an easy-to-read illustration of the 3D reconstruction of the scenefrom a reference point of view. The performance improvement offered by theproposed approach is especially visible in regions where clear geometric structures(walls, ceilings or floor) are present.
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Fig. 4.7 shows instead examples of scenes acquired with the mobile backpackeddevice. Numerical data is presented in Tab. 4.2). As for Fig. 4.4 experiments, ourmethod successfully complete the map, with better accuracy than competitors.Furthermore, is also visually evident that the data acquired with the mobile back-packed device presents a significant misalignment with respect to the direction ofgravity, also variable along the user’s trajectory, which results in a distortion of theequirectangular projection. The consistent results also in this case show that ourmethod is robust with respect to such an inclination, tested in a real and mobileuser-case. Note that, in practice, such inclinations can be reduced before enteringthe depth estimation pipeline, by using on-board IMUs as well as by aligning succes-sive poses. We show here uncorrected results, to also demonstrate the possibilityof using the pipeline we present for frame-by-frame inference, without any latencyconnected to the integration of multiple frames or the need for assistance fromexternal sensors.
Table 4.3: Quantitative comparison on S3D-SD with Bernoulli and SIFT sparsity. We show our
performance, compared to ground truth and other approaches, testing two different sparsity patterns:
Bernoulli pattern, with 1.97% of visible pixels and SIFT detector pattern, with 0.1 contrast, 5 edge
threshold and no more than 8k extracted features, thus resulting in 0.91% of visible pixels (see
Sec. 4.4.1).

S3D-SD / Bernoulli sparsity
Method MSE↓ MAE↓ RMSE↓ SSIM↑ δ1↑ δ2↑ δ3↑GAENet [158] 0.093 0.410 0.161 0.149 0.465 0.748 0.885packNeSAN [100] 0.021 0.183 0.091 0.622 0.723 0.953 0.986Ma [157] 0.049 0.280 0.102 0.441 0.679 0.895 0.954PENet [159] 0.036 0.248 0.109 0.416 0.629 0.894 0.969NLSPN [98] 0.018 0.162 0.054 0.834 0.813 0.961 0.985Huang [95] 0.003 0.043 0.021 0.911 0.979 0.994 0.997Our 0.002 0.025 0.018 0.946 0.991 0.997 0.998

S3D-SD / SIFT sparsity
Method MSE↓ MAE↓ RMSE↓ SSIM↑ δ1↑ δ2↑ δ3↑GAENet [158] 0.093 0.410 0.161 0.149 0.465 0.748 0.885packNeSAN [100] 0.070 0.352 0.149 0.673 0.471 0.787 0.915Ma [157] 0.005 0.044 0.024 0.938 0.981 0.993 0.996PENet [159] 0.040 0.259 0.118 0.499 0.557 0.859 0.960NLSPN [98] 0.037 0.235 0.096 0.814 0.697 0.903 0.963Huang [95] 0.025 0.177 0.084 0.774 0.766 0.931 0.974Our 0.003 0.035 0.020 0.943 0.987 0.995 0.998
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For completeness, we performed a further comparison of performance for differentsparsity patterns. Tab. 4.3 summarizes the results obtained by emulating the patternof low-cost structured light sensors (by a Bernoulli distribution [144]) and the patternof a SIFT detector, emulating the typical sparse input that can be received froma SfM pipeline. Some qualitative examples with these patterns are illustrated inFig. 4.5. Even in this situation our method demonstrates consistent performance,proving to be a versatile approach even when heterogeneous inputs vary.
Fig. 4.8 summarizes the results of our experiments on the ability to cope withdifferent levels of sparsity, tackling both purely visual input and several multi-beam LiDAR configurations. We illustrate our performance in comparison with thecompetitor method [95] that best performed in our experiments. We show theresults on four different sparsity cases, ranging from no depth information to a fullvertical FOV scan with 96 beams (38% pixel coverage, see Sec. 4.4.1 for details).For clarity, only the δ1 metric is included in the graph, since the other metrics have,as shown in Tab. 4.2, a similar behavior.
The continuous lines illustrate the performance of the models when trained onthe augmented S3D-SD dataset (i.e., same setup of Tab. 4.2 experiments). Theresults indicate that our model, together with the proposed augmentation strategy,guarantees good performance for every type of sparsity. For the extreme caseof a pure visual input, results are in-line with dedicated state-of-the-art [10, 107]approaches for panoramic depth estimation. On the other hand, the performanceof the other approach [95] strongly depends on the number of available geometricsamples. When training the model without data augmentation (dotted lines inthe figure), but simply including in the training set the configuration used fortesting, the performance of both models rapidly decays when moving away fromthe sampling used for training, even though our method remains superior at allsparsity levels. This experiment highlights how other methods can also benefitfrom our augmentation strategy, as it increases generalization without effects onuse-case-specific performance.
For completeness, Tab. 4.4 summarizes our performance on Matterport3D-SD [93],compared to the results of other state-of-the-art approaches on the same bench-mark [161, 162, 93, 30].
As discussed in Sec. 4.4.1, such a benchmark presents a low-challenging sparsitydistribution. The majority of the state-of-the-art solutions which adopted thisbenchmark are not end-to-end deep learning networks, but hybrid pipelines [93],mainly focused on small-view perspective depth infilling [163]. Due to their hybridnature, a direct computational complexity comparison is not feasible. It is alsodifficult, to create omnidirectional pipelines without major modifications to the
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Figure 4.8: Performance with variable sparsity level. The graph depicts the value of δ1 as a function
of input depth sparsity for our method and for the best competing method [95]. Continuous lines
represent models trained with our augmentation strategy. Dotted lines show the same models but
trained without augmentation (i.e., 40 degrees sparse coverage with 32 active beams)

code. In order to provide a uniform and fair evaluation in terms of prediction accu-racy, we adopt here their official baselines and pre-trained models for perspectiveviews, testing them with the original perspective viewports provided by Zhanget al. [93], and comparing the results for our code by extracting from the singleequirectangular image we produce the perspective views required for testing. Itshould be noted that the exposed results for compared methods, thus, do notinclude the additional error due to the subsequent process of stitching the resultsnecessary to obtain the final omnidirectional view, or other effects due to pipelinemodifications in case of adaptation to equirectangular projections.
We show our performance in the last two rows of Tab. 4.4. The bold row providesresults obtained by training with Matterport3D-SD [93] training set, as for the com-pared methods, while, to also demonstrate our transfer learning capabilities, theother row summarizes the results obtained by inferring depth using the modeltrained with S3D-SD, with no fine-tuning. In both cases, our method provides con-sistent performance, well in line or outperforming other baselines that have beendesigned for this use-case. Although not directly comparable with the perspectiveresults of the other pipelines (see Tab. 4.4), we show in Fig. 4.3 some qualitativeresults on the Matterport3D-SD dataset [93].
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Table 4.4: Quantitative comparison on Matterport3D-SD.We show our performance evaluated on
standard metrics and compared to the recent state-of-the-art approaches on the indoor dataset pro-
vided by Zhang et al. [93]. We compare against the competitors best performance using their original
perspective baselines, without considering additional error due to post-processing and stitching.

Dataset Method MAE↓ RMSE↓ δ1↑ δ2↑ δ3↑MRF [161] 0.618 1.675 0.651 0.780 0.856AD [162] 0.610 1.653 0.688 0.754 0.868
M3D Zhang et al. [93] 0.461 1.316 0.781 0.851 0.888

SD [93] Huang et al. [95] 0.342 1.092 0.850 0.911 0.936Xiong et al. [30] 0.462 0.866 0.863 0.930 0.942Our trained S3D-SD 0.464 0.803 0,834 0,908 0,942
Our trained M3D SD [93] 0.332 0.555 0.936 0.961 0.973

(a) RGB IN (b) Sparse IN (c) Prediction (d) Ground truth
Figure 4.9: Bad case. Results on almost-outdoor environment. Sparse samples from outdoor part,
not properly masked, negatively affect the whole reconstruction.

4.4.4 Ablation study

Our ablation experiments are presented in Tab. 4.5, with our configuration high-lighted in bold. To test the key components of the approach, we use results obtainedwith S3D-SD, using for testing the LiDAR configuration with 3D beams (i.e., sameconfiguration of Tab. 4.2, 32 beams). The variations discussed in the ablation studyare within the design space of our approach. For example, the use of gating in theencoder is essential for the model to work. Not using it leads to inconsistent results.
The first row of Tab. 4.5 presents a case without using some key-solutions of ourmodel: multi-resolution features (MRF), asymmetric feature compression (AFC),multi-head self-attention feature refinement (MHSA), structural-similarity loss(SSIM) and data augmentation (AUG). Here we use the deeper layer of the residualfeature encoder (see Sec. 4.3.1), and we perform a standard symmetric compres-sion along the horizontal and vertical direction. This first case, which represents acommon gated encoder-decoder scheme, demonstrates how this design is not suf-ficient to guarantee adequate performance without the subsequent contributionswe have introduced. In the second row, we show the performance obtained by
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Table 4.5: Ablation study performed on S3D-SD, using the LiDAR 32 beams confuguration for testing.
MRF: multi-resolution features; AFC: asymmetric feature compression; MHSA: MHSA encoder; SSIM:
SSIM loss; AUG: sparse data augmentation; LWGC: light-weight instead of standard gated convolution.

