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Abstract

In recent years, there has been significant research interest in the automatic 3D
reconstruction and modeling of indoor scenes from capture data, giving rise to
an emerging sub-field within 3D reconstruction. The primary goal is to convert an
input source, which represents a sample of a real-world indoor environment, into
a model that may encompass geometric, structural, and/or visual abstractions.

Within the scope of this thesis, the focus has been on the extraction of geometric
information from a single panoramic image, either by using only visual data or aided
by very sparse registered depth information. This particular setup has attracted a
lot of interest in recent years, since 360° images offer rapid and comprehensive
single-image coverage and they are supported by a wide range of professional
and consumer capture devices, which makes the data acquisition process both
efficient and cost-effective. On the other hand, despite the 360° coverage, inferring
a comprehensive model from mostly visual input in preseence of noise, missing
data, and clutter remains very challenging. Thus, my research has focused on
finding clever ways to exploit prior information, in the form of architectural priors
and data-driven priors derived from large sets of examples, to design end-to-end
deep learning solutions to solve well-defined fundamental tasks in the structured
reconstruction pipeline. The tasks on which I have focused are, in particular, depth
estimation from a single 360° image, depth completion from a single 360° image
enriched with sparse depth measurements, and 3D architectural layout estimation
from a single 360° image. While the first two problems produce pixel-wise input
in terms of a dense depth map, the latter consists in the reconstruction, from the
image of the furnished room, of a simplified model of the 3D shape of the bounding
permanent surfaces of a room.

As a first contribution towards reconstructing indoor information from purely visual
data, | introduced a novel deep neural network to estimate a depth map from a
single monocular indoor panorama. The network directly works on the equirectan-
gular projection, exploiting the properties of indoor 360-degree images. Starting



from the fact that gravity plays an important role in the design and construction of
man-made indoor scenes, the network compactly encodes the scene into vertical
spherical slices, and exploits long- and short-term relationships among slices to
recover an equirectangular depth map directly from an equirectangular RGB image.

My second contribution expands this approach to the common situation in which
we receive as input a single equirectangular image registered with a sparse depth
map, as provided by a variety of common capture setups. In this approach, depth
is inferred by an efficient and lightweight single-branch network, which employs a
dynamic gating system to process together dense visual data and sparse geometric
data. Furthermore, a new augmentation strategy makes the model robust to
different types of sparsity, including those generated by various structured light
sensors and LiDAR setups.

While the two preceding contribution focus on the estimation of per-pixel geometric
information, my third contribution has tackled the problem of recovering the 3D
shape of the bounding permanent surfaces of a room from a single panoramic
image. The method also exploits gravity-alighted features, but within a significantly
different setup, dictacted by the fact that not only we need to separate walls,
ceilings, and floor, but we need to recover the plausible shape of invisible areas. The
proposed approach, differently from prior state-of-the-art methods, fully addresses
the problem in 3D, significantly expanding the reconstruction space. In particular,
a graph convolutional network directly infers the room structure as a 3D mesh
by progressively deforming a graph-encoded tessellated sphere mapped to the
spherical panorama, leveraging perceptual features extracted from the input image.
Gravity-aligned features are actively incorporated in the graph in a projection
layer that exploits the recent concept of multi head self-attention, and specialized
losses guide towards plausible solutions even in presence of massive clutter and
occlusions.

The benchmarks on publicly available data show that all three methods are on par
or better with respect to the state-of-the-art.

Keywords: Visual Computing, Computer Vision, Computer Graphics, Spherical Cap-
ture, Omnidirectional Capture, Panoramic Capture, Equirectangular Projection, 3D
Reconstruction, Indoor Environment, Monocular Vision, Depth Estimation, Depth
Completion, 3D Layout Estimation.
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Comparing conventional perspective capture with 360° capture.
Fig. 2.1a shows a perspective image that is a transformation from
the equirectangular image, Fig. 2.1b. Both images are from the
Matterport3aD dataset [6]. . . . . . .. .. ... .. .. .....
Matterport High Resolution 360° Cameras. These 360° cameras
are fast and affordable to capture small to medium spaces in 3D us-

ing Matterport (this picture belongs to here matterport.com/cameras/360-

CAMEIAS). + v v v e e e e e e e e e e e e
Equirectangular mapping. A spherical projection by a 360° camera
is directly transformed to a 2D equirectangular projection. The
intensity value from the point P of the spherical representation,
where 6 € [0,27) and ¢ € [0, 1), is mapped to an integer pixel po-
sition (x,y) of a width(w) x hight (h) equirectangular image where
x=9y= O
2 T
Omnidirectional image representations. Fig. 2.4a shows a spherical
image, Fig. 2.4b its equirectangular projection and Fig. 2.4c its
cube-map projection. The original image is from the Matterport3D
dataset[6]. . . . . . . . . . e
Structured light scanners. Structured light scanners use trigonomet-
ric triangulation by a projector to display a series of linear patterns
onto an object. Then, by analyzing the distortions of these lines
or dots is determined the depth, Fig. 2.5a. Although, the captures
can have some artifacts such as lots of missing areas when has a
large depth as Fig. 2.5¢c shows, which is a depth map captured by

structured-light sensor (Matterport Pro 3D camera, Fig. 2.5b).
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LiDAR scanner. Here is shown two LiDAR scans (Light Detection
And Ranging). Fig. 2.6a which has, in general, the following specifi-
cations: 16 beams/lasers, a full 360° horizontal FOV and 30° vertical
FOV. Fig. 2.6b is a Heron LiDAR which has 2 Velodyne VLP-16, one
on top of the other and oriented 45° down, this Heron LiDAR scan
is from GEXCEL company (gexcel.it/it) which is explained in more
detailed in Chapter 4. As an example, the sparse depth captured
by a Heron LiDAR is shown in Fig. 2.6c, having two groups of 16
beams/lasers that each Velodyne VLP-16 has captured. Each sparse
scan takes about 300 milliseconds and produces about 16% of pix-
elswithvaliddepth. . . . .. ... ... .. ... ........
A mobile backpacked RGB+LiDAR acquisition system. This mobile
backpacked LiDAR acquisition system is equipped with a Garmin
spherical camera on the top for the RGB panoramic capture and,
below, it has a Heron LiDAR (i.e., 2 Velodyne VLP-16, see Fig. 2.6)
for the sparse panoramic depth capture. This mobile backpacked
system is a product that belongs to GEXCE L company (gexcel.it/it)

and data generated by this have been used in this thesis (Chapter 4). 34

Different kinds of sparse depth. Fig. 2.8a is a depth map captured
by structured-light sensors (Matterport Pro 3D camera), has lots of
missing areas when rooms are large, surfaces are shiny or thin, and
strong lighting is abundant. Fig. 2.8b is a depth map captured by a
LiDAR setup (two Velodyne VPN-16 shifted of the vertical direction
with different direction) has lots of valid information but only for a
few stripes, where obtains horizontal 360° depth information but
still has narrow vertical FOV. In both captures are represented in
black color the holes/missingarea. . ... ... .........
Pixel by pixel depth estimation. Here is shown an equirectangular
image (the image on the left), its registered depth map (the depth
map on the right), and into both captures are represented a red
box pointing out one pixel depth estimated from the RGB image.
The sample is from the Matterport3D dataset [6]. . . . . . .. ..
Types of occlusions in interiors. Here is shown an equirectangular
image (first figure on the left) with its layout representation (the
others two figures). The layout representation is the room’s interior
bounded by the walls, ceilings, and floor. The colored layout is a
room that has occlusions from walls (red) or from furniture (yellow).
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Dealing with occlusions. Here is shown an equirectangular image,
its layout representation (a room'’s interior delimited by walls, ceil-
ing and floor), and pointing out one pixel from the RGB image that
has to estimate the shape by occluded structure itself, being multi-
ple intersections and thus multiple values, one for each intersected
wall. . .. e
Architectural priors. A list of architectural priors used in 3D recon-
struction, in order of complexity (image courtesy of Pintore et al.,
CVPR20231[9]). . . . o o o
Manhattan Room Layout Reconstruction from a Single 360° image.
In this comparative study introduce the prior MW used previously
in perspective view to full-panoramic view. This figure belongs
to[49]. . . ..
Equirectangular image aligned to the gravity vector. Camera is
aligned with an horizontal-ground plane. . . . ... ... .. ..

Network architecture. Our architecture is scalable with respect
to the input resolution. In Fig. 3.1a, to simplify comparison with
other methods, we show an example with an input image having
size 3 x 256 x 512. A ResNet50 encoder [62] extracts four layers
at different resolutions. From each resolution layer we obtain a
sliced feature map of 256 x 512 (purple blocks in Fig 3.1a, details
in Fig. 3.1b). By concatenating the resulting four layers we obtain a
single bottleneck with 512 slices and 1024 features, which is refined
using a RNN scheme (cyan blocks). The decoder proceeds symmet-
rically, producing a depth map at the same input image resolution.
Detailed illustration of the SliceNet architecture. This illustration
complements the architectural view provided in the paper. The net-
work uses an encoder/decoder structure. The encoder is presented
in Fig. 3.2a, while the decoder is presented in Fig. 3.2b. The last 4
levels of the encoder are sliced, keeping the horizontal dimension
unchanged and compressing the vertical one (Fig. 3.2a). From the
resulting sliced sequence (1024 x 1 x 512), we recover long and
short term information through a LSTM module (Fig. 3.2b). The
final depth map is recovered by following steps symmetrical to
those used for encoding reduction. . . . .. ... ... .. ...
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Qualitative comparison on real-world datasets. Depth maps are
inferred from real-world captured RGB data (Matterport3D [6]).
The first column is the input RGB image (Fig. 3.3a), the second one
is the depth estimated by BiFuse [81] (Fig. 3.3b), the third one is the
depth estimated by our method (Fig. 3.3¢), and the fourth one is the
ground-truth depth acquired by the instrument (Fig. 3.3d). Black
pixels are missing samples in the ground-truth depth. All methods
have been compared using the same original datasets and setting,
without any further pre-process or alignmentstep. . . . . .. ..
Qualitative comparison on synthetic datasets. Depth maps are
inferred from synthetic data (360D [80]). We show in the first
column the rendered RGB image (Fig. 3.3a), the estimated depth
by OmniDepth [71] (Fig. 3.4b), by our method (Fig. 3.4c) and the
rendered ground-truth depth (Fig. 3.3d). Black pixels are invalid
pixels not rendered by theraytracer. . . . . ... ... ......
Qualitative performance. We present additional qualitative perfor-
mance on Stanford2D3D [109] and Structured3D [108]. . . . . . .
Loss function qualitative comparison. Example of qualitative ef-
fects depending on gradient loss (Sec. 3.3). . . .. ... .. ...
Special cases. First row: results on almost-outdoor environment.
Second row: one of the worst casesinourtests. . ... ... ..
Real-world datasets vertical misalignment. The average inclina-
tion with respect to the gravity vector of the Stanford2D3D [109]
dataset is about 0.36 degrees, while the average misalignment of
the Matterport3D [6] dataset is about 0.61 degrees. Outliers are
mainly due to inaccurate line detection and classification of the
alignmenttool [47]. . . . . . . . .. ... ...
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Different kinds of sparse depth. First image (from the left): depth
map captured by structured-light sensors (Matterport Pro 3D cam-
era) has lots of missing areas when rooms are large, surfaces are
shiny or thin, and strong lighting is abundant. Second image: a
depth map captured by a LiDAR setup (two Velodyne VPN-16 shifted
of the vertical direction with different direction) has lots of valid in-
formation but only for a few stripes. Third image: depth information
may also come from triangulated features in purely image-based
pipelines; indoor environments, however, have lots of flat texture-
less surfaces, and reliable features, here detected from SIFT, may be
very sparse. Fourth image: a typical input from low-cost structured
light sensors with sparse measurements only for a small subset
of the captured camera pixels; for synthetic training, a typical ap-
proach is to use a Bernoulli distribution to sparsify inputs [135]. . .
Network architecture. Our network is constituted by a single-
branch encoder-decoder, which processes together the dense visual
and sparse geometric data. A residual-gated encoder takes as input
4 channels (RGB + sparse depth) returning fused features at differ-
ent resolution. Multi-resolution features are compressed, flattened
and passed to a MHSA- single layer module (i.e., bottleneck). De-
coding proceeds symmetrically to the encoder, but without using
gating, to reach the final output resolution. . . . . .. ... ...
Qualitative results on Matterport3D-SD dataset [93]. Masked
samples in the results are missing samples in the ground truth.
Qualitative performance on S3D-SD with a LiDAR configuration
with 32 beams and on real mobile LiDAR indoor capture. Qual-
itative results with the same setup of Tab. 4.2. Our results are
compared to the Huang et al. [95] approach trained with the same
equirectangular augmented S3D-SD dataset with varying sparsity
patterns. . . . .. e e e e e
Qualitative performance on $3D-SD with different input depth
sparsity patterns. Qualitative results using simulated input from
low-cost depth cameras using Bernoulli sampling and simulated
input from SfM/stereo pipelines, using a SIFT detector to place
samples. Our results are compared to the Huang et al. [95] approach
trained with the same equirectangular S3D-SD dataset. . . . . . .
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Qualitative performance on S3D-SD by point cloud (PC). In these
examples, 3D point clouds are obtained by unprojecting depth
maps, using the same setting of Tab. 4.2, and visualizing them from
a standard point of view. Note how the proposed approach im-
proves reconstruction especially in regions where clear geometric
structures from the architectural layout are present. . . . . . . .
Mobile RGB+LiDAR setup. To test our approach on a real-world
panoramic RGB+LiDAR acquisition, we exploit a backpacked mobile
scanner equipped with a full-view panoramic camera for the RGB
capture and two LiDAR heads for sparse depth capture. Ground-
truth dense depth for each pose is provided by reprojecting data
coming from multiple poses of a staticscanner. . . . . ... ...
Performance with variable sparsity level. The graph depicts the
value of 9; as a function of input depth sparsity for our method
and for the best competing method [95]. Continuous lines repre-
sent models trained with our augmentation strategy. Dotted lines
show the same models but trained without augmentation (i.e., 40
degrees sparse coverage with 32 activebeams) . . .. ... ...
Bad case. Results on almost-outdoor environment. Sparse sam-
ples from outdoor part, not properly masked, negatively affect the
whole reconstruction. . . . . . . .. ... ... o L.

Method overview. From a single cluttered panoramic image, our
end-to-end deep network recovers, at interactive rates, a water-
tight 3D mesh of the underlying architectural structure. The graph
convolutional network, trained using indoor-specific losses, exploits
multi-scale gravity-aligned features and active pooling to deform a
tessellated sphere to the correct geometry. Reconstructed models
may include curved walls, sloped or stepped ceilings, domes, and
concaveshapes. . . . . . . ...
Layout occlusion. Left: panoramic image. Middle: room shape,
with occlusions from walls (red) or from furniture (yellow). Only
31% of the surface of interest is visible. Right: plausible 3D recon-
struction generated by our method. . . . . . ... ... ... ..
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Deep3DLayout pipeline. Our end-to-end deep learning technique
maps an equirectangular image to a 3D mesh representing the
bounding surface or the room. Two GCN blocks deform an input ico-
sphere (Sec. 5.3.1) by offsetting its vertices (see Sec. 5.3.2). The first
block starts from a first pooling of the GAF features F*(n,d) to re-
turn a low-res estimation of the mesh M*(V* E;). This low-res rep-
resentation M* is then refined to poll refined GAF features F*(4n —
6,d), which drive the second GCN block. The output of the second
block is the final refined mesh model M (V (4n—6,3),E(4m,2)). .
Effect of MHSA. Qualitative difference in not using (left) or using
(right) the MHSA transformer when pooling image features.

Effect of FPSL. The first two images shows the difference in using
or not the feature-preserving smoothness loss (FPSL - Eq. 5.11);
the second two images show the difference in using or not the
sharpnessloss (SL-EQ.57). . . . . o v v v v i i i i
Qualitative comparison. Qualitative comparison on publicly avail-
able datasets. We show the input image, the ground truth model,
our prediction, our prediction in overlay with ground truth, com-
petitor prediction in overlay with ground truth and the 2D floorplan
comparison (grey ground truth, blue ours, red competitor). The pre-
sented scenes contains multiple connected rooms partially visible
from a single point-of-view, as well as non-MWM corners, curved
walls and ceiling. Fig.5.6h full ground truth, including the dome,
was recovered from the Matterport3D [6] meshes. . . . . . . ..
Qualitative comparison on non-MWM scenes. Qualitative com-
parison on non-MWM scenes (Pano3DLayout). We show the input
image, the ground truth model, our prediction, our prediction in
overlay with ground truth, competitor prediction in overlay with
ground trutht and the 2D floorplan comparison (grey ground truth,
blue ours, red competitor). Our approach has consistent perfor-
mance for a variety of model kinds, in particular for complex struc-
tures, such as domes and slopingroofs. . . . .. ... ... ...
Failure case. Example of bad reconstruction. . . . ... ... ..

Examples of failure with reflective materials. Original image pub-
lished by Yu et al. [178]. Our method (SliceNet [10]) is in the second
FOW. v v e e e e e e e e e e e e e e e e e e
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Publicly available panoramic datasets. Each dataset/database has
a particular visual data (i.e., at least containing purely visual data);
being a real/synthetic source (Source column); capturing by a cam-
era, manually modeling or rendering from other dataset (Camera
column); having a number of samples (#/mages column); what lay-
out distribution (when it has layouts) (Distribution column); and
its annotated information (Annotations column). . . . ... ...
Publicly available scene datasets. These datasets provide scene
descriptions, from which a rendering framework can generate the
information required, for instance, panoramic image and its regis-
tereddepth. . . . . . . . ...
Publicly available panoramic used in this thesis. | also mention
what split of the dataset is consider in thiswork. . . . . . .. ..

Quantitative performance on real and virtual world datasets. We
show our performance evaluated on standard metrics and com-
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Ablation study. The ablation study, performed on the Structured3D
dataset[108], demonstrates how our proposed designs improve
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Performance when training with misaligned images. We show,
for completeness, the results obtained by combining both training
and testing with and without alignment to the ground plane on the
Structured3D dataset[108]. . . . . . . ... .. ... ...

Computational cost and performance. Our method is compared

to the best performing state-of-the-art competitors. . . . .. ..
Quantitative comparison on S3D-SD/LiDAR and real LiDAR cap-
ture. We show our performance evaluated on standard metrics
and compared to the recent state-of-the-art approaches which are
comparable with us. Here we present results simulating a 360°

capture with 40° vertical FOV (—30 to 10 degrees) and 32 active
beams in the synthetic dataset, and results using a real mobile
device with 2 Velodyne VLP-16 and a registered Garmin spherical

camera with ground truth obtained using a Faro Focus3D X 330 TLS
(seeSec. 4.4.1). . . . .. e
Quantitative comparison on $S3D-SD with Bernoulli and SIFT spar-
sity. We show our performance, compared to ground truth and

other approaches, testing two different sparsity patterns: Bernoulli
pattern, with 1.97% of visible pixels and SIFT detector pattern, with
0.1 contrast, 5 edge threshold and no more than 8k extracted fea-
tures, thus resulting in 0.91% of visible pixels (see Sec. 4.4.1). . . .
Quantitative comparison on Matterport3D-SD. We show our per-
formance evaluated on standard metrics and compared to the
recent state-of-the-art approaches on the indoor dataset provided
by Zhang et al. [93]. We compare against the competitors best
performance using their original perspective baselines, without
considering additional error due to post-processing and stitching.

Ablation study performed on S3D-SD, using the LiDAR 32 beams
confuguration for testing. MRF: multi-resolution features; AFC:
asymmetric feature compression; MHSA: MHSA encoder; SSIM:
SSIM loss; AUG: sparse data augmentation; LWGC: light-weight
instead of standard gated convolution. . . . ... ... ... ..

Comparison on MWM datasets. We compare our method, ac-
cording to indoor layout and 3D reconstruction metrics, to recent
state-of-the-art approaches on the MatterportLayout [6] and Stan-
ford [109] MWM datasets. . . . . . . . . . .. ...
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5.2

5.3

5.4

Comparison on non-MWM dataset. We compare our method,
according to indoor layout and 3D reconstruction metrics, to recent
state-of-the-art approaches on the publicly available non-MWM
AtlantaLayout dataset [45] and on our new Pano3DLayout release.
For comparison, we choose best-performance methods for which
source code and pre-trained models are available. . . . ... ..
Ablation study. The ablation study, performed on the Structured3D
dataset [108], demonstrates how our proposed design choices im-
prove the accuracy of prediction. Results show only comparable-
stable cases that actually increase it. We show in the last row the
full architecture setup.Legend: MLP: multi-layer pooling; GAF: grav-
ity aligned features; MHSA: multi-head self-attention; FPSL: feature
preserving smoothness loss; SL: sharpnessloss. . . . . ... ...
Robustness to gravity-alignment errors. Comparison of recon-
struction performance on synthetic scenes of Pano3DLayout by
introducing gravity alignmenterrors. . . . . ... ... ... ..
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Preface

This thesis represents a summary of the work done from 2020 to 2023 at the Visual
and Data-intensive Computing (ViDiC) group of CRS4 (Center for Advanced Studies,
Research and Development in Sardinia) under the direction and supervision of Dr.
Enrico Gobbetti, in close collaboration with Dr. Giovanni Pintore. | really want to
warmly thank both of them for the opportunity to be part of the team and for all
the great support that | have received. Also, my gratitude to Prof. Riccardo Scateni
for his constant motivation and academic support from University of Cagliari. This
was, indeed, a rewarding experience both scientifically and personally.

The scientific work in this thesis has been performed mostly within the international
framework of EVOCATION (Advanced Visual and Geometric Computing for 3D Cap-
ture, Display, and Fabrication) project, a leading European-wide doctoral Collegium
for research in Advanced Visual and Geometric Computing for 3D Capture, Display,
and Fabrication supported by European Union’s H2020 research and innovation
program grant 813170 (October 2018-May 2023). The consortium participants are
the University of Rostock (UNIRO), the Center for Research, Development and Ad-
vanced Studies in Sardinia (CRS4), the University of Zurich (UZH), the Italian National
Research Council (CNR), the Technical University of Vienna (TUW), Fraunhofer IGD
(FHG-IGD), and the two companies Holografika (HOLO) and GEXCEL.

The objective of the EVOCATION research network was, on one hand, to equip
the enrolled Early-Stage Researchers (ESR) with the right combination of research-
related and transferable competencies, and, on the other hand, to foster, by sci-
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entific exchange and collaboration, the development of new technologies and
knowledge around four interconnected interdisciplinary themes:

¢ Innovation in visual and geometric acquisition and processing. The focus,
here, was on two separate challenging use cases, that led to well-defined
research lines. The first one was dedicated to scalable mass-digitization
of shape and appearance of large collections of 3D objects with complex
materials, with special emphasis on cultural heritage objects. The second
one was concerning the introduction of solutions for fast mobile capture of
large environments and for creating semantically-rich representations, with
a particular focus on complex indoor environments.

¢ Innovation in interactive data-intensive visualization. In this context, the
project studied solutions both to enable the exploration of massive data
at interactive rates, and to provide useful navigation tools supporting the
exploration of complex acquired objects with semantically-rich annotations,
beyond pure raw-data inspection, with a special focus on flat, but visually
reach objects (e.g., paintings and bas-reliefs).

¢ Innovation in computational fabrication. This research line concerned fabri-
cation and 3D printing technologies, both to expand the design space and to
ensure a higher quality reproduction of acquired models.

¢ Innovation in display systems. The goal, here, was to improve visual replica-
tion and understanding of 3D data and associated information through novel
high-bandwidth display environments, including high-density ubiquitous dis-
plays, large high-resolution displays (LHDs), novel multi-user computational
3D displays capable of fully matching human perceptual capabilities (light
field displays), and multi-display environments.

More details on the project are available at the project web site (www.evocation.eu).

As an ESR and Marie Sklodowska-Curie Fellow in the project, my research trajectory
focused mostly on the first research theme, and more precisely on the automatic
3D reconstruction of indoor environments from panoramic images.

With this fellowship, | was also enrolled as PhD Student in the Computer Science
Program at the Department of Mathematics and Computer Science at the University
of Cagliari under the kind tutoring of Prof. Riccardo Scateni.

My topic was inserted in a specific research project under the first research theme,
devoted to " Scalable Reconstruction and Exploration of Complex Indoor Environ-
ments”, where the goal is to study techniques to apply prior knowledge for the
automatic extraction of structured representation of interior environments from
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incomplete and noisy sampled data. For my thesis, | specifically focused on inferring
a maximum amount of information from a single omnidirectional image, using only
visual data, eventually enriched with very sparse depth information.

The work described in this thesis received funding from the European Union'’s
Horizon 2020 research and innovation program under the Marie Sk lodowska-Curie
Actions Innovative Training Network (MCSA-ITN) grant agreement No 813170, as
well as from Sardinian Regional Authorities for projects connected to CRS4 Visual
and Data-intensive Computing activities.

Eva Almansa
Cagliari, Italy
November — 2023.
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Chapter 1

Introduction

The automatic 3D reconstruction and modeling of indoor scenes has
attracted a lot of research in recent years, making it an emerging well-
defined sub-field of 3D reconstruction. The aim is to transform an input
source containing a sample of a real-world interior environment into a
compact structured model containing geometric, structural, and/or visual
abstractions. In this thesis, | have concentrated on extracting informa-
tion from panoramic images, since they provide the quickest and most
complete single-image coverage and are supported by a wide variety of
professional and consumer capture devices that make acquisition fast
and cost-effective. This chapter outlines the scientific motivation behind
this research, provides a brief summary of research achievements, and
presents the organization of this thesis.

1.1 Background and motivation

The automated reconstruction of 3D models from acquired data (e.g., images or
depth measurements) has been one of the central topics in computer graphics
and computer vision for decades. The growth of this field can be attributed to
the simultaneous alignment of scientific, technological, and market developments.
These developments now align with the widespread accessibility and increasing
affordability of high-quality visual and 3D sensors, which are coupled with expanded
opportunities for large-scale data processing.

In this context, the automatic reconstruction of indoor environments is gaining wide
attention. As detailed in a well-established survey [1], the focus has been on the
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creation of specialized techniques for very common and very structured multi-room
environments, such as residential, office, or public buildings. This is because the
construction, management, and analysis of those buildings is common in diverse
fields such as architecture, civil engineering, digital mapping, urban geography,
and real estate [2]. Commercial solutions in these areas range from virtual tours
creators (e.g., 3DVista [3]), to systems that support the construction process (e.g.,
StructionSite [4] or Reconstruct [5]), to general solution for sharing and exploring
structured models (e.g., Matterport [6]).

In this sub-field of general 3D reconstruction, 3D representation of an interior
scene must be inferred from a collection of measurements that sample its shape
and/or appearance, exploiting and/or combining sensing technologies ranging from
passive methods, such as single- and multi-view image capture setups, to active
methods, such as depth cameras, optical laser-based range scanners, structured-
light scanners, and LiDAR scanners [7, 1].

Within the EVOCATION project (MCSA-ITN grant agreement 813170), in which | have
carried out my dissertation work, the research team has extensively analyzed the
research domain in a survey published in Computer Graphics forum [1], and has
illustrated the main techniques in a SIGGRAPH Course [8] and a CVPR Course [9].
Since these works have been the start of my journey into 3D reconstruction of indoor
environments, and have also become well-established surveys in the research
community, | will frequently refer to those summaries for an extended view of the
domain that goes beyond the scope of this thesis.

All 3D indoor reconstruction technigues aim to transform an input source containing
a sample of a real-world interior environment into a compact structured model
containing geometric and/or information at an application-specific level of abstrac-
tions. Since many variations exist, the first points to be defined are, therefore, the
targeted input and output of this research.

The input data can be obtained from a variety of sensors. Visual input (e.g., pho-
tographic images) has attracted a lot of interest, due to the abundance of means
to acquire it, the ease of capture, and its low cost. A single perspective image,
however, provides a very narrow view, and capturing multiple images complicates
capture and requires multi-image registration. For this reason, in recent years, 360°
capture has emerged as a very appealing solution, since it provides the quickest
and most complete single-image coverage and is supported by a wide variety of
professional and consumer capture devices that make acquisition fast and cost-
effective. While pure 360° visual input is, possibly, the most widespread capture
method, (semi-)professional indoor capture techniques have also witnessed the
emergence of synchronized depth and visual 360° capture devices, that augment
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dense image data with sparse depth information. Such solutions, for instance, have
widespread use in the real-estate domain [1].

Extracting geometric and/or structural information of an interior model from a
single 360° image, eventually augmented with sparse data, has also attracted a
lot of research in recent years and has lots of practical applications that require
different pipelines, as discussed in Pintore et al. [1]. Two fundamental problems
that have emerged in this context, and form basic building blocks in most, if not all,
reconstruction pipelines are depth estimation, which consists to augment the input
visual representation with per-pixel data consisting in the distance of the visible
pixel from the viewer, and 3D architectural layout estimation, which consists in
inferring from the image of a furnished room the 3D layout surface determined by
joining the walls, ceilings, and floor that bound the imaged room’s interior [1].

Despite the wide context provided by a spherical panorama, without prior assump-
tions, these fundamental reconstruction problems remain, however, ill-posed, since
an infinite number of solutions may exist that fit the under-sampled or partially
missing data provided by a single image, even if enriched with a few depth measure-
ments. For this reason, very specific geometric priors have been proposed in the
past for structural and geometric recovery in indoor environments (see Chapter 2).
These solutions, however, are typically very restrictive in terms of supported room
shapes, and also rely on the ability to extract specific visual features in the images
(e.g., corners or edges), which may be difficult in the typical indoor environments
dominated by large featureless walls and big occluded areas due to furniture. In
recent years, data-driven solutions that discover hidden relations from large data
collections have shown that many priors imposed by pure geometric reasoning
approaches can be relaxed [7, 1].

