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Abstract: Nowadays the consumption and generation profile estimation is of the greatest importance. New loads
characterized by coincident peak of consumption (e.g., home charging of electric vehicles) or by high absorption peaks
(heat pumps) are increasingly frequent. The presence of such loads must be carefully considered for network
investments and for the optimization of asset management. Moreover, the massive diffusion of non-programmable
renewable sources gives a leading role to the flexibility of demand, which is crucial for the success of the energy
transition. The variety and difference of the electrical behaviour of LV customers, even nominally homogeneous, need
stochastic methods for estimating the load profile on the LV/MV interfaces for the planning and the operation of
distribution network, and for estimating the flexibility potential of demand. In this paper different techniques for
modelling the demand composition are compared to evaluate the quality of the DSO models on real customers. In
particular, the power peak of a given network section is calculated as key indicator for estimating the risk of
overloading of lines and secondary substation transformers. Different methods of calculation have been applied on a
dataset gathered with a recent measurement campaign in Italy by considering real LV distribution networks.
1 Introduction

The knowledge of the electrical load is essential for many
applications and studies on the distribution electrical system.

The electrical load influences the market and, ultimately, the price
of energy because its precise estimation impacts the bulk
market-clearing price. The extent of system services also depends
on estimates of electricity consumption and the need to
continuously adjust production to demand. During the network
operation goals as energy losses reduction, detection of the sources
of non-technical losses, improvement of voltage profile,
unbalances reduction, etc. can be pursued with studies whose
accuracy depends on the quality of the models for the prediction
of demand and production.

For these reasons, conventional and emerging stakeholders of the
distribution systems, transmission and distribution systems operators
(DSOs), regulators, market players such as Balance Responsible
Parties, Aggregators, etc. are interested to accurately model the
behaviour of customers with load profiles (LPs). LPs are the
pattern of electricity load consumption of a customer or a group of
customers over a given period that has been extensively used for
many years. Generally, LPs are obtained from historical data or
measurement campaigns, suitably elaborated for defining
representative or typical consumption shapes. In the Literature,
several techniques have been proposed for obtaining LPs. Each
technique is specialised for the goal of the specific study or on the
group of customers represented [1–3]. LPs are crucial for
designing networks and stations. The quality of state estimation
and system operation also depend on LPs since they model the
behaviour of the end users if accurately built and regularly updated
[3–5]. Unfortunately, the frequency of updating for LPs is often
not adequate. Often, LPs refer to customers that no longer exist.
Furthermore, the LPs are often based on measurement campaigns
that involve a small number of customers not significant as a
statistical sample of a defined ambit (e.g. a nation). Such LPs can
capture only a portion of the end users and cannot represent
modern consumers, particularly the new prosumers. Finally, LPs
often associate to homogeneous groups of end-users one profile
per season and/or the day (weekday, weekend, pre-weekend,
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holiday). These models consider daily curves relevant to large
consumer groups often based on the economic activity [i.e.
residential (RES), agricultural, industrial or tertiary] [6].
Unfortunately, the assumption of homogeneity is acceptable for all
economic