MRF AFC MHSA SSIM AUG LWGC Param Gflops MAE RMSE δ1

✓ 13.10 112.92 0.954 2.233 0.748
✓ ✓ 20.01 188.21 0.765 1.877 0.821
✓ ✓ ✓ 20.01 43.15 0.312 1.384 0.877
✓ ✓ ✓ ✓ 22.11 38.16 0.121 0.084 0.951
✓ ✓ ✓ ✓ ✓ 22.11 38.16 0.075 0.066 0.978
✓ ✓ ✓ ✓ ✓ ✓ 22.11 38.16 0.038 0.022 0.982
✓ ✓ ✓ ✓ ✓ 31.86 61.62 0.035 0.021 0.985

introducing multi-resolution features (MRF), which hallows gathering of informa-tion without using skip connections [95, 100]. Such a solution, without an efficientfeature compression results in a significant increase of computational complexity.The third row shows the benefits of asymmetric vertical compression (AFC), both interms of lower computational complexity and in terms of accuracy. The fourth rowshows instead the effects or using or not the MHSA module, without using specificlosses or augmentation. It should be noted that MHSA feature refinement has avery low computational cost, but with a tangible increment of performance. Thefifth and sixth rows show the increment in performance using augmentation, thatlimits overfitting.
At last, the seventh row shows that, in a setup using standard gated convolutioninstead of our light-weight choice (Sec. 4.3.1), performance is not improved despitethe noticeable increment of computational cost.
4.4.5 Limitations and future works

In our experiments, we experienced that the worst results are for datasets that donot closely match the assumptions of a closed indoor space, which are used in ourdesign to construct an efficient network architecture (see Sec. 4.1). Fig. 4.9 illustratesan example from a real-world capture. In this case, the sparse samples from theoutdoor part, not properly masked, also negatively affect the reconstruction of thesurrounding indoor parts.
It should be noted that the method has been specifically designed to exploit featuresin indoor structures. This behavior is mainly due to asymmetric feature compressionand flattening of gravity-aligned indoor panoramic imaging (Sec. 4.3.2), which, in
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addition to providing efficient information gathering, allows the use of a transformer(MHSA) to retrieve the wide panoramic context. Without such indoor assumptions,compression, flattening and self-attention are poorly effective. This design providesadvantages in the prediction of depth for interior structures, as demonstrated byour results, while limiting the applicability of the method to scenes matching theassumptions.
Since such a domain-specific network design has shown to provide significantperformance improvements with respect to more generic solutions, it is interestingto further extend this work by exploiting domain-specific constraints. One directionfor future work would be to further exploit the indoor-specific design, e.g., byincorporating indoor-specific loss functions designed for architectural structurescomposed of large smooth surfaces, not necessarily planar, joining at possibly sharpedges [12]. Another direction would be, instead, to use the same concepts to designnetworks for other specific application contexts (e.g., outdoors, industrial plants),incorporating knowledge on plausible structures (e.g., presence of pipes) into thenetwork representation and loss functions.

4.5 Conclusions

We have presented a novel end-to-end deep learning solution for rapidly estimatinga dense spherical depth map of an indoor environment starting from a singleimage and a sparse depth map. To realize a lightweight and efficient single-branchnetwork, we combine and extend several technical solutions to offer a novel wayto solve this specific problem. We adopted a residual encoder with a dynamicgating system to extract multi-resolution features from hybrid visual-geometricinput. In order to efficiently gather such amount of information and to avoidonerous interconnections between encoder and decoder, we introduced a specificcompression and feature flattening which exploits the characteristics of typicalman-made environments and panoramic view. End-to-end training was insteadcarried out by introducing a data augmentation scheme capable of making it robustand versatile as the sparsity changes. As a result, our compact network outperformsin terms of speed and accuracy current solutions for color-guided sparse depthprediction and completion.

4.6 Bibliographic notes

The content of this chapter has been adapted from an article accepted for publica-tion in Computational Visual Media [11]. I am the joint first author of this work, and
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Chapter 5

Reconstructing a 3D architectural
room layout from a single
omnidirectional image

While the previous chapter focused on the estimation of per-pixel geomet-
ric information, here we tackle the problem of recovering the 3D shape
of the bounding permanent surfaces of a room from a single panoramic
image. We introduce, in particular, a novel deep learning technique ca-
pable to produce, at interactive rates, a tessellated bounding 3D surface
from a single 360-degree image. Differently from prior solutions, we fully
address the problem in 3D, significantly expanding the reconstruction
space of prior solutions. A graph convolutional network directly infers the
room structure as a 3D mesh by progressively deforming a graph-encoded
tessellated sphere mapped to the spherical panorama, leveraging percep-
tual features extracted from the input image. Important 3D properties
of indoor environments are exploited in our design. In particular, gravity-
aligned features are actively incorporated in the graph in a projection
layer that exploits the recent concept of multi head self-attention, and
specialized losses guide towards plausible solutions even in presence of
massive clutter and occlusions. Extensive experiments demonstrate that
our approach outperforms current state of the art methods in terms of
accuracy and capability to reconstruct more complex environments.
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Figure 5.1: Method overview. From a single cluttered panoramic image, our end-to-end deep network
recovers, at interactive rates, a watertight 3D mesh of the underlying architectural structure. The
graph convolutional network, trained using indoor-specific losses, exploits multi-scale gravity-aligned
features and active pooling to deform a tessellated sphere to the correct geometry. Reconstructed
models may include curved walls, sloped or stepped ceilings, domes, and concave shapes.

5.1 Introduction

The rapid estimation of the overall 3D shape of a room from monocular visual inputis a key component of indoor reconstruction pipelines [102]. The goal is to transforma single image of a furnished room into the 3D layout surface determined by joiningthe walls, ceilings, and floor that bound the room’s interior. In this context, much ofthe effort is concentrated on 360◦ images, since they provide the widest single-shotcoverage and their capture is widely supported [164, 165]. The problem is verychallenging, due to the intrinsic characteristics of indoor environments, wherefurniture and other indoor elements mask large areas of the structures of interest,and concave room shapes generate vast amounts of self-occlusions (Fig. 5.2). Thus,indoor reconstruction requires very wide context information and must exploit veryspecific geometric priors for structural recovery [1].
In recent years, deep-learning solutions have emerged as a very promising way tocope with these problems for depth estimation in indoor spaces [81, 107, 10]. Thanksto the capability of these techniques to discover hidden relations from large datacollections, many priors imposed by pure geometric reasoning approaches can berelaxed. However, 3D layout reconstruction is more complex than depth estimation,since it does not simply assign a depth to each visible pixel, but must extrapolatelarge portions of the invisible structure, which can be occluded not only by objectsbut by the structure itself, leading to multiple intersections per view ray. Currentapproaches cope with that complexity by operating in very restrictive solutionspaces. In particular, most methods target variants of the Manhattan World model(MWM: horizontal floors and ceilings, vertical walls meeting at right angles) [102],such as the Indoor World model (IWM: MWM with single horizontal ceiling andfloor) [103] or the Atlanta World model (AWM: vertical walls with single horizontalceiling and floor) [45]. Moreover, the most effective approaches recover the layoutby exploiting projections to lower-dimensional spaces before expanding them to
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3D. However, the combination of 1D/2D projections with restrictive priors limitsthe reconstruction capability to very few regular shapes and makes reconstructionless robust to occlusion (see Sec. 2.7).

Figure 5.2: Layout occlusion. Left: panoramic image. Middle: room shape, with occlusions from
walls (red) or from furniture (yellow). Only 31% of the surface of interest is visible. Right: plausible 3D
reconstruction generated by our method.

In this work, we introduce a novel technique, dubbed Deep3DLayout, that exploitsa graph convolutional network (GCN) to directly infer a watertight 3D mesh rep-resentation of the room shape from a gravity-aligned panoramic image. Such anapproach significantly expands the solution space, covering a much wider class ofinterior environments than prior solutions, including concave rooms with curvedor stepped walls or ceilings (Fig. 5.1). Indoor priors, less restrictive that previousones, are taken into account in the network structure, as well as in the carefullycrafted loss functions that drive training, without resorting to 1D/2D projections. Inparticular, the mesh, represented as a 3D graph-encoded object, is initialized asa tessellated sphere mapped to spherical coordinates and deformed towards thecorrect geometry by leveraging indoor-specific perceptual features extracted fromthe input panoramic image. To cope with large occlusion and take into accountthe typical characteristics of interior environments, we encode image informationas gravity aligned features (GAF), which are representative of the architecturalindoor model mentioned above, and we exploit a multi head self-attention (MHSA)approach to efficiently associates GAFs to 3D vertices during deformation, takinginto account short- and long-range relations, thereby coping with occlusions. Totrain the network, our indoor-specific loss functions drive the mesh towards ar-chitecturally plausible watertight 3D structures favoring models defined by theintersection of smooth surfaces, not necessarily planar, possibly intersecting atsharp edges. Our main contributions are summarized as follows:
• We define the indoor layout as a 3D graph-encoded object, exploiting GCNsto infer the room structure as a 3D mesh (Sec. 5.3.1 and Sec. 5.3.2). Previousstate-of-the-art methods for indoor panoramic scenes (e.g., [45, 102]) used,instead, simplified connected structures for the layout (Sec. 2.7), and requireda post-processing step to obtain the 3D geometry [102, 103].
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• We introduce a novel way to associate panoramic image features to 3Dvertices in an indoor environment. We exploit GAFs to efficiently preservereceptive fields according to an indoor shape hypothesis (Sec. 5.3.3), refiningand incorporating them in the graph with a MHSA approach (Sec. 5.3.4).Unlike static projections used for 3D object reconstruction [112, 113], ouractive element is very robust to severe occlusion.
• We introduce a domain-specific loss function that combines specialized dataand regularization terms to guide reconstruction towards a plausible archi-tectural model (Sec. 5.4). Since these priors are integrated in the trainingprocess, no further post-processing is necessary to regularize the output,and inference occurs at interactive rates.

Our extensive benchmarks demonstrate how we improve the state-of-the-art bothin terms of accuracy and in terms of capability to reconstruct more heterogeneousenvironments (Sec.5.5). To grant reproducibility, code and data are made available.