Considering all of the above, the research comprising this thesis has been focused
on deep learning solutions based on monocular panoramic image analysis for the re-
construction and representation of indoor environments, either using it standalone
or eventually combining it with sparse geometric information. The main hypothesis
under which this thesis is performed is that selected capture and architectural
priors can be effectively combined with data-driven solutions to create indoor
reconstruction techniques that outperform specific indoor reconstruction methods
based on geometric reasoning, as well as generic data-driven 3D reconstruction
solutions that are not indoor-specific.
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1.2 Objectives

Based on aforementioned considerations, further expanded in Chapter 2, | set
as a goal of this thesis to advance the state-of-the-art in the reconstruction from
panoramic images by answering the following questions:

1. How to better associate pixel-wise geometric information to a single panoramic

image of an interior model.

Depth estimation from a single image is a classic problem in computer vision
and many solutions exists. However, the aim is to study ways to exploit the
peculiar characteristics of the data source (a single panorama) and of the
imaged environment (an interior one, e.g., a room). By exploiting priors
stemming from this restriction, and combining them with data-driven priors
that can be learned from large collections of data, the expectation is to obtain
deep-learning-based solutions that outperform generic ones. Network struc-
ture, loss functions, and training methods will be the targets of the research
discussed in this thesis.

2. How to improve the previous approach in the presence of limited geometric
information.
Since purely visual capture is inherently ambiguous, many efforts have been
devoted to solutions that also exploit capture devices that provide synchro-
nized high-resolution depth and color data. Due to the limitations of these
devices, however, the input geometric information is typically much sparser
than the visual input. For this reason, many solutions to depth estimation
and infilling problems have been presented (see 2). The goal of this research
line is to push the boundary by exploiting priors that are typical of indoor
environments. By doing that, we expect to improve the performance of
methods that perform depth estimation on general environments, as well
as of methods that perform infilling of small holes taking into account the
characteristics of the neighborhood.

3. How to extract layout information from a single panorama.
The goal, here, is to go beyond the simple extraction of per-pixel depth,
transforming a single image of a furnished room into the 3D layout surface
determined by joining the walls, ceilings, and floor that bound the room’s in-
terior. The problem is a fundamental one for many applications, for instance
as a building block to produce building information models, and is very chal-
lenging, due to the intrinsic characteristics of indoor environments, where
furniture and other indoor elements mask large areas of the structures of
interest, and concave room shapes generate vast amounts of self-occlusions.
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The aim, here, will be to extend the deep-learning solutions developed for
depth estimation to layout estimation. It is expected that the different na-
ture of the problem will lead to different data representations and network
structures. On the other hand, the expectation is that the knowledge gained
on indoor-specific priors for depth estimation could also provide a guide in
this context.

1.3 Achievements

The solutions proposed in this thesis have achieved to improve the state-of-the-art
in all the three identified research lines. Novel deep-learning methods have been
thus proposed for depth inference, depth densification, and layout estimation.

My main results and contributions to the state of the art are the following:

¢ An innovative end-to-end technique for deep dense depth estimation from
a single indoor panorama (Chapter 3). The method, introduced in a CVPR
2021 contribution [10], predicts the depth map starting from a single indoor
360° image. Since gravity plays an important role in the design and construc-
tion of interior environments, world-space vertical and horizontal features
have different characteristics in most, if not all, man-made environments.
The proposed solution, therefore, leverages the peculiar characteristics of
gravity-aligned images of indoor environments in the network design. My
prime contribution was to the methodology, implementation, testing, and
validation of the developed method. In particular, | participated in the dis-
cussions that led to the introduction of the methods, contributed to their
implementation, and ran the tests of the methods and competitors’ imple-
mentation, generating the results and analyzing them.

¢ A novel approach for deep panoramic depth prediction and completion
for Indoor Scenes (Chapter 4). The method, published as an article in the
Computational Visual Media journal [11], with myself as a joint first author,
expands over the previous approach by also exploiting optional sparse depth
information, without any assumption on the sparsity pattern. The end-to-end
deep learning solution to jointly perform real-time dense depth prediction
and completion from single-shot indoor 360° captures. The input is a single
equirectangular image registered with a sparse depth map, as provided by a
variety of common capture setups. This method, the first to work directly on
equirectangular images of indoor environments, introduces several specific
novelties, including a dynamic gating system to process together dense vi-
sual data and sparse geometric data and a new augmentation strategy that
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increases robustness to different types of sparsity, including those generated
by various structured light sensors and LiDAR setups. My contribution to this
work was major and concerned with the conceptualization, methodology,
implementation, testing, and validation of the developed method. In par-
ticular, I jointly invented the method with Giovanni Pintore, implemented
major portions of the system, created code for generating synthetic datasets
and using them for training and testing, created code for integrating real-
world data acquired with a mobile scanner, ran the tests of the methods and
competitors’ implementation, generating the results and analyzing them. |
consider this contribution the primary one in this thesis. It is also interesting
to note that, beyond solving the sparse-to-dense problem, the proposed
network design is also suitable for pure depth estimation.

¢ An innovative solution for 3D reconstruction of an indoor layout from a
single omnidirectional image (Chapter 5). The method, presented at SIG-
GRAPH Asia 2021 and published in ACM Transactions on graphics [12] targets
the recovery of the 3D shape of the bounding permanent surfaces of a room
from a single panoramic image, using a graph-convolutional network capable
to infer a tessellated bounding 3D surface from a single 360-degree image.
Differently from prior solutions, the problem is fully addressed in 3D, signifi-
cantly expanding the reconstruction space of competing solutions comprising
the prior state-of-the-art. My prime contribution was to the conceptualiza-
tion, methodology, implementation, testing, and validation of the developed
method. For this work, in particular, | participated in the discussions that led
to the introduction of the methods, contributed to the creation of testing
datasets, and ran the tests of the methods and competitors’ implementation,
generating the results and analyzing them.

In addition, during the course of my thesis, | have also contributed to an additional
work [13], that | have not included in the thesis since | have only contributed to
the validation of the approach by performing tests on standard benchmarks and
user-captured data. The work introduces a novel light-weight end-to-end deep
network that, from an input 360° image of a furnished indoor space automatically
returns an omnidirectional photorealistic view and architecturally plausible depth
of the same scene emptied of all clutter. While my contribution to that work was
limited, it shows an important direction for future work, i.e., mixing the per-pixel
and layout extraction problems in solutions that also strive to synthesize visual
data.
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1.4

Organization

This thesis is based on the results that | have published in EVOCATION project
deliverables [14, 15, 16], articles [12, 11], and conference proceedings [10]. | have
organized them in order to show in a natural and coherent order all the outcomes
obtained. Following is a brief overview of each chapter:

Chapter 1 (this chapter) introduces the topic and motivation for this Ph.D.
dissertation, describes my objectives, and summarizes my results.

Chapter 2 provides a general background for the thesis, providing a wider
view of previous approaches.

Chapter 3 describes the technique | have introduced for inferring depth from
a single panoramic image using and end-to-end deep-learning solution;

Chapter 4 describes how additional sparse depth information can be ex-
ploited to significantly improve depth reconstruction, while remaining within
end-to-end deep learning techniques and without making assumptions on
specific sparsity patterns;

Chapter 5 illustrates how architectural and data-driven priors can be exploited
to infer plausible 3D layout information from a single panoramic image;

Chapter 6 provides a conclusion and short summary of the achievements,
a critical discussion of the results obtained and of how they advance the
state-of-the-art, as well as some reflections on future lines of work.
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Chapter 2

General background

Before presenting the thesis contribution, | provide here relevant back-
ground information on panoramic capture, on the targeted reconstruc-
tion problems, and on the priors that are typically employed to cope with
noise and ambiguities, also covering publicly available panoramic indoor
datasets that can serve to define data-driven priors. | will the provide
a brief survey of the state-of-the-art on the specific targeted tasks, i.e.,
depth estimation, depth completion, and layout estimation, and conclude
with the identification of open problems and of the hypotheses behind
the solutions that will be detailed in the forthcoming chapters.

2.1 Introduction

Reconstruction of interior structures is a well-defined topic which has attracted
significant interest recently. In this field, the aim is to extract information from
an input source to convert it into a representation of the imaged models that
optimizes certain application-specific characteristics. The field is very vast, and |
refer the reader to established surveys for a general introduction and coverage of
the state-of-the-art [1]. In this thesis, as discussed in Chapter 1, | focus on monocular
360° input, and tackle the three fundamental problems of depth estimation, depth
completion in presence of sparse depth information, and 3D architectural layout
information.

Before presenting in the next chapters the methods and results obtained on these
tasks, | provide here relevant background information and motivation for the direc-
tion taken. First, | will briefly introduce methods and tools for panoramic capture
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and panoramic image representation, covering both the pure visual case (Sec. 2.2)
and the presence of extra depth (Sec. 2.3). Then, | will characterize the depth esti-
mation and completion problems and differentiate them from the layout estimation
problems (Sec. 2.4), before introducing the priors that are typically employed to
solve make them tractable (Sec. 2.5), introducing both geometric and data-driven
ones. Since the work will concentrate on methods that learn from large sets of
examples, | will briefly introduce the main concepts behind deep learning solutions
(Sec. 2.6), before analyzing the state-of-the-art in the areas covered by this thesis
(Sec. 2.7). I will then summarize the characteristics of the available annotated public
datasets that can serve to train, validate and test data-driven solutions (Sec. 2.8).

(a) Perspective image (b) Equirectangular image

Figure 2.1: Comparing conventional perspective capture with 360° capture. Fig. 2.1a shows a
perspective image that is a transformation from the equirectangular image, Fig. 2.1b. Both images
are from the Matterport3D dataset [6].

2.2 Omnidirectional image capture

A wide variety of solutions exists for capturing 3D information on indoor environ-
ments, ranging from mobile laser scanners to active depth sensors [1]. Among
the many possibilities, purely image-based methods are very important, not only
because cameras provide a very widespread, practical, and affordable solution, but
also because visual information is paramount for a variety of applications, ranging
from navigation, location awareness, as-built-, and existing-condition reconstruc-
tions [17]. For this reason, many efforts have been devoted to exploit captured visual
information, either alone or in conjunction with some registered depth information
(Sec. 2.3).

Pure visual capture and processing is one of the most well-researched topics. Using
a classic camera with a limited field-of-view, however, does not provide enough
information for achieving plausible full-room reconstruction, and forces users to
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employ multi-view methods, that increase capture efforts [18]. Moreover, classic
approaches based on multi-view stereo [19] and structure-from-motion (SfM) [20]
do not, by themselves, provide complete solutions in indoor environments, due to
the abundanced of clutter and non-cooperative textureless and reflective surfaces
that make feature detection, triangulation, and surface reconstruction difficult in
interior environments [1].

Figure 2.2: Matterport High Resolution 360° Cameras. These 360° cameras are fast and af-
fordable to capture small to medium spaces in 3D using Matterport (this picture belongs to
here matterport.com/cameras/360-cameras).

For these reasons, in recent years, 360° capture, also known as panoramic, spherical,
or omnidirectional capture, has attracted a lot of attention, since it provides the
quickest and complete single-shot coverage [21, 1, 22]. Fig. 2.1 provides a comparison
between a perspective and panoramic view of an indoor environments.

While a panoramic image with a 360° horizontal viewing angle and 180° vertical
viewing angle can be obtained by many means, including stitching of a sequence
of photos captured with a mobile phone [23], modern commodity spherical cam-
eras have become very widespread and increasingly popular in many application
fields [24]. Fig. 2.2 shows, for instance, a set of 360° cameras that are usable with
the popular Matterport industrial interior capture, reconstruction, and touring
system.

With such cameras, with a single click, a user obtains a full-view image with the
same efforts needed to take a single regular photo, since the processing (e.g.,
stitching of multiple fish-eye views) is performed fully internally before delivering
the output. The captured content has the benefits that it has a full-view, capturing
the light intensity of the entire surrounding environment in a single-shot and at
(approximately) the same instant. The camera design and processing methods
typically ensure, also, that there is a single (effective) center of projection, and that
uniform resolution is maintained in the horizontal direction, which is difficult to
achieve with the stitching of multiple casually captured images [25, 26]. From the

30


https://matterport.com/cameras/360-cameras

processing point of view, the spherical camera can be modeled as a unit sphere with
no intrinsic parameters, and the capture is thus determined fully by the extrinsic
parameters [21].

Figure 2.3: Equirectangular mapping. A spherical projection by a 360° camera is directly transformed
to a 2D equirectangular projection. The intensity value from the point P of the spherical representation,
where 6 € [0,27) and ¢ € [0, 7), is mapped to an integer pixel position (x,y) of a width(w) x hight (h)

equirectangular image where x = % Y= %

(a) Spherical capture (b) Equirectangular projection (c) Cube-map transformation

Figure 2.4: Omnidirectional image representations. Fig. 2.4a shows a spherical image, Fig. 2.4b
its equirectangular projection and Fig. 2.4c its cube-map projection. The original image is from the
Matterport3D dataset [6].

Nevertheless, the sphere is not isomorphic to a plane, and representing the capture
as an image typically involves a mapping transformation. While some cameras
provide access to the original unstitched images, that provide the highest resolution
capture, the most common approach, that has become a de-facto standard in indoor
capture and processing, is to extract from the device an equirectangular projection
sampled into a regular rectangular 2D grid [27], obtaining what is often called a full
panoramic image (Fig. 2.3).

Other projections can also be used to mitigate spherical distortion. For example,
the cube-map projection (i.e., projecting around the sphere a 90° vertical and 90°
horizontal FOV to each face of the six faces of the cube) (Fig. 2.4) is often used
as a representation for image viewing, e.g., in WebXR environments or popular
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streaming viewer (e.g., YouTube 360 video format - YouTube 360 video format
(see paulbourke.net/panorama/youtubeformat/). Other popular formats, include
tangent image projections [28, 27], are covered in a recent survey [21].

Since equirectangular images are device-independent and supported by most, if
not all, the devices, we set as a goal in this thesis to provide solutions that directly
take as input an equirectangular image, without conversion to other intermediate
formats, and, where relevant, also provides output (e.g., depth) in an equirectangu-
lar format. It should be noted that, in contrast to other formats such as cube maps,
the equirectangular representation provides full continuity along the horizontal
direction, and that the reduction in resolution and singularity at the poles are not
that relevant in gravity-aligned indoor capture, as the low-res/discontinuous are
occurring directly above or below the capturing camera, in areas that are typically
masked by the capture device (floor) or presenting not important information (ceil-
ing). As we will see, relying on gravity-aligned capture will be a fundamental aspect
of the introduced approach, that will be exploited for the design of all solutions,
and that is guaranteed by most capture protocols.

(a) Structured-light sensor (b) Matterport Pro 3D (c) Depth map
camera

Figure 2.5: Structured light scanners. Structured light scanners use trigonometric triangulation by a
projector to display a series of linear patterns onto an object. Then, by analyzing the distortions of
these lines or dots is determined the depth, Fig. 2.5a. Although, the captures can have some artifacts
such as lots of missing areas when has a large depth as Fig. 2.5¢ shows, which is a depth map captured
by structured-light sensor (Matterport Pro 3D camera, Fig. 2.5b).

2.3 Augmenting single-shot panoramas with depth informa-
tion

Since visual input alone, especially in the monocular case, is inherently ambiguous,

combining active scanners with passive cameras to acquire jointly shape and color

has been studied for a long time [29, 30]. This topic has gained increased attention,
recently, due to the numerous affordable solutions that are emerging both in the
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(a) Velodyne VLP-16 (b) Heron LiDAR (c) Sparse depth captured by a Heron
LiDAR

Figure 2.6: LiDAR scanner. Here is shown two LiDAR scans (Light Detection And Ranging). Fig. 2.6a
which has, in general, the following specifications: 16 beams/lasers, a full 360° horizontal FOV and
30° vertical FOV. Fig. 2.6b is a Heron LIDAR which has 2 Velodyne VLP-16, one on top of the other and
oriented 45° down, this Heron LiDAR scan is from GEXCEL company (gexcel.it/it) which is explained
in more detailed in Chapter 4. As an example, the sparse depth captured by a Heron LiDAR is shown
in Fig. 2.6c¢, having two groups of 16 beams/lasers that each Velodyne VLP-16 has captured. Each
sparse scan takes about 300 milliseconds and produces about 16% of pixels with valid depth.

professional field (e.g., backpacks [31]) and consumer markets (e.g., consumer RGB-
D cameras [32]). RGB-D cameras are compact systems that (virtually) acquire RGB
images along with per-pixel depth information, while scanner solutions typically
employ separate geometric and visual capture subsystems (e.g., LIDAR and RGB
camera) that are later synchronized and merged together. In this context, struc-
tures can be recovered from data fusion [33, 34]. Several solutions are specifically
designed for indoor captures [31], since outside captures often have a too high
depth range for several active methods or highly illuminated environment [35, 36].
While the majority of works are focused on small-FOV perspective poses [37] or
planar projections for outdoor acquisitions[38, 39], in this thesis we only discuss
the devices that can enrich omnidirectional images with some depth information.

Available solutions include combining (panoramic) cameras with structured-light
sensors (e.g., Fig. 2.5) or LiDAR (Light Detection And Ranging) scanners (e.g., Fig. 2.6
and Fig. 2.7), that both can provide, as output of the capture process, an equirect-
angular depth image aligned with the color image. However, in both cases, the
amount of depth information that can be recovered with each captured color image
is very limited. For instance structured-light sensors are at lower resolution than
comparable visual cameras, are very sensitive to illumination variations, and suffer
from short ranging distance. Longer ranging LiDAR sensors are more robust and ac-
curate, but can only provide extremely sparse measurements at real-time rates [30],
typically only on a few stripes. Sparsity patterns of the depth signal, moreover, are
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Figure 2.7: A mobile backpacked RGB+LiDAR acquisition system. This mobile backpacked LiDAR
acquisition system is equipped with a Garmin spherical camera on the top for the RGB panoramic
capture and, below, it has a Heron LiDAR (i.e., 2 Velodyne VLP-16, see Fig. 2.6) for the sparse panoramic
depth capture. This mobile backpacked system is a product that belongs to GEXCEL company
(gexcel.it/it) and data generated by this have been used in this thesis (Chapter 4).

very different depending on the depth sensing technology (see Fig. 2.8).

We therefore set as a goal for this thesis to evaluate how we can exploit the higher
quality visual signal to improve quality of the depth signal that is coming from the
depth sensors, in a way that is robust to density pattern variations.

2.4 Targeted indoor reconstruction problems

The goal of any 3D indoor reconstruction pipeline is to transform the input source
into a problem-specific representation that contains geometric and/or structural
information on the scene. We have seen that the input, in this thesis, is a single
panoramic image, represented in equirectangular format, eventually enriched with
a second aligned equirectangular image that contains depth information for some
of the pixels. The expected output depends on the specific targeted problem, that is
the extraction of a dense equirectangular depth map (with or without the support
of sparse depth information) or of an architectural 3D layout. Both problems
can be interpreted as ill-posed inverse problems, since, due to the presence of
outliers, noise, and missing data many plausible reconstruction can produce an
indoor environment fully compatible with the measurements. For these reasons,
the research community has proposed many solutions [40, 1], that all rely on the
introduction and exploitation of prior knowledge (Sec. 2.5).

The nature of these problems is similar, in the sense that the input and the targeted
environment are the same, there are also some important differences. First of all,
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(a) Depth map by a Matterport camera (b) Sparse depth captured by a Heron LIDAR

Figure 2.8: Different kinds of sparse depth. Fig. 2.8a is a depth map captured by structured-light
sensors (Matterport Pro 3D camera), has lots of missing areas when rooms are large, surfaces are
shiny or thin, and strong lighting is abundant. Fig. 2.8b is a depth map captured by a LiDAR setup (two
Velodyne VPN-16 shifted of the vertical direction with different direction) has lots of valid information
but only for a few stripes, where obtains horizontal 360° depth information but still has narrow
vertical FOV. In both captures are represented in black color the holes/missing area.

Figure 2.9: Pixel by pixel depth estimation. Here is shown an equirectangular image (the image
on the left), its registered depth map (the depth map on the right), and into both captures are
represented a red box pointing out one pixel depth estimated from the RGB image. The sample is
from the Matterport3D dataset [6].

dense depth reconstruction and depth completion must produce per pixel informa-
tion that is associated with the corresponding color (and eventually sparse depth)
information present at the same pixel. Layout estimation, by contrast, requires
to further parse the imaged space into the structural elements that bound its ge-
ometry [1] (e.g., floor, ceiling, walls, etc.). This task is very challenging, due to the
intrinsic characteristics of indoor environments, where furniture and other indoor
elements mask large areas of the structures of interest, and room shapes generate
vast amounts of self-occlusions (see Fig. 2.10). Thus, 3D layout reconstruction is
more complex than depth estimation, since it does not simply assign a depth to
each visible pixel, but must extrapolate large portions of the invisible structure,
which can be occluded not only by objects but by the structure itself, leading to
multiple intersections per view ray (see Fig. 2.11). For this reason, we cannot expect
to encode the output of 3D architectural layout estimation into a single value per
pixel, but we must devise a representation that is simple enough to be extracted
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Figure 2.10: Types of occlusions in interiors. Here is shown an equirectangular image (first figure on
the left) with its layout representation (the others two figures). The layout representation is the room’s
interior bounded by the walls, ceilings, and floor. The colored layout is a room that has occlusions
from walls (red) or from furniture (yellow).

from the very partial information we have as input, while expressive enough to
represent important classes of indoor environments.

Figure 2.11: Dealing with occlusions. Here is shown an equirectangular image, its layout representa-
tion (a room’s interior delimited by walls, ceiling and floor), and pointing out one pixel from the RGB
image that has to estimate the shape by occluded structure itself, being multiple intersections and
thus multiple values, one for each intersected wall.
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2.5 Prior knowledge

Extracting geometric information from monocular input, even with the full context
provided by 360° capture, is inherently ambiguous and is particularly complex in
indoor settings characterized by large texture-less surfaces, abundance of clutter,
and severe occlusions [1]. Thus, indoor reconstruction requires very wide context
information and must exploit very specific geometric priors for structural recov-
ery [1].

Figure 2.12: Architectural priors. A list of architectural priors used in 3D reconstruction, in order of
complexity (image courtesy of Pintore et al., CVPR 2023 [9]).

Fig. 2.12 summarizes, in order of complexity, the most commonly geometric pri-
ors used in indoor for surface reconstruction. They include Floor-Wall (FW) [41],
composed by a single flat floor and straight vertical walls; cuboid (CB) [42], being a
single room of cuboid shape; Indoor World Model (IWM) [43], with a single hori-
zontal floor, a single horizontal ceiling, and vertical walls that meet at right angles;
Manhattan World (MW) [44], an IWM without the restriction of a single floor and
celing; Atlanta World (AW) [45], similar to MW, without the restriction of walls
connecting at right angles; Vertical Walls, and Atlanta-World model with possibly
sloped ceilings and floors [45], and piecewise planarity, that simply bounds the
interior with large planar surfaces [46].

Relying on architectural priors makes it possible to reduce the solution space,
making reconstruction more tractable. For instance, methods based on the IWM
assumption [47] can rely on finding and extruding a 2D floor plan, whose walls are
forced to be aligned with one of the two principal directions. This makes it possible
to derive solutions that detect simple structures by simply looking for a limited
number of corners [47, 48] (Fig. 2.13). On the other hand, this sort of approach has
also several important limitations. First of all, methods that only employ geometric
reasoning based on the matching of features detected in images with possible
reconstructions compatible with the prior are heavily dependent on the number
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and quality of detected features, and only the most restrictive priors (e.g., those
based on MW assumptions) are robust enough to cope with the typical amount
of missing/inconsistently-detected features that may occur in typical panoramic
images of furnished rooms [1]. These priors, however, are representative only
for a restricted class of rooms, since, for instance, non-orthogonal walls are not
uncommon. Moreover, while solely relying on geometry reasoning can produce
solutions for the layout detection problem, it can only serve as a support for the
depth estimation problem, since non-permanent structures do not typically follow
strict arrangements that can be modeled with simple rules.

Recent research trends have shown that data-driven solutions that discover hidden
relations from large data collections, and in particular those based on deep learning,
have shown that many priors imposed by pure geometric reasoning approaches can
be relaxed [1]. | will also pursue this research line in this thesis, where relaxed geom-
etry priors will be used not as as a basis for geometry reasoning based on detected
features, but to drive the design of effective networks and training structures.

Figure 2.13: Manhattan Room Layout Reconstruction from a Single 360° image. In this comparative
study introduce the prior MW used previously in perspective view to full-panoramic view. This figure
belongs to [49].

In particular, one prior that will be consistently used throughout this thesis is the
assumption that capture of the scene through an equirectangular image is aligned
to the gravity vector (i.e., camera is placed on an horizontal-ground plane, see
Fig. 2.14). Gravity-aligned capture is a very common setup, and all the public 3D
indoor datasets (Sec. 2.8) commonly used for training and testing reconstruction
solutions appear to have very small orientation deviations. Even in cases where
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this assumption is not verified at capture time, several orthogonal solutions exist
to gravity-rectify images in a pre-processing step (e.g., [50, 51, 52]), simplifying the
practical application of gravity-oriented methods. Thus, it is rational to assume that
gravity-aligned processing of images can directly exploit gravity-aligned world-space
features [52].

Moreover, all the designs presented will take into account that gravity plays an
important role in the design and construction of interior environments, and, thus,
world-space vertical and horizontal features have different characteristics in most,
if not all, man-made environments. For instance vertical and horizontal lines with
different characteristics appear both in boundary surfaces (e.g., walls, floor) and
in furniture (tables, desks, ...). This will allow us to design networks that perform
different operations along the vertical and horizontal directions. In particular,
vertical lines are very common in the scene, and are practically not deformed in the
projection while the horizontal ones are more so. Moreover, most 360° capture
setups have a much more regular coverage along the horizontal than on the the
vertical direction because of masking effects [6]. Because of these characteristics,
we expect that it will be possible, for each scene region along the dominant vertical
direction, to find specific relations to the others by both short-term and long-term
spatial dependencies that encode construction constraints typical of certain scene
characteristics (e.g., symmetries, spacing, and so on) [53, 54, 45].

Figure 2.14: Equirectangular image aligned to the gravity vector. Camera is aligned with an
horizontal-ground plane.

2.6 Basic components of a deep learning solution
Research in structured interior reconstruction has focused its efforts on building
models based on data-driven approaches by applying inherent concepts of indoors

to guide the transformation of an input using deep learning architectures to achieve
the desired target. A definition complete of what is deep learning is beyond the
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scope of this thesis, although a few strokes of the most interesting concepts are
mentioned, to go into more detail, | refer the reader to a classic book [55] for a
wide coverage. | only summarize here the main components.

Basically, deep learning is a specific type of machine learning, which a machine
learning algorithm is able to learn from data. One definition of learning by Alpay-
din [56], is: "A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E”. The meaning of these concepts,
in terms of a machine learning system, are, tasks described how it should process
an example (e.g., regression, task that given an input has to predict a number -
for us it will be depth estimation or layout estimation); performance evaluates
the abilities of the algorithm (e.g., accuracy which measures the correct output
of the model directly related to the total number of examples); and experience
by the information that can extract during the learning process (e.g., supervised
learning process which the target is known and labeled, otherwise it is, for instance,
unsupervised learning process).

Most of the deep learning algorithms follow a basic structure which is combining
the specification of a dataset, a cost function, an optimization procedure, and a
model. In our context, the model will be a neural network, whose behavior is
determined by the set of parameters (weights and biases) that shape the mapping
from the model input (for us equirectangular images that store color and eventually
sparse depth) and the expected network output (for us the dense depth map for the
depth estimation and completion problems, or the room boundary representation
for the layout estimation problem).

Generally, the whole dataset (i.e., a collection of examples) is composed by three
sub-sets, training, validation, and test sets; having the assumptions that each
example, from each sub-set, is independent and identically distributed [55]. Thus,
training/validation sets are used during the training process which trains a model
by measuring a training-set (i.e., by training error), while validation-set is used
to evaluate the performance of the model after each iteration. The test-set, in
contrast, is used during the generalization process of unobserved inputs, i.e., this
process is for applying a model on previously unseen inputs, different than those on
which the model was trained, computing what is called the generalization error [55].

During the training process an optimization is applied by altering the input, which
is the task of either minimizing or maximizing some function. That function is
called the objective function, or criterion. The objective function is also called
cost/loss/error function when is minimizing it (e.g., in linear regression, one cost
function could be to compute the mean squared error between the prediction
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and the target). Performing the learning process is caused by the cost function
which usually includes at least one term and, also, may includes additional terms,
such as regularization terms (e.g., adding to the linear regression cost function a
weight decay, also known as L? regularization or ridge regression). A definition
of regularization by Goodfellow et al. [55]: ”Regularization is any modification we
make to a learning algorithm that is intended to reduce its generalization error but
not its training error”.

Most regularization strategies are based on regularization estimators by trading in-
creased bias for reduced variance, i.e., low variance without increasing enormously
bias based on constraints and penalties, limiting the capacity of a model by norm
penalties. In fact, one of the major research efforts is to find an effective balance
between optimization and regularization strategy [55].

In this context, most approaches related to structured interior reconstruction have
focused on an optimization process, measuring just the training process, in order to
analyze novel ways of inquiring the relevant information from the input as well as
identify a balance between optimization and regularization; considering that these
models have to manage a huge amount of data to learn an output which causes a
fairly high training time even though with GPU-accelerated computation.

2.7 Related work and proposed advances

The general concepts of deep learning have been already applied to the three
fundamental tasks in computer vision tackled in this thesis, which are depth es-
timation, sparse to dense depth estimation, and reconstruction of the boundary
surface of a room, all of them from a single omnidirectional image taken inside
it. In the following, | discuss the approaches that are most closely related to the
solutions that | introduced in this work. | refer the reader to recent surveys for a
general coverage of 3D reconstruction in interior environments [1, 30, 40, 21].

2.7.1 Depth estimation from perspective images

Before discussing the works directly applied to omnidirectional images, that are the
focus of this thesis, | briefly summarize earlier works on perspective images, since
they have predated works specific to panoramic capture, introducing many compo-
nents that have later been adapted to the task, and have also been used directly in
panoramic settings by splitting a panoramic image into multiple perspective views.

Learning-based monocular depth estimation was introduced over a decade ago
(e.g., Make3D [57]), becoming, thus, in a fundamental task in computer vision.
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While early solutions used various combinations of feature detection, matching,
and geometric reasoning, in recent years, a large body of deep learning methods are
being proposed for handling this traditional ill-posed problem under less restrictive
constraints [58]. This emergence deep learning as well as the availability of large-
scale 3D datasets, has contributed to significant performance improvements.

Eigen et al. [59] were the first to use CNNs for regressing dense depth maps from
a single image in a two-scale architecture, where the first stage—based on the
AlexNet feature encoder—produces a coarse output and the second stage refines
the prediction. Their work was later extended to additionally predict normals
and labels with a deeper and more discriminative model, based on VGG features
encoder, and a three-scale architecture for further refinement [60].

Laina et al. [61], instead, combined ResNet [62] with an up-projection module for
upsampling. They also proposed the reverse Huber [63] loss to improve depth
estimation. This baseline, named FCRN, has become of common use even in the
case of panoramic images.

Lee et al. [64], instead, predicted depth from several cropped images combined in
the Fourier domain. Conditional Random Fields (CRF) are also often exploited to
refine prediction [65, 66, 67, 68].

Fu et al. [69] use dilated convolution to increase the receptive field and apply the
ordinal regression loss to preserve the spatial relation among neighboring classes.
Unsupervised training for depth estimation is instead performed using photometric
loss [18, 70].

However, it has been shown that, without specific adaptations, the direct applica-
tion of these solutions to 360° depth estimation of indoor environments produces
sub-optimal results [71]. For this reason, research has started focusing on methods
to exploit the wide geometric context present in omnidirectional images.

2.7.2 Depth estimation from a single omnidirectional image

One of the main limitation of single-image methods lies, in fact, in the restricted
field of view (FOV) of conventional perspective images, which inevitably results
in a limited geometric context [72]. With the emergence of consumer-level 360°
cameras, a wide indoor context can now be captured with one or at least few shots.
As a result, much of the research on reconstruction of indoors from sparse imagery
is now focused in this direction, even for directly recovering the room layout under
specific conditions [73, 74, 54, 45].

In the specific case of depth estimation, a first approach is to convert an omni-
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directional image into a cube-map [75], both to deal with the distortion of an
equirectangular projection and to take advantage of the consolidated monocular
estimation techniques mentioned above.

To make the network aware of the distortion, spherical convolution methods have
been also proposed [76, 77, 78, 79]. Tateno et al. [77], for example, demonstrated
the effectiveness of distortion-aware convolution, compared to standard convolu-
tion, to improve depth estimation and segmentation on panoramic images.

Following this trend, Zioulis et al. [71] adopted the spherical layers of Su et al. [76] for
depth estimation in the indoor environment, and proposed a large-scale synthetic
dataset consisting of 22,096 re-rendered images from four existing datasets [80].
Wang et al. [81] proposed, instead, a two-branch network, respectively for the
equirectangular and the cube-map projection, based on a distortion-aware en-
coder [71] and the FCRN decoder [61].

Recently, several orthogonal works [82, 83, 84, 85] have exploited the correlation
among depth, room layout, and semantics to improve prediction. Such promising
solutions require much additional input for training (e.g., annotated room layout,
normal maps and semantic segmentation), and exploit a depth estimation baseline
based on one of the above-cited approaches. All the above methods bring back the
spherical projection to a standard projection to apply encoding-decoding schemes
designed for conventional images (e.g., FCRN [61]), while this thesis introduces a
scheme designed for equirectangular projections of indoor scenes (Chapter 3).

2.7.3 Depth estimation from a single omnidirectional image with associ-
ated sparse depth

Sparse-to-dense depth completion with the support of a guiding RGB image has
been the focus of much research [30]. The majority of works focus, however, on
small-FOV perspective poses [37] or planar projections for outdoor acquisitions[38,
39]. In this thesis, | only discuss the approaches that can be directly applied or
easily adapted to panoramic indoor environments.

In order to upsample and complete a sparse depth signal, generic scene methods
that rely on registered RGB-based appearance as guidance either devise custom
convolutions and propagate confidence to consecutive layers [86], or use content-
dependent and spatially-variant guiding convolutions [87]. Alternative sources
of information that are exploited for depth completion may also include confi-
dence masks and object cues [88]. Cross-guidance between the RGB and depth
encoders [89] has also been used. Moreover, to avoid the depth mixing typically
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induced by the standard MSE loss, a binned depth representation trained using a
cross-entropy loss has been shown to be beneficial [90].

Recently, BIPS [91] proposes a bi-modal (RGB-D) panorama synthesis framework to
jointly synthesize panoramic RGB and depth. Similar to the work presented in this
thesis (Chapter 4), BIPS considers different kinds of sparsity patterns in depth input.
However, the goal of BIPS is to provide realistic image inpainting and a complete 3D
model for many applications (i.e., including layout), jointly synthesizing color and
depth from partial input, rather than focusing on depth prediction and completion.

Even though deep learning has been widely used for inpainting of indoor scenes,
extensions of those networks to color guided depth completion are still uncom-
mon [39]. One of the main reasons is that large-scale training sets are not readily
available for captured indoor RGB-D images paired with dense depth images. As
a result, most methods for depth estimation have been classically trained and
evaluated only for pixels that are captured by commodity RGB-D cameras [92].
From this data, they can, at-best, learn to reproduce observed depths, but not
complete depths that are unobserved, which in indoors have significantly different
characteristics. To address this issue, Zhang et al. [93] introduced a new dataset
based on the large-scale Matterport3D [6], which provides 105k RGB-D images
aligned with dense depth images computed from multi-view reconstructions in
72 real-world environments, and proposed a hybrid solution to estimate surface
normals and solve for indoor depth via a final global optimization. The method,
however, has speed limitations and does not scale for different kinds of sparsity
(see Sec. 4.1).

More recently, pure deep-learning solutions have been proposed for color guided
depth completion. Cheng et al. [94] proposed an approach in which a low-FOV
dense depth camera is registered with an omnidirectional camera, and the dense
depth from the limited FOV is extended to the rest of the recorded omnidirectional
image through a convolutional network. This thesis tackles, instead, the more
general problem of omnidirectional sparse-to-dense depth estimation without any
region in which a dense estimation is provided. This problem is tackled by several
recent works. Huang et al. [95] exploited an inpainting self-attention network [96]
to generate the dense depth map and a dedicated U-Net [97] to preserve depth
boundary information. Skip connections [97] are also used in their method to adapt
the generic inpainting network to the specific depth prediction task and to better
recover fine-grained details. In this thesis, | will propose to handle more general
sampling patterns inside a much faster solution (Chapter 4).

Park et al. [98] proposed an interactive Non-Local Spatial Propagation Network
(NLSPN) that predicts non-local neighbors for each pixel and then aggregates rele-
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vant information using the spatially-varying affinities. To maximize the utility from
the sparse source, Huang et al. [99] proposed a Sparse Signal Superdensity (S3)
framework, tested for stereo sparse-guidance, for which expands the depth value
from sparse cues while estimating the confidence of expanded region. Specifically
targeted for guided monocular depth completion, Guizilini et al. [100] introduced
Sparse Auxiliary Networks (SANs) to process the sparse signal separately from the
dense RGB signal. Their pipeline consists of two parallel branches for the two
signals, connected at encoder and decoder level by direct feature fusion.

With a similar decoupled design, Liu et al. [101] advance the pure depth prediction
network RectNet [71] to support a SLAM-based reconstruction system where the
scattered data are SLAM-SfM features. The method, however, costs 311 GFLOPs for
a 512 x 256 image, while the solution presented in Chapter 4) takes 38.2 GFLOPs
for a 1024 x 512 image.

These recent purely data-driven methods achieve state-of-the-art performance
mainly on perspective views and at the cost of a significant computational cost
(see Tab. 4.1). In this thesis, | propose, instead, a much leaner indoor solution for
panoramic images, showing how the proposed design can cope with a variety of
dense sampling patterns and density and can achieve high accuracy even without
any fine-tuning after a training on synthetic data (Chapter 4).

2.7.4 3D layout estimation from a single omnidirectional image

Since man-made interiors often follow very strict rules, as discussed in Sec. 2.5,
early methods used geometric reasoning to match image features to simple con-
strained 3D models. In particular, most methods target variants of the Manhattan
World model (MWM: horizontal floors and ceilings, vertical walls meeting at right
angles) [102], such as the Indoor World model (IWM: MWM with single horizontal
ceiling and floor) [103] or the Atlanta World model (AWM: vertical walls with single
horizontal ceiling and floor) [45]. In this context, Hedau et al. [42] successfully
analyzed the labeling of pixels under a cuboid prior, while Lee et al. [47] exploited
the IWM to infer 3D structures by analyzing detected corners.

Zhang et al. [72] were among the first to exploit 360° captures to overcome the
limitation in contextual information present in regular field-of-view (FOV) shots.
They proposed a whole-room 3D context model mapping a full-view panorama
to a 3D cuboid model of the room through Orientation Maps (OM) [47] for the
top part and a geometric context (GC) analysis for the bottom part [104]. Xu et al.
[105] extended this approach to the IWM. Yang et al. [106], instead, proposed to
infer a MWM room shape from a collection of partially oriented super-pixel facets
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and line segments. A wide variety of follow-ups used similar approaches [1]. The
effectiveness of these geometric reasoning methods is, however, heavily dependent
on the count and quality of extracted features (e.g., corners, edges or flat patches).
More and more research is thus now focusing on data-driven approaches [49].

Recently, several data-driven solutions have shown the capability to infer depth from
a single interior image [81, 107, 10]. While these methods have been shown to cope
with large amounts of clutter, they cannot produce seamless 3D boundary surfaces
in case of self-occlusions, since they can only generate a single 3D position per view
ray. For this reason, layout-specific approaches are being actively researched.

As noted by Zou et al. [102], most current data-driven layout reconstruction methods
basically share the same pipeline: a MWM pre-processing (e.g., based on the
approach of Zhang et al. [72]), the prediction of layout elements in image space and
a post-processing for fitting a regularized 3D model to the predicted 2D elements.

Prominent examples are LayoutNet [73], which predicts the corner probability map
and boundary map directly from a panorama and HorizonNet [54], which simplifies
the layout as three 1D vectors that encode, at each image column, the positions
of floor-wall and ceiling-wall boundaries, and the existence of wall-wall boundary.
The 2D layout is then obtained by fitting MWM segments on the estimated corner
positions. DuLaNet [74], instead, fuses features in the original panoramic view
and in a ceiling-plane projection, to output a floor plan probability map, which is
transformed to a 2D floor plan by a MWM regularization. Several recent extensions
have further improved the performance of the HorizonNet baseline. In particular
Led?Net [103], which currently has the best performance in various benchmarks,
augments the representation with the rendered depth maps of the panorama
horizon, recovering IWM environments. Moreover, several recent methods exploit
the correlation of depth, layout, and semantics to improve their joint prediction. In
particular, Zeng et al. [85] exploit layout, full depth and semantic information to
estimate a layout depth map for fitting an IWM layout. Typically, these methods re-
quire heavy pre-processing, such as detection of main Manhattan-world directions
from vanishing lines analysis [49, 72, 47] and related image warping, or complex
layout post-processing, such as Manhattan-world regularization of detected fea-
tures [73, 54, 74]. AtlantaNet [45] removed these constraints by requiring that
input images are roughly aligned with the gravity vector, and predicting the room
layout under the less constrained AWM by combining two scaled projections of the
spherical image, respectively on the horizontal floor and ceiling planes. Gravity-
alignment capture, also exploited in this work, is a very common setup, and, as
demonstrated by prior works [10, 107], all the public 3D indoor datasets commonly
used for training and testing reconstruction solutions, both synthetic [80, 108] and
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real [109, 6], appear to have very small orientation deviations. Even in cases where
this assumption is not verified at capture time, several orthogonal solutions exist
to gravity-align images at a low cost in a pre-processing step (e.g., [50, 110, 52]),
simplifying the practical application of gravity-oriented methods.

The restriction to very constraining priors (MWM, IWM, or AWM) makes it possible
to employ various forms of projections and simplifications, but limits the class of
models that can be inferred and makes the inference less robust in case of major
occlusions, which require full 3D reasoning to be resolved [111].

Differently from prior solutions, in this thesis, | will show how to infer a watertight
3D mesh from the panoramic image using a 3D approach (Chapter 5). This solution
has been the subject of recent data-driven 3D object reconstruction methods [112,
113, 114] but has not been applied to the interior reconstruction realm, which bears
very significant differences with respect to object reconstruction. In particular, ob-
ject reconstruction methods assume an external perspective view of an uncluttered
object, while this thesis target an interior full panoramic view of a cluttered envi-
ronment. We must thus learn to separate clutter from structure and we cannot rely
on simple projections to associate multi-scale image features to vertices, but we
must learn to select local and non-local features depending on context. Moreover,
we must take into account the peculiar shape of typical indoor structures, made of
few large connected surface components. This has led to novel contributions in
terms of network structure and loss functions (Chapter 5).

2.8 Available large data collections

Data-driven solutions must exploit large collections of data to learn hidden relations
as well as to test the effectiveness of reconstruction. A remarkable number of freely
available datasets containing indoor scenes have been published in the recent years
for the purpose of comparing and/or training learning-based solutions. Many of
them have been acquired with RGB-D scanners, due to the flexibility and low cost
of this solution, being collected on these detailed established surveys [21, 1, 22] of
which just the most used for benchmarking and also others recently published are
mentioned as example in this Chapter.

In the following, | summarize the characteristics of major publicly available panoramic
datasets. Tab. 2.1 and Tab. 2.2 show a simplified information of each one, while
Tab. 2.3 lists all the published datasets used in this thesis.

e Matterport3D Dataset [6]: A large-scale dataset which provides 10,800
panoramic views RGB-D images from 194,400 RGB-D images of 90 building-
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scale scenes. Annotations are provided with surface reconstructions, camera
poses, and 2D and 3D semantic segmentations.

Stanford2D-3D-S Dataset [109]: The dataset is collected in 6 large-scale in-
door areas that originate from 3 different buildings of mainly educational
and office use, captured by using the same Matterport system of the Matter-
port3D dataset [1]. The dataset contains over 70,000 RGB images, along with
the corresponding depths, surface normals, semantic annotations, global
XYZ images (all in forms of both regular and 360° equirectangular images) as
well as camera information. It also includes registered raw and semantically
annotated 3D meshes and point clouds.

360D Database [80]: This database offers a synthetic benchmark. It con-
tains 35,977 panoramas rendered by path-tracing scenes from two synthetic
datasets (SunCG and SceneNet) and two realistic datasets (Stanford2D3D and
Matterport3D). In this case, we adopted the splitting provided by Zioulis et
al. [71]. The original SunCG data is no longer available for downloading due
to legal reasons.

Structured3D Dataset [108]: A large-scale photo-realistic synthetic dataset,
containing 3.5K house designs created by professional designers with a vari-
ety of ground truth 3D structure annotations, including 21, 000 photo-realistic
full-panoramic (i.e., 1024 x 512 equirectangular format) indoor scenes.

CRS4/ViC Research Datasets [115]: Datasets that contain high-resolution
equirectangualar panoramas convering 360 x 180 full-view for a variety of
real-world cluttered indoor scenes. The scenes include multi-room environ-
ments, sloped ceilings, walls not aligned on rectangular coordinate system,
and more challenge features. Also, the height of the camera is provided,
being 170 cm from most datasets.

SUN360 Database [116]: This dataset contains 80 categories and 67,583
panoramas, all of which have a resolution of 9104 x 4552 pixels and cover
a full 360° x 180° visual angle using equirectangular projection. To build
the core of the dataset, the authors downloaded a massive amount of high-
resolution panorama images from the Internet, and manually labeled them
into different place categories.

PanoContext Dataset [72]: This dataset contains 700 full-view panoramas for
home environments from SUN360 database [116], including 418 bedrooms
and 282 living rooms. Being the data manually annotated. They provide a
tool which renders panoramic images and annotates several objects and its
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3D bounding box, being all of the objects standing on the ground, sitting on
another object, or attaching to a wall (i.e., none are floating).

Zhang et al. [93] Dataset: Introduced a new dataset based on the large-scale
Matterport3D [6], which provides 105k RGB-D images aligned with dense
depth images computed from multi-view reconstructions in 72 real-world
environments. This dataset contains 117,516 RGB-D images with rendered
completions, which we split into a training set with 105,432 images and a
test set with 12,084 images.

Zillow Indoor Dataset (ZInD) [93]: A large-scale indoor dataset with 71,474
panoramas from 1,524 real unfurnished homes. ZInD provides annotations of
3D room layouts, 2D and 3D floor plans, panorama location in the floor plan,
and locations of windows and doors. One particular characteristic of this
dataset is about the room layout data which follows a real-world distribution
not being just, as the mostly publicly available datasets, cuboid or Manhattan
layouts.

Replica Dataset [117]: A dataset of 18 highly photo-realistic 3D indoor scene
reconstructions at room and building scale. Each scene consists of a dense
mesh, high-resolution high dynamic-range (HDR) textures, per-primitive se-
mantic class and instance information, and planar mirror and glass reflectors.
Those scenes can be rendered within Al Habitat [118], specially on the Al
Habitat Sim [119] which is a high-performance physics-enabled 3D simulator
that achieves several thousand frames per second (FPS).

PNVS Dataset [120]: A large-scale photo-realistic dataset upon Structured3D
dataset [108]. It is a stereo dataset that provides two type of camera trans-
lations between a source camera position and its target camera position,
getting an easy set and hard set. The easy set contains target panoramas with
small camera translation between 0.2-0.3 meters, including 13,080 training
images and 1,791 testing images. The hard set contains target panoramas with
large camera translations between 1.0-2.0 meters, including 17,661 training
images and 2,279 testing images.

Rey-Area et al. [28] Database: A large-scale database based on Matterport3D
Dataset [6] and Replica Dataset [117]. From Matterport3D dataset, they
estimated the poses for the real skybox images relative to the mesh using
360° structure-from-motion [121], applying to a mixture of real and rendered
skybox images at known camera positions. Then, using the estimated camera
poses and the provided scene mesh, rendered ground-truth depth maps
with pixel accuracy. Besides, they rendered 10 images and its registered
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depth maps for each of the 13 rooms from Replica Dataset [117], generating
random poses using the Replicazéo renderer [122]. Thus, they provide two
datasets, a Matterport3D 360° dataset that consists of 9,684 RGB-D pairs
with a resolution 2048 x 1024; and a Replica 360° 2K/4K that consists of 130
RGB-D pairs rendered at 2048 x 1024 and 4096 x 2048.

e Atlantalayout Dataset [45]: Contains rooms with curved walls or meeting at
non-right angles, dubbed Atlanta World (AW).

e Pano3DLayout Dataset [11]: A synthetic dataset that contains 106 more
complex environments, not included in previous benchmarks, such as, for ex-
ample, scenes with sloped or stepped ceilings, domes, and interconnections
of different rooms.

¢ Indoor3Dmapping Dataset [123]: A dataset from a real LIiDAR RGB-D acqui-
sition (i.e., mobile device with 2 Velodyne VLP-16 and a registered Garmin
spherical camera) and a ground truth dense depth acquisition through a
FaroFocus3DX330TLS. It is acquired in a multi-floor and multi-room envi-
ronment, providing equirectangular image projections aligned with dense
ground truth and sparse depth maps. Each sparse scan produces about 16%
of pixels with valid depth.

In Chapter 3, depth estimation from an omnidirectional image, | will report results
obtained on four publicly available datasets [109, 6, 80, 108] to facilitate comparison.
These benchmarks were also adopted by the recent state-of-the-art works [61, 71,
81] comparable with the method discussed in this thesis. Additionally, | present
the performance of the introduced method on the recent Structured3D synthetic
dataset [108] to support ablation and gravity-alignment robustness studies (i.e.,
analyzing the performance by removing certain components to understand the
contribution of the component to the overall system).

In Chapter 4, sparse-to-dense estimation from RGB and sparse intput, in order to
cover a large variety of use cases, | created a novel dataset leveraging on synthetic
data generated by sampling the large-scale Structured3D [108] photo-realistic
synthetic dataset. The main advantage of such a synthetic dataset is that it provides
a fully accurate dense ground-truth for color and depth, which is not available with
other common large-scale datasets, such as Matterport3D [6] or Stanford2D-3D-
S [109], whose completeness, even if based on multi-view, is still limited by visibility
and sensor limitations. It is also possible, from synthetic data, to simulate a variety
of sensors.

In Chapter 5, layout estimation from a single panoramic image, in order to provide
a comparison with state-of-the-art work, | analyze results on standard publicly
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Table 2.1: Publicly available panoramic datasets. Each dataset/database has a particular visual data
(i.e., at least containing purely visual data); being a real/synthetic source (Source column); capturing
by a camera, manually modeling or rendering from other dataset (Camera column); having a number
of samples (#Images column); what layout distribution (when it has layouts) (Dist ribution column);
and its annotated information (Annotations column).

Dataset Source Camera # Images | Distribution Annotations
Matterport3D [6] Real Matterport 10,800 | Real-World | Surface reconstructions,
Pro 3D 2D/3D semantics,
depths,
camera poses
Stanford2D-3D-S [109] Real Matterport 70,000 - Surface reconstructions,
Pro 3D depths, surface normals,
2D/3D semantics,
camera poses
Structured3D [108] Synth Manual 21,000 | Cuboids, Two light conditions,
Modeling MWM three clutters setups,
layouts, depths,
normals, albedo,
instances, semantics,
camera poses
CRS4/ViC [115] Real Tripod 191 cuboids, Layouts
MWM,
non-MWM
PanoContext [72] Real Renderings 700 Real-World Layout
from [116]
Zhang et al. [93] Real Renderings 10,800 - Depth
from [6]
ZInD [93] Real Ricoh Theta 71,474 | Real-world Layout,
(V and 1) 2D/3D floor plans,
windows/doors poses,
camera poses
PNVS [120] Synth Renderings 34811 Cuboids, Stereo images,
from [80] MWM source depths,
source layouts,
stereo camera poses
AtlantaLayout [45] - - - Real-World AW layouts
Pano3DLayout [11] - - 106 Syth Depth,
non-MWM Layouts
Indoor3Dmapping [123]| Real Mobile device - Real-World Sparse depths,
(2 Velodyne depths
VLP-16 and
Garmin spherical
camera)
Dataset Source Camera # Images |Distribution| Annotations
360D [80] Real/Synth Renderings 35,977 | Real-World Depth
from [6, 109] normals
SUN360 [116] Real Manual Modeling| 67,583 | Real-World Layout
Rey-Area et al. [28] | Real/Synth Renderings 9,684/130| Real-World Depth,
from [6, 117] camera poses

51




Table 2.2: Publicly available scene datasets. These datasets provide scene descriptions, from which a
rendering framework can generate the information required, for instance, panoramic image and its
registered depth.

Scene Dataset Source # Scenes How to render
Replica [117] |Photo-realistic 18 Al Habitat Sim [119],
Replica3zé0o renderer [122]

Table 2.3: Publicly available panoramic used in this thesis. | also mention what split of the dataset is
consider in this work.

Dataset Splitting
Matterport3D [6] Wang et al. [81]
Stanford2D-3D-S [109] | Wang et al. [81]
Structured3D [108] Zheng et al. [108]

Zhang et al. [93] Pintore et al. [45]
Pano3DLayout [11] Pintore et al. [11]
Indoor3Dmapping [123]| Pintore et al. [11]
360D [80] Zioulis et al. [71]

available datasets [72, 109, 49, 108], containing thousands of indoor scenes and
commonly adopted for benchmarking 3D layout recovery [54, 45, 107, 103, 85]. How-
ever, due to the focus of prior works, these benchmarks mostly consisted of MWM
structures [102]. Since the method introduced in this dissertation is more general,
the testing set has been extended with the publicly available AtlantalLayout [45]
dataset, which also contains rooms with curved walls or meeting at non-right angles.
In addition, we prepared a specific dataset, called Pano3DLayout, containing more
complex environments, not included in previous benchmarks, such as, for example,
scenes with sloped or stepped ceilings, domes, and interconnections of different
rooms.

2.9 Wrap-up

Considering all of the above, | have focused the research on deep learning solutions
based on panoramic image analysis for the reconstruction and representation of
indoor environments, either using it standalone or eventually combining it with
sparse geometric information. The main challenge is that we have to reconstruct
such a model from very partial input, be it images alone or with sparse depth
measurements, with lots of noise, holes, and clutter. Thus, this thesis is focused
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on finding clever ways to rapidly inferring geometry or layout from corrupted and
minimal input (i.e., one image per room), without requiring users to do more than
a single acquisition or to manually edit models. Specially, this thesis is focused
on depth estimation from a single panoramic image (Chapter 3), sparse-to-dense
estimationfrom a single panoramic image and its registered sparse depth map
(Chapter 4) , and layout estimation from a single panoramic image (Chapter 5). All
of these solutions will be designed as end-to-end networks, converting equirect-
angular input to the desired output. All the networks will be trained through a
supervision learning process, exploiting large amounts of data on which the ground
truth desired output is known.

2.10 Bibliographic notes

Several portions of this chapter have been taken from my contribution published in
EVOCATION project deliverables [14, 15, 16], that | have later expanded in this thesis.
These portion include the definitions of the problems and references to benchmark
datasets. The survey of related work is adapted from the related work sections of
the articles that | have publised in journals [12, 11] and conference proceedings [10].
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Chapter 3

Deep estimation of dense depth
information of an interior
environment from a single
omnidirectional image

As a first contribution towards reconstructing indoor information from
purely visual data, | introduce in this chapter a novel deep neural network
to estimate a depth map from a single monocular indoor panorama. The
network directly works on the equirectangular projection, exploiting the
properties of indoor 360-degree images. Starting from the fact that
gravity plays an important role in the design and construction of man-
made indoor scenes, we propose a compact representation of the scene
into vertical slices of the sphere, and we exploit long- and short-term
relationships among slices to recover the equirectangular depth map.
Our design makes it possible to maintain high-resolution information
in the extracted features even with a deep network. The experimental
results demonstrate that our method outperforms current state-of-the-
art solutions in prediction accuracy, particularly for real-world data.

3.1 Introduction

Understanding the 3D layout of an indoor scene from images is a crucial task in many
domains [124, 1, 8]. Fast depth estimation from single images is a fundamental
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sub-problem, as associating metric information to visual data is paramount for
a variety of applications, including mobile Augmented Reality platforms, indoor
mapping, autonomous navigation, 3D reconstruction, and scene understanding.

Since estimation of depth from single images is inherently ambiguous, all solu-
tions must rely on prior information to guide reconstruction towards plausible
architectural shapes that fit the input. In this context, we have recently seen an
extraordinary development of data-driven methods that learn these priors from
example data.

Early approaches were designed for a camera with a conventional limited field-of-
view (FoV) (e.g., FCRN [61]). In recent years, however, 360° capture has emerged as
a very appealing solution, since it provides the quickest and most complete single-
image coverage and is supported by a wide variety of professional and consumer
capture devices that make acquisition fast and cost-effective [125]. Since adapting
monocular depth estimation models designed for traditional images to 360° depth
estimation has been shown to produce sub-optimal results [71], specific 360° solu-
tions have been recently introduced. In this context, many recent works [77, 71, 126]
have adapted perspective depth estimation methods to omnidirectional imagery
by proposing various types of distortion-aware convolution filters. However, few
of them have explored the large-FoV nature provided by 360° images, which can
provide, in one shot, the full-geometric context of an indoor scene [72].

In this work, we introduce a novel deep neural network solution, called SliceNet,
which predicts the depth map of an indoor 360° image leveraging the characteristics
of a gravity-aligned equirectangular projection of an interior scene. Since gravity
plays an important role in the design and construction of interior environments,
world-space vertical and horizontal features have different characteristics in most,
if not all, man-made environments. Our network design starts from the assumption
that capture of the scene through an equirectangular image is aligned to the gravity
vector (i.e., camera is placed on an horizontal-ground plane), too, and, thus, it is
rational to assume that gravity-aligned processing of images can directly exploit
gravity-aligned world-space features [52]. In our network, an input equirectangular
image is partitioned into vertical slices by performing a contractive encoding to
reduce the input tensor only along the vertical direction, resulting in a compact
and flattened sequence of slices made of a set of features. To preserve global
information, we perform slicing over four different resolution levels, concatenating
the result at the end (Sec. 3.2). This sequential representation enables the use of a
convolutional long short-term memory (LSTM) network [127] to recover, with low
computational overhead, long- and short-term spatial relationships among slices.
Decoding proceeds symmetrically with respect to encoding, thereby increasing only
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the vertical resolution of the feature map, until the target resolution is reached
(Fig. 3.1a).