Figure 5.3: Deep3DLayout pipeline. Our end-to-end deep learning techniquemaps an equirectangular
image to a 3D mesh representing the bounding surface or the room. Two GCN blocks deform an input
icosphere (Sec. 5.3.1) by offsetting its vertices (see Sec. 5.3.2). The first block starts from a first pooling
of the GAF features F∗(n,d) to return a low-res estimation of the mesh M∗(V ∗,Ei). This low-res
representation M∗ is then refined to poll refined GAF features F∗(4n−6,d), which drive the second
GCN block. The output of the second block is the final refined mesh model M(V (4n−6,3),E(4m,2)).

5.2 Method overview

Our goal is to recover, from a single panoramic image, a representative 3D model ofthe boundary surfaces of the architectural layout of the environment in which thephotograph has been taken. We assume that the environment around the vieweris a closed volume fully bounded by walls, ceiling and floor. These surfaces areassumed to be only partially visible, not only due to the presence of furniture andwall-hangings, but because of the commonality of self-occluding concave environ-ments (e.g., L-shaped rooms). Since we have to cope with significant amounts ofmissing or ambiguous information, we need to use prior knowledge on the nature
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of interior environments to guide reconstruction. Contrary to previous works, how-ever, we avoid doing so by topologically and geometrically constraining the outputmodel (e.g., forcing vertical walls and/or planar walls and ceilings), or by explicitlyperforming operations valid only in restricted cases (e.g., projections and reasoningin a 2D floor plan). Our solution, instead, is to drive the reconstruction of a generalgeometric shape in the most plausible direction by exploiting domain knowledgefor network design and problem regularization.
5.2.1 Geometric model

The most general topological model of the recovered boundary surface is a closed3D surface homeomorphic to a sphere, that we can represent as a triangulated mesh.We, therefore, use such a 3D mesh as the output representation of our network.Geometrically, we assume that vertices have unconstrained spatial positions, butthat the shape is most likely obtained from the intersection of smooth surfaces,not necessarily planar, possibly intersecting at sharp edges. These characteristics,which drive the learning process through crafted loss functions (Sec. 5.4), are typicalof the most common indoor structures [1].
5.2.2 Network design

Our network recovers the room structure by progressively deforming a 3D meshso that its shape matches the environment seen by the viewer (Sec. 5.3.2). Sincewe have a spherical panorama as input, we can initialize the mesh to a 3D sphere,and use spherical coordinates to establish correspondences with the input image(Sec. 5.3.3). Moreover, as we do not know, for a given panorama, where geometricfeatures may be positioned, we initialize the sphere to a geodesic polyhedronobtained by regular subdivision of an icosahedron (also known as icosphere). Meshdeformation is then driven by associating image features to mesh vertices. Since weexpect, as consequence of architectural design, that a certain part of the structuralelements will develop along the gravity direction, we extract gravity-aligned features(GAF) (Sec. 5.3.3) and refine the association with vertices by exploiting long- andshort-range relations, which allows us to cope with large occlusions (see Sec. 5.3.4).To increase robustness, we also employ a coarse-to-fine approach, in which wefirst target the reconstruction of a coarse mesh starting from the initial sphere, andthen refine the coarse mesh to a finer one. This approach results in the end-to-endpipeline illustrated in Fig. 5.3, consisting of a dual-stage mesh deformation network(see Sec. 5.3.1 and Sec. 5.3.2), driven by an image feature network (see Sec. 5.3.3and Sec. 5.3.4). The mesh deformation network includes two GCN blocks (seeSec. 5.3.1) deforming the input icosphere by offsetting its vertices (see Sec. 5.3.2).
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The image feature network, instead, performs feature pooling based on the currentvertex positions. It includes a CNN encoder to encode GAFs from the input image(see Sec. 5.3.3), and a multi-layer spherical pooling system to refine the associationof GAFs to vertices. In order to support our coarse-to-fine-approach, the first GCNblock starts from a first pooling of the GAF features F∗(n,d) to return a low-resestimation of the mesh M∗. This low-res representation M∗ is then refined (inthis paper 4 times the number of initial faces) to perform a further GAF pooling
F∗(4n−6,d), which drives the second GCN block. The output of the second blockis the final mesh model M(V (4n−6,3),E(4m,2)) (see Sec. 5.3.4 for details). Thenetwork thus performs reconstruction using a fully 3D approach, looking for asolution in 3D space without resorting to any projection to a 2D layout or a 1Dcorner list.
5.2.3 Training and loss function design

Learning is performed using a supervised training approach that exploits databasesmatching spherical panoramas to the geometric representation. We assume, asin all recent works, that the examples are gravity-aligned, i.e., with the Y axis ofthe image pointing in the real-world vertical direction. All commonly availableannotations of indoor panoramic layouts are already gravity-aligned and providedas closed shapes, and thus can be easily represented as closed meshes with thecorrect orientation (Sec. 5.5). The loss function used for training must embed ourknowledge of the problem without overly constraining the solution space. We thuscombine a data term, measuring the quality of fit with respect to training data,with regularization terms that drive the solution towards plausible reconstructionhypotheses based on our expected 3D models, favoring reconstructions in whichshapes are likely to be composed of large smooth surfaces, not necessarily planar,joining at sharper edges. As the shape is represented in a graph, we can definethese terms as differentiable higher order functions across neighboring nodes. It isimportant to note that these terms are computed with operators on the boundarysurface, without resort to 2D or 1D projections (Sec. 5.4).

5.3 Network structure

Our end-to-end network maps panoramic images to a mesh representation. In thefollowing, we first detail the encoding of the mesh model (Sec. 5.3.1) and the meshdeformation network based (Sec. 5.3.2). Finally, we discuss the gravity alignedfeatures encoding (Sec. 5.3.3) and the multi-res spherical pooling (Sec. 5.3.4).
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5.3.1 Room model as a 3D graph-encoded object

In our 3D graph-encoded layout the mesh is represented as a graph (V,E,F), where
V (n,3) is the set of n vertices in the mesh, E(m,2) is the set of m edges, each oneconnecting two vertices, and F(n,d) are the feature vectors of dimension d comingour of the pooling layer and associated to vertices (Sec. 5.3.4). Vertices are definedin the camera reference frame, setting the origin at center of the spherical image,and the Z axis pointing upwards.
5.3.2 Mesh Deformation Network

The mesh deformation network is a sequence of two GCN blocks (Fig. 5.3). It startsfrom an initial sphere S(Vi,Ei), having Vi(n,3) vertices and connectivity Ei(m,2),and returns a final output model M(V,E) having V (4n−6,3) vertices and connec-tivity E(4m,2). Each block, internally, consists of a cascade of GCN layers (i.e. 6layers) followed by a final linear transform which returns the vertex offsets O(n,3),used to compute the vertex displacements V (n,3) (Fig. 5.3 upper right detail). EachGCN layer l is defined as:
fv

out =W0 fv
in + ∑

q∈E

W1 fv
in (5.1)

where fv
l ∈ Fl(n,dl) are the feature vectors attached to vertices, dl are the featurechannels at level l, fv

l+1 ∈Rdl+1 are the feature vectors on vertex v ∈V (n,3) beforeand after the convolution, and E (v) are the neighboring vertices of v specifiedin E(m,2); W0 and W1 are the learnable parameter matrices of dl ×dl+1 that areapplied to all vertices. Note that W1 is shared for all edges, and thus Eq. 5.1 workson nodes with different vertex degrees [112].
The first convolutional block takes as input a set of aligned image features Fa(n,d)(i.e., Fa self-attention features, see Eq. 5.3), obtained by pooling the GAF featureswith the verticesVi(n,3), and the initial connectivity Ei(m,2). The output of this firstblock is a set of deformed vertices V ∗(n,3) and a set of vertex features Fv

∗(n,dl).
Before the second step, both the intermediate mesh M∗(V ∗,Ei) (i.e., V ∗(n,3)vertices with Ei(m,2) connectivity) and the associated vertex features Fv

∗(n,dl)are refined by following the subdivision scheme proposed by Gkioxari et al. [113].Specifically, we subdivide each triangle mesh by adding a new vertex at the centerof each edge and dividing each face into four new faces. Vectors of vertex featuresare also subdivided by averaging the values of the features at the two vertices whichform each edge. After the subdivision, we obtain a refined mesh with V ∗(4n−6,3)vertices and E(4m,2) edges, and the refined vertex features Fv
∗(4n−6,dl).
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We exploit the new vertex set V ∗(4n−6,3) to pool refined GAF features Fa(4n−
6,d), so we pass refined GAF as input to the second convolutional block, togetherwith vertices V ∗(4n−6,3) and Fv

∗(4n−6,dl) (i.e., the residual interpolated fea-tures from the first block). As a result the second block returns the final vertexdisplacement V (4n− 6,3) (Fig. 5.3). The final model M(V,E) is then given byvertices V (4n−6,3) and by the subdivided connectivity E(4m,2).
While the design of our network is scalable, all the results in this paper have beenproduced by a network that has been sized in accordance with available datasets(Sec. 5.5). In particular, we use as input/output for the first block a mesh with 642vertices and 1280 faces (1920 edges), while for the second block we have 2562vertices and 5120 faces (7680 edges). We found that, using available benchmarks,these triangulation are enough both to cover the whole spherical scene with anuniformly distributed number of vertices (i.e., block 1), as well as to provide areliable representation of the targeted indoor structures (i.e. block 2).
We also studied different multi-stage architectures with variable number of faces,similar to architectures for general-purpose object reconstruction [112]. However,we experienced that the illustrated dual stage scheme performs better (Sec. 5.5.4)in our context. This is due to the combination of two factors differentiating ourproblem from generic object reconstruction methods targeted to recover detailsof the entire visible surface of the object, starting from images with a small field-of-view [112, 113]. First of all, our panorama covers a full 360◦ FOV. This requires areasonably dense coverage in the initial mesh to ensure a good starting angularresolution, especially when coping with occlusions. Second, our targeted indoorstructure is characterized by a low number of clustered geometric details, as thetarget shape is composed of large portions of piecewise uniform surfaces. We aretherefore not targeting a final uniformly dense mesh.
5.3.3 Gravity-aligned Features Encoding

A central component of our network architecture is the combination of the featuresextracted from the images with the vertices encoded in the graph. As these featuresare present at many scales, the common architectural choice is to use convolutionalresidual networks for extracting relevant low/mid/high-level features from theinput tensor. Such networks contain a contractive encoding part that progressivelydecreases the input image resolution through a series of convolutions and poolingoperations, giving higher-level neurons with large receptive fields. As we work onpanoramic images, these features can be effectively distributed over the wholegeometric context and cover wide areas.
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In order to support an efficient pooling of the image features, taking into accountthe peculiar characteristics of indoor environments (Sec. 5.3.4), we perform aspecifically designed anisotropic contractive encoding exploiting our knowledge ofpreferential directions.
We start from the assumption that gravity plays an important role in the designand construction of interior environments, so world-space vertical and horizontalfeatures have different characteristics in most, if not all, man-made environments.Such concept is exploited in several recent works for depth estimation from indoorpanoramic images [10]. According to this assumption, we perform an anisotropiccontractive encoding that reduces the vertical direction while keeping the horizontaldirection unchanged, so that separated vertical features can be better preserved.Specifically, in our approach, we start by encoding features from ResNet-18 layers(Fig. 5.3). We chose this light-weight architecture to maintain interactive inferencerates (Sec. 5.5), and, in order to compensate for the low depth of the network,we simultaneously exploit the last four layers, instead of only the deepest one. Inthis regard, we have also tested other deeper encoders, such as ResNet-50 [62]and HarDNet [166], finding only a marginal increase in performance against anincreased time cost.
Anisotropic contractive encoding is then applied to the features coming out of
ResNet-18 by performing an asymmetric convolution with stride (2,1) applied 3times, achieving a reduction along the vertical direction by a factor of 8. Eachconvolution is followed by ELU activation function, thus removing the need forbatch normalization [71]. We apply this encoding for each one of the last 4 ResNet-18 layers, obtaining the 4 GAF layers G0,G1,G2,G3 (Fig. 5.3), which are the latentfeatures ready for vertex pooling. As discussed in Sec. 5.3.4, this compressedmulti-scale representation contains useful information to recover the underlyingstructure, including locally-visible features and non-local structure information.

Figure 5.4: Effect of MHSA. Qualitative difference in not using (left) or using (right) the MHSA
transformer when pooling image features.
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5.3.4 Multi-layer spherical pooling with self-attention

In pipelines for generic 3D object reconstruction, the objects is observed from anexternal viewpoint and within a restricted field of view, and the shape of the objectis reconstructed from local features visible. Thus, it is possible to simply pool imagefeatures from the 2D projection of the associated vertex on the image, which canbe readily obtained by assuming known camera intrinsic matrix [112, 113]. In thatcase, the main problem for the pooling layer is the interpolation of nearby features,which in our case, would mean combining nearby GAF features.
In our case, by contrast, in addition to feature interpolation, we have to cope withmajor occlusion problems, caused by a vast amount of clutter and by the structureitself, as discussed in Sec. 5.2. We cannot restrict us to simply statically combinenearby features in image space, but need to take into account short and long rangerelationships in the image to perform an effective pooling. This has to be doneusing an active process, that learns the importance of local and non-local featuresfor a given neighborhood. To this end, we introduce a specific pooling system forcombining our GAFs.
Given the 3D vertex positions V (n,3), we poll the four gravity feature layers G0,
G1, G2, G3, encoded as described at Sec. 5.3.3, through the following sphericalprojection:

u = arctan(x/y)
π

v = arctan(z/
√

x2+y2)
2π

(5.2)
where x,y,z are the world coordinates of a vertex v ∈V (n,3) and u,v ∈ G normal-ized coordinates in image feature space.
For each vertex vi, we concatenate the features extracted from the four layers intoa single feature gi

∗ associated to the vertex (in this paper the feature dimensionis 64+ 128+ 256+ 512 = 960). This solution has the advantage of associatinginformation at the vertex at different resolutions, keeping at the same time a lownumber of parameters for each layer. After this pooling, we obtain a latent featurerepresentation Fg = (g0 . . .gn), as a sequence of n feature vectors of dimension
d. However, due to occlusions, this compressed representation contains a varietyof information that may or may not be useful to recover the underlying structure.In fact, it contains both local-visible features and non-local structure information,as well as features from clutter or occluders. In order to efficiently retrieve usefulinformation from this representation, we adopt a self-attention strategy. Self-attention is an attention mechanism relating different positions of a single sequencein order to compute a representation of the sequence [140], that has had importantsuccesses in tasks where one must capture global dependencies, such as imagesynthesis [167].
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In our case, we aim to leverage complementary features in distant portions ofthe image rather than only local regions to support reconstruction. We do thatby learning a set of attention weight vectors used for refining important spatialfeatures.
Our self-attention module takes the latent features Fg ∈Rn×d as input and outputsa self-attention weight matrix A ∈ Rn×n:

A = so f tmax
(
(FgWq)(FgWk)

T
√

d

)
(5.3)

where Wq,Wk ∈ Rd×d are learnable weights.
We exploit the attention matrix in Eq. 5.3 to obtain the refined latent feature
Fa = A(FgWv) ∈ Rn×d , where Wv ∈ Rd×d are learnable weights. Such a self atten-tion approach is applied in a multi-head fashion (MHSA) [140], to let the modeljointly attend to information from different representation sub-spaces at differentpositions. This amounts to running r attention modules in parallel. In our casewe use r = 4, denoting 4 attention weights for each image spatial feature. Theserefined features, combined through a learning process, are then associated to thevertices of our model. Fig. 5.4 shows a qualitative example of the effect of usingMHSA to pool feature with respect to statically combined local features.

5.4 Training and loss functions

During the training phase, we compute the parameters of the network using a super-vised training approach that exploits databases matching gravity-aligned sphericalpanoramas of cluttered scenes to the their boundary layout representation.
Our loss functions are designed to combine data terms that measure the quality offit with respect to training data, with regularization terms that drive the solutiontowards a plausible reconstruction of an indoor environments. As the shape isrepresented in a graph, we can define all these terms as differentiable functionsthat compute geometric properties by accessing neighboring nodes. As we performa coarse-to-fine reconstruction in a single end-to-end network, see Sec. 5.3.2, theselosses are applied with the same weights for both the intermediate and final mesh.
Due to the nature of typical human-built structures, we expect that our models willbe composed of large smooth surfaces, not necessarily planar, joining at possiblysharp edges. Such a characterization is less restrictive then typical indoor priorsbased on planar surfaces and vertical/horizontal alignments (e.g., variations ofMWM, IWM, AWM), and includes common structures such as curved walls, vaults,
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and domes, that we seek to represent with a limited number of vertices. Weincorporate this knowledge in our data terms by measuring the dissimilarity insurface positions and orientations between predicted and ground truth meshes, aswell as the fitting of sharp features present in the ground truth model. Data termshave thus the following form:
Ldata = λcLpos +λnLnorm +λshLsharp (5.4)

where Lpos is the positional loss, Lnorm is the orientation loss, and Lsharp is thesharpness loss. λc, λn, and λsh are weights that tune the relative importance of theterms (see Sec. 5.5 for details).
Positional and orientation terms, as usual in 3D reconstruction, are computed by uni-formly sampling the ground truth and predicted surface meshes and summing thecontributions at each point. We adopt the differentiable mesh sampling operationproposed by Gkioxari et al. [113], sampling a point cloud Q from the ground-truthmesh, and a point cloud P from the mesh prediction, retrieving at each samplepoint the position p and its unit normal np. Given a point p in a point cloud A,let N(A, p) = argmina∈A ∥p−a∥ be the nearest neighbor of p in A, and nN(A,p) itsnormal. We then define the positional term from the bidirectional chamfer distancebetween point clouds P and Q

Lpos = |P|−1
∑
p∈P

∥p−N(Q, p)∥2 + |Q|−1
∑
q∈Q

∥q−N(P,q)∥2 (5.5)
and the orientation term from the bidirectional normal distance

Lnorm =−|P|−1
∑
p∈P

∣∣np ·nN(Q,p)
∣∣2 −|Q|−1

∑
q∈Q

∣∣nq ·nN(P,q)
∣∣2 (5.6)

These two terms are averaged over the surface, and large areas would dominatethe few sharp edges, which are important in indoor environments as they appear,e.g., at the connection of walls among themselves or of walls with ceiling or floor.As we target low-poly reconstruction, in order to preserve such features, we wantdo drive vertices in the prediction to snap to ground truth feature edges. Givena ground truth mesh, we start by calculating, at mesh loading time, a sharpnessvalue based on cosine similarity for each of its edges, i.e. esharp = 1−n0 ·n1, where
n0 and n1 are the normal vectors of two triangles sharing the edge e, and markas feature all edges with esharp > τ (with τ = 0.5 for this paper). This measurefavors considering as features angles around 90 degrees, which are common inarchitecture. We then uniformly sample all the extracted feature edges to obtain apoint cloud Se. We then compute

Lsharp = |Se|−1
∑

q∈Se

∥q−N(P,q)∥2 (5.7)
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Note that, differently from positional and orientation terms, sharpness is unidirec-tional, as we want to have ground-truth feature edges ground truth only attractclose-by vertices in the prediction, leaving the others unchanged.

Figure 5.5: Effect of FPSL. The first two images shows the difference in using or not the feature-
preserving smoothness loss (FPSL - Eq. 5.11); the second two images show the difference in using or
not the sharpness loss (SL - Eq. 5.7).