Our contributions are summarized as follows:

e We introduce a slice-based representation of an omnidirectional image that
directly exploits the characteristics of the equirectangular projection of an
indoor scene, without the need for distortion-aware convolution and transfor-
mation [71, 81], multi-branch architectures [81, 84] or additional information
and priors [84]. Our representation based on vertical slices is very robust, as
demonstrated by the important advantage in performance achieved in real-
world cases (e.g., Stanford2D3D [109] and Matterport3D [6]), where a large
area around the poles of the panorama is not acquired by the instrument
(see Sec. 3.4.3 for details).

e We specialize and refine feature flattening, which has proven to be effective
to regress one-dimensional tensors [54], for bi-dimensional depth encoding.
In particular, we introduce an asymmetric contraction of the input tensor
based on vertical slicing at different resolutions, so that the resulting feature
map is flattened along a single direction (in our case, the sphere horizon),
and we merge slices at different resolutions, so as to exploit deeper levels
with larger receptive fields to capture global information, while at the same
time exploiting higher resolution layers to preserve high-frequency details
(Sec. 3.2). Our ablation study (Sec. 3.4.4) demonstrates the advantages of
our approach.

e We introduce, for depth estimation from a single image, a LSTM multi-layer
module to effectively recover long and short term spatial relationships be-
tween slices in the presence of a large number of features per slice due
to the concatenation of multiscale representations. With this architectural
choice, the decoder is simple and follows the same multi-layer scheme of
the encoder with a vertical upsampling rather than a vertical reduction. We
do not need, in particular, the chaining of up-projection blocks [62], making
it easier to scale the method to different input resolutions. The ablation
study (Sec. 3.4.4) confirms the benefits of the method by comparing differ-
ent decoder configurations with or without LSTM and chaining up-projection
blocks.

We tested our network on both synthetic and real datasets [109, 6, 71, 80, 108].
Our experimental results (Sec. 3.4) demonstrate that our method outperforms
current state-of-the-art methods [61, 71, 81] in prediction accuracy, especially when
working on real-world scenes. Exploiting gravity alignment leads to an efficient
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network structure, without significant limitations on the applicability of the ap-
proach. As mentioned, gravity-aligned capture is a very common setup, and, as
determined by our tests, Sec. 3.4.4, all the public 3D indoor datasets commonly
used for training and testing reconstruction solutions, both synthetic [80, 108] and
real [109, 6], appear to have very small orientation deviations. Even in cases where
this assumption is not verified at capture time, several orthogonal solutions exist
to gravity-rectify images in a pre-processing step (e.g., [50, 51, 52]), simplifying
the practical application of gravity-oriented methods. Moreover, as demonstrated
by our ablation study (Sec. 3.4.4), our method is robust to small variations of the
inclination.

(a) (b)

Figure 3.1: Network architecture. Our architecture is scalable with respect to the input resolution.
In Fig. 3.1a, to simplify comparison with other methods, we show an example with an input image
having size 3 x 256 x 512. A ResNet50 encoder [62] extracts four layers at different resolutions.
From each resolution layer we obtain a sliced feature map of 256 x 512 (purple blocks in Fig 3.1a,
details in Fig. 3.1b). By concatenating the resulting four layers we obtain a single bottleneck with 512
slices and 1024 features, which is refined using a RNN scheme (cyan blocks). The decoder proceeds
symmetrically, producing a depth map at the same input image resolution.

3.2 Network architecture

Almost all CNNs for this task follow an encoder-decoder architecture [61]. Such
a structure contains a contractive encoding part that progressively decreases the
input image resolution through a series of convolutions and pooling operations,
giving higher-level neurons large receptive fields, thus capturing more global infor-
mation. As the target depth map is a high resolution image, the decoder regresses
to the desired output by upscaling this representation. Our work introduces several
important novelties in this structure.

Figure 3.1a illustrates the structure of our network for a 256 x 512 input. Note
that our architecture is scalable with respect to the input resolution. In Sec.3.4
we provide results with the same input sizes adopted by recent state-of-the-art
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methods [61, 71, 81], including 512 x 1024 resolution.

The first part of our network is devoted to extracting relevant low/mid/high-level
features from the input tensor. To do that, we exploit ResNet-50, a deep neural
network that supports, through a residual learning framework, the training of
very deep networks without degradation problems [62]. Differently from other
approaches [61, 71, 81], we exploit not only the deepest layer of ResNet, but the
last four layers, processing them in parallel, in order to build a multi-resolution
spatial representation, discussed in detail below. Following our gravity-aligned
model, we recover from these 4 layers (Fig. 3.1a, red), 4 representative slice layers
(Fig. 3.1a, green), having all the same size of 256 x 512 (i.e., 256 features for 512
slices). Figure 3.1b illustrates how we produce the sliced representation from the
ResNet layer. First, we reduce the vertical dimension by a factor of 8 through
an asymmetric convolution module with stride (2,1) (A-Conv), applied 3 times,
contains a 2D convolution, a batch normalization module and a Parametric Rectified
Linear Unit [128] PReLU(x) := max(0,x) +a*min(0,x), where a is the coefficient of
leakage learned during training. We selected PReLU instead of commonly adopted
ReLU and Leaky-ReLU to minimize the vanishing gradient problems that are common
in depth estimation. This kind of adaptive activation leads to convergence even
on datasets with very different characteristics (e.g., real-world acquisition with
missing parts or synthetic rendering whih high levels of noise). Sliced encoding is
then completed by horizontally interpolating each feature map to have the same
number of slices (i.e., 512), and by vertically reshaping the features to the target
size (i.e., 256).

Finally, the four layers are concatenated in a single sequence (i.e., 1024 x 512),
obtaining 1024 features for each of the 512 vertical slices of the input sphere. In
this way, we obtain a bottleneck representation that exploits deeper levels with
larger receptive fields to capture global information, and higher resolution layers
to preserve high-frequency details.

It should be noted that both indoor scenes and equirectangular projections have
particular properties that we exploit in our design. For example, vertical lines are
very common in the scene, and are practically not deformed in the projection while
the horizontal ones are more so. Because of these characteristics, we expect each
slice sequence along the dominant vertical direction be related to the others by
both short-term and long-term spatial dependencies [53, 54, 45]. Thus, we start
our decoder by feeding such a sequence to a RNN multi-layer block [127]. In our
case, we use a bi-directional LSTM (long-short term memory) having 512 hidden
layers, which outputs a timestep of size 2 x 512 for each of the 512 slices, so that
the final output is a feature map having the same size of the RNN block input,
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i.e., 1024 x 512. Once reshaped to 1024 x 1 x 512, this flattened representation
can be upsampled to the desidered output size (i.e., 1 x 256 x 512) by following
steps symmetrical to those used for encoding reduction. Actually, thanks to the
flattened encoding and RNN features refinement, our network does not require
the chaining of skipping up-projection blocks for upsampling, such as FCRN [61],
also common in other recent works [81]. Our decoder, instead, consists of n layers,
where for each layer we perform an upsampling of a factor of two of the height
only, followed by a convolutional module A-Conv identical to that of the reduction
phase (2D convolution and PReLU activation), but with stride (1,1). In the example
of Fig. 3.1a, the decoder consists of n = 8 layers, in order to achieve the targeted
vertical resolution (i.e., 2" = 256), and the resulting map is a tensor of 1 x 256 x 512
representing the depth prediction for each of the input pixels. We also tested
different upsampling modules adapted to our data encoding, (e.g., FCRN [61]) but
experiencing lower performance, given our particular slice-based model. Numerical
details are exposed in the ablation study in Sec. 3.4.4.

3.2.1 Detailed network architecture description

Fig. 3.2 provides details on all the individual network components and is aimed to
complement the general description provided in the paper. Our deep convolutional
neural network (CNN) architecture takes as input an equirectangular RGB image
and outputs a registered depth image at the same resolution of the input. The
detailed structure of the network is illustrated in Fig. 3.2. The network uses an
encoder/decoder structure. The encoder is presented in Fig. 3.2a, while the decoder
is presented in Fig. 3.2b.

The first 8 layers of the network consist of a standard ResNet encoder (Fig. 3.2a).
The results presented in the paper are obtained with a ResNet50, but we verified
that very good performances can also be obtained and with ResNet18 and ResNet34,
with a considerable increase in terms of speed. The last 4 levels of the encoder are
sliced, keeping the horizontal dimension unchanged and compressing the vertical
one. This way, we accumulate a series of features associated with each element
of the horizontal dimension (i.e., a slice). In order to merge the features, coming
from different resolution levels and associated to the same slice, we interpolate
the 4 maps so that they have the same horizontal dimension (i.e., 512). We then
reshape and concatenate the 4 maps so as to obtain a single-sequential bottleneck
(i.e., 1024 x 512).

The decoder (Fig. 3.2b) exploits a bi-directional LSTM with 512 hidden layers, which
outputs a time-step of size 2 x 512 for each of the 512 slices. So, that the final
output of this block is a feature map having the same size of the RNN block input,
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(a) Encoder

(b) Decoder

Figure 3.2: Detailed illustration of the SliceNet architecture. This illustration complements the
architectural view provided in the paper. The network uses an encoder/decoder structure. The encoder
is presented in Fig. 3.2a, while the decoder is presented in Fig. 3.2b. The last 4 levels of the encoder
are sliced, keeping the horizontal dimension unchanged and compressing the vertical one (Fig. 3.2a).
From the resulting sliced sequence (1024 x 1 x 512), we recover long and short term information
through a LSTM module (Fig. 3.2b). The final depth map is recovered by following steps symmetrical
to those used for encoding reduction.

i.e., 1024 x 512. Once reshaped to 1024 x 1 x 512, this flattened representation
is upsampled to the desired output size (i.e., 1 x 256 x 512) by following steps
symmetrical to those used for encoding reduction.

3.3 Loss function and training strategy

Similarly to other recent state-of-the-art solutions (e.g., BiFuse [81]), we build our
objective function on top of the robust Adaptive Reverse Huber Loss (BerHu) [63]:

le| el <c
B. = ; A
c(e) {62;:2 le| > ¢ (3.1)

where e is the error term and the parameter ¢ determines where to switch from L1
to L2. In order to set the ¢ value adaptively, we follow the same approach of Laina
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et al. [61], so that c is set, in every gradient step, to 20% of the maximal error of
the current batch. When applied to the depth maps, e = D;; —Dl’-‘j at each pixel
(i, J), where D and D* are, respectively, the predicted and the ground-truth depth
maps. Since one of the typical problems encountered in predicting depths using
convolutional networks is the loss of small details [61, 71], which is particularly
noticeable when dealing with higher resolution images, we introduce an additional
term by applying BerHu also to the gradient components obtained by convolving
the maps with Sobel filters of width 3 to approximate the horizontal derivatives
V,D and V,D* and the vertical ones V,D and V,D*. Consequently, the full loss
function L that guides our training is:

Le, ¢, (D:D*) =B, (D _D*)"‘
B.,(ViD—V.D")+ (3.2)
B, (VyD—V,D")

With a little abuse of notation, we intend the application of the function to the map
as the sum of results on each individual pixel. The parameter ¢ that determines the
shape of each function B, is computed at each batch independently for the depth
term (c;) and the two gradient terms (i.e., ¢; is independent from ¢; and shared
for the x and y gradient terms). Moreover, in order to gracefully handle large areas
with missing samples common in real-world data (e.g., the upper and lower parts
of the hemisphere are not sampled by the instrument, as in Matterport [6]), we
take the common approach [71] of ignoring errors on missing areas with a per-pixel
binary mask.

In all experiments, we obtain the best performance when training with the loss in
Eqg. 3.2, even compared to other robust solutions [71], experiencing a noticeable
difference when training and comparing with real-world datasets [109, 6], which
contain noticeable amounts of noise. The gradient-based component improves
image sharpening, as shown in the comparison presented in Sec. 3.4.4 and Fig. 3.6.

3.4 Implementation and results

Our approach is implemented using PyTorch 1.5.1 and has been tested on a large
variety of indoor scenes. Source code and models will be made available to the
public.

3.4.1 Datasets

In this paper, we report results obtained on four publicly available datasets [109,

6, 80, 108] to facilitate comparison. These benchmarks were also adopted by the
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Table 3.1: Quantitative performance on real and virtual world datasets. We show our performance
evaluated on standard metrics and compared to the recent state-of-the-art approaches. In all cases
our approach outperforms the competition.

Dataset Method MRE | MAE | RMSE (RMSE log| & & 03
FCRN [61] 0.1837 | 0.3428 | 0.5774 | 0.1100 |0.7230 |0.9207 | 0.9731
OmniDepth [71]| 0.1996 | 0.3743 | 0.6152 | 0.1212 | 0.6877 | 0.8891|0.9578
Stanford2D3D | BiFuse [81] 0.1209 | 0.2343 | 0.4142 | 0.0787 |0.8660|0.9580|0.9860
Our 0.0744| 0.1048 | 0.1214 | 0.0207 |0.9031|0.9723 [0.9894
FCRN [61] 0.2409 |0.4008|0.6704 | 0.1244 |0.7703 | 0.9174 | 0.9617
Matterport3D | OmniDepth [71]| 0.2901 | 0.4838 | 07643 | 0.1450 [0.6830|0.8794|0.9429
BiFuse [81] 0.2048|0.3470|0.6259 | 0.1134 |0.8452|0.9319 [0.9632
Our 0.1764 [ 0.3296 | 0.6133 | 0.1045 | 0.8716 |0.9483| 0.9716
FCRN [61] 0.0699| 0.1381 | 0.2833 | 0.0473 |0.9532|0.9905|0.9966
360D OmniDepth [71]| 0.0931| 0.17706 | 0.3171 | 0.0725 |0.9092|0.9702 | 0.9851
BiFuse [81] 0.0615 | 0.1143 [0.2440| 0.0428 |0.9699|0.9927 [0.9969
Our 0.0467| 0.1134 | 0.1323 | 0.0212 |0.9788 |0.9952|0.9969

recent state-of-the-art works [61, 71, 81] comparable with our method. Matter-
port3D [6] and Stanford2D-3D-S [109] act as real-world examples. Similarly to Wang
et al. [81], we used their official splitting and a resolution of 512 x 1024. 360D [80]
offers instead a synthetic benchmark. It contains 35,977 panoramas rendered
by path-tracing scenes from two synthetic datasets (SunCG and SceneNet) and
two realistic datasets (Stanford2D3D and Matterport3D). In this case, we adopted
the splitting provided by Zioulis et al. [71] and a resolution of 256 x 512, which
is a common baseline for many approaches [61, 71, 81]. At the time of this writ-
ing, the original SunCG data is no longer available for downloading due to legal
reasons. Additionally, we present our performance on the recent Structured3D syn-
thetic dataset [108] to support ablation and gravity-alignment robustness studies
(Sec. 3.4.4).

3.4.2 Experimental setup and timing performance

We trained the network using the Adam optimizer [129] with 8; = 0.9, 3, = 0.999,
on four NVIDIA RTX 2080Ti GPUs (11GB VRAM) with a batch size of 8 and a learning
rate of 0.0001 for real-world data and 0.0003 for synthetic data. We adopt the
specific panoramic data augmentation proposed by Sun et al. [54]. With the given
setup, starting from default weight initialization, the best valid epoch was around
60 for real-world data and 90 for synthetic data. The average training speed is
about 55ms/img for a 256 x 512 input image and 117ms/img for a 512 x 1024
image. Single-GPU inference time is 74ms (13 fps) for a 1024 x 512 image and 44ms
(23 fps) for a 512 x 256 input image, showing that our method can be integrated in

62



interactive settings. It is important to note, in terms of computational complexity,
that the best competing method, BiFuse [81], has 253M parameters and multi-
branching, while our much simpler architecture has only 75M parameters, also
leading to reduced inference time (e.g., 74ms vs. 616ms for a 1024 x 512 image).
Additional details are provided in Sec. 3.4.4.

3.4.3 Quantitative and qualitative evaluation

We evaluated our method with the same error metrics used in prior depth esti-
mation works [61, 71, 81]: mean absolute error (MAE), mean relative error (MRE),
root mean square error of linear measures (RMSE), root mean square error of log
measures (RMSE log scale invariant), and three relative accuracy measures 0;, &
and 63, defined, for an accuracy d,, as the fraction of pixels where the relative
error is within a threshold of 1.25”. Tab. 3.1 illustrates our quantitative results, in
comparison with the most recent state-of-the-art works for which source code or
numerical performance on the same data is available and using consistent training
and testing setups. We compare with OmniDepth [71] (i.e., RectNet), BiFuse [81],
as well as FCRN [61], which is the baseline of many current approaches (e.g., Bi-
Fuse [81]). Our method outperforms the others in terms of accuracy for all metrics,
more markedly in cases of real data (Matterport3D and Stanford2D-3D-S in Tab. 3.1).
In the case of synthetic data (360D in Tab. 3.1), our method also improves over
other approaches, although here differences are smaller, due to the fact that virtual
renderings guarantee uniform 2D sampling and very few discontinuities [71] (except,
for example, for occlusions), to the benefit of methods based on symmetrical 2D
reduction and expansion. Figures 3.3, 3.4, and 3.5 illustrate qualitative results on
real and synthetic data. Figure 3.3 shows our prediction (Fig. 3.3c) on real-world
RGB images (Fig. 3.3a) taken from Matterport3D[6], compared to ground truth
(Fig. 3.3d) and BiFuse [81], for which the pre-trained model on Matterport3D was
available. As we can see, our method finds a more accurate depth even in areas
with smaller and repetitive structural details (first row of Fig. 3.3), in the case of
large environments (second row of Fig. 3.3), and also for non-Manhattan-World
but regular environments, as in the case of arched vaults (third row of Fig. 3.3).
Figure 3.4 shows qualitative results on 360D synthetic data [80], compared with
the dataset creators’ method [71]. The highlighted details illustrate qualitative
differences. In particular, our method can infer a detailed reconstruction for typical
man-made objects (Fig. 3.4, first row), even if they are far away (Fig. 3.4, second
and third rows),
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(a) RGB (b) BiFuse [81] (c) Our (d) Ground truth

Figure 3.3: Qualitative comparison on real-world datasets. Depth maps are inferred from real-world
captured RGB data (Matterport3D [6]). The first column is the input RGB image (Fig. 3.3a), the second
one is the depth estimated by BiFuse [81] (Fig. 3.3b), the third one is the depth estimated by our
method (Fig. 3.3¢), and the fourth one is the ground-truth depth acquired by the instrument (Fig. 3.3d).
Black pixels are missing samples in the ground-truth depth. All methods have been compared using
the same original datasets and setting, without any further pre-process or alignment step.

3.4.4 Ablation and gravity alignment study

We present in this section the model ablation and computational costs (Tab. 3.2),
and specific experiments showing the effectiveness of using the gravity-alignment
prior (Tab. 3.3).

Table 3.2: Ablation study. The ablation study, performed on the Structured3D dataset[108], demon-
strates how our proposed designs improve the accuracy of prediction. Results show only comparable-
stable cases that actually increase it. We show in the last row the full architecture setup. PReLU
activation provides identical benefits for each configuration in terms of convergence.

ResNet-50 Slicing LSTM | Asym |Grad |Params| MRE | MAE | RMSE R:\:;E )] & &

23.5M 24.8M (last 1 6.3M| No | 54.6M | 0.4712 |0.5520| 0.1596 | 0.0341|0.6845|0.8684 | 0.8824

23.5M 33M (last 4 6.3M| No | 62.8M |0.2990| 0.5014 | 0.0775 | 0.0154 | 0.7045 | 0.8784 | 0.9124

23.5M 24.8M (last 1) |12.5M | 6.3M | No | 67.1M [0.2988|0.4814 | 0.0750 | 0.0149 | 0.7702 | 0.8892 | 0.9222

23.5M 33M (last 4) [12.5M | 6.3M | No | 75.3M | 0.0147 | 0.1223 | 0.0558 | 0.0102 | 0.8854 | 0.9376 | 0.9492

23.5M 33M (last 4) |12.5M | 6.3M | Yes | 75.3M | 0.0147 | 0.1180 | 0.0549 | 0.0109 | 0.9085 | 0.9451 | 0.9502

Ablation study and complexity. Our ablation experiments are presented in Tab. 3.2.
To test the key components of the approach, we use results obtained with Struc-
tured3D [108], a synthetic dataset containing over 21,000 rendered rooms, that
include, among other features, uniformly sampled color and very accurate depth
panoramas. This very recent dataset has not yet been adopted by comparable
works (Sec. 3.4.3), but provides an additional valuable benchmark for our method.
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(a) RGB (b) OmniDepth (c) Our (d) Ground truth

Figure 3.4: Qualitative comparison on synthetic datasets. Depth maps are inferred from synthetic
data (360D [80]). We show in the first column the rendered RGB image (Fig. 3.3a), the estimated
depth by OmniDepth [71] (Fig. 3.4b), by our method (Fig. 3.4c) and the rendered ground-truth depth
(Fig. 3.3d). Black pixels are invalid pixels not rendered by the raytracer.

The design variations discussed in the ablation study are those that consistently
match decoder and encoder solution within our specific architecture and that better
characterize our approach. Since our network has a simple single-branch structure,
the computational cost of the model is directly related to the number of parameters
of the model and its components. We thus illustrate the computational complexity
of our method by presenting our network partitioned into macro blocks with their
respective parameters: the ResNet-50 features encoder block, the Slicing block
(featuring slicing and asymmetric dimensional reduction), the LSTM block and the
Asym asymmetric upsample block. We also show the overall number of parameters
for each setup (i.e., Params). For each block, the number of parameters needed
is independent of the input image resolution, except for the LSTM block and the
last upsampling, where the value indicated (i.e., 12.5M) is relative to the 256 x 512
resolution, which would be 16.8M for 512 x 1024. The results in Tab. 3.2 show the
improvements obtained when using the last 4 ResNet layers, compared to using
only the last one, in the Slicing block. Results at row 3 and 4, instead, show the
benefits of adopting LSTM bottleneck-features refinement, which are appreciable
already using only one ResNet output level, and become very consistent on the
full pipeline. In addition, we present a comparison on whether or not to use the
gradient component in the loss function, which mainly affects the sharpening of
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(a) RGB (b) Prediction (c) Ground truth

Figure 3.5: Qualitative performance. We present additional qualitative performance on Stan-
ford2D3D [109] and Structured3D [108].

recovered depth details. Figure 3.6 shows a qualitative comparison between our
model trained without or with the gradient loss. Many details typical of indoor
environments (i.e., wall corners, objects with repetitive patterns), are lost without
the contribution of the gradient component, even if from the point of view of the
average numerical error the difference seems small. Since using the gradient, as for
the PReLU activation (Sec. 3.2), provides identical benefits with every configuration,
we expose the gradient contribution only for the last configuration. In particular,
PReLU does not directly affect the best performance obtainable on single datasets
but, instead, the ability to efficiently converge on both real and synthetic datasets.
As an example, similar performances can be obtained using ELU without batch
normalization on the synthetic OmniDepth dataset [80], but the same model would
need batch normalization to work with Matterport3D [6], as also discussed in previ-
ous works [71, 81]. As shown in Tab. 3.2, each block adds a low and reasonable cost
to the model, having as a counterpart a substantial increase in performance. In
terms of computational cost, a standard decoder for equirectangular image based
on FCRN [61], like the one adopted by BiFuse [81], needs about 38M of parameters,
while the sum of our LSTM module (12.5M) and our actual decoder (6.3M) reaches
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18.8M of parameters in total.

Table 3.3: Gravity alignment study. We test the robustness of our method to horizontal ground plane
misalignment on Structured3D [108] and Matterport3D [é].

MRE | MAE | RMSE RMSE 8
log
Structured3D | 0° | 0.0147 | 0.1180 |0.0549| 0.1012 |0.9085
Our +2°10.0217 | 0.1393 |0.0658 | 0.1368 | 0.8776

+5°[0.0263| 0.1601 | 0.0714 | 0.1430 | 0.8527
Matterport3D| 0° | 0.1764 | 0.3296 | 0.6133 | 0.1045 | 0.8716
Our +2°[0.2645]0.4205|0.7026 | 0.1334 | 0.7256
+5°10.3032|0.4806 | 0.7720 | 0.1482 | 0.6879
Matterport3D| 0° |0.2048|0.3470 |0.6259 | 0.1134 | 0.8452
BiFuse +2°]0.3888| 0.5378 |0.9805 | 0.1852 | 0.6144
[81] +5°10.4905|0.6899 | 1.0225 |0.2250 | 0.5440

Gravity evaluation of benchmark datasets. Our method assumes that the camera
tripod is placed on a horizontal plane [52], which is common practice for cap-
turing an indoor scene. We verified such feature on the four common publicly
available datasets adopted above. All synthetic datasets [80, 108] are perfectly
aligned by design. For real-world datasets [109, 6], we exploited the alignment
pipeline of Zou et al. [73] to evaluate the misalignment with the ground plane.
We found that the average misalignment with respect to the gravity vector of the
Stanford2D3D [109] dataset is about 0.36 degrees, while the average misalignment
of the Matterport3D [6] dataset is about 0.61 degrees (full statistics about gravity
misalignment in Sec. 3.4.6).

Robustness to gravity misalignment. Even if our method assumes to work with
gravity-aligned scenes, we do not require perfect alignment, as demonstrated by
our consistent results with the mentioned real-world datasets (Tab. 3.1). Moreover,
we verified that the model, trained on the original aligned data, is robust to align-
ment errors, even larger than those appearing in practice. To test the behavior of
our method in the presence of wider inclination errors, we exploit the Structured3D
synthetic [108] dataset (such that the baseline is surely aligned to the ground plane)
and Matterport3D [6] as real-world dataset. Starting from their initial baseline, we
generate two new testing sets by randomly rotating the up vector of the camera,
simulating a much wider misalignment to gravity — i.e., 2° and +5° maximum
inclination error, as reported in Tab. 3.3. =2° can be considered as a reliable error
bound for a manual alignment without any correction, while £=5° is a deliberately
wide range (additional tests are presented in Sec. 3.4.6). Results in Tab. 3.3 show
that our method produces reliable predictions even with significant camera mis-
alignment. Performance on the Structured3D dataset reaches good accuracy in
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all cases and low error values still competitive with state-of-art results. E.g., 0;
is above 0.9 for the aligned case and degrades by only 0.03 for the moderate
misalignment error of £=2° and 0.06 for the large misalignment error of £5°. The
degradation obtained for Matterport3D are larger, but, by comparing the results
with those in Tab. 3.1, we note that the results of our method on a dataset with
42° error are still aligned with some of the state-of-the-art results obtained by
other methods on perfectly aligned datasets. Moreover, we also present here the
results obtained with BiFuse [81], for which the pre-trained model was available
with the same training set, showing a much larger degradation in performance for
non-gravity aligned data. This comparison shows how gravity alignment is also a
fundamental assumption for other methods. It should be noted that these large
errors can be avoided in practice by imposing capture constraints or performing a
gravity-alignment pre-processing.

(a) Ground truth (b) No grad. (c) With grad.

Figure 3.6: Loss function qualitative comparison. Example of qualitative effects depending on
gradient loss (Sec. 3.3).

3.4.5 Special cases and limits

In our experiments, we have verified that our model returns consistent results
with all the man-made environments present in the tested datasets [109, 6, 80,
108], including scenes that can be defined as almost-outdoor (first row of Fig. 3.7).
However, the quantitative and detailed performances depend on the ground truth
data adopted, which in the case of depth often have masked parts due to lack of data
from the sensor or unresolved ambiguities, such as reflections and fatal occlusions.
In the second row of Fig. 3.7, we show one of these examples, that is one of the
worst cases in our testes. Here the ground truth depth has numerous discontinuities
and missing samples due to reflections, which are not easily predictable by our
model. A large part of the structure is hidden by the insulating material.
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(a) Input (b) Ground truth (c) Out put

Figure 3.7: Special cases. First row: results on almost-outdoor environment. Second row: one of the
worst cases in our tests.

3.4.6 Detailed gravity-alignment study

We provide a detailed gravity-alignment study that shows that available bench-
mark datasets are all well-aligned with respect to the gravity vector and that our
method is robust to small gravity misalignments. These additional results show
that our method can be directly applied in practice, even without recurring to
pre-processing [52].

Our approach starts from the assumption that gravity plays an important role in
the design and construction of interior environments, and that world-space vertical
and horizontal features have different characteristics in most, if not all, man-made
environments. Based on this fact, we strive to exploit gravity-aligned world-space
features by performing a gravity-aligned processing of images. This assumes that
input equirectangular images are aligned to the gravity vector. While this assump-
tion could be managed by gravity-aligning images before our pipeline, it is rational
to assume that, in most cases, captured images already meet these constraints. To
verify this fact, we performed a study of gravity-alignment of available datasets,
and verified the robustness of our method to small misalignment.

Gravity-alignment evaluation of benchmark datasets. All the commonly available
synthetic datasets [80, 108] are perfectly aligned by design, and they thus perfectly
meet the constraint.

The study, thus, focuses on real-world capture. A common practice for capturing an
indoor scene is to place the camera on a tripod placed on a horizontal plane [52].
This capture method is in fact adopted in all the datasets available for benchmarking
and also adopted in our work and the compared state-of-the-art methods [61, 71,
81].

69



For real-world datasets [109, 6] we exploited the alignment pipeline of Zou et
al. [73] to evaluate the misalignment with the ground plane (see Fig. 3.8).

In our experiments we found that the average inclination, with respect to the
gravity vector, is 0.36 degrees for the Stanford2D3D [109] dataset, while the average
misalignment of the Matterport3D [6] dataset is 0.61 degrees.

(a) Stanford2D3D (b) Marterport3D

Figure 3.8: Real-world datasets vertical misalignment. The average inclination with respect to
the gravity vector of the Stanford2D3D [109] dataset is about 0.36 degrees, while the average
misalignment of the Matterport3D [6] dataset is about 0.61 degrees. Outliers are mainly due to
inaccurate line detection and classification of the alignment tool [47].

Indeed these values are really minimal, also considering that a significant part of
the angular error is due to low accuracy detecting lines and estimating dominant
direction by the automatic alignment tool [47]. We can, therefore conclude that
available datasets all have a sub-degree accuracy with respect to gravity alignment.