Using data terms alone, the network may generate very large deformations toclosely fit the ground truth, which is harmful especially in the first training iterations,when the estimation is far from ground truth and large vertex movements wouldcompute inconsistent solutions, letting the optimizer stuck in local minima. Wetherefore introduce regularization losses to counteract this effect, while at thesame time driving the solution towards plausible reconstructions in areas wheredata terms provide little information:
Lreg = λeLedge +λsLsmooth (5.8)

where Ledge is an edge regularization term, Lsmooth is a curvature regularizationterm, and λe and λs are weights that tune the relative importance of these terms.Regularization weights are smaller than the data weights since these terms mustsupport data fitting and not counteract it (see Sec. 5.5 for numerical details).
Edge regularization tends to favor uniform distribution of vertices in the predictedmesh, and is computed by:

Ledge = |E|−1
∑

(i, j)∈E

∥∥vi − v j
∥∥2 (5.9)

where vi and v j are the vertices of a common edge ei j ∈ E. The combination ofthis weight with Lsharp has the effect of nicely distributing vertices around sharpfeatures.
In addition to regularize positions, we also aim to regularize curvature, to avoidsmall curvature variations while preserving sharp features. We do that by firstcomputing the discrete mean curvature normal [168] of each predicted vertex vi,
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i.e., the unit length surface normal ni at the vertex vi scaled by the discrete meancurvature k̄i:
k̄ini =

1
4A(vi)

∑
(i, j)∈E

(cotαi j + cotβi j)(v j − vi) (5.10)
where A(vi) is the sum of the areas of all triangles containing vertex vi, αi j and βi jare the two angles opposite to the common edge ei j ∈ E, v j ∈ S[i], assuming S[i]the set of neighboring vertices to vi. We use Eq. 5.10 to discretize the Laplacianmatrix L ∈ Rn×n, so that the tensor KH = ∥LV∥ ∈ Rn×1 contains the discretemean curvature for all vertices [169]. Directly minimizing this term as done in 3Dobject reconstruction [113] would lead to uniform smoothing, causing a degradationof sharp structural features of an indoor environment. Thus, we introduce anexponential curvature-aware weight term:

Lsmooth = |V |−1
∑
i∈V

e−|KH i| |KH i| (5.11)
The introduced exponential weight reflects what we expect from our indoor model,as it penalizes low-curvature vertices, forcing them to lie on a plane or on a constant-uniform curvature surface, while avoiding to penalize feature vertices with a moremarked curvature.
The contribution of each individual term is analyzed in Sec. 5.5. Some qualitativeeffects are also illustrated in Fig. 5.5.

5.5 Results

Our approach was implemented using PyTorch [170] and PyTorch3D [171] and hasbeen tested on a large variety of indoor scenes. Code and data will be madeavailable at https: // github. com/ crs4/ Deep3DLayout
5.5.1 Benchmark datasets

In order to provide a comparison with state-of-the-art work, we analyze resultsstandard publicly available datasets [72, 109, 49, 108], containing thousands ofindoor scenes and commonly adopted for benchmarking 3D layout recovery [54,45, 107, 103, 85]. However, due to the focus of prior works, these benchmarksmostly consist of MWM structures [102]. Since our method is more general, weextend the testing set with the publicly available AtlantaLayout [45] dataset, whichalso contains rooms with curved walls or meeting at non-right angles. In addition,we prepared a specific dataset, called Pano3DLayout, containing 106 more complex
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Method MatterportLayoutIoU3D↑ IoU2D↑ CD↓ Fτ0.1 ↑ Fτ0.3 ↑ Fτ0.5 ↑LayoutNet [73] 75.78 78.02 1.96 49.16 78.45 84.20DuLaNet [74] 75.62 78.86 0.82 51.55 80.20 86.88HorizonNet [54] 78.45 81.28 0.79 56.14 85.35 91.67AtlantaNet [45] 80.67 82.55 0.56 59.73 88.13 93.62HoHoNet [107] 80.25 83.06 0.65 59.00 87.67 92.54Led2Net [103] 81.70 84.12 0.37 64.24 93.12 97.80Zeng [85] - - - - - -
Deep3DLayout (ours) 85.38 86.45 0.18 77.92 98.91 99.78

Method StanfordIoU3D↑ IoU2D↑ CD↓ Fτ0.1 ↑ Fτ0.3 ↑ Fτ0.5 ↑LayoutNet [73] 76.78 80.34 0.96 34.89 78.20 82.53DuLaNet [74] 80.02 83.44 0.65 39.35 82.89 87.15HorizonNet [54] 82.77 86.12 0.23 45.88 88.03 94.83AtlantaNet [45] 82.36 85.70 0.18 46.45 88.92 95.27HoHoNet [107] 82.44 85.75 0.22 45.92 88.15 94.65Led2Net [103] 83.60 87.12 0.18 49.23 91.77 98.10Zeng [85] 86.21 - - - - -
Deep3DLayout (ours) 89.39 90.11 0.01 84.66 99.94 99.99

Table 5.1: Comparison on MWM datasets. We compare our method, according to indoor layout and
3D reconstruction metrics, to recent state-of-the-art approaches on the MatterportLayout [6] and
Stanford [109] MWM datasets.

environments, not included in previous benchmarks, such as, for example, sceneswith sloped or stepped ceilings, domes, and interconnections of different rooms.
Ground-truth layout meshes were created without resorting to manual annotation.For new synthetic scenes, we simply used the watertight mesh generated with
PyMeshlab [172] from the same model used for rendering with interior objectsremoved. For real-world scenes, PyMeshlab was used to transform to a watertightmesh the global dense point clouds available with Matterport3D [6].
5.5.2 Experimental setup and timing performance

We trained the network using the Adam optimizer [129] with β1 = 0.9, β2 = 0.999,on four NVIDIA RTX 2080Ti GPUs (11GB VRAM) with a batch size of 8 and a learningrate of 0.0001. The adopted weights for loss function are 1.0 for the position and
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normal distances and 0.1 for all the other losses (see Sec. 5.4). We found that thesefigures work well on models in the metric scale, and we convert other units tometers prior to training. As a result, our models are already in metric scale. Weexperienced that the scale estimation, compared to using normalized meshes, addsan important information to the final result at a negligible cost.
Our method uses triangulated meshes as ground truth models (Sec. 5.3.1). Newlymodeled scenes in Pano3DLayout are modeled directly as watertight meshes storedas collections of vertices and faces, while existing 2.5D datasets [72, 109, 6, 108] aretriangulated at run-time using trimesh [173] from the original representations interms of 1D collection of corners on the image horizon plus the height of the layout.
The computational complexity of our method is relatively low with respect tocomparable works, since the model has 23.8M of learnable parameters. As anexample, HorizonNet [54], which is the baseline for several other methods [45,103], includes about 57M of parameters.
As a result, the inference performance of our network is compatible with interactiverates, and we can therefore support model generation directly at acquisition time,to support, e.g., augmented reality applications and/or interactive editing. Eventhough we generate full 3D models without resorting to 1D or 2D reductions, wecan predict the results, starting from a 512×1024 image at a rate of 27 f ps on asingle NVIDIA RTX 2080Ti.
It should be noted that our results are obtained through an end-to-end networkthat takes directly as input the gravity-aligned image and produces directly asoutput the 3D mesh. In this work, the 360 data are mostly well-aligned, so wedo not apply any pre-processing. This condition is fulfilled at virtually no cost byall capture setups that include a IMU sensor and could incorporate our networkwithout any modification. For more general cases, we might consider includinga 360 gravity alignment block to align the input. Several deep learning solutionsexist that perform this task at interactive rates [110]. For several competitors, pre-and post-processing operations may be more costly. For instance, the image pre-processing adopted by many of the compared methods [73, 74, 54, 85, 107, 103],that has to be applied both on the training and testing sets, takes about 3secondsper image.
5.5.3 Quantitative and qualitative evaluation

We compared our reconstruction performance to the one achieved by latest stateof the art methods [73, 74, 54, 45, 85, 107, 103]. Tab. 5.1 summarizes the results theIndoor World scenes comprising commonly available benchmark datasets [72, 109,
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Method AtlantaLayoutIoU3D↑ IoU2D↑ CD↓ Fτ0.1 ↑ Fτ0.3 ↑ Fτ0.5 ↑Led2Net [103] 75.68 77.45 0.92 33.69 65.67 75.09AtlantaNet [45] 80.25 84.30 0.48 34.28 67.56 80.55
Deep3DLayout (ours) 89.88 90.51 0.10 87.01 99.90 99.98

Method Pano3DLayoutIoU3D↑ IoU2D↑ CD↓ Fτ0.1 ↑ Fτ0.3 ↑ Fτ0.5 ↑Led2Net [103] 39.61 57.20 485.49 29.36 64.91 67.23AtlantaNet [45] 69.21 78.54 2.24 35.45 65.46 68.35
Deep3DLayout (ours) 83.28 89.15 0.02 69.82 98.76 99.08

Table 5.2: Comparison on non-MWM dataset. We compare our method, according to indoor layout
and 3D reconstruction metrics, to recent state-of-the-art approaches on the publicly available non-
MWM AtlantaLayout dataset [45] and on our new Pano3DLayout release. For comparison, we choose
best-performance methods for which source code and pre-trained models are available.

6, 108], while Tab. 5.2) presents the results on the more challenging non MWMscenes from AtlantaLayout [45] and Pano3DLayout.
We evaluated all methods using error metrics relevant to our task. Since the targetis not to reconstruct the full visible scene, but to infer the underlying severelyoccluded layout, we resort to spatial measures rather than pixel error metrics. Inparticular, we complemented standard metrics for indoor layout reconstruction,such as intersection-over-union [102] (i.e., IoU2D, IoU3D), which were adopted asbenchmark by all the competing methods [74, 54, 45, 85, 107, 103] with proper3D reconstruction metrics [174], such as Chamfer distance (CD) and F-score, com-monly adopted for 3D object reconstruction, which provide additional information,especially for complex scenes.
We refer to Zou et al. [102] for details on the indoor layout metrics. It should benoted, however, that we use IoU2D solely with the purpose of facilitating the com-parison with prior works on models with vertical walls and flat floors. We computedthis measure by extracting the 2D plan through planar sectioning according to theY axis. As our work solves the problem in 3D, the other included 3D measures aremore appropriate. Moreover, the IoU3D estimation adopted by all mentioned com-peting methods is usually obtained by the product of a 2D error (i.e., room footprint)and the height error, assuming a constant layout height. Since our method worksdirectly in 3D space and is not limited to single-height layouts, we implementedfull-3D routines to calculate both IoU3D and IoU2D using PyMeshlab [172]. Weexperimentally verified, with the available codes of the compared methods, that
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(a) MatterportLayout
RGB

(b) ground truth (c) ours (d) ours vs gt (e) [103] (f) Floorplan

(g) AtlantaLayout∗ RGB (h) ground truth (i) ours (j) ours vs. gt (k) [45] (l) Floorplan

Figure 5.6: Qualitative comparison. Qualitative comparison on publicly available datasets. We show
the input image, the ground truth model, our prediction, our prediction in overlay with ground truth,
competitor prediction in overlay with ground truth and the 2D floorplan comparison (grey ground
truth, blue ours, red competitor). The presented scenes contains multiple connected rooms partially
visible from a single point-of-view, as well as non-MWM corners, curved walls and ceiling. Fig.5.6h
full ground truth, including the dome, was recovered from the Matterport3D [6] meshes.

when dealing with a single ceiling and single floor scenes, our implementation isconsistent with the restricted one adopted by Zou et al. [102]. Therefore, all thestatistics provided in Tab. 5.1 and Tab. 5.2 are calculated using our full-3D measures,except for the method of Zeng et al. [85], whose source code is not available, wherewe expose the performances declared in their paper, based on the assumption of asingle elevation per model.
The Chamfer distance (CD) and the F-score are presented for all the methods forwhich source code and data are available. To obtain such measures, we uniformlysample 10000 points from the result and the ground truth mesh [112, 113] andcompute measures by comparing those samples. Specifically, CD measures thedistance of each point to the other set, while F-score represents the harmonicmean of precision and recall, obtained by computing the percentage of points inprediction or ground truth that can find a nearest neighbor from the other within adistance threshold τ [174]. In Tab. 5.1 and Tab. 5.2 we present, respectively, F-scorefor τ = 0.1,τ = 0.3,τ = 0.5, which are typical metric distances used in indoorbenchmarks [113]. For CD, smaller is better, while for the F-Score larger is better.
Results in Tab. 5.1 summarize the results obtained on the MatterportLayout [49]and the Stanford2D-3D-S [109] datasets. For training and testing, we follow thesame official split described by Zou et al. [102], and adopted by the comparedworks. Both MatterportLayout and Stanford2D-3D-S mainly contain Indoor World
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(a) Pano3DLayout RGB (b) ground truth (c) ours (d) ours vs. gt (e) [45] (f) Floorplan

Figure 5.7: Qualitative comparison on non-MWM scenes. Qualitative comparison on non-MWM
scenes (Pano3DLayout). We show the input image, the ground truth model, our prediction, our
prediction in overlay with ground truth, competitor prediction in overlay with ground trutht and the
2D floorplan comparison (grey ground truth, blue ours, red competitor). Our approach has consistent
performance for a variety of model kinds, in particular for complex structures, such as domes and
sloping roofs.

scenes, that is scenes with walls meeting at right angles and rooms have a singlehorizontal floor and a ceiling. As discussed in previous sections, all comparedmethods, except ours, adopt some form of post-process regularization on theoutput that exploits the Indoor World assumptions. Our method, on the otherhand, without any postprocessing, outperforms other methods with all metrics.Such difference in performance is more pronounced, in particular, with the F-scoreand Chamfer metrics.
While the size of our network can be parameterized in terms of mesh sizes, all theresults are presented for a final mesh size of 2562 vertices and a coarse mesh sizeof 642 vertices, which produced the best results for our 512×1024 image data.These numbers are not surprising, since using coarser meshes would reduce ourcapability to represent smooth curves (e.g., domes), while denser meshes wouldoverly reduce the image feature size associated to each vertex. As an example,our setting of (642,2562) vertices achieves Fτ0.1 = 64.24 for MatterportLayout,
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while reducing the mesh to (162,642) vertices reduces the score to Fτ0.1 = 37.43,and increasing the mesh to (2562,10242) vertices achieves only Fτ0.1 = 64.78 at amuch higher storage and computational cost.
Fig. 5.6 illustrates some examples from publicly available benchmarks [49, 45]. Weshow, respectively, the input equirectangular image, the ground truth 3D model, ourpredicted results, our prediction with the ground truth overlay and the predictionwith a competitor method with ground truth overlay. We choose for comparisonthe methods of Wang et al. [103] and Pintore et al. [45], which have, respectively,the best performance for Indoor World and Atlanta World environments at the timeof this writing. The presented scenes contain multiple connected rooms partiallyvisible from a single point-of-view, as well as non-MWM corners, curved wallsand ceiling. In all cases our method outperform the reconstruction obtained withthe other methods, which is not surprising since we are more flexible in terms ofexpected output geometry.
On the other hand, MWM cases (Fig. 5.6b) are particularly challenging for ourmethod, since we do not impose any constrain of this kind, while the expectedresults is a regularized, planar layout. All the methods compared in tab. 5.1 share thesame MWM regularization post-processing of HorizonNet [54], but, in many cases,the layouts obtained with post-processing are visually plausible, but not correct inmany cases (e.g., Fig. 5.6b). In particular, the differences are more marked in caseof strong occlusions, where our method returns a reconstruction generally returnsa much more reliable reconstruction (e.g., Fig. 5.6b, top). This seems to be relatedto the fact that our network, which works in full 3D and is fully data-driven, is morerobust towards occlusions with respect to methods relying on 2D/1D projects andpost-process regularization.
Fig. 5.6g presents a case from AtlantaLayout that violates the Atlanta World assump-tion since there is a dome rather than an horizontal ceiling). In this case our methodprovides a faithful reconstruction (Fig. 5.6i), while methods that approximate the At-lanta World model provide partially correct reconstructions since the curved ceilingcauses an error in scale estimation, which propagates to an error on the footprint(e.g, Fig. 5.6k)/ In Tab. 5.2 we present results for more complex scenes not limited bythe Indoor World assumption. We show the results with our novel Pano3DLayoutdataset, which includes more challenging cases, such as domes, sloped or steppedceilings and more. We compare our results with competing methods which havebest performance on the same data and for which training code has been madeavailable by the authors [103, 45]. All the methods presented, included ours, aretrained on the MatterportLayout dataset and fine-tuned with a specific training set,respectively from the AtlantaLayout and Pano3DLayout dataset, following the same
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data splitting for fine tuning adopted by other compared baselines [54, 45]. The 106Pano3DLayout scenes were split into 66 for fine tuning and 40 for testing. Trainingspeed is ≈ 0.04s/img on 4 GPUs. Training time on the full MatterportLayout is 1minute/epoch. Reported results are for 3200 epochs.
The results show that our approach guarantees consistent performance with dif-ferent kinds of models, in particular in the case of more complex structures suchas domes and sloping roofs. On the contrary, the performance of the methodsbased on the Indoor World and Atlanta World hypotheses are not able to maintainadequate performance on these more complex cases. This tendency is evident alsoin the qualitative comparisons of Fig. 5.6 and Fig. 5.7. For the competing methods,besides the predictable error on the roofs, there is a remarkable scale error. This isdue to the fact that the proportions of the structure in all these approaches areobtained under the hypothesis that the surfaces can only be vertical or horizontal,and that, therefore there is always a homography between the boundaries of theceiling and the floor [175]. This constraint is clearly violated on these complexscenes.
5.5.4 Ablation Study

Baseline Structured3DMLP GAF MHSA FPSL SL IoU3D↑ Fτ0.1 ↑ Fτ0.3 ↑ Fτ0.5 ↑- - - - - 49.13 53.58 70.02 76.98
✓ - - - - 63.93 55.24 71.45 80.20
✓ ✓ - - - 75.61 67.24 79.11 85.78
✓ ✓ ✓ - - 83.34 70.16 93.55 98.82
✓ ✓ ✓ ✓ - 84.98 78.66 97.12 99.02
✓ ✓ ✓ ✓ ✓ 91.45 80.65 98.74 99.18

Table 5.3: Ablation study. The ablation study, performed on the Structured3D dataset [108], demon-
strates how our proposed design choices improve the accuracy of prediction. Results show only
comparable-stable cases that actually increase it. We show in the last row the full architecture
setup.Legend: MLP: multi-layer pooling; GAF: gravity aligned features; MHSA: multi-head self-
attention; FPSL: feature preserving smoothness loss; SL: sharpness loss.

Tab. 5.3 summarizes the results of our ablation experiments. To test the key com-ponents of our approach, we exploit the Structured3D dataset [108], a syntheticdataset containing over 21,000 rendered rooms with ground truth 3D structureannotations. This recent dataset has not yet been adopted by the comparableworks surveyed in Sec. 5.5.3, but provides an additional valuable benchmark forour method. Fig. 5.4 and Fig. 5.5 visually illustrates examples of behavior related tothese ablation experiments.
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Since we designed an end-to-end network, we show design variations that lead tocomparable-stable cases. To this end, we highlight five representative key-choices:the MLP (multi-layer pooling), compared to using only the last ResNet layer, theGAF (gravity aligned features), compared to standard image features encoding(see Sec. 5.3.3), the MHSA (multi-head self-attention) module (see Sec. 5.3.4),the FPSL (feature-preserving smoothness loss), compared with standard Laplaciansmoothness, and the use of SL (sharpness loss) (see Sec. 5.4). The variationsdiscussed in the ablation study are those that consistently match the encoder anddecoder components of our specific architecture and that better characterize ourapproach.