Robustness to gravity misalignment. Even if our method assumes to work with
gravity-aligned scenes, we do not necessary require a perfect alignment. In addi-
tion to the results and comparison already presented in the paper, we show, for
completeness, the results obtained by introducing various degrees of error in the
alignment (0°, +2°, £-5°). We also performed a test, combining both training and
testing of Structured3D [108] with and without alignment to the ground plane.

Results in Tab. 3.4 demonstrate the consistency of our model and effectiveness of
our assumption, where the best performances are obtained the more the images
are aligned with the ground plane, while the results do not improve even if a specific
training is done on distorted data in order to find a better fit on the inclined images.
Moreover, the method appears fairly robust to small alignment errors (< £2°), and
degrades as soon as input images are severely misaligned.

In other words, the effectiveness of the network is not given by the specific fitting
of the training data with the expected result but by the consistency of the scene
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Train | Test |\ | mae | rvse | RMSE o)
incl. | incl. log

0° 0° 0.0147 0.1180 | 0.0549 0.1012 0.9085

0° +2° 0.0217 0.1393 | 0.0658 0.1368 0.8776

0° +5° 0.0263 0.1601 | 0.0714 0.1430 0.8527
+2° 0° 0.0238 0.1516 | 0.0632 0.1288 0.8672
+2° | £2° | 0.0250 | 0.1589 | 0.0716 0.1434 | 0.8464
+2° +5° 0.0281 0.1716 | 0.0743 0.1501 0.8310
+5° 0° 0.0231 0.1530 | 0.0648 0.1245 0.8638
+5° | £2° | 0.0250 | 0.1613 | 0.0721 0.1388 0.8438
+5° | £5° | 0.02758 | 0.1697 | 0.0735 | 0.01422 | 0.8362

Table 3.4: Performance when training with misaligned images. We show, for completeness, the
results obtained by combining both training and testing with and without alignment to the ground
plane on the Structured3D dataset [108].

with our specific network architecture.

3.5 Conclusions

This chapter has introduced a novel deep neural network capable to rapidly esti-
mate a depth map from a single monocular indoor panorama. The presented design
exploits gravity-aligned features, characterizing man-made interior environments
through a compact representation of the scene into vertical spherical slices. We
exploit long- and short-term relationships among slices to recover the equirectangu-
lar depth map, and maintain high-resolution information in the extracted features
within a deep network. Our experimental results demonstrate that our method
outperforms current state-of-the-art solutions in prediction accuracy, particularly
in the case of real-world data with noise and missing data.

While the current method targets monocular reconstruction, we plan to extend it to
multi-view in the context of structured 3D reconstruction of indoor environments.
We are also looking at integrating it with interactive solutions, where we plan to
use real-time depth estimation for volume and surface computation in AR settings.
Moreover, while the approach was designed for indoor scenes, gravity alignment of
features occurs also in other settings, especially man-made ones. We thus envision
an extension of our approach to outdoor environments, in particular urban scenes.
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3.6 Bibliographic notes

Most of the content of this chapter was presented in the CVPR 2021 contribu-
tion [10] that | have co-authored, and for which | have significantly contributed
to the methodology, implementation, testing, and validation of the method, as
detailed in Chapter 1. The work has been very well received by the computer vision
community (e.g., 59 citations on Google Scholar at the time of this writing). Various
works have used our results as baseline to use for demonstrating advancements for
the state-of-art (e.g., [130, 131]), and several of them have proposed follow-ups and
derivations e.g., [132]). In particular, SliceNet [10] and HoHoNet [107] are discussed
in the recent survey by Gao et al. [133] as the methods that introduced the squeez-
ing of the extracted feature maps into a horizontal 1D representation due to the
assumption that indoor panoramas are aligned to the gravity vector, followed by the
recovering of the dense depth map predictions in the equirectangular projection.
Among the various follow-ups, several works [132, 134] have noted that our original
proposal of the slicing method ignores the latitudinal distortion property and thus
is not suited to accurately predicting the depth near the poles. For this reason,
Zheng et al. [134] proposed to perform bi-directional compression taking into ac-
count spherical distortion, while PanoFormer [132] proposed a transformer-based
architecture that exploits tangent patches from spherical domain.
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Chapter 4

Exploiting data fusion for deep
panoramic depth prediction and
completion for indoor scenes

While the previous chapter focused on purely visual data, here the focus is
on the common situation in which we receive as input a single equirectan-
gular image registered with a sparse depth map, as provided by a variety
of common capture setups. The goal is to jointly exploit the dense visual
channel and the sparse depth to infer a dense depth map. For that pur-
pose, an efficient data-driven solution is introduced. Depth is inferred
by a lightweight single-branch network, which employs a dynamic gating
system to process together dense visual data and sparse geometric data.
The design exploits the characteristics of typical man-made environments
to efficiently compress multi-resolution features and find short- and long-
range relations among scene parts. Furthermore, the training process
introduces a new augmentation strategy to make the model robust to dif-
ferent types of sparsity, including those generated by various structured
light sensors and LiDAR setups. The experimental results demonstrate
that the presented method provides interactive performance and outper-
forms state-of-the-art solutions in computational efficiency, adaptivity to
variable depth sparsity patterns, and prediction accuracy for challenging
indoor data, even when trained solely on synthetic data without any fine
tuning.
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4.1 Introduction

Integrated visual and depth capture of indoor environments is a key enabling com-
ponent for a wide range of applications, including autonomous navigation, mobile
augmented reality, indoor mapping, and 3D reconstruction. In most situations,
synchronized high-resolution depth and color data for the widest possible coverage
around the viewer should be fed with low latency to further processing and analysis
modules [124, 1].

Depth estimation is a fundamental problem for which a variety of active and passive
solutions have been proposed over the past decades. While classic approaches ex-
ploit the correlation among multiple views, acquired simultaneously (e.g., stereo) or
over time (e.g., video), single-shot capture and depth estimation has also attracted
a lot of attention, since it ensures the lowest latency, reduces system hardware and
synchronization burden, and offers basic building blocks for multi-view methods [40,
58].

As current 360° cameras offer viable low-cost and energy-efficient solutions for
omnidirectional single-shot indoor capture [24], many research efforts are cur-
rently being focused on generating 3D from panoramic images. However, even
with the full context provided by 360° capture, depth generation from monocular
input remains inherently ambiguous, and is particularly complex in indoor settings
characterized by large texture-less surfaces, abundance of clutter, and severe oc-
clusions [1]. Despite the very significant recent advances in this field, especially
with emerging deep-learning solutions that exploit hidden relations discovered in
large data collections [81, 107, 10], monocular depth estimation remains extremely
challenging.

Figure 4.1: Different kinds of sparse depth. First image (from the left): depth map captured by
structured-light sensors (Matterport Pro 3D camera) has lots of missing areas when rooms are large,
surfaces are shiny or thin, and strong lighting is abundant. Second image: a depth map captured
by a LiDAR setup (two Velodyne VPN-16 shifted of the vertical direction with different direction) has
lots of valid information but only for a few stripes. Third image: depth information may also come
from triangulated features in purely image-based pipelines; indoor environments, however, have
lots of flat texture-less surfaces, and reliable features, here detected from SIFT, may be very sparse.
Fourth image: a typical input from low-cost structured light sensors with sparse measurements only
for a small subset of the captured camera pixels; for synthetic training, a typical approach is to use a
Bernoulli distribution to sparsify inputs [135].
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Depth can also be measured with depth-sensing devices. Current depth sensors
exhibit, however, speed, cost, and resolution limitations that hamper their direct
usability for full-frame dense 360° capture in interior scenes. In particular, stereo
cameras require large baselines and tend to fail in texture-less indoor environments,
structured-light sensors are at lower resolution than comparable visual cameras,
are very sensitive to illumination variations, and suffer from short ranging distance.
Longer ranging LiDAR sensors are more robust and accurate, but can only provide
extremely sparse measurements at real-time rates [30]. Fig. 4.1 shows typical depth
information provided by different low-latency techniques.

In view of these limitations, many research efforts have been devoted to exploit
the coarse information coming from depth sensing to improve the performance of
depth prediction from RGB [30]. Sparse depth input, in particular, has shown to be
very useful to provide supervision at training time to pipelines that infer depth from
visual data [59, 69, 136, 83]. More and more often, it is used at inference time [90,
39] for guided and non-guided depth completion [30]. However, the sparse output
from various kinds of sensors imposes fundamental challenges on machine learning
methods, since data relevance is not uniform and further processing is required to
either reconstruct or ignore missing regions [99].

Because of this imbalance, depth prediction from dense RGB input and depth
completion from sparse depth input have often been treated separately, and solved
with different methods [98, 137, 138]. The few state-of-the-art solutions that try
to jointly tackle completion and prediction target outdoor planar [139] or small
field-of-view (FOV) perspective [37] projections, and are not efficiently applicable
to 360° indoor capture (Sec. 2.7 and Sec. 4.4).

In this work, we introduce an end-to-end deep learning solution to jointly perform
real-time dense depth prediction and completion from single-shot indoor 360°
captures. This method, the first to work directly on equirectangular images of
indoor environments, combines and extends state-of-the-art end-to-end deep
learning solutions, introducing several specific novelties. Our input is a single
equirectangular image registered with a sparse depth map, as provided by a variety
of common capture setups. We do not make assumptions on the sparsity structure
of the input depth, which can range from the few dense stripes produced by LiDAR
solutions to the regular and irregular point sampling produced by other active
and passive vision-based approaches. We expect, however, the images to be
approximately gravity-aligned, as in all common datasets available [6, 109, 108, 93,
117, 80]. This condition is a de-facto standard for practically all indoor static and
mobile acquisition setups, as they are equipped with automatic georeferencing and
alignment systems [50, 110, 52, 107, 10]. It is worth noting that we can accommodate
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for large tolerances in gravity alignment. In our results (Sec. 4.4), we demonstrate
how our system even works in the case of a backpacked LiDAR acquisition system
with variable vertical tilt.

Assuming a rough gravity alignment allows us to optimize our network design.

The network is constituted by a single-branch encoder-decoder, which jointly pro-
cesses dense visual data and sparse geometric data in an efficient way. The ini-
tial residual encoder takes as input simultaneously 4 channels (i.e., RGB + sparse
depth), and, through a gating system, returns fused visual and geometric features
at different resolutions. Such features are efficiently compressed and flattened
in an asymmetric way, by exploiting the intrinsic characteristics of gravity-aligned
equirectangular projections of indoor scenes [10, 54]. In fact, since gravity plays
an important role in the design and construction of interior environments, vertical
and horizontal features have different characteristics in most, if not all, man-made
environments. Moreover, most 360° capture setups have a much more regular
coverage along the horizontal than on the the vertical direction because of masking
effects [6]. As a result, we can exploit this anisotropy by compressing more on the
vertical than on the horizontal direction. The resulting flattened features are refined
through a lightweight self-attention module [140], which, acting as a bottleneck,
exploits the wide context provided by omnidirectional capture in order to find the
short- and long-range relations between parts of the scene which are typical of
man-made environment. Decoding proceeds symmetrically to the encoder, but
without need for gating, to reach the final output resolution.

Our contributions are summarized as follows:

e We introduce a novel residual encoder for the sparse-to-dense image-driven
problem, which exploits lightweight gated convolutions [141] to process dense
visual data and sparse geometric data together in a single branch at very
little cost (Sec. 4.3.1). This design results in a much faster and more versa-
tile network, with respect to the current approaches that process the data
using multi-branch architectures and interconnections at various levels of
the network [98, 100, 95, 93, 142]. Our encoder combines the advantages
of a gating system, to handle different types of input in a single encoder,
and of a residual architecture [62], allowing us to use deeper networks with
respect to common inpainting solutions [143, 95], thanks to the efficient
fusion and propagation of features at various resolutions and depth, without
using skip connections that would increase the computational burden of the
network [95]. As a result, the method meets real-time constraints even for
the highest image and depth resolutions (Sec. 4.4.2).
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e We introduce asymmetric feature compression and flattening for depth
completion of gravity-aligned indoor panoramic imaging (Sec. 4.3.2), ex-
ploiting the intrinsic characteristics of equirectangular projections of indoor
scenes [10, 107]. While gravity-aligned features have been employed ear-
lier for depth estimation [10], they have not been used for designing depth
completion networks. In this setting, this type of encoding remarkably max-
imizes the visual and geometric information gathered from a panoramic
input, allowing, at the same time, the gathering of multi-resolution features
and the use of a lightweight self-attention module (i.e., 1 layer, 4 heads) as
bottleneck. Such an attention module allows the network to find the short-
and long-range relations between parts of the scene, typical of man-made
environment and panoramic images [54], relating features both spatially and
at various levels of network depth (Sec. 4.3.1). Other state-of-the-art ap-
proaches, instead, employ dilated convolutions [95] as bottleneck, which are
common in visual inpainting [143], renouncing to exploit deep-level features
and, thus, losing part of the long-term information.

e We show how our approach is capable to handle a large variety of spar-
sity patterns and delivers excellent results when trained on synthetic data
and applied to various real-world configurations with or without fine tuning
(Sec. 4.4). In order to increase the robustness to various sampling patterns,
we also complement approaches based on theoretical noise models for mod-
erately dense and uniform RGB-D capture [144, 30] with a data augmentation
module designed to model LiDAR behavior (Sec. 4.3.3). Such an augmentation
is fundamental to increase the performance of our model in the LiDAR case,
and increases also the performance of other methods, whose advertised
accuracy was instead related to a specific capture pattern (Sec. 4.4.3).

We evaluated our approach on a variety of panoramic indoor scenes, ranging
from commonly available panoramic indoor benchmarks [6, 93, 145] to novel real-
world captures with mobile devices. Our results demonstrate that our approach
outperforms current state-of-the-art solutions in terms of speed and accuracy
(Sec. 4.4).

4.2 Datasets

In order to cover a large variety of use cases, we created a novel dataset leveraging
on synthetic data generated by sampling the large-scale Structured3D [108] photo-
realistic synthetic dataset, containing 3.5K house designs created by professional
designers with a variety of ground truth 3D structure annotations, including 21,000
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photo-realistic full-panoramic (i.e., 1024 x 512 equirectangular format) indoor
scenes. The main advantage of such a synthetic dataset is that it provides a fully
accurate dense ground-truth for color and depth, which is not available with other
common large-scale datasets, such as Matterport3D [6] or Stanford2D-3D-S [109],
whose completeness, even if based on multi-view, is still limited by visibility and
sensor limitations. For training purposes, we associate to each panoramic image
and ground truth dense depth a sparse depth created through a sampling process
that simulates a variety of setups. 50% of the depths simulate LiDAR setups, 25%
RGB-D setups, and 25% data coming from SfM/stereo pipelines. The LiDAR setups
emulate multi-beam mobile devices, selecting with equal probability o, 16, 32,
48, 64, 80, and 96 beams on a rotating platforms. LiDAR simulation is performed
by a parametric sampling process [146, 147, 148], using configurations mimicking
Velodyne devices with 30° to 40° vertical FOV. The o-beam case is included to
simulate pure visual capture, while for the other multi-beam setups the depth
coverage ranges from 16 beams (6% of pixels having depth values) to 96 beams
(38%). As an extreme case, we also include a case where we have no depth input
(i.e., data is purely visual, and depth maps have 0% valid pixels. Representative
examples are included in Fig. 4.4. Moreover, to evaluate the method on different
kinds of sparsity patterns, we simulate data coming from low-cost depth cameras
using Bernoulli sampling [144] and input from SfM/stereo pipelines using a SIFT
detector to place samples at feature locations. Training data is, thus, augmented
with two parameterizations of Bernoulli samplings (24.68% and 6.17% of visible
pixels having a depth), as well as with two different SIFT settings (with 0.91% and
2.99% valid depth pixels). Each of these 4 configurations comprise 12.5% of the
training data. Representative examples are included in Fig. 4.5.

In order to validate the generalization capabilities of the model and the suitability
of training on synthetic data, models trained on this dataset are tested both on S3D
data and on completely novel data coming from other capture setups, including
real-world ones.

Furthermore, as another important point of our work, we tested our model with
a real-world sparse and challenging capture campaign, not included in any of the
training datasets, but supporting a dense capture as dense ground truth. Thus, we
produce a novel dataset from a real LiDAR RGB-D acquisition (i.e., mobile device
with 2 Velodyne VLP-16 and a registered Garmin spherical camera - Fig. 4.7) and
a ground truth dense depth acquisition through a FaroFocus3DX330TLS. Each
sparse scan takes about 300 milliseconds and produces about 16% of pixels with
valid depth. We have acquired, in a multi-floor and multi-room environment, about
150 scenes in equirectangular format aligned with dense ground truth and sparse
depth maps. Note that the gravity alignment of the poses is directly the one
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provided by the tracking tools in the mobile device and has not been corrected
through dense depth registration. This choice results in tilted sparse-dense pairs,
which also provide us with a real-world benchmark to evaluate the robustness of
our system to misalignment with respect to gravity direction (see Sec. 4.1). We use
such a real-world benchmark for testing without any fine tuning, after training on
S$3D-SD, also demonstrating transfer-learning capabilities.

4.3 Network architecture and training

Figure 4.2: Network architecture. Our network is constituted by a single-branch encoder-decoder,
which processes together the dense visual and sparse geometric data. A residual-gated encoder
takes as input 4 channels (RGB + sparse depth) returning fused features at different resolution.
Multi-resolution features are compressed, flattened and passed to a MHSA- single layer module (i.e.,
bottleneck). Decoding proceeds symmetrically to the encoder, but without using gating, to reach the
final output resolution.

Our network is designed to directly infer a panoramic depth map from a single
equirectangular image registered with a sparse depth map. Fig. 4.2 illustrates its
structure for a 512 x 1024 input map. The architecture, is, however, fully scalable
with respect to input resolution (Sec. 4.4).

The network input is given by the concatenation of the 3 x 512 x 1024 RGB image
with the 1 x 512 x 1024 sparse depth map. On input, the RGB image is dense and
contains a color value for each pixel. Valid pixels in the sparse depth map contain
the distance from the camera in metric scale, while invalid pixels contain a zero.

The feature extraction is performed by 5 layers, each one having a residual archi-
tecture inside [62]. In order to process dense visual data and sparse geometric
data together, each block is built around specific gated convolutions. The indoor
panoramic format is also specifically handled through spherical padding and ELU
activations. Encoding layers are described in Sec. 4.3.1. Similarly to other state-of-
the-art solutions for 3D from RGB data [107, 54, 10, 12], we start from the assumption
that, in architectural indoor spaces, vertical and horizontal features have different
characteristics along and across the gravity direction. We apply such concepts in our
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context by compressing the extracted features (i.e., 4 deeper feature maps) through
an anisotropic contractive encoding that preserves the horizontal dimension and
compresses the vertical one (Sec. 4.3.2). The resulting 4 feature maps, containing
information at different spatial and depth levels, are flattened and concatenated
in a single, sequential latent feature of feature dimension xsequence length. The
encoding of the latent feature as a sequence allows the network to use a multi-
head self-attention module (MHSA) [140] as bottleneck, leveraging complementary
features in distant portions of the image and depth measurements rather than
only local regions to support reconstruction. This makes it possible to cope with
large changes due to occlusions and to take into account the short- and long-range
relations between parts of the scene typical of man-made environment. As a result
of these design choices, decoding proceeds very fast and without the need for
skip connections, as it can just consist of a series of convolutions, upsampling and
activations until the output resolution is reached.

Our model is trained end-to-end supervised by sparse-dense depth map couples
(Sec. 4.4.1), without specific assumptions on sparsity patterns, which are learned
from training data. In addition to use variable depth density for RGB-D situation,
we introduce a LiDAR-specific augmentation module that generates parametric
LiDAR capture patterns at run-time during training (Sec. 4.3.3).

4.3.1 Feature extraction

The joined feature encoding of the mixed RGB+depth input is performed by a
cascade of 5 blocks - i.e., 1 convolution-pooling block followed by 4 residual blocks.
Given the spherical nature on the image, we adopt circular padding along the
horizon for convolutions, to overcome the longitudinal boundary discontinuity, and
reflection padding to alleviate the singularities at the poles [149].

Each residual block follows the ResNet scheme, involving two convolutions and one
upsampling layer [62]. Here, for each convolution layer, we introduce a dynamic
gating approach to efficiently process dense visual data and sparse geometric data
together.

In a generic (vanilla) convolutional layer, for each pixel located at (y,x) in an input
feature map F;,, having n channels, the same filters are applied to produce the
output for a generic convolutional filter.

However, the sparse depth channel does not contain all valid pixels, but for single
channel tasks, like pure inpainting without RGB guidance, partial [150] convolutions
can be adopted to make the convolution dependent only on valid pixels. Indeed,
such solution is not very efficient for our problem, since, essentially, partial convolu-
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tions act as single-channel hard-gating, heuristically classifying each spatial location
to be either valid or invalid, and setting to zeros or ones the mask in next layer no
matter how many pixels are covered by the filter range in previous layer [143].

In our case, instead, we introduce a multi-channel gated convolution approach,
where a multi-channel soft mask is automatically learned from data, taking decisions
that jointly consider the sparse depth and the dense color channel. While gated
convolutions are often adopted for pure image synthesis combined with dilated
convolutions [151, 152, 143], here we use such a soft masking to model a kind of
implicit confidence for multi-source features.

For each gated convolutional layer, gated features F), are:

Gn = conv(Wei,conv(We, Fy))
E, = conv(Wy, Fy) (4.1)
F, = 6(Gm) O Y(Fn)

where o is the Sigmoid function, whose output values are within [0, 1], v is an
activation function (in this paper we use ELU [153] to remove the need for batch
normalization), W,1, Wy and Wy are different sets of convolutional filters, used,
respectively, to compute the gates (W,1, W,) and features (Wy), and F, is the input
feature map.

In terms of computational complexity, the use of gated convolution should almost
doubles the number of parameters in comparison to a standard, vanilla convolu-
tion [143]. To cope with this problem, we adopt here a lightweight solution, also
called depth-separable convolution [141], which reduces the number of parameters
and processing time while maintaining the effectiveness. Thus, we decompose a
gated convolution soft mask G,, with k;, x k,, X n x m into a depth-wise convolu-
tion [141] (i.e., kj, X k,, kernel) followed by a 1 x 1 kernel convolution. Such solution
has only k;, x k,, X n+n x m parameters, resulting in a less overall computational
cost for all the encoder without measurable loss in efficiency for our problem
(Sec. 4.4.4).

Our encoder returns 4 feature maps having different depth and spatial size (Fig. 4.2),
gathering fused information from both visual and geometric input. Beside data
fusion, propagating these levels avoids using skip connections between encoders
and decoders, such as those used by several other methods [95, 154, 98] to retrieve
fine-grained details, drastically reducing the computational complexity (see Tab. 4.1).
At the same time, propagating this information together in a deep architecture is
not simple and requires an efficient compression system. To this end, we introduced
a specific compression process described in Sec. 4.3.2.
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4.3.2 Feature compression and decoding

In order to support an efficient gathering of information from the extracted features,
taking into account the peculiar characteristics of indoor environments, we perform
a specifically designed feature compression exploiting our knowledge of preferential
directions. We start from the assumption that gravity plays an important role in
the design and construction of interior environments, so world-space vertical and
horizontal features have different characteristics in most, if not all, man-made
environments. Moreover, the amount of information contained in the spherical
equirectangular projection degrades significantly going towards the poles, and even
disappears completely in the input depth due to the hardware limitations of the
instrument.

According to these assumption, we perform an anisotropic contractive encoding
that reduces the vertical direction while keeping the horizontal direction unchanged,
so that separated vertical features can be better preserved. Specifically, we reduce
the vertical dimension by a factor of 8 through an asymmetric convolution module
with stride (2, 1), applied 3 times, that contains a 2D convolution and an ELU module.
We apply such a compression for each encoded feature map (i.e., 4 maps, Sec. 4.3.1).
Finally, compressed features are reshaped to the same size and joined in a flattened
latent feature, Ly = (Iy...1), as a sequence of s feature vectors of dimension /
(i.e., s horizontal size of the less deep feature map - s = 256 and [ = 1024 for a
512 x 1024 input).

Such a compressed representation contains a variety of information about the
geometry of the scene, both local and non-local, which can be exploited to recover
missing depth samples. In our case, we aim to leverage complementary features
in distant portions of the image rather than only local regions, to support both
depth completion and recovery. To do that, we adopt a single-layer multi-head
self-attention (MHSA) scheme [140]. Our self-attention module takes the latent
features L € R**! as input, and outputs a self-attention weight matrix A € R**:

(LWy) (LW)" >
Vi

where W, W, € R"*! are learnable weights. The MHSA module has a particularly

lightweight design with 4 heads and only 1inner layer. We have verified experimen-
tally that increasing the number of layers and heads does not affect performance.

A = softmax < (4.2)

Once passed to the MHSA module, the decoding of the latent feature (1 x 1 x s in
Fig. 4.2) is very fast, through convolutions, upsampling modules, and ELU activations,
until we reach the target output resolution (1 x & x w in Fig. 4.2).

82



4.3.3 Training strategy

During the training phase, we compute the weights of the network using a super-
vised training approach that exploits databases matching indoor equirectangular
images with their correspondent sparse and dense depth maps (Sec. 4.4.2 for
datasets details).

Coping with variable distributions of sparse depth samples

The distribution of the samples of the sparse maps can vary considerably depending
on the acquisition methods. While sparse-dense datasets from structured-light
sensors are available [93], it is not so for LiDAR data, even if these sensors are
increasingly used also in indoor environments (Sec. 4.1). Generating those sampling
patterns cannot be simply done by generic noise models (e.g., [144, 30]), but must
take into account striping.

To this end, we adopt a sparsity simulation module to produce, under parametric
control, different types of LiDAR patterns starting from a dense ground truth. Such
a module can be used to generate specific, defined capture setup (e.g., 1 scan with
fixed parameters), or to randomize sparsity at training time, thus augmenting the
data to make the model more robust to different inputs. Such a module extends
existing generators [155, 146, 147] to provide run-time sparse samples extracted
from ground truth dense depth maps.

Our sparsity simulator is driven by a limited number of parameters, that can be
eventually randomized to augment data: the number of heads (sensors) and their
position and orientation, and for each sensor, the horizontal aperture (i.e., 360
degrees), the vertical aperture, and the number of laser beams (e.g., 16 for a
Velodyne16-like device, etc.). Furthermore, a small 3D random noise is applied to
simulate real-device noise. Head aperture and beams parameters are bounded to
match to realistic setups (e.g., beams are multiple of 16, etc.).

It should be noted that even a 0 beams case is contemplated during augmentation.
This case allows the network to work even if there is no geometric input. In this
case the prediction performance is aligned with that of recent state-of-the-art
image-based methods [10, 107] (Sec. 4.4).

Using this augmentation module as a complement to those based on noise models,
in addition to increase robustness, allows us to avoid locking the training to a
specific device sampling pattern, since sparse data is generated from ground truth
dense maps. In particular, as we will see in Sec. 4.4, differently from most previous
work, we can train the model on purely synthetic datasets, and apply it to real-world
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data captured with a specific device even without any fine-tuning.

Loss function

Independently from the type of sparse depth distribution, learning is driven by a
loss function combining two data terms:

zduta = gd + sz (4-3)

where L, is the robust Adaptive Reverse Huber Loss (BerHu) [63], which has proven
to be effective in many recent works for panoramic depth estimation [81, 107, 10].
To further take into account structural information, we add the structural loss L,
based on the Structural Similarity Index Measure (SSIM) [156], which measures the
preservation of highly structured signals with strong neighborhood dependencies.
Since SSIM is higher if the two compared images are more structurally similar, we
define Zy; = 1 —SSIM(D,,D,), where D,t is the ground truth dense depth and
D, is the final inferred depth.

4.4 Results

Our approach is implemented with PyTorch 1.5.1 and has been tested on a large
number of indoor scenes.

Source code and models will be available to the publicat https: // github. com/
crs4/ PanoDPC.

(a) RGB IN [93] (b) Sparse IN [93] (c) Our (d) Ground Truth [93]

Figure 4.3: Qualitative results on Matterport3D-SD dataset [93]. Masked samples in the results are
missing samples in the ground truth.
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(a) RGB S3D-SD  (b) Sparse S3D-SD (c) Huang et al. [95] (d) Our (e) Ground truth[108]

(f) RGB mobile (g) Sparse (h) Huang et al. [95] (i) Our (j) Ground truth
depth mobile

Figure 4.4: Qualitative performance on S3D-SD with a LiDAR configuration with 32 beams and on
real mobile LiDAR indoor capture. Qualitative results with the same setup of Tab. 4.2. Our results
are compared to the Huang et al. [95] approach trained with the same equirectangular augmented
S$3D-SD dataset with varying sparsity patterns.

4.4.1 Benchmark datasets

Real-world capture of indoor environments is usually performed using a variety of
settings, including panoramic cameras aligned with LiDAR-based setups (e.g., Velo-
dyne) or stitching of structure-light-based sensors (e.g., Matterport). The limitations
of these devices for indoor use [30] makes it difficult to find data corresponding to
all the various use cases coupled with reliable full-frame ground truth data.

For training purposes, we employ in this paper the standard Matterport3D-SD (i.e.,
Matterport 3D sparse depth) [93] as well as a new dataset created on purpose that
builds on Structured3D [108], dubbed S3D-SD (i.e., Structured 3D sparse depth).
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(a) RGB S3D [108] (b) Sparse S3D  (c) Huang et al. [95] (d) Our (e) Ground

Bernoulli truth [108]
(f) RGB S3D [108] (g) Sparse S3D SIFT (h) Huang et al. [95] (i) Our (j) Ground
truth [108]

Figure 4.5: Qualitative performance on S3D-SD with different input depth sparsity patterns. Qual-
itative results using simulated input from low-cost depth cameras using Bernoulli sampling and
simulated input from SfM/stereo pipelines, using a SIFT detector to place samples. Our results are
compared to the Huang et al. [95] approach trained with the same equirectangular S3D-SD dataset.