Figure 5.8: Failure case. Example of bad reconstruction.

The first row of Tab. 5.3 shows a configuration starting from the last layer of a ResNetencoder, without using any anisotropic contractive encoding (i.e., GAF) and MHSAfeature pooling, and without a specific indoor loss function, such as FPSL and SL. Thesecond row of Tab. 5.3, instead, shows the same setup of the first row but exploitingthe last 4 layers of the ResNet encoder. It should be noted that this configurationprovides results of a variation of our technique that bears similarity with mesh-growing methods, such as Mesh-RCNN [113] and Pixel2Mesh [112], adapted tointerior panoramic views, but without the indoor-specific features. The numericalperformance clearly show that just adapting mesh growing approaches to the taskis not sufficient.
Exploiting GAFs, at row 3 of Tab. 5.3, considerably improves performance, by ef-ficiently preserving the receptive field according to the hypothesis that indoorenvironments are constructed taking into account the gravity direction. Row 4shows instead the performances of the whole network without using specificallydesigned loss functions. Even though results are somewhat consistent, recon-struction lacks many details and misses large feature edges connecting the mainarchitectural surfaces, as also highlighted by Fig. 5.5. Row 5 and 6 show the increasein performance by applying FPSL and SL. Although the metrics Fτ0.3 and Fτ0.5 arealmost the same using the sharpness loss SL, a significant difference is present in
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the IoU3D, where this objective function greatly improves the detection of sharpdetails (see Fig. 5.5).
Pano3DLayout (synthetic scenes)Misalignment IoU3D↑ Fτ0.1 ↑ Fτ0.3 ↑ Fτ0.5 ↑

±0◦ 89.01 70.90 97.95 98.99
±1◦ 88.15 69.72 96.92 98.13
±2◦ 85.52 56.14 85.35 91.67
±5◦ 76.67 34.50 78.35 89.20

Table 5.4: Robustness to gravity-alignment errors. Comparison of reconstruction performance on
synthetic scenes of Pano3DLayout by introducing gravity alignment errors.

Our approach assumes that input images are already gravity-aligned, a constraintmet by all common datasets and that can be achieved in most common setupsusing IMUs or automatic image upright adjustment solutions [10, 107]. In order totest the robustness to our method to moderate variations in gravity alignment, wereport in Tab 5.4 the results obtained by introducing various degrees of alignmenterror (0◦, ±2◦, ±2◦, ±5◦) on the synthetic scenes included in Pano3DLayout. Themethod appears fairly robust to small alignment errors (≤ ±2◦), and degradesas soon as input images are severely misaligned. As these tests were performedwithout any retraining, we expect that further robustness can be achieved throughdata-augmentation with misaligned examples, as done in previous work on depthestimation [10, 107].

5.6 Conclusions

We presented an end-to-end deep learning approach to directly recover, at inter-active rates, the 3D layout of an indoor structure from a single panoramic image.Differently from prior solutions, all the components of our method address theproblem in 3D, without resorting to 1D or 2D projections, and we produce as out-put a closed 3D mesh rather than a 2.5D model with strong planarity or surfaceorientation priors. By taking into account the properties of indoor environmentsin the network design and in the loss specification, we were able to produce anindoor-specific solution which is efficient to train and use. In particular, inferencetimes are well within interactivity constraints, and quantitative and qualitativeresults show significant improvements with respect to state-of-the-art methods interms of accuracy and capability to reconstruct non-MWM environments.
The method has also limitations. First of all, the problem is inherently ambiguousand, as all purely-image-based solutions, reconstructions may be far from reality in
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several situations. Fig. 5.8 shows an example of failure of our reconstruction due inthis case to the abundant presence in the scene of transparent and specular walls,combined with repetitive structures inside and outside the targeted scene. Limita-tions more specific to our approach stem from the tessellated mesh representation.In particular, reconstruction by deformation from a single origin generates denserand more detailed meshes near the origin, and less detailed ones as one movesaway from the origin and occlusions increase, and thus the precision depends onmesh tessellation size. Moreover, while our 3D mesh model is significantly moreflexible than current solutions exploiting MWM priors, our spherical mesh topologyis far from being sufficient to represent all sorts of architectural environments, sinceseveral elements of the architectural structure, such as pillars, stairs, septal walls oropenings cannot be represented with a single closed surface. Including holes (doors,windows) seems feasible as a direct extension of our end-to-end single pass methoddeforming a spherical mesh, while extending the approach to other topologies isnot trivial. We plan to tackle this problem by exploiting semantic information tohandle internal architectural elements and details, separating the reconstructioninto several layers. Moreover, we also plan to extend this methodology to multipleimages and/or additional geometric information (e.g., RGB-D), in order to supportlarger and more articulated indoor environments, such as multi-room structures.

5.7 Bibliographic notes

The content of this chapter has been adapted from an article published in ACMTransactions on Graphics and presented at SIGGRAPH Asia 2021 [12], in which Iwas one of the primary authors of the paper. I have significantly contributed tothe conceptualization, methodology, testing, implementation, and validation ofthe method, as detailed in Chapter 1. An interesting follow-up of our approachhas been recently proposed by Dong et al. [176]. Their work extends our solutionbased on mesh representation to total-scene understanding using a transformerarchitecture.
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Chapter 6

Conclusion

This thesis has introduced novel techniques that advance the state-of-the-
art in 3D reconstruction of indoor environments, with a focus on methods
the infer depth and layout information from a single panoramic image,
eventually enriched with sparse depth. This final chapter provides a con-
cise summary of the achieved results and briefly discusses the potential
directions for future work.

6.1 Overview of achievements

The research comprising this thesis has been focused on deep learning solutions forinferring from a single 360◦ image of an indoor environment, eventually enrichedwith very sparse depth information, a dense depth map that provides the distanceto the viewer of every visible point and the structure of the architectural layout ofthe imaged environment, i.e., the closed surface formed by the walls, ceiling, andfloor of the room in which the photo was taken. In my discussion of backgroundmaterial and analysis of related work (Chapter 2), I have highlighted how solutionsto these problems form fundamental building blocks of reconstruction pipelines,and summarized the significant research efforts that have been made in the pasttowards their solution.
The results presented in this dissertation highlight how the introduced techniquesrepresent a progress of the state-of-the-art. All the presented methods share thefact that they take directly as input data in equirectangular format, as produced bydevices and without any kind of prior processes, and produce their output throughan end-to-end deep learning solution. All the techniques exploit the fact that
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input is gravity-aligned, and that gravity-aligned processing of images throughoutspecially designed networks can directly exploit long- and short-range relationsamong gravity-aligned world-space features.
In particular, my main achievements have been the following:

• An innovative end-to-end technique for deep dense depth estimation from
a single indoor panorama (Chapter 3). The main technical contributions ofthis work are the compact representation of the scene into vertical slices ofthe sphere, the exploitation long- and short-term relationships among slicesto recover the equirectangular depth map, and the maintenance of high-resolution information in the extracted features even with a deep network.

• A novel end-to-end deep learning solution for rapidly estimating a dense
spherical depth map of an indoor environment from both dense visual
data and sparse geometric data as input (Chapter 4). This work significantlyextends the above method by incorporating the processing of sparse (andeven optional) depth information inside a lightweight single-branch network,employing a dynamic gating system to process together dense visual dataand sparse geometric data.

• An innovative method for layout reconstruction (Chapter 5), that, differentlyfrom prior layout estimation solutions addresses the problem fully in 3D,using a graph-convolutional network for mapping a single 360-degree imageinto a tessellated bounding 3D surface representing the union of walls, floor,and ceiling. Gravity-aligned features are actively incorporated in the graphin a projection layer based on multi head self-attention, and specialized lossterms guide towards plausible solutions even in presence of massive clutterand occlusions.
6.2 Discussion and future directions