(a) RGB S3D [108] (b) Sparse (c) Huang et al. (d) Our PC (e) Ground
S3D-SD PC PC [95] truth PC [108]

Figure 4.6: Qualitative performance on S3D-SD by point cloud (PC). In these examples, 3D point
clouds are obtained by unprojecting depth maps, using the same setting of Tab. 4.2, and visualizing
them from a standard point of view. Note how the proposed approach improves reconstruction
especially in regions where clear geometric structures from the architectural layout are present.

Training and testing with Matterport3D-SD

Matterport3D was the first one to provide full-view indoor poses with paired sparse
and dense depth maps, and for this reason, it has become a popular benchmark
in recent papers and surveys [95, 30, 98]. For the sake of comparison with other
results, and to show the behavior of our method on high-quality structured-light
data, we thus include an analysis of our performance by training and testing our
method on Matterport3D-SD compared to state-of-the-art works that use it. This
dataset, however, is limited to a single kind of device operating in reasonably
cooperative environments that ensure rather dense capture, so that even classical
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infilling or hybrid data-driven solutions may be adopted with some success [30].
Fig. 4.3 shows representative examples. For this reason, we complement the
dataset with much more challenging examples that cover other setups and less
cooperative interiors.

Training and testing with S3D-SD

In order to cover a large variety of use cases, we created a novel dataset leveraging
on synthetic data generated by sampling the large-scale Structured3D [108] photo-
realistic synthetic dataset, containing 3.5K house designs created by professional
designers with a variety of ground truth 3D structure annotations, including 21,000
photo-realistic full-panoramic (i.e., 1024 x 512 equirectangular format) indoor
scenes. The main advantage of such a synthetic dataset is that it provides a fully
accurate dense ground-truth for color and depth, which is not available with other
common large-scale datasets, such as Matterport3D [6] or Stanford2D-3D-S [109],
whose completeness, even if based on multi-view, is still limited by visibility and
sensor limitations. For training purposes, we associate to each panoramic image
and ground truth dense depth a sparse depth created through a sampling process
that simulates a variety of setups. 50% of the depths simulate LiDAR setups, 25%
RGB-D setups, and 25% data coming from SfM/stereo pipelines. The LiDAR setups
emulate multi-beam mobile devices, selecting with equal probability o, 16, 32,
48, 64, 80, and 96 beams on a rotating platforms. LiDAR simulation is performed
by a parametric sampling process [146, 147, 148], using configurations mimicking
Velodyne devices with 30° to 40° vertical FOV. The o-beam case is included to
simulate pure visual capture, while for the other multi-beam setups the depth
coverage ranges from 16 beams (6% of pixels having depth values) to 96 beams
(38%). As an extreme case, we also include a case where we have no depth input
(i.e., data is purely visual, and depth maps have 0% valid pixels. Representative
examples are included in Fig. 4.4. Moreover, to evaluate the method on different
kinds of sparsity patterns, we simulate data coming from low-cost depth cameras
using Bernoulli sampling [144] and input from SfM/stereo pipelines using a SIFT
detector to place samples at feature locations. Training data is, thus, augmented
with two parameterizations of Bernoulli samplings (24.68% and 6.17% of visible
pixels having a depth), as well as with two different SIFT settings (with 0.91% and
2.99% valid depth pixels). Each of these 4 configurations comprise 12.5% of the
training data. Representative examples are included in Fig. 4.5.

In order to validate the generalization capabilities of the model and the suitability
of training on synthetic data, models trained on this dataset are tested both on S3D
data and on completely novel data coming from other capture setups, including
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real-world ones.

Figure 4.7: Mobile RGB+LiDAR setup. To test our approach on a real-world panoramic RGB+LiDAR
acquisition, we exploit a backpacked mobile scanner equipped with a full-view panoramic camera for
the RGB capture and two LiDAR heads for sparse depth capture. Ground-truth dense depth for each
pose is provided by reprojecting data coming from multiple poses of a static scanner.

Validating on novel real-world captured data

Furthermore, as another important point of our work, we tested our model with
a real-world sparse and challenging capture campaign, not included in any of the
training datasets, but supporting a dense capture as dense ground truth. Thus, we
produce a novel dataset from a real LiDAR RGB-D acquisition (i.e., mobile device
with 2 Velodyne VLP-16 and a registered Garmin spherical camera - Fig. 4.7) and
a ground truth dense depth acquisition through a FaroFocus3DX330T LS. Each
sparse scan takes about 300 milliseconds and produces about 16% of pixels with
valid depth. We have acquired, in a multi-floor and multi-room environment, about
150 scenes in equirectangular format aligned with dense ground truth and sparse
depth maps. Note that the gravity alignment of the poses is directly the one
provided by the tracking tools in the mobile device and has not been corrected
through dense depth registration. This choice results in tilted sparse-dense pairs,
which also provide us with a real-world benchmark to evaluate the robustness of
our system to misalignment with respect to gravity direction (see Sec. 4.1). We use
such a real-world benchmark for testing without any fine tuning, after training on
S$3D-SD, also demonstrating transfer-learning capabilities.

4.4.2 Experimental setup and computational performance

We trained the network using the Adam optimizer [129] with 8; = 0.9, B, = 0.999,
on four NVIDIA RTX 2080Ti GPUs (11GB VRAM) with a batch size of 8 and a learning
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rate of 0.0001. For all benchmarks we adopt their original splits. Our new real-
world dataset is not used for training, but for testing after training on synthetic
data. With the given setup the best valid epoch was around 170 epochs for S3D-SD
and Matterport3D-SD. The average training speed on 4 GPUs is about 105ms for
each 512 x 1024 input image and depth pair.

Table 4.1: Computational cost and performance. Our method is compared to the best performing
state-of-the-art competitors.

Method Size Params | FLOPs) |ms/frame]
Ma et al. [157] 512 x 1024 | 2610 M| 765.1G 137
GAENet [158] 512x 1024 | 4.06 M| 60.12G 39
PENet [159] 512 x 1024 | 131.67 M| 487.4G 167
packNet+SAN [100]| 512 x 1024 | 76.99 M| 304.7 G 149
NLSPN [98] 512 x 1024 | 26.23 M |829.86 G 167
Huang et al. [95] 512 x 1024 | 13.10 M| 1624.9 G 105
Our 512x 1024 | 2211M| 38.2G 16
Our 1024 x 2048| 4414 M| 217G 67
Our 2048 x 4096 |132.22 M| 1319.3 G 384

Tab. 4.1 shows our computational complexity stats, compared with several state-
of-the-art methods for the inference of a 512 x 1024 image and depth map. Our
computational cost, in terms of GFLOPs, is significantly lower than for competing
solution. Note that this increased performance is also with respect to networks with
a lower number of parameters but with a far more complex structure. Moreover,
our method produces depth maps directly from equirectangular inputs without pre-
or post-processing steps and can thus be directly integrated in production systems
without additional overhead.

As a result, the inference performance of our network guarantees a low-latency
generation of dense depth, and we can therefore support full instantaneous frame-
by-frame depth map generation directly at acquisition. In our case, starting from a
512 x 1024 image and depth map, we infer depth in under 16ms on a single NVIDIA
RTX 2080Ti, which is much faster than a single rotation of typical LiDARs covering
a 360° view (e.g., 50ms to 200ms per rotation for a Velodyne VLP-16). The lean
network structure also leads to a good scalability, as demonstrated by results with
larger images included at the bottom of Tab. 4.1. We can, in particular, generate
2Kx4K depth images from equally-sized inputs in less than 0.4s.
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4.4.3 Quantitative and qualitative evaluation

We evaluated our method with the same error metrics which are common to prior
depth prediction and completion works and surveys [30, 100, 93, 95, 160]: mean
absolute error (MAE), mean squared error (MSE), root mean square error of linear
measures (RMSE) and three relative accuracy measures 6, (n = 1,2, 3), defined as
the fraction of pixels where the relative error is within a threshold of 1.25". For
MAE, MSE, and RMSE, smaller is better (i.e., unit is meter), while for 8, larger is
better.

Table 4.2: Quantitative comparison on S3D-SD/LiDAR and real LiDAR capture. We show our perfor-
mance evaluated on standard metrics and compared to the recent state-of-the-art approaches which
are comparable with us. Here we present results simulating a 360° capture with 40° vertical FOV
(—30 to 10 degrees) and 32 active beams in the synthetic dataset, and results using a real mobile
device with 2 Velodyne VLP-16 and a registered Garmin spherical camera with ground truth obtained
using a Faro Focus3D X 330 TLS (see Sec. 4.4.1).

S$3D-SD / LiDAR 32 beams

Method MSE|[MAE|[RMSE|[SSIMT| &1 &1 &7
GAENet [158] 0.086|0.394| 0.160| 0.149|0.466| 0.753|0.889
packNeSAN [100]| 0.052| 0.286| 0.125| 0.614|0.596| 0.867|0.954

Ma [157] 0.044|0.286| 0.104| 0.591|0.587|0.895|0.964
PENet [159] 0.028| 0.210| 0.090| 0.595| 0.671/0.930|0.976
NLSPN [98] 0.023| 0.185| 0.084| 0.840| 0.723|0.943|0.982
Huang [95] 0.017| 0.138| 0.068| 0.830|0.824|0.960|0.987
Our 0.003|0.038| 0.022| 0.944|0.982|0.993|0.997

Mobile LiDAR 16+16 beams

Method MSE|[MAE/[RMSE|[SSIMT| &1 &1 &1
GAENet [158] 0.041| 0.472| 0.105| 0.202|0.230| 0.555| 0.748
packNeSAN [100]| 0.027|0.404| 0.078| 0.539|0.278|0.603|0.842

Ma [157] 0.018|0.366| 0.051| 0.434|0.424| 0.723|0.895
PENet [159] 0.010| 0.252| 0.035| 0.512| 0.578| 0.835|0.969
NLSPN [98] 0.011/0.260| 0.035| 0.746| 0.610| 0.841| 0.937
Huang [95] 0.009| 0.197| 0.030| 0.745| 0.763|0.886|0.947
Our 0.003|0.088| 0.024| 0.822|0.922|0.986|0.997

We compare our results with state of the art solutions for both indoor or generic
scenes, for which the full code was available [158, 100, 157, 159, 98, 95] and an
end-to-end training with equirectangular format was possible. The methods were
adapted with minimal modifications to equirectangular images. We use 1024 x 512
for all tests.
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Tab. 4.2 summarizes our performance and comparisons with related works using
the augmented S3D-SD dataset to train every baseline compared (see Sec. 4.4.1),
and LiDAR-specific examples for the inference. To select the training and the testing
set, we adopt the official Structured3D split [108].

For synthetic tests, we considered all the simulated LiDAR configurations (i.e., 16
to 96 beams and various FOVs) discussed in Sec. 4.4.1. In Tab. 4.2, for clarity, we
summarize only the results and comparisons for a 40° vertical FOV and 32 active
beams case, since other S3D-SD/LiDAR tests follow the same performance trend,
see Fig. 4.8.

We also include results on the real-world scenes acquired with the mobile LiDAR
system (i.e., here named mobileLiDAR 16 + 16), compared to ground truth dense
depth acquisition through a FaroFocus3DX330TLS (i.e., all models trained with
s3D LiDAR).

Both the real-world benchmark and the synthetic data limited to LiDAR are used
only as a testing set, without any fine-tuning, thus providing evidence of transfer
learning capability.

Despite our lower computational complexity, already discussed in Sec. 4.4.1, our
method outperforms competitors for every condition, showing that simply adapt-
ing general purpose pipelines to the specific panoramic indoor problem leads to
unsatisfactory results.

Fig. 4.4 presents qualitative results using the S3D LiDAR and mobile LiDAR test-sets
adopted in Tab. 4.2. Here, we compare our method with the method of Huang et
al. [95], which is the best performing among competitors in terms of quantitative
results. In this case, with only a few stripes available from the scanner, our method
benefits from its specific compression and information gathering features (Sec. 4.3.1)
to recover more details in the final depth map.

Fig. 4.6 shows additional experiments, where geometric visualization is obtained
by unprojecting the depth map into 3D point clouds. Following the same setup
of Tab. 4.2 and Fig. 4.4, we show, respectively: the RGB input (a); the sparse in-
put depth as a point cloud Fig. 4.6(b); the point cloud Fig. 4.6 predicted by the
best competitor [95] (c); our prediction Fig. 4.6(d); and the ground truth point
cloud Fig. 4.6(e). The illustrations complements the other qualitative and quantita-
tive results with an easy-to-read illustration of the 3D reconstruction of the scene
from a reference point of view. The performance improvement offered by the
proposed approach is especially visible in regions where clear geometric structures
(walls, ceilings or floor) are present.
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Fig. 4.7 shows instead examples of scenes acquired with the mobile backpacked
device. Numerical data is presented in Tab. 4.2). As for Fig. 4.4 experiments, our
method successfully complete the map, with better accuracy than competitors.
Furthermore, is also visually evident that the data acquired with the mobile back-
packed device presents a significant misalignment with respect to the direction of
gravity, also variable along the user’s trajectory, which results in a distortion of the
equirectangular projection. The consistent results also in this case show that our
method is robust with respect to such an inclination, tested in a real and mobile
user-case. Note that, in practice, such inclinations can be reduced before entering
the depth estimation pipeline, by using on-board IMUs as well as by aligning succes-
sive poses. We show here uncorrected results, to also demonstrate the possibility
of using the pipeline we present for frame-by-frame inference, without any latency
connected to the integration of multiple frames or the need for assistance from
external sensors.

Table 4.3: Quantitative comparison on S3D-SD with Bernoulli and SIFT sparsity. We show our
performance, compared to ground truth and other approaches, testing two different sparsity patterns:
Bernoulli pattern, with 1.97% of visible pixels and SIFT detector pattern, with 0.1 contrast, 5 edge
threshold and no more than 8k extracted features, thus resulting in 0.91% of visible pixels (see
Sec. 4.4.1).

$3D-SD / Bernoulli sparsity

Method MSE|[MAE|[RMSE|[SSIMT] &1 &1 &7
GAENet [158] 0.093| 0.410| 0.161| 0.149|0.465| 0.748|0.885
packNeSAN [100]| 0.021| 0.183| 0.091| 0.622| 0.723|0.953|0.986

Ma [157] 0.049|0.280| 0.102| 0.441|0.679|0.895|0.954
PENet [159] 0.036|0.248| 0.109| 0.416|0.629|0.894|0.969
NLSPN [98] 0.018| 0.162| 0.054| 0.834| 0.813| 0.961|0.985
Huang [95] 0.003|0.043| 0.021| 0.911/0.979|0.994| 0.997
Our 0.002|0.025| 0.018| 0.946|0.991/0.997|0.998

S$3D-SD / SIFT sparsity

Method MSE| [MAE|[RMSE|[SSIMT] &1 &1 &1
GAENet [158] 0.093| 0.410| 0.161| 0.149|0.465| 0.748| 0.885
packNeSAN [100]|0.070| 0.352| 0.149| 0.673| 0.471| 0.787| 0.915

Ma [157] 0.005|0.044| 0.024| 0.938|0.981/0.993|0.996
PENet [159] 0.040| 0.259| 0.118] 0.499| 0.557|0.859|0.960
NLSPN [98] 0.037| 0.235| 0.096| 0.814|0.697|0.903|0.963
Huang [95] 0.025| 0.177| 0.084| 0.774|0.766| 0.931| 0.974
Our 0.003|0.035| 0.020| 0.943|0.987|0.995(0.998
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For completeness, we performed a further comparison of performance for different
sparsity patterns. Tab. 4.3 summarizes the results obtained by emulating the pattern
of low-cost structured light sensors (by a Bernoulli distribution [144]) and the pattern
of a SIFT detector, emulating the typical sparse input that can be received from
a SfM pipeline. Some qualitative examples with these patterns are illustrated in
Fig. 4.5. Even in this situation our method demonstrates consistent performance,
proving to be a versatile approach even when heterogeneous inputs vary.

Fig. 4.8 summarizes the results of our experiments on the ability to cope with
different levels of sparsity, tackling both purely visual input and several multi-
beam LiDAR configurations. We illustrate our performance in comparison with the
competitor method [95] that best performed in our experiments. We show the
results on four different sparsity cases, ranging from no depth information to a full
vertical FOV scan with 96 beams (38% pixel coverage, see Sec. 4.4.1 for details).
For clarity, only the §; metric is included in the graph, since the other metrics have,
as shown in Tab. 4.2, a similar behavior.

The continuous lines illustrate the performance of the models when trained on
the augmented S3D-SD dataset (i.e., same setup of Tab. 4.2 experiments). The
results indicate that our model, together with the proposed augmentation strategy,
guarantees good performance for every type of sparsity. For the extreme case
of a pure visual input, results are in-line with dedicated state-of-the-art [10, 107]
approaches for panoramic depth estimation. On the other hand, the performance
of the other approach [95] strongly depends on the number of available geometric
samples. When training the model without data augmentation (dotted lines in
the figure), but simply including in the training set the configuration used for
testing, the performance of both models rapidly decays when moving away from
the sampling used for training, even though our method remains superior at all
sparsity levels. This experiment highlights how other methods can also benefit
from our augmentation strategy, as it increases generalization without effects on
use-case-specific performance.

For completeness, Tab. 4.4 summarizes our performance on Matterport3D-SD [93],
compared to the results of other state-of-the-art approaches on the same bench-
mark [161, 162, 93, 30].

As discussed in Sec. 4.4.1, such a benchmark presents a low-challenging sparsity
distribution. The majority of the state-of-the-art solutions which adopted this
benchmark are not end-to-end deep learning networks, but hybrid pipelines [93],
mainly focused on small-view perspective depth infilling [163]. Due to their hybrid
nature, a direct computational complexity comparison is not feasible. It is also
difficult, to create omnidirectional pipelines without major modifications to the
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Figure 4.8: Performance with variable sparsity level. The graph depicts the value of d; as a function
of input depth sparsity for our method and for the best competing method [95]. Continuous lines
represent models trained with our augmentation strategy. Dotted lines show the same models but
trained without augmentation (i.e., 40 degrees sparse coverage with 32 active beams)

code. In order to provide a uniform and fair evaluation in terms of prediction accu-
racy, we adopt here their official baselines and pre-trained models for perspective
views, testing them with the original perspective viewports provided by Zhang
et al. [93], and comparing the results for our code by extracting from the single
equirectangular image we produce the perspective views required for testing. It
should be noted that the exposed results for compared methods, thus, do not
include the additional error due to the subsequent process of stitching the results
necessary to obtain the final omnidirectional view, or other effects due to pipeline
modifications in case of adaptation to equirectangular projections.

We show our performance in the last two rows of Tab. 4.4. The bold row provides
results obtained by training with Matterport3D-SD [93] training set, as for the com-
pared methods, while, to also demonstrate our transfer learning capabilities, the
other row summarizes the results obtained by inferring depth using the model
trained with S3D-SD, with no fine-tuning. In both cases, our method provides con-
sistent performance, well in line or outperforming other baselines that have been
designed for this use-case. Although not directly comparable with the perspective
results of the other pipelines (see Tab. 4.4), we show in Fig. 4.3 some qualitative
results on the Matterport3D-SD dataset [93].
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Table 4.4: Quantitative comparison on Matterport3D-SD. We show our performance evaluated on
standard metrics and compared to the recent state-of-the-art approaches on the indoor dataset pro-
vided by Zhang et al. [93]. We compare against the competitors best performance using their original
perspective baselines, without considering additional error due to post-processing and stitching.

Dataset Method MAE|RMSE|| 61 | &T | &1
MRF [161] 0.618 | 1.675 | 0.651|0.780|0.856
AD [162] 0.610| 1.653 |0.688|0.754 |0.868
M3D |Zhanget al. [93] 0.461| 1.316 | 0.781|0.851|0.888
SD [93] |[Huang et al. [95] 0.342| 1.092 |0.850]| 0.911 |0.936
Xiong et al. [30] 0.462| 0.866 |0.863]/0.930|0.942
Our trained S3D-SD 0.464| 0.803 |0,834|0,908|0,942
Our trained M3D SD [93]|0.332| 0.555 |0.936|0.961|0.973

(a) RGBIN (b) Sparse IN (c) Prediction (d) Ground truth

Figure 4.9: Bad case. Results on almost-outdoor environment. Sparse samples from outdoor part,
not properly masked, negatively affect the whole reconstruction.

4.4.4 Ablation study

Our ablation experiments are presented in Tab. 4.5, with our configuration high-
lighted in bold. To test the key components of the approach, we use results obtained
with S3D-SD, using for testing the LiDAR configuration with 3D beams (i.e., same
configuration of Tab. 4.2, 32 beams). The variations discussed in the ablation study
are within the design space of our approach. For example, the use of gating in the
encoder is essential for the model to work. Not using it leads to inconsistent results.

The first row of Tab. 4.5 presents a case without using some key-solutions of our
model: multi-resolution features (MRF), asymmetric feature compression (AFC),
multi-head self-attention feature refinement (MHSA), structural-similarity loss
(SSIM) and data augmentation (AUG). Here we use the deeper layer of the residual
feature encoder (see Sec. 4.3.1), and we perform a standard symmetric compres-
sion along the horizontal and vertical direction. This first case, which represents a
common gated encoder-decoder scheme, demonstrates how this design is not suf-
ficient to guarantee adequate performance without the subsequent contributions
we have introduced. In the second row, we show the performance obtained by
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Table 4.5: Ablation study performed on S3D-SD, using the LiDAR 32 beams confuguration for testing.
MRF: multi-resolution features; AFC: asymmetric feature compression; MHSA: MHSA encoder; SSIM:
SSIM loss; AUG: sparse data augmentation; LWGC: light-weight instead of standard gated convolution.

MRF|AFC|MHSA |SSIM|AUG |LWGC |Param |Gflops| MAE|RMSE o

v 13.10| 112.92| 0.954| 2.233| 0.748
v v 20.01| 188.21| 0.765| 1.877| 0.821
v |V v 20.01| 43.15| 0.312| 1.384| 0.877
v |V v v 22.11| 38.16| 0.121/0.084| 0.951
v |V v v v 22.11| 38.16| 0.075|0.066|0.978
v |V v vV IV v 22.11| 38.16/0.038|0.022|0.982
v |V v v |V 31.86| 61.62|0.035| 0.021|0.985

introducing multi-resolution features (MRF), which hallows gathering of informa-
tion without using skip connections [95, 100]. Such a solution, without an efficient
feature compression results in a significant increase of computational complexity.
The third row shows the benefits of asymmetric vertical compression (AFC), both in
terms of lower computational complexity and in terms of accuracy. The fourth row
shows instead the effects or using or not the MHSA module, without using specific
losses or augmentation. It should be noted that MHSA feature refinement has a
very low computational cost, but with a tangible increment of performance. The
fifth and sixth rows show the increment in performance using augmentation, that
limits overfitting.

At last, the seventh row shows that, in a setup using standard gated convolution
instead of our light-weight choice (Sec. 4.3.1), performance is not improved despite
the noticeable increment of computational cost.

4.4.5 Limitations and future works

In our experiments, we experienced that the worst results are for datasets that do
not closely match the assumptions of a closed indoor space, which are used in our
design to construct an efficient network architecture (see Sec. 4.1). Fig. 4.9 illustrates
an example from a real-world capture. In this case, the sparse samples from the
outdoor part, not properly masked, also negatively affect the reconstruction of the
surrounding indoor parts.

It should be noted that the method has been specifically designed to exploit features
inindoor structures. This behavior is mainly due to asymmetric feature compression
and flattening of gravity-aligned indoor panoramic imaging (Sec. 4.3.2), which, in
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addition to providing efficient information gathering, allows the use of a transformer
(MHSA) to retrieve the wide panoramic context. Without such indoor assumptions,
compression, flattening and self-attention are poorly effective. This design provides
advantages in the prediction of depth for interior structures, as demonstrated by
our results, while limiting the applicability of the method to scenes matching the
assumptions.

Since such a domain-specific network design has shown to provide significant
performance improvements with respect to more generic solutions, it is interesting
to further extend this work by exploiting domain-specific constraints. One direction
for future work would be to further exploit the indoor-specific design, e.g., by
incorporating indoor-specific loss functions designed for architectural structures
composed of large smooth surfaces, not necessarily planar, joining at possibly sharp
edges [12]. Another direction would be, instead, to use the same concepts to design
networks for other specific application contexts (e.g., outdoors, industrial plants),
incorporating knowledge on plausible structures (e.g., presence of pipes) into the
network representation and loss functions.

4.5 Conclusions

We have presented a novel end-to-end deep learning solution for rapidly estimating
a dense spherical depth map of an indoor environment starting from a single
image and a sparse depth map. To realize a lightweight and efficient single-branch
network, we combine and extend several technical solutions to offer a novel way
to solve this specific problem. We adopted a residual encoder with a dynamic
gating system to extract multi-resolution features from hybrid visual-geometric
input. In order to efficiently gather such amount of information and to avoid
onerous interconnections between encoder and decoder, we introduced a specific
compression and feature flattening which exploits the characteristics of typical
man-made environments and panoramic view. End-to-end training was instead
carried out by introducing a data augmentation scheme capable of making it robust
and versatile as the sparsity changes. As a result, our compact network outperforms
in terms of speed and accuracy current solutions for color-guided sparse depth
prediction and completion.

4.6 Bibliographic notes

The content of this chapter has been adapted from an article accepted for publica-
tion in Computational Visual Media [11]. | am the joint first author of this work, and
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| have significantly contributed to the conceptualization, methodology, implemen-
tation, testing, and validation of the method, as detailed in Chapter 1.
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Chapter 5

Reconstructing a 3D architectural
room layout from a single
omnidirectional image

While the previous chapter focused on the estimation of per-pixel geomet-
ric information, here we tackle the problem of recovering the 3D shape
of the bounding permanent surfaces of a room from a single panoramic
image. We introduce, in particular, a novel deep learning technique ca-
pable to produce, at interactive rates, a tessellated bounding 3D surface
from a single 360-degree image. Differently from prior solutions, we fully
address the problem in 3D, significantly expanding the reconstruction
space of prior solutions. A graph convolutional network directly infers the
room structure as a 3D mesh by progressively deforming a graph-encoded
tessellated sphere mapped to the spherical panorama, leveraging percep-
tual features extracted from the input image. Important 3D properties
of indoor environments are exploited in our design. In particular, gravity-
aligned features are actively incorporated in the graph in a projection
layer that exploits the recent concept of multi head self-attention, and
specialized losses guide towards plausible solutions even in presence of
massive clutter and occlusions. Extensive experiments demonstrate that
our approach outperforms current state of the art methods in terms of
accuracy and capability to reconstruct more complex environments.

99



Figure 5.1: Method overview. From a single cluttered panoramic image, our end-to-end deep network
recovers, at interactive rates, a watertight 3D mesh of the underlying architectural structure. The
graph convolutional network, trained using indoor-specific losses, exploits multi-scale gravity-aligned
features and active pooling to deform a tessellated sphere to the correct geometry. Reconstructed
models may include curved walls, sloped or stepped ceilings, domes, and concave shapes.

5.1 Introduction

The rapid estimation of the overall 3D shape of a room from monocular visual input
is a key component of indoor reconstruction pipelines [102]. The goal is to transform
a single image of a furnished room into the 3D layout surface determined by joining
the walls, ceilings, and floor that bound the room’s interior. In this context, much of
the effort is concentrated on 360° images, since they provide the widest single-shot
coverage and their capture is widely supported [164, 165]. The problem is very
challenging, due to the intrinsic characteristics of indoor environments, where
furniture and other indoor elements mask large areas of the structures of interest,
and concave room shapes generate vast amounts of self-occlusions (Fig. 5.2). Thus,
indoor reconstruction requires very wide context information and must exploit very
specific geometric priors for structural recovery [1].

In recent years, deep-learning solutions have emerged as a very promising way to
cope with these problems for depth estimation in indoor spaces [81, 107, 10]. Thanks
to the capability of these techniques to discover hidden relations from large data
collections, many priors imposed by pure geometric reasoning approaches can be
relaxed. However, 3D layout reconstruction is more complex than depth estimation,
since it does not simply assign a depth to each visible pixel, but must extrapolate
large portions of the invisible structure, which can be occluded not only by objects
but by the structure itself, leading to multiple intersections per view ray. Current
approaches cope with that complexity by operating in very restrictive solution
spaces. In particular, most methods target variants of the Manhattan World model
(MWM: horizontal floors and ceilings, vertical walls meeting at right angles) [102],
such as the Indoor World model (IWM: MWM with single horizontal ceiling and
floor) [103] or the Atlanta World model (AWM: vertical walls with single horizontal
ceiling and floor) [45]. Moreover, the most effective approaches recover the layout
by exploiting projections to lower-dimensional spaces before expanding them to
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3D. However, the combination of 1D/2D projections with restrictive priors limits
the reconstruction capability to very few regular shapes and makes reconstruction
less robust to occlusion (see Sec. 2.7).

Figure 5.2: Layout occlusion. Left: panoramic image. Middle: room shape, with occlusions from
walls (red) or from furniture (yellow). Only 31% of the surface of interest is visible. Right: plausible 3D
reconstruction generated by our method.