As illustrated in the previous chapters, my work has resulted in methods and im-plementations that have introduced important conceptual contributions and haveshown to achieve beyond-state-of-the-art performance on a number of benchmarkdatasets.
While I refer to the individual chapters to an in-depth analysis of the results obtainedon the individual tasks, there are some common considerations that can be made.First of all, all three techniques exploit specific characteristics of the capture setup(in particular, gravity-alignment) and of the imaged environment (in particular, aworld-space alignment with gravity that makes it possible to exploit regularities
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of vertical features along the horizontal direction). These characteristics haveconsistently led to network designs that exploit asymmetric contractions and variousways to combine long- and short-range features. As the various ablation testshave shown, the specific networks designed provide sizeable advantages overmore generic alternatives, which demonstrates the benefit of creating customsolutions for interior capture, rather than using generic networks for outdoor orgeneric-shape 3D reconstruction. Creating specific networks, however, has also thedisadvantage of relying on specific characteristics on the environments, leading tomajor failures as soon as the imaged environment does not match with the expectedones. While more robust than geometry-reasoning methods, the solutions devisedstill present limitations in terms of applicability, as shown in the failure case analysespresented in the previous chapter.
Another important limitation of the current solutions, which is, however, currentlyshared with all the competing methods (see discussions in Chapter 3, Chapter 4, andChapter 5), is in terms of size of processed input. While the presented solutions aregenerally lightweight and the network design is scalable, all the tests have generallybeen performed at image sizes that are smaller than what is currently achievablewith panoramic cameras. All the available benchmarks are typically performed atthe 1024x512 resolution, and seldom at larger size, while industrial cameras aremore detailed. One important avenue for future work is, thus, to evaluate thescaling of these techniques to larger datasets. This will require not only the scalingof the networks, but, also the generation of large annotated datasets to serve asground truth.
The problems that I have tackled, moreover, have also a different nature. Deepdense estimation or completion is, in itself, a problem that requires a well-definedper-pixel output, while layout reconstruction is a more abstract task. While thesolution presented here is significantly more flexible than prior ones, since wecan generate a reasonably complex layout homeomorphic to a sphere that caninclude a variety of features, including large free-form surfaces joining at sharpangles, while competing solution are typically limited to Manhattan or Atlanta-world environments. Such a representation can be useful for a variety of needs(see Chapter 5), but is far from being an accurate representation of all possibleenvironments. In particular, reconstruction by deformation from a single origingenerates denser and more detailed meshes near the origin, and less detailed onesas one moves away from the origin and occlusions increase, and thus the precisiondepends on mesh tessellation size. Moreover, the spherical mesh topology is farfrom being sufficient to represent all sorts of architectural environments, sinceseveral elements of the architectural structure, such as pillars, stairs, septal wallsor openings cannot be represented with a single closed surface. Including holes
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(doors, windows) seems feasible as a direct extension of our end-to-end singlepass method deforming a spherical mesh, while extending the approach to othertopologies is not trivial. Moreover, the method could be also improved by takinginto account, as for depth completion, the optional availability of sparse depthinformation.
Our monocular reconstruction methods have been applied to obtain geometry andlayout, but, in principle they can be extended to new problems such as semanticextraction and reconstruction of the visual channel. A particular case of viewsynthesis that I have experimented with, in a follow-up work with respect to whatpresented in this this is diminished reality [13]. By exploiting concepts coming fromdepth estimation, where we synthesize per-pixel information for all the visiblepixels, and layout estimation, where we have concentrated only on the permanentstructures (walls, floor, and ceiling), we have designed a network that, given suitableexamples, estimates the depth and the color of the imaged room emptied of allclutter [13]. As for the networks presented in Chapter 3 and Chapter 4, the input andoutputs are both in equirectangular format, and provided as per-pixel information.We have shown how this representation can serve as a basis for many image editingoperations.
The application to visual synthesis/room emptying shows how the designed net-works can serve as building blocks for more complex applications, including addi-tional channels. Another area where we see important future works is in the areaof (sparse) multi-view reconstruction. In particular, a straightforward extensionof our monocular analysis methods would be to exploit them for cases in whichwe capture a minimum amount of data in a multi-room environment (e.g., one ortwo photos per room), without going towards full multi-view. This setting is verycommon, and research solutions, instead of starting from (a large set of) commonfeatures among views, try to first extract the maximum amount of information fromsingle views, to then exploit in a later fusion phase [177]. Since the methods dis-cussed in this thesis have shown remarkable performance in single-image analysis,it can be expected that they can also benefit such extreme multi-view pipelines.
Our work on SliceNet [10] (Chapter 3) has been the subject of a number of follow-ups that have built upon it, analyzed our behavior, and/or used it as baseline forfurther enhancements. In particular, Yu et al. [178] have shown that reflective ob-jects, that are not handled directly by our method, are likely to produce artifacts. Asan example, in Fig. 6.1), column 2 (originally included in Yu et al. [178]), artifacts arepresent in the case of mirrors or windows. Since reflecting materials are abundantin interior environments, one future direction is to improve SliceNet (as well asour other solutions) to better handle these situations. The problem is challenging,
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as the detection of mirrors in single-view situations is a malformed problem thatrequires imposing priors. Since we work in restricted environments (indoors), wecan expect these mirrors/reflecting images to share some common characteristics(e.g., stemming the typical shape and location of windows in common apartments),and we can expect that data-driven solutions could learn those hidden relationsfrom data. The creation of challenging data sets with realistic mirrors and win-dows would be an important contribution for creating solid more robust indoorreconstruction methods.

Figure 6.1: Examples of failure with reflective materials. Original image published by Yu et al. [178].
Our method (SliceNet [10]) is in the second row.

One possible direction of improvement of the methods for reconstruction frompanoramic imaging is to take into account also the characteristics of the differentsetups used to capture panoramic images. As hardware solutions are variable, thecaptured images have different distortion characteristics [133], that could be takeninto account to improve the quality of reconstructions. This would entail, however,not only the creation of distortion-specific methods (e.g., in terms of specific losses),
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but also the creation of datasets that include those distortions, much as we havedone for the simulation of laser scanning.
Another very interesting future direction is to study/analyze how our methods,based on supervised learning, would work in a self-supervised scenario, that wouldreplace comparisons with ground truth with consistency measures. A recent ex-ample is the work of Wang et al. [131], that analyzes a self-supervised problem formonocular 360 depth estimation. To do that, their training process takes threeadjacent panoramas extracted from video sequences and estimates the depth mapand camera motions, thus replacing the need for ground truth data with the needfor a multi-view training dataset. In this work, moreover, Wang et al. [131] also showhow the violation of gravity alignment constraints negatively affects solutions thatexploit them [10]. This effect was already studied in our work, and did not poseproblems in a single-view setting, where the training dataset was gravity-alignedand at inference time it was possible to perform alignment prior to entering thenetwork.
While our work targeted single-view estimation, a future extension would be toexpand them in a multi-view context. One future direction for 3D reconstructionconcerns volumetric reconstruction [179, 180, 181] using the truncated signed dis-tance function (TSDF) representation inside approaches to generate consistentscene geometry from the fusion of multiple depth maps. As a representative ex-ample, Jang et al. [179] propose an approach designed for short trajectories of anomnidirectional video camera to get 3D reconstruction, facing not just depth esti-mation but also posed camera estimation, spherical rectification (aligning epipolarlines with horizontal image scanlines) and texture atlas reconstruction. The inte-gration of our indoor-specific solutions for layout estimation and depth estimationwithin this class of approaches is an interesting avenue for future work. On onehand, our methods could provide more refined and regularized depth maps forfusion in specific classes of indoor environments, thanks to the incorporation of spe-cific constraints (e.g., Atlanta-world and/or gravity alignment). On the other hand,our methods, in a multi-view setting, could also be revised to take into accountmulti-view consistency, eventually also in a self-supervised framework [131].

6.3 Publications

The scientific results obtained during this PhD work also appeared in related publi-cations, for which I significantly contributed to the conceptualization, methodology,and validation of the developed method. These main publication, sorted by theirintroduction in this thesis, are the following:
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• SliceNet: deep dense depth estimation from a single indoor panorama
using a slice-based representation.Giovanni Pintore, Marco Agus, Eva Almansa, Jens Schneider, and EnricoGobbetti, In Proc. IEEE/CVF Conference on Computer Vision and PatternRecognition (CVPR). Pages 11531-11540, 2021. Selected as oral presentation.DOI: CVPR46437.2021.01137.— This is the original work that introduced the concept of slicing and gravity-aligned features for solving depth inference from a single omnidirectionalimage (Chapter 3). I have significantly contributed to the methodology, im-plementation, testing, and validation of the method.

• Deep Panoramic Depth Prediction and Completion for Indoor Scenes.Giovanni Pintore, Eva Almansa, Armando Sanchez, Giorgio Vassena, andEnrico Gobbetti, in Computational Visual Media, 2023.DOI: 10.1007/s41095-023-0358-0 — This is the original work that introduced alightweight single-branch network, which employs a dynamic gating system toprocess together dense visual data and sparse geometric data, exploiting theconcept of slicing and gravity-aligned features from a single omnidirectionalimage. Also, it is introduced a new augmentation strategy to make themodel robust to different types of sparsity, including those generated byvarious structured light sensors and LiDAR setups (Chapter 4) expands overthe previous approach by also exploiting optional sparse depth information,without any assumption on the sparsity pattern. I am joint first author of thiswork, to which I have contributed very significantly in all phases, includingconceptualization, methodology, implementation, testing, and validation ofthe method, and can be considered my main achievement.
• Deep3DLayout: 3D reconstruction of an indoor layout from a spherical

panoramic image.Giovanni Pintore, Eva Almansa, Marco Agus, and Enrico Gobbetti. 2021. ACMTrans. Graph. 40, 6, Article 250, 12 pages. 2021DOI: 10.1145/3478513.3480480— This is the original work that are exploited important 3D properties ofindoor environments in the design. In particular, gravity-aligned featuresare actively incorporated in the graph in a projection layer that exploits therecent concept of multi head self-attention, and specialized losses guidetowards plausible solutions even in presence of massive clutter and occlu-sions. (Chapter 5). I have significantly contributed to the conceptualization,methodology, implementation, testing, and validation of the method.
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In addition, during the course of my thesis, I have also contributed to the followingrelated publication, which have not been included in this work:
• Instant Automatic Emptying of Panoramic Indoor Scenes.Giovanni Pintore, Marco Agus, Eva Almansa, and Enrico Gobbetti, Proc. IS-MAR. and published in IEEE Transactions on Visualization and ComputerGraphics, vol. 28, no. 11, pp. 3629-3639, 2022. [Journal Article]DOI: 10.1109/TVCG.2022.3202999— In this work is introduced a novel light-weight end-to-end deep networkthat, from an input 360◦ image of a furnished indoor space automaticallyreturns, with very low latency, an omnidirectional photorealistic view andarchitecturally plausible depth of the same scene emptied of all clutter. Inthis case, I have contributed to the validation of the approach by performingtests on all the included benchmarks, both coming from publicly availablesources and custom user-captured data.

6.4 Demonstration videos

In the context of the EVOCATION project, I have also illustrated the outcomes ofmy research in the following demonstration videos that is available on the projectweb site at the URL evocation.eu/videos/:
• Pilot 2 - indoor mapping for AEC: Automatic 3D reconstruction of structured

indoor environments — Demo video.This video presents the results of applying the techniques presented in thisthesis to both publicly available benchmark data and data captured withinthe EVOCATION project.
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