In this work, we introduce a novel technique, dubbed Deep3DLayout, that exploits
a graph convolutional network (GCN) to directly infer a watertight 3D mesh rep-
resentation of the room shape from a gravity-aligned panoramic image. Such an
approach significantly expands the solution space, covering a much wider class of
interior environments than prior solutions, including concave rooms with curved
or stepped walls or ceilings (Fig. 5.1). Indoor priors, less restrictive that previous
ones, are taken into account in the network structure, as well as in the carefully
crafted loss functions that drive training, without resorting to 1D/2D projections. In
particular, the mesh, represented as a 3D graph-encoded object, is initialized as
a tessellated sphere mapped to spherical coordinates and deformed towards the
correct geometry by leveraging indoor-specific perceptual features extracted from
the input panoramic image. To cope with large occlusion and take into account
the typical characteristics of interior environments, we encode image information
as gravity aligned features (GAF), which are representative of the architectural
indoor model mentioned above, and we exploit a multi head self-attention (MHSA)
approach to efficiently associates GAFs to 3D vertices during deformation, taking
into account short- and long-range relations, thereby coping with occlusions. To
train the network, our indoor-specific loss functions drive the mesh towards ar-
chitecturally plausible watertight 3D structures favoring models defined by the
intersection of smooth surfaces, not necessarily planar, possibly intersecting at
sharp edges. Our main contributions are summarized as follows:

e We define the indoor layout as a 3D graph-encoded object, exploiting GCNs
to infer the room structure as a 3D mesh (Sec. 5.3.1 and Sec. 5.3.2). Previous
state-of-the-art methods for indoor panoramic scenes (e.g., [45, 102]) used,
instead, simplified connected structures for the layout (Sec. 2.7), and required
a post-processing step to obtain the 3D geometry [102, 103].
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e We introduce a novel way to associate panoramic image features to 3D
vertices in an indoor environment. We exploit GAFs to efficiently preserve
receptive fields according to an indoor shape hypothesis (Sec. 5.3.3), refining
and incorporating them in the graph with a MHSA approach (Sec. 5.3.4).
Unlike static projections used for 3D object reconstruction [112, 113], our
active element is very robust to severe occlusion.

e We introduce a domain-specific loss function that combines specialized data
and regularization terms to guide reconstruction towards a plausible archi-
tectural model (Sec. 5.4). Since these priors are integrated in the training
process, no further post-processing is necessary to regularize the output,
and inference occurs at interactive rates.

Our extensive benchmarks demonstrate how we improve the state-of-the-art both
in terms of accuracy and in terms of capability to reconstruct more heterogeneous
environments (Sec.5.5). To grant reproducibility, code and data are made available.

Figure 5.3: Deep3DLayout pipeline. Our end-to-end deep learning technique maps an equirectangular
image to a 3D mesh representing the bounding surface or the room. Two GCN blocks deform an input
icosphere (Sec. 5.3.1) by offsetting its vertices (see Sec. 5.3.2). The first block starts from a first pooling
of the GAF features F*(n,d) to return a low-res estimation of the mesh M*(V*,E;). This low-res
representation M* is then refined to poll refined GAF features F*(4n — 6,d), which drive the second
GCN block. The output of the second block is the final refined mesh model M (V (4n—6,3), E (4m,2)).

5.2 Method overview

Our goal is to recover, from a single panoramic image, a representative 3D model of
the boundary surfaces of the architectural layout of the environment in which the
photograph has been taken. We assume that the environment around the viewer
is a closed volume fully bounded by walls, ceiling and floor. These surfaces are
assumed to be only partially visible, not only due to the presence of furniture and
wall-hangings, but because of the commonality of self-occluding concave environ-
ments (e.g., L-shaped rooms). Since we have to cope with significant amounts of
missing or ambiguous information, we need to use prior knowledge on the nature
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of interior environments to guide reconstruction. Contrary to previous works, how-
ever, we avoid doing so by topologically and geometrically constraining the output
model (e.g., forcing vertical walls and/or planar walls and ceilings), or by explicitly
performing operations valid only in restricted cases (e.g., projections and reasoning
in a 2D floor plan). Our solution, instead, is to drive the reconstruction of a general
geometric shape in the most plausible direction by exploiting domain knowledge
for network design and problem regularization.

5.2.1 Geometric model

The most general topological model of the recovered boundary surface is a closed
3D surface homeomorphic to a sphere, that we can represent as a triangulated mesh.
We, therefore, use such a 3D mesh as the output representation of our network.
Geometrically, we assume that vertices have unconstrained spatial positions, but
that the shape is most likely obtained from the intersection of smooth surfaces,
not necessarily planar, possibly intersecting at sharp edges. These characteristics,
which drive the learning process through crafted loss functions (Sec. 5.4), are typical
of the most common indoor structures [1].

5.2.2 Network design

Our network recovers the room structure by progressively deforming a 3D mesh
so that its shape matches the environment seen by the viewer (Sec. 5.3.2). Since
we have a spherical panorama as input, we can initialize the mesh to a 3D sphere,
and use spherical coordinates to establish correspondences with the input image
(Sec. 5.3.3). Moreover, as we do not know, for a given panorama, where geometric
features may be positioned, we initialize the sphere to a geodesic polyhedron
obtained by regular subdivision of an icosahedron (also known as icosphere). Mesh
deformation is then driven by associating image features to mesh vertices. Since we
expect, as consequence of architectural design, that a certain part of the structural
elements will develop along the gravity direction, we extract gravity-aligned features
(GAF) (Sec. 5.3.3) and refine the association with vertices by exploiting long- and
short-range relations, which allows us to cope with large occlusions (see Sec. 5.3.4).
To increase robustness, we also employ a coarse-to-fine approach, in which we
first target the reconstruction of a coarse mesh starting from the initial sphere, and
then refine the coarse mesh to a finer one. This approach results in the end-to-end
pipeline illustrated in Fig. 5.3, consisting of a dual-stage mesh deformation network
(see Sec. 5.3.1and Sec. 5.3.2), driven by an image feature network (see Sec. 5.3.3
and Sec. 5.3.4). The mesh deformation network includes two GCN blocks (see
Sec. 5.3.1) deforming the input icosphere by offsetting its vertices (see Sec. 5.3.2).

103



The image feature network, instead, performs feature pooling based on the current
vertex positions. It includes a CNN encoder to encode GAFs from the input image
(see Sec. 5.3.3), and a multi-layer spherical pooling system to refine the association
of GAFs to vertices. In order to support our coarse-to-fine-approach, the first GCN
block starts from a first pooling of the GAF features F*(n,d) to return a low-res
estimation of the mesh M*. This low-res representation M* is then refined (in
this paper 4 times the number of initial faces) to perform a further GAF pooling
F*(4n—6,d), which drives the second GCN block. The output of the second block
is the final mesh model M(V (4n—6,3),E(4m,2)) (see Sec. 5.3.4 for details). The
network thus performs reconstruction using a fully 3D approach, looking for a
solution in 3D space without resorting to any projection to a 2D layout or a 1D
corner list.

5.2.3 Training and loss function design

Learning is performed using a supervised training approach that exploits databases
matching spherical panoramas to the geometric representation. We assume, as
in all recent works, that the examples are gravity-aligned, i.e., with the Y axis of
the image pointing in the real-world vertical direction. All commonly available
annotations of indoor panoramic layouts are already gravity-aligned and provided
as closed shapes, and thus can be easily represented as closed meshes with the
correct orientation (Sec. 5.5). The loss function used for training must embed our
knowledge of the problem without overly constraining the solution space. We thus
combine a data term, measuring the quality of fit with respect to training data,
with regularization terms that drive the solution towards plausible reconstruction
hypotheses based on our expected 3D models, favoring reconstructions in which
shapes are likely to be composed of large smooth surfaces, not necessarily planar,
joining at sharper edges. As the shape is represented in a graph, we can define
these terms as differentiable higher order functions across neighboring nodes. It is
important to note that these terms are computed with operators on the boundary
surface, without resort to 2D or 1D projections (Sec. 5.4).

5.3 Network structure

Our end-to-end network maps panoramic images to a mesh representation. In the
following, we first detail the encoding of the mesh model (Sec. 5.3.1) and the mesh
deformation network based (Sec. 5.3.2). Finally, we discuss the gravity aligned
features encoding (Sec. 5.3.3) and the multi-res spherical pooling (Sec. 5.3.4).
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5.3.1 Room model as a 3D graph-encoded object

In our 3D graph-encoded layout the mesh is represented as a graph (V, E, F'), where
V(n,3) is the set of n vertices in the mesh, E(m,2) is the set of m edges, each one
connecting two vertices, and F (n,d) are the feature vectors of dimension d coming
our of the pooling layer and associated to vertices (Sec. 5.3.4). Vertices are defined
in the camera reference frame, setting the origin at center of the spherical image,
and the Z axis pointing upwards.

5.3.2 Mesh Deformation Network

The mesh deformation network is a sequence of two GCN blocks (Fig. 5.3). It starts
from an initial sphere S(V;, E;), having V;(n,3) vertices and connectivity E;(m,2),
and returns a final output model M (V, E) having V (4n — 6,3) vertices and connec-
tivity E(4m,2). Each block, internally, consists of a cascade of GCN layers (i.e. 6
layers) followed by a final linear transform which returns the vertex offsets O(n, 3),
used to compute the vertex displacements V (n, 3) (Fig. 5.3 upper right detail). Each
GCN layer [ is defined as:

fvom = WOfvin + Z Wlfvin (5-1)
qeé

where fVl € Fy(n,d;) are the feature vectors attached to vertices, d; are the feature
channels at level I, f,/™! € R%+1 are the feature vectors on vertex v € V (n, 3) before
and after the convolution, and &(v) are the neighboring vertices of v specified
in E(m,2); Wy and W are the learnable parameter matrices of d; x d;; that are
applied to all vertices. Note that W1 is shared for all edges, and thus Eq. 5.1 works
on nodes with different vertex degrees [112].

The first convolutional block takes as input a set of aligned image features F,(n,d)
(i.e., F, self-attention features, see Eq. 5.3), obtained by pooling the GAF features
with the vertices V;(n,3), and the initial connectivity E;(m,2). The output of this first
block is a set of deformed vertices V*(n,3) and a set of vertex features F,*(n,d;).

Before the second step, both the intermediate mesh M*(V*,E;) (i.e., V*(n,3)
vertices with E;(m,2) connectivity) and the associated vertex features F,*(n,d)
are refined by following the subdivision scheme proposed by Gkioxari et al. [113].
Specifically, we subdivide each triangle mesh by adding a new vertex at the center
of each edge and dividing each face into four new faces. Vectors of vertex features
are also subdivided by averaging the values of the features at the two vertices which
form each edge. After the subdivision, we obtain a refined mesh with V*(4n —6,3)
vertices and E(4m,2) edges, and the refined vertex features F,*(4n — 6,d;).
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We exploit the new vertex set V*(4n — 6,3) to pool refined GAF features F,(4n —
6,d), so we pass refined GAF as input to the second convolutional block, together
with vertices V*(4n — 6,3) and F,*(4n — 6,d,) (i.e., the residual interpolated fea-
tures from the first block). As a result the second block returns the final vertex
displacement V (4n — 6,3) (Fig. 5.3). The final model M(V,E) is then given by
vertices V (4n — 6,3) and by the subdivided connectivity E (4m,2).

While the design of our network is scalable, all the results in this paper have been
produced by a network that has been sized in accordance with available datasets
(Sec. 5.5). In particular, we use as input/output for the first block a mesh with 642
vertices and 1280 faces (1920 edges), while for the second block we have 2562
vertices and 5120 faces (7680 edges). We found that, using available benchmarks,
these triangulation are enough both to cover the whole spherical scene with an
uniformly distributed number of vertices (i.e., block 1), as well as to provide a
reliable representation of the targeted indoor structures (i.e. block 2).

We also studied different multi-stage architectures with variable number of faces,
similar to architectures for general-purpose object reconstruction [112]. However,
we experienced that the illustrated dual stage scheme performs better (Sec. 5.5.4)
in our context. This is due to the combination of two factors differentiating our
problem from generic object reconstruction methods targeted to recover details
of the entire visible surface of the object, starting from images with a small field-
of-view [112, 113]. First of all, our panorama covers a full 360° FOV. This requires a
reasonably dense coverage in the initial mesh to ensure a good starting angular
resolution, especially when coping with occlusions. Second, our targeted indoor
structure is characterized by a low number of clustered geometric details, as the
target shape is composed of large portions of piecewise uniform surfaces. We are
therefore not targeting a final uniformly dense mesh.

5.3.3 Gravity-aligned Features Encoding

A central component of our network architecture is the combination of the features
extracted from the images with the vertices encoded in the graph. As these features
are present at many scales, the common architectural choice is to use convolutional
residual networks for extracting relevant low/mid/high-level features from the
input tensor. Such networks contain a contractive encoding part that progressively
decreases the input image resolution through a series of convolutions and pooling
operations, giving higher-level neurons with large receptive fields. As we work on
panoramic images, these features can be effectively distributed over the whole
geometric context and cover wide areas.
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In order to support an efficient pooling of the image features, taking into account
the peculiar characteristics of indoor environments (Sec. 5.3.4), we perform a
specifically designed anisotropic contractive encoding exploiting our knowledge of
preferential directions.

We start from the assumption that gravity plays an important role in the design
and construction of interior environments, so world-space vertical and horizontal
features have different characteristics in most, if not all, man-made environments.
Such concept is exploited in several recent works for depth estimation from indoor
panoramic images [10]. According to this assumption, we perform an anisotropic
contractive encoding that reduces the vertical direction while keeping the horizontal
direction unchanged, so that separated vertical features can be better preserved.
Specifically, in our approach, we start by encoding features from ResNet-18 layers
(Fig. 5.3). We chose this light-weight architecture to maintain interactive inference
rates (Sec. 5.5), and, in order to compensate for the low depth of the network,
we simultaneously exploit the last four layers, instead of only the deepest one. In
this regard, we have also tested other deeper encoders, such as ResNet-50 [62]
and HarDNet [166], finding only a marginal increase in performance against an
increased time cost.

Anisotropic contractive encoding is then applied to the features coming out of
ResNet-18 by performing an asymmetric convolution with stride (2, 1) applied 3
times, achieving a reduction along the vertical direction by a factor of 8. Each
convolution is followed by ELU activation function, thus removing the need for
batch normalization [71]. We apply this encoding for each one of the last 4 ResNet-
18 layers, obtaining the 4 GAF layers GO, G1,G2,G3 (Fig. 5.3), which are the latent
features ready for vertex pooling. As discussed in Sec. 5.3.4, this compressed
multi-scale representation contains useful information to recover the underlying
structure, including locally-visible features and non-local structure information.

Figure 5.4: Effect of MHSA. Qualitative difference in not using (left) or using (right) the MHSA
transformer when pooling image features.
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5.3.4 Multi-layer spherical pooling with self-attention

In pipelines for generic 3D object reconstruction, the objects is observed from an
external viewpoint and within a restricted field of view, and the shape of the object
is reconstructed from local features visible. Thus, it is possible to simply pool image
features from the 2D projection of the associated vertex on the image, which can
be readily obtained by assuming known camera intrinsic matrix [112, 113]. In that
case, the main problem for the pooling layer is the interpolation of nearby features,
which in our case, would mean combining nearby GAF features.

In our case, by contrast, in addition to feature interpolation, we have to cope with
major occlusion problems, caused by a vast amount of clutter and by the structure
itself, as discussed in Sec. 5.2. We cannot restrict us to simply statically combine
nearby features in image space, but need to take into account short and long range
relationships in the image to perform an effective pooling. This has to be done
using an active process, that learns the importance of local and non-local features
for a given neighborhood. To this end, we introduce a specific pooling system for
combining our GAFs.

Given the 3D vertex positions V (n,3), we poll the four gravity feature layers GO,
G1, G2, G3, encoded as described at Sec. 5.3.3, through the following spherical
projection:

__ arctan(x/y) v — arctan(z/zyﬂ/XZ_,_yz) (5.2)

T

where x,y, z are the world coordinates of a vertex v € V(n,3) and u,v € G normal-
ized coordinates in image feature space.

For each vertex v;, we concatenate the features extracted from the four layers into
a single feature g;* associated to the vertex (in this paper the feature dimension
is 64 + 128 + 256 + 512 = 960). This solution has the advantage of associating
information at the vertex at different resolutions, keeping at the same time a low
number of parameters for each layer. After this pooling, we obtain a latent feature
representation F, = (go...gn), as a sequence of n feature vectors of dimension
d. However, due to occlusions, this compressed representation contains a variety
of information that may or may not be useful to recover the underlying structure.
In fact, it contains both local-visible features and non-local structure information,
as well as features from clutter or occluders. In order to efficiently retrieve useful
information from this representation, we adopt a self-attention strategy. Self-
attention is an attention mechanism relating different positions of a single sequence
in order to compute a representation of the sequence [140], that has had important
successes in tasks where one must capture global dependencies, such as image
synthesis [167].
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In our case, we aim to leverage complementary features in distant portions of
the image rather than only local regions to support reconstruction. We do that
by learning a set of attention weight vectors used for refining important spatial
features.

Our self-attention module takes the latent features F, € R"*4 as input and outputs
a self-attention weight matrix A € R"*":

(Fqu) (Fng)T >

Vi (5.3)

A = softmax <

where W, Wy € R?*? are learnable weights.

We exploit the attention matrix in Eq. 5.3 to obtain the refined latent feature
F, = A(F,W,) € R™, where W, € R?*? are learnable weights. Such a self atten-
tion approach is applied in a multi-head fashion (MHSA) [140], to let the model
jointly attend to information from different representation sub-spaces at different
positions. This amounts to running r attention modules in parallel. In our case
we use r = 4, denoting 4 attention weights for each image spatial feature. These
refined features, combined through a learning process, are then associated to the
vertices of our model. Fig. 5.4 shows a qualitative example of the effect of using
MHSA to pool feature with respect to statically combined local features.

5.4 Training and loss functions

During the training phase, we compute the parameters of the network using a super-
vised training approach that exploits databases matching gravity-aligned spherical
panoramas of cluttered scenes to the their boundary layout representation.

Our loss functions are designed to combine data terms that measure the quality of
fit with respect to training data, with regularization terms that drive the solution
towards a plausible reconstruction of an indoor environments. As the shape is
represented in a graph, we can define all these terms as differentiable functions
that compute geometric properties by accessing neighboring nodes. As we perform
a coarse-to-fine reconstruction in a single end-to-end network, see Sec. 5.3.2, these
losses are applied with the same weights for both the intermediate and final mesh.

Due to the nature of typical human-built structures, we expect that our models will
be composed of large smooth surfaces, not necessarily planar, joining at possibly
sharp edges. Such a characterization is less restrictive then typical indoor priors
based on planar surfaces and vertical/horizontal alignments (e.g., variations of
MWM, IWM, AWM), and includes common structures such as curved walls, vaults,
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and domes, that we seek to represent with a limited number of vertices. We
incorporate this knowledge in our data terms by measuring the dissimilarity in
surface positions and orientations between predicted and ground truth meshes, as
well as the fitting of sharp features present in the ground truth model. Data terms
have thus the following form:

ngata = Afcfpos + kna%wrm + Afshe%charp (5~4)

where .2, is the positional loss, £, is the orientation loss, and £, is the
sharpness loss. A, 4, and A, are weights that tune the relative importance of the
terms (see Sec. 5.5 for details).

Positional and orientation terms, as usual in 3D reconstruction, are computed by uni-
formly sampling the ground truth and predicted surface meshes and summing the
contributions at each point. We adopt the differentiable mesh sampling operation
proposed by Gkioxari et al. [113], sampling a point cloud Q from the ground-truth
mesh, and a point cloud P from the mesh prediction, retrieving at each sample
point the position p and its unit normal n,,. Given a point p in a point cloud A,
let N(A, p) = argmingea ||p — al| be the nearest neighbor of pin A, and ny 4 p) its
normal. We then define the positional term from the bidirectional chamfer distance
between point clouds P and O

- 2 -1 2
Zoos =PI Y Ilp=N@.p)IP+107" Y lg—N(P,q)|| (5.5)
peP q€0
and the orientation term from the bidirectional normal distance

Zaorm=—IP"" Y |np-nnio | = 1017 Y |ng nnieg)
pEP qeQ

? (5.6)

These two terms are averaged over the surface, and large areas would dominate
the few sharp edges, which are important in indoor environments as they appear,
e.g., at the connection of walls among themselves or of walls with ceiling or floor.
As we target low-poly reconstruction, in order to preserve such features, we want
do drive vertices in the prediction to snap to ground truth feature edges. Given
a ground truth mesh, we start by calculating, at mesh loading time, a sharpness
value based on cosine similarity for each of its edges, i.e. egqrp = 1 —ng - n1, where
no and n; are the normal vectors of two triangles sharing the edge ¢, and mark
as feature all edges with ey, > T (with T = 0.5 for this paper). This measure
favors considering as features angles around 90 degrees, which are common in
architecture. We then uniformly sample all the extracted feature edges to obtain a
point cloud S.. We then compute

egsharp = ‘Se‘il Z Hq*N(P’CI)HZ (5-7)
qE€Se
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Note that, differently from positional and orientation terms, sharpness is unidirec-
tional, as we want to have ground-truth feature edges ground truth only attract
close-by vertices in the prediction, leaving the others unchanged.

Figure 5.5: Effect of FPSL. The first two images shows the difference in using or not the feature-
preserving smoothness loss (FPSL - Eq. 5.11); the second two images show the difference in using or
not the sharpness loss (SL - Eq. 5.7).

Using data terms alone, the network may generate very large deformations to
closely fit the ground truth, which is harmful especially in the first training iterations,
when the estimation is far from ground truth and large vertex movements would
compute inconsistent solutions, letting the optimizer stuck in local minima. We
therefore introduce regularization losses to counteract this effect, while at the
same time driving the solution towards plausible reconstructions in areas where
data terms provide little information:

greg = lev%dge + A's%mooth (5-8)

where .Z,;,. is an edge regularization term, %, is a curvature regularization
term, and A, and A, are weights that tune the relative importance of these terms.
Regularization weights are smaller than the data weights since these terms must
support data fitting and not counteract it (see Sec. 5.5 for numerical details).

Edge regularization tends to favor uniform distribution of vertices in the predicted
mesh, and is computed by:

cfedge:|E’_l Z Hvi_vjuz (5~9)
(i,j)€E

where v; and v; are the vertices of a common edge ¢;; € E. The combination of
this weight with .2}, has the effect of nicely distributing vertices around sharp
features.

In addition to regularize positions, we also aim to regularize curvature, to avoid
small curvature variations while preserving sharp features. We do that by first
computing the discrete mean curvature normal [168] of each predicted vertex v;,
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i.e., the unit length surface normal n; at the vertex v; scaled by the discrete mean

curvature k;:
_ 1

kin; =
" 4Aw)

Z (COtOlij—i-COtBij)(Vj —Vl') (5.10)
(i.J)EE
where A(v;) is the sum of the areas of all triangles containing vertex v;, o;; and B;;
are the two angles opposite to the common edge ¢;; € E, v; € S[i], assuming S[i]
the set of neighboring vertices to v;. We use Eq. 5.10 to discretize the Laplacian
matrix L € R™", so that the tensor Ky = |LV|| € R"*! contains the discrete
mean curvature for all vertices [169]. Directly minimizing this term as done in 3D
object reconstruction [113] would lead to uniform smoothing, causing a degradation
of sharp structural features of an indoor environment. Thus, we introduce an
exponential curvature-aware weight term:

Dgsmvoth = ‘V‘il Z e_|KHi‘ ‘KH1| (5-11)
eV
The introduced exponential weight reflects what we expect from our indoor model,
as it penalizes low-curvature vertices, forcing them to lie on a plane or on a constant-
uniform curvature surface, while avoiding to penalize feature vertices with a more
marked curvature.

The contribution of each individual term is analyzed in Sec. 5.5. Some qualitative
effects are also illustrated in Fig. 5.5.

5.5 Results

Our approach was implemented using PyTorch [170] and PyTorch3D [171] and has
been tested on a large variety of indoor scenes. Code and data will be made
available at https: // github. com/ crs4/Deep3DLayout

5.5.1 Benchmark datasets

In order to provide a comparison with state-of-the-art work, we analyze results
standard publicly available datasets [72, 109, 49, 108], containing thousands of
indoor scenes and commonly adopted for benchmarking 3D layout recovery [54,
45, 107, 103, 85]. However, due to the focus of prior works, these benchmarks
mostly consist of MWM structures [102]. Since our method is more general, we
extend the testing set with the publicly available AtlantaLayout [45] dataset, which
also contains rooms with curved walls or meeting at non-right angles. In addition,
we prepared a specific dataset, called Pano3DLayout, containing 106 more complex
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Method MatterportLayout
lou3D?1|loU2D1|CD| |F 0.1 1|F70.3 1|F70.5 1
LayoutNet [73] 7578 | 78.02 [1.96| 49.16 | 78.45 | 84.20
DuLaNet [74] 75.62 | 78.86 |0.82| 51.55 | 80.20 | 86.88
HorizonNet [54] 78.45 | 81.28 |0.79| 56.14 | 85.35 | 91.67
AtlantaNet [45] 80.67 | 82.55 |0.56| 5973 | 88.13 | 93.62
HoHoNet [107] 80.25 | 83.06 |0.65| 59.00 | 87.67 | 92.54
Led2Net [103] 8170 | 84.12 |0.37| 64.24 | 93.12 | 97.80
Zeng [85] - - - - - -
Deep3DLayout (ours)| 85.38 | 86.45 |0.18| 77.92 | 98.91 | 99.78
Method Stanford
loU3DT|loU2D1|CD] [F70.1 T|F10.3 1|F70.51
LayoutNet [73] 7678 | 80.34 |0.96| 34.89 | 78.20 | 82.53
DulLaNet [74] 80.02 | 83.44 |0.65| 39.35 | 82.89 | 87.15
HorizonNet [54] 8277 | 86.12 |0.23| 45.88 | 88.03 | 94.83
AtlantaNet [45] 82.36 | 85.70 |0.18 | 46.45 | 88.92 | 95.27
HoHoNet [107] 82.44 | 85.75 |0.22| 45.92 | 88.15 | 94.65
Led2Net [103] 83.60 | 8712 |0.18| 49.23 | 9177 | 98.10
Zeng [85] 86.21 - - - - -
Deep3DLayout (ours)| 89.39 | 90.11 |0.01| 84.66 | 99.94 | 99.99

Table 5.1: Comparison on MWM datasets. We compare our method, according to indoor layout and
3D reconstruction metrics, to recent state-of-the-art approaches on the MatterportLayout [6] and
Stanford [109] MWM datasets.

environments, not included in previous benchmarks, such as, for example, scenes
with sloped or stepped ceilings, domes, and interconnections of different rooms.

Ground-truth layout meshes were created without resorting to manual annotation.
For new synthetic scenes, we simply used the watertight mesh generated with
PyMeshlab [172] from the same model used for rendering with interior objects
removed. For real-world scenes, PyMeshlab was used to transform to a watertight
mesh the global dense point clouds available with Matterport3D [6].

5.5.2 Experimental setup and timing performance

We trained the network using the Adam optimizer [129] with 8; = 0.9, 8, = 0.999,
on four NVIDIA RTX 2080Ti GPUs (11GB VRAM) with a batch size of 8 and a learning
rate of 0.0001. The adopted weights for loss function are 1.0 for the position and
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normal distances and 0.1 for all the other losses (see Sec. 5.4). We found that these
figures work well on models in the metric scale, and we convert other units to
meters prior to training. As a result, our models are already in metric scale. We
experienced that the scale estimation, compared to using normalized meshes, adds
an important information to the final result at a negligible cost.

Our method uses triangulated meshes as ground truth models (Sec. 5.3.1). Newly
modeled scenes in Pano3DLayout are modeled directly as watertight meshes stored
as collections of vertices and faces, while existing 2.5D datasets [72, 109, 6, 108] are
triangulated at run-time using trimesh [173] from the original representations in
terms of 1D collection of corners on the image horizon plus the height of the layout.

The computational complexity of our method is relatively low with respect to
comparable works, since the model has 23.8M of learnable parameters. As an
example, HorizonNet [54], which is the baseline for several other methods [45,
103], includes about 57M of parameters.

As aresult, the inference performance of our network is compatible with interactive
rates, and we can therefore support model generation directly at acquisition time,
to support, e.g., augmented reality applications and/or interactive editing. Even
though we generate full 3D models without resorting to 1D or 2D reductions, we
can predict the results, starting from a 512 x 1024 image at a rate of 27 fps on a
single NVIDIA RTX 2080Ti.

It should be noted that our results are obtained through an end-to-end network
that takes directly as input the gravity-aligned image and produces directly as
output the 3D mesh. In this work, the 360 data are mostly well-aligned, so we
do not apply any pre-processing. This condition is fulfilled at virtually no cost by
all capture setups that include a IMU sensor and could incorporate our network
without any modification. For more general cases, we might consider including
a 360 gravity alignment block to align the input. Several deep learning solutions
exist that perform this task at interactive rates [110]. For several competitors, pre-
and post-processing operations may be more costly. For instance, the image pre-
processing adopted by many of the compared methods [73, 74, 54, 85, 107, 103],
that has to be applied both on the training and testing sets, takes about 3seconds
per image.

5.5.3 Quantitative and qualitative evaluation

We compared our reconstruction performance to the one achieved by latest state
of the art methods [73, 74, 54, 45, 85, 107, 103]. Tab. 5.1 summarizes the results the
Indoor World scenes comprising commonly available benchmark datasets [72, 109,
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Method AtlantalLayout
loU3D?[loU2D1[CD| [F70.1 1[F70.3 1[F70.5 1

Led2Net [103] 75.68 | 77.45 |0.92| 33.69 | 65.67 | 75.09
AtlantaNet [45] 80.25 | 84.30 |0.48| 34.28 | 67.56 | 80.55
Deep3DLayout (ours)| 89.88 | 90.51 |0.10| 87.01 | 99.90 | 99.98
Method Pano3DLayout
loUu3DT|loU2Dt|CD]  |F710.1 1|F70.31|Ft0.571
Led2Net [103] 39.61 | 57.20 |485.49| 29.36 | 64.91 | 67.23
AtlantaNet [45] 69.21 | 78.54 | 2.24 | 35.45 | 65.46 | 68.35
Deep3DLayout (ours)| 83.28 | 89.15 | 0.02 | 69.82 | 98.76 | 99.08

Table 5.2: Comparison on non-MWM dataset. We compare our method, according to indoor layout
and 3D reconstruction metrics, to recent state-of-the-art approaches on the publicly available non-
MWM Atlantalayout dataset [45] and on our new Pano3DLayout release. For comparison, we choose
best-performance methods for which source code and pre-trained models are available.

6, 108], while Tab. 5.2) presents the results on the more challenging non MWM
scenes from AtlantalLayout [45] and Pano3DLayout.

We evaluated all methods using error metrics relevant to our task. Since the target
is not to reconstruct the full visible scene, but to infer the underlying severely
occluded layout, we resort to spatial measures rather than pixel error metrics. In
particular, we complemented standard metrics for indoor layout reconstruction,
such as intersection-over-union [102] (i.e., loU2D, loU3D), which were adopted as
benchmark by all the competing methods [74, 54, 45, 85, 107, 103] with proper
3D reconstruction metrics [174], such as Chamfer distance (CD) and F-score, com-
monly adopted for 3D object reconstruction, which provide additional information,
especially for complex scenes.

We refer to Zou et al. [102] for details on the indoor layout metrics. It should be
noted, however, that we use loU2D solely with the purpose of facilitating the com-
parison with prior works on models with vertical walls and flat floors. We computed
this measure by extracting the 2D plan through planar sectioning according to the
Y axis. As our work solves the problem in 3D, the other included 3D measures are
more appropriate. Moreover, the loU3D estimation adopted by all mentioned com-
peting methods is usually obtained by the product of a 2D error (i.e., room footprint)
and the height error, assuming a constant layout height. Since our method works
directly in 3D space and is not limited to single-height layouts, we implemented
full-3D routines to calculate both loU3D and loU2D using PyMeshlab [172]. We
experimentally verified, with the available codes of the compared methods, that
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(a) MatterportLayout (b) ground truth (c) ours (d) ours vs gt (e) [103] (f) Floorplan
RGB

(g) AtlantaLayout* RGB (h) ground truth (i) ours (j) ours vs. gt (k) [45] (1) Floorplan

Figure 5.6: Qualitative comparison. Qualitative comparison on publicly available datasets. We show
the input image, the ground truth model, our prediction, our prediction in overlay with ground truth,
competitor prediction in overlay with ground truth and the 2D floorplan comparison (grey ground
truth, blue ours, red competitor). The presented scenes contains multiple connected rooms partially
visible from a single point-of-view, as well as non-MWM corners, curved walls and ceiling. Fig.5.6h
full ground truth, including the dome, was recovered from the Matterport3D [6] meshes.

when dealing with a single ceiling and single floor scenes, our implementation is
consistent with the restricted one adopted by Zou et al. [102]. Therefore, all the
statistics provided in Tab. 5.1 and Tab. 5.2 are calculated using our full-3D measures,
except for the method of Zeng et al. [85], whose source code is not available, where
we expose the performances declared in their paper, based on the assumption of a
single elevation per model.

The Chamfer distance (CD) and the F-score are presented for all the methods for
which source code and data are available. To obtain such measures, we uniformly
sample 10000 points from the result and the ground truth mesh [112, 113] and
compute measures by comparing those samples. Specifically, CD measures the
distance of each point to the other set, while F-score represents the harmonic
mean of precision and recall, obtained by computing the percentage of points in
prediction or ground truth that can find a nearest neighbor from the other within a
distance threshold 7 [174]. In Tab. 5.1 and Tab. 5.2 we present, respectively, F-score
for 1 =0.1,7 = 0.3,7 = 0.5, which are typical metric distances used in indoor
benchmarks [113]. For CD, smaller is better, while for the F-Score larger is better.

Results in Tab. 5.1 summarize the results obtained on the MatterportLayout [49]
and the Stanford2D-3D-S [109] datasets. For training and testing, we follow the
same official split described by Zou et al. [102], and adopted by the compared
works. Both MatterportLayout and Stanford2D-3D-S mainly contain Indoor World

116



(a) Pano3DLayout RGB  (b) ground truth (c) ours (d) ours vs. gt (e) [45] (f) Floorplan

Figure 5.7: Qualitative comparison on non-MWM scenes. Qualitative comparison on non-MWM
scenes (Pano3DLayout). We show the input image, the ground truth model, our prediction, our
prediction in overlay with ground truth, competitor prediction in overlay with ground trutht and the
2D floorplan comparison (grey ground truth, blue ours, red competitor). Our approach has consistent
performance for a variety of model kinds, in particular for complex structures, such as domes and
sloping roofs.

scenes, that is scenes with walls meeting at right angles and rooms have a single
horizontal floor and a ceiling. As discussed in previous sections, all compared
methods, except ours, adopt some form of post-process regularization on the
output that exploits the Indoor World assumptions. Our method, on the other
hand, without any postprocessing, outperforms other methods with all metrics.
Such difference in performance is more pronounced, in particular, with the F-score
and Chamfer metrics.

While the size of our network can be parameterized in terms of mesh sizes, all the
results are presented for a final mesh size of 2562 vertices and a coarse mesh size
of 642 vertices, which produced the best results for our 512 x 1024 image data.
These numbers are not surprising, since using coarser meshes would reduce our
capability to represent smooth curves (e.g., domes), while denser meshes would
overly reduce the image feature size associated to each vertex. As an example,
our setting of (642,2562) vertices achieves F 10.1 = 64.24 for MatterportLayout,
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while reducing the mesh to (162,642) vertices reduces the score to F70.1 = 37.43,
and increasing the mesh to (2562,10242) vertices achieves only F70.1 = 64.78 at a
much higher storage and computational cost.

Fig. 5.6 illustrates some examples from publicly available benchmarks [49, 45]. We
show, respectively, the input equirectangular image, the ground truth 3D model, our
predicted results, our prediction with the ground truth overlay and the prediction
with a competitor method with ground truth overlay. We choose for comparison
the methods of Wang et al. [103] and Pintore et al. [45], which have, respectively,
the best performance for Indoor World and Atlanta World environments at the time
of this writing. The presented scenes contain multiple connected rooms partially
visible from a single point-of-view, as well as non-MWM corners, curved walls
and ceiling. In all cases our method outperform the reconstruction obtained with
the other methods, which is not surprising since we are more flexible in terms of
expected output geometry.

On the other hand, MWM cases (Fig. 5.6b) are particularly challenging for our
method, since we do not impose any constrain of this kind, while the expected
results is a regularized, planar layout. All the methods compared in tab. 5.1 share the
same MWM regularization post-processing of HorizonNet [54], but, in many cases,
the layouts obtained with post-processing are visually plausible, but not correct in
many cases (e.g., Fig. 5.6b). In particular, the differences are more marked in case
of strong occlusions, where our method returns a reconstruction generally returns
a much more reliable reconstruction (e.g., Fig. 5.6b, top). This seems to be related
to the fact that our network, which works in full 3D and is fully data-driven, is more
robust towards occlusions with respect to methods relying on 2D/1D projects and
post-process regularization.

Fig. 5.6g presents a case from AtlantalLayout that violates the Atlanta World assump-
tion since there is a dome rather than an horizontal ceiling). In this case our method
provides a faithful reconstruction (Fig. 5.6i), while methods that approximate the At-
lanta World model provide partially correct reconstructions since the curved ceiling
causes an error in scale estimation, which propagates to an error on the footprint
(e.g, Fig. 5.6k)/ In Tab. 5.2 we present results for more complex scenes not limited by
the Indoor World assumption. We show the results with our novel Pano3DLayout
dataset, which includes more challenging cases, such as domes, sloped or stepped
ceilings and more. We compare our results with competing methods which have
best performance on the same data and for which training code has been made
available by the authors [103, 45]. All the methods presented, included ours, are
trained on the MatterportLayout dataset and fine-tuned with a specific training set,
respectively from the Atlantalayout and Pano3DLayout dataset, following the same
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data splitting for fine tuning adopted by other compared baselines [54, 45]. The 106
Pano3DLayout scenes were split into 66 for fine tuning and 40 for testing. Training
speed is ~ 0.04s/img on 4 GPUs. Training time on the full MatterportLayout is 1
minute/epoch. Reported results are for 3200 epochs.

The results show that our approach guarantees consistent performance with dif-
ferent kinds of models, in particular in the case of more complex structures such
as domes and sloping roofs. On the contrary, the performance of the methods
based on the Indoor World and Atlanta World hypotheses are not able to maintain
adequate performance on these more complex cases. This tendency is evident also
in the qualitative comparisons of Fig. 5.6 and Fig. 5.7. For the competing methods,
besides the predictable error on the roofs, there is a remarkable scale error. This is
due to the fact that the proportions of the structure in all these approaches are
obtained under the hypothesis that the surfaces can only be vertical or horizontal,
and that, therefore there is always a homography between the boundaries of the
ceiling and the floor [175]. This constraint is clearly violated on these complex
scenes.

5.5.4 Ablation Study

Baseline Structured3D
MLP | GAF | MHSA | FPSL | SL | loU3Dt | F10.11T | F70.31 | F10.51
B - - - 49.13 53.58 70.02 76.98

v - - - - 63.93 55.24 71.45 80.20
v v - - - 75.61 67.24 79.11 85.78
v v v - - 83.34 70.16 93.55 98.82
v v v v - 84.98 78.66 9712 99.02
v v v v v 91.45 80.65 98.74 99.18

Table 5.3: Ablation study. The ablation study, performed on the Structured3D dataset [108], demon-
strates how our proposed design choices improve the accuracy of prediction. Results show only
comparable-stable cases that actually increase it. We show in the last row the full architecture
setup.Legend: MLP: multi-layer pooling; GAF: gravity aligned features; MHSA: multi-head self-
attention; FPSL: feature preserving smoothness loss; SL: sharpness loss.

Tab. 5.3 summarizes the results of our ablation experiments. To test the key com-
ponents of our approach, we exploit the Structured3D dataset [108], a synthetic
dataset containing over 21,000 rendered rooms with ground truth 3D structure
annotations. This recent dataset has not yet been adopted by the comparable
works surveyed in Sec. 5.5.3, but provides an additional valuable benchmark for
our method. Fig. 5.4 and Fig. 5.5 visually illustrates examples of behavior related to
these ablation experiments.
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Since we designed an end-to-end network, we show design variations that lead to
comparable-stable cases. To this end, we highlight five representative key-choices:
the MLP (multi-layer pooling), compared to using only the last ResNet layer, the
GAF (gravity aligned features), compared to standard image features encoding
(see Sec. 5.3.3), the MHSA (multi-head self-attention) module (see Sec. 5.3.4),
the FPSL (feature-preserving smoothness loss), compared with standard Laplacian
smoothness, and the use of SL (sharpness loss) (see Sec. 5.4). The variations
discussed in the ablation study are those that consistently match the encoder and
decoder components of our specific architecture and that better characterize our
approach.

Figure 5.8: Failure case. Example of bad reconstruction.

The first row of Tab. 5.3 shows a configuration starting from the last layer of a ResNet
encoder, without using any anisotropic contractive encoding (i.e., GAF) and MHSA
feature pooling, and without a specific indoor loss function, such as FPSL and SL. The
second row of Tab. 5.3, instead, shows the same setup of the first row but exploiting
the last 4 layers of the ResNet encoder. It should be noted that this configuration
provides results of a variation of our technique that bears similarity with mesh-
growing methods, such as Mesh-RCNN [113] and Pixel2Mesh [112], adapted to
interior panoramic views, but without the indoor-specific features. The numerical
performance clearly show that just adapting mesh growing approaches to the task
is not sufficient.

Exploiting GAFs, at row 3 of Tab. 5.3, considerably improves performance, by ef-
ficiently preserving the receptive field according to the hypothesis that indoor
environments are constructed taking into account the gravity direction. Row 4
shows instead the performances of the whole network without using specifically
designed loss functions. Even though results are somewhat consistent, recon-
struction lacks many details and misses large feature edges connecting the main
architectural surfaces, as also highlighted by Fig. 5.5. Row 5 and 6 show the increase
in performance by applying FPSL and SL. Although the metrics F'70.3 and F'70.5 are
almost the same using the sharpness loss SL, a significant difference is present in
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the IoU3D, where this objective function greatly improves the detection of sharp
details (see Fig. 5.5).

Pano3DLayout (synthetic scenes)
Misalignment | loU3D? | F10.11 | F70.31 | F70.51
+0° 89.01 70.90 97.95 98.99
+1° 88.15 6972 96.92 98.13
+2° 85.52 56.14 85.35 91.67
+5° 76.67 34.50 78.35 89.20

Table 5.4: Robustness to gravity-alignment errors. Comparison of reconstruction performance on
synthetic scenes of Pano3DLayout by introducing gravity alignment errors.

Our approach assumes that input images are already gravity-aligned, a constraint
met by all common datasets and that can be achieved in most common setups
using IMUs or automatic image upright adjustment solutions [10, 107]. In order to
test the robustness to our method to moderate variations in gravity alignment, we
report in Tab 5.4 the results obtained by introducing various degrees of alignment
error (0°, £2°, +2°, £5°) on the synthetic scenes included in Pano3DLayout. The
method appears fairly robust to small alignment errors (< £2°), and degrades
as soon as input images are severely misaligned. As these tests were performed
without any retraining, we expect that further robustness can be achieved through
data-augmentation with misaligned examples, as done in previous work on depth
estimation [10, 107].

5.6 Conclusions

We presented an end-to-end deep learning approach to directly recover, at inter-
active rates, the 3D layout of an indoor structure from a single panoramic image.
Differently from prior solutions, all the components of our method address the
problem in 3D, without resorting to 1D or 2D projections, and we produce as out-
put a closed 3D mesh rather than a 2.5D model with strong planarity or surface
orientation priors. By taking into account the properties of indoor environments
in the network design and in the loss specification, we were able to produce an
indoor-specific solution which is efficient to train and use. In particular, inference
times are well within interactivity constraints, and quantitative and qualitative
results show significant improvements with respect to state-of-the-art methods in
terms of accuracy and capability to reconstruct non-MWM environments.

The method has also limitations. First of all, the problem is inherently ambiguous
and, as all purely-image-based solutions, reconstructions may be far from reality in
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several situations. Fig. 5.8 shows an example of failure of our reconstruction due in
this case to the abundant presence in the scene of transparent and specular walls,
combined with repetitive structures inside and outside the targeted scene. Limita-
tions more specific to our approach stem from the tessellated mesh representation.
In particular, reconstruction by deformation from a single origin generates denser
and more detailed meshes near the origin, and less detailed ones as one moves
away from the origin and occlusions increase, and thus the precision depends on
mesh tessellation size. Moreover, while our 3D mesh model is significantly more
flexible than current solutions exploiting MWM priors, our spherical mesh topology
is far from being sufficient to represent all sorts of architectural environments, since
several elements of the architectural structure, such as pillars, stairs, septal walls or
openings cannot be represented with a single closed surface. Including holes (doors,
windows) seems feasible as a direct extension of our end-to-end single pass method
deforming a spherical mesh, while extending the approach to other topologies is
not trivial. We plan to tackle this problem by exploiting semantic information to
handle internal architectural elements and details, separating the reconstruction
into several layers. Moreover, we also plan to extend this methodology to multiple
images and/or additional geometric information (e.g., RGB-D), in order to support
larger and more articulated indoor environments, such as multi-room structures.

5.7 Bibliographic notes

The content of this chapter has been adapted from an article published in ACM
Transactions on Graphics and presented at SIGGRAPH Asia 2021 [12], in which |
was one of the primary authors of the paper. | have significantly contributed to
the conceptualization, methodology, testing, implementation, and validation of
the method, as detailed in Chapter 1. An interesting follow-up of our approach
has been recently proposed by Dong et al. [176]. Their work extends our solution
based on mesh representation to total-scene understanding using a transformer
architecture.
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Chapter 6

Conclusion

This thesis has introduced novel techniques that advance the state-of-the-
art in 3D reconstruction of indoor environments, with a focus on methods
the infer depth and layout information from a single panoramic image,
eventually enriched with sparse depth. This final chapter provides a con-
cise summary of the achieved results and briefly discusses the potential
directions for future work.

6.1 Overview of achievements

The research comprising this thesis has been focused on deep learning solutions for
inferring from a single 360° image of an indoor environment, eventually enriched
with very sparse depth information, a dense depth map that provides the distance
to the viewer of every visible point and the structure of the architectural layout of
the imaged environment, i.e., the closed surface formed by the walls, ceiling, and
floor of the room in which the photo was taken. In my discussion of background
material and analysis of related work (Chapter 2), | have highlighted how solutions
to these problems form fundamental building blocks of reconstruction pipelines,
and summarized the significant research efforts that have been made in the past
towards their solution.

The results presented in this dissertation highlight how the introduced techniques
represent a progress of the state-of-the-art. All the presented methods share the
fact that they take directly as input data in equirectangular format, as produced by
devices and without any kind of prior processes, and produce their output through
an end-to-end deep learning solution. All the techniques exploit the fact that
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input is gravity-aligned, and that gravity-aligned processing of images throughout
specially designed networks can directly exploit long- and short-range relations
among gravity-aligned world-space features.

In particular, my main achievements have been the following:

¢ An innovative end-to-end technique for deep dense depth estimation from
a single indoor panorama (Chapter 3). The main technical contributions of
this work are the compact representation of the scene into vertical slices of
the sphere, the exploitation long- and short-term relationships among slices
to recover the equirectangular depth map, and the maintenance of high-
resolution information in the extracted features even with a deep network.

¢ A novel end-to-end deep learning solution for rapidly estimating a dense
spherical depth map of an indoor environment from both dense visual
data and sparse geometric data as input (Chapter 4). This work significantly
extends the above method by incorporating the processing of sparse (and
even optional) depth information inside a lightweight single-branch network,
employing a dynamic gating system to process together dense visual data
and sparse geometric data.

¢ An innovative method for layout reconstruction (Chapter 5), that, differently
from prior layout estimation solutions addresses the problem fully in 3D,
using a graph-convolutional network for mapping a single 360-degree image
into a tessellated bounding 3D surface representing the union of walls, floor,
and ceiling. Gravity-aligned features are actively incorporated in the graph
in a projection layer based on multi head self-attention, and specialized loss
terms guide towards plausible solutions even in presence of massive clutter
and occlusions.

6.2 Discussion and future directions

As illustrated in the previous chapters, my work has resulted in methods and im-
plementations that have introduced important conceptual contributions and have
shown to achieve beyond-state-of-the-art performance on a number of benchmark
datasets.

While | refer to the individual chapters to an in-depth analysis of the results obtained
on the individual tasks, there are some common considerations that can be made.
First of all, all three techniques exploit specific characteristics of the capture setup
(in particular, gravity-alignment) and of the imaged environment (in particular, a
world-space alignment with gravity that makes it possible to exploit regularities
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of vertical features along the horizontal direction). These characteristics have
consistently led to network designs that exploit asymmetric contractions and various
ways to combine long- and short-range features. As the various ablation tests
have shown, the specific networks designed provide sizeable advantages over
more generic alternatives, which demonstrates the benefit of creating custom
solutions for interior capture, rather than using generic networks for outdoor or
generic-shape 3D reconstruction. Creating specific networks, however, has also the
disadvantage of relying on specific characteristics on the environments, leading to
major failures as soon as the imaged environment does not match with the expected
ones. While more robust than geometry-reasoning methods, the solutions devised
still present limitations in terms of applicability, as shown in the failure case analyses
presented in the previous chapter.

Another important limitation of the current solutions, which is, however, currently
shared with all the competing methods (see discussions in Chapter 3, Chapter 4, and
Chapter 5), is in terms of size of processed input. While the presented solutions are
generally lightweight and the network design is scalable, all the tests have generally
been performed at image sizes that are smaller than what is currently achievable
with panoramic cameras. All the available benchmarks are typically performed at
the 1024x512 resolution, and seldom at larger size, while industrial cameras are
more detailed. One important avenue for future work is, thus, to evaluate the
scaling of these techniques to larger datasets. This will require not only the scaling
of the networks, but, also the generation of large annotated datasets to serve as
ground truth.

The problems that | have tackled, moreover, have also a different nature. Deep
dense estimation or completion is, in itself, a problem that requires a well-defined
per-pixel output, while layout reconstruction is a more abstract task. While the
solution presented here is significantly more flexible than prior ones, since we
can generate a reasonably complex layout homeomorphic to a sphere that can
include a variety of features, including large free-form surfaces joining at sharp
angles, while competing solution are typically limited to Manhattan or Atlanta-
world environments. Such a representation can be useful for a variety of needs
(see Chapter 5), but is far from being an accurate representation of all possible
environments. In particular, reconstruction by deformation from a single origin
generates denser and more detailed meshes near the origin, and less detailed ones
as one moves away from the origin and occlusions increase, and thus the precision
depends on mesh tessellation size. Moreover, the spherical mesh topology is far
from being sufficient to represent all sorts of architectural environments, since
several elements of the architectural structure, such as pillars, stairs, septal walls
or openings cannot be represented with a single closed surface. Including holes
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(doors, windows) seems feasible as a direct extension of our end-to-end single
pass method deforming a spherical mesh, while extending the approach to other
topologies is not trivial. Moreover, the method could be also improved by taking
into account, as for depth completion, the optional availability of sparse depth
information.

Our monocular reconstruction methods have been applied to obtain geometry and
layout, but, in principle they can be extended to new problems such as semantic
extraction and reconstruction of the visual channel. A particular case of view
synthesis that | have experimented with, in a follow-up work with respect to what
presented in this this is diminished reality [13]. By exploiting concepts coming from
depth estimation, where we synthesize per-pixel information for all the visible
pixels, and layout estimation, where we have concentrated only on the permanent
structures (walls, floor, and ceiling), we have designed a network that, given suitable
examples, estimates the depth and the color of the imaged room emptied of all
clutter [13]. As for the networks presented in Chapter 3 and Chapter 4, the input and
outputs are both in equirectangular format, and provided as per-pixel information.
We have shown how this representation can serve as a basis for many image editing
operations.

The application to visual synthesis/room emptying shows how the designed net-
works can serve as building blocks for more complex applications, including addi-
tional channels. Another area where we see important future works is in the area
of (sparse) multi-view reconstruction. In particular, a straightforward extension
of our monocular analysis methods would be to exploit them for cases in which
we capture a minimum amount of data in a multi-room environment (e.g., one or
two photos per room), without going towards full multi-view. This setting is very
common, and research solutions, instead of starting from (a large set of) common
features among views, try to first extract the maximum amount of information from
single views, to then exploit in a later fusion phase [177]. Since the methods dis-
cussed in this thesis have shown remarkable performance in single-image analysis,
it can be expected that they can also benefit such extreme multi-view pipelines.

Our work on SliceNet [10] (Chapter 3) has been the subject of a number of follow-
ups that have built upon it, analyzed our behavior, and/or used it as baseline for
further enhancements. In particular, Yu et al. [178] have shown that reflective ob-
jects, that are not handled directly by our method, are likely to produce artifacts. As
an example, in Fig. 6.1), column 2 (originally included in Yu et al. [178]), artifacts are
present in the case of mirrors or windows. Since reflecting materials are abundant
in interior environments, one future direction is to improve SliceNet (as well as
our other solutions) to better handle these situations. The problem is challenging,
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as the detection of mirrors in single-view situations is a malformed problem that
requires imposing priors. Since we work in restricted environments (indoors), we
can expect these mirrors/reflecting images to share some common characteristics
(e.g., stemming the typical shape and location of windows in common apartments),
and we can expect that data-driven solutions could learn those hidden relations
from data. The creation of challenging data sets with realistic mirrors and win-
dows would be an important contribution for creating solid more robust indoor
reconstruction methods.

Figure 6.1: Examples of failure with reflective materials. Original image published by Yu et al. [178].
Our method (SliceNet [10]) is in the second row.

One possible direction of improvement of the methods for reconstruction from
panoramic imaging is to take into account also the characteristics of the different
setups used to capture panoramic images. As hardware solutions are variable, the
captured images have different distortion characteristics [133], that could be taken
into account to improve the quality of reconstructions. This would entail, however,
not only the creation of distortion-specific methods (e.g., in terms of specific losses),
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but also the creation of datasets that include those distortions, much as we have
done for the simulation of laser scanning.

Another very interesting future direction is to study/analyze how our methods,
based on supervised learning, would work in a self-supervised scenario, that would
replace comparisons with ground truth with consistency measures. A recent ex-
ample is the work of Wang et al. [131], that analyzes a self-supervised problem for
monocular 360 depth estimation. To do that, their training process takes three
adjacent panoramas extracted from video sequences and estimates the depth map
and camera motions, thus replacing the need for ground truth data with the need
for a multi-view training dataset. In this work, moreover, Wang et al. [131] also show
how the violation of gravity alignment constraints negatively affects solutions that
exploit them [10]. This effect was already studied in our work, and did not pose
problems in a single-view setting, where the training dataset was gravity-aligned
and at inference time it was possible to perform alignment prior to entering the
network.

While our work targeted single-view estimation, a future extension would be to
expand them in a multi-view context. One future direction for 3D reconstruction
concerns volumetric reconstruction [179, 180, 181] using the truncated signed dis-
tance function (TSDF) representation inside approaches to generate consistent
scene geometry from the fusion of multiple depth maps. As a representative ex-
ample, Jang et al. [179] propose an approach designed for short trajectories of an
omnidirectional video camera to get 3D reconstruction, facing not just depth esti-
mation but also posed camera estimation, spherical rectification (aligning epipolar
lines with horizontal image scanlines) and texture atlas reconstruction. The inte-
gration of our indoor-specific solutions for layout estimation and depth estimation
within this class of approaches is an interesting avenue for future work. On one
hand, our methods could provide more refined and regularized depth maps for
fusion in specific classes of indoor environments, thanks to the incorporation of spe-
cific constraints (e.g., Atlanta-world and/or gravity alignment). On the other hand,
our methods, in a multi-view setting, could also be revised to take into account
multi-view consistency, eventually also in a self-supervised framework [131].

6.3 Publications

The scientific results obtained during this PhD work also appeared in related publi-
cations, for which I significantly contributed to the conceptualization, methodology,
and validation of the developed method. These main publication, sorted by their
introduction in this thesis, are the following:
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e SliceNet: deep dense depth estimation from a single indoor panorama
using a slice-based representation.
Giovanni Pintore, Marco Agus, Eva Almansa, Jens Schneider, and Enrico
Gobbetti, In Proc. IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Pages 11531-11540, 2021. Selected as oral presentation.
DOI: CVPR46437.2021.01137.
— This is the original work that introduced the concept of slicing and gravity-
aligned features for solving depth inference from a single omnidirectional
image (Chapter 3). | have significantly contributed to the methodology, im-
plementation, testing, and validation of the method.

¢ Deep Panoramic Depth Prediction and Completion for Indoor Scenes.

Giovanni Pintore, Eva Almansa, Armando Sanchez, Giorgio Vassena, and
Enrico Gobbetti, in Computational Visual Media, 2023.

DOI: 10.1007/541095-023-0358-0 — This is the original work that introduced a
lightweight single-branch network, which employs a dynamic gating system to
process together dense visual data and sparse geometric data, exploiting the
concept of slicing and gravity-aligned features from a single omnidirectional
image. Also, it is introduced a new augmentation strategy to make the
model robust to different types of sparsity, including those generated by
various structured light sensors and LiDAR setups (Chapter 4) expands over
the previous approach by also exploiting optional sparse depth information,
without any assumption on the sparsity pattern. | am joint first author of this
work, to which | have contributed very significantly in all phases, including
conceptualization, methodology, implementation, testing, and validation of
the method, and can be considered my main achievement.

e Deep3DLayout: 3D reconstruction of an indoor layout from a spherical
panoramic image.
Giovanni Pintore, Eva Almansa, Marco Agus, and Enrico Gobbetti. 2021. ACM
Trans. Graph. 40, 6, Article 250, 12 pages. 2021
DOI: 10.1145/3478513.3480480
— This is the original work that are exploited important 3D properties of
indoor environments in the design. In particular, gravity-aligned features
are actively incorporated in the graph in a projection layer that exploits the
recent concept of multi head self-attention, and specialized losses guide
towards plausible solutions even in presence of massive clutter and occlu-
sions. (Chapter 5). | have significantly contributed to the conceptualization,
methodology, implementation, testing, and validation of the method.
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In addition, during the course of my thesis, | have also contributed to the following
related publication, which have not been included in this work:

¢ Instant Automatic Emptying of Panoramic Indoor Scenes.
Giovanni Pintore, Marco Agus, Eva Almansa, and Enrico Gobbetti, Proc. IS-
MAR. and published in IEEE Transactions on Visualization and Computer
Graphics, vol. 28, no. 11, pp. 3629-3639, 2022. [Journal Article]
DOI: 10.1109/TVCG.2022.3202999
— In this work is introduced a novel light-weight end-to-end deep network
that, from an input 360° image of a furnished indoor space automatically
returns, with very low latency, an omnidirectional photorealistic view and
architecturally plausible depth of the same scene emptied of all clutter. In
this case, | have contributed to the validation of the approach by performing
tests on all the included benchmarks, both coming from publicly available
sources and custom user-captured data.

6.4 Demonstration videos

In the context of the EVOCATION project, | have also illustrated the outcomes of
my research in the following demonstration videos that is available on the project
web site at the URL evocation.eu/videos/:

¢ Pilot 2 - indoor mapping for AEC: Automatic 3D reconstruction of structured
indoor environments — Demo video.
This video presents the results of applying the techniques presented in this
thesis to both publicly available benchmark data and data captured within
the EVOCATION project.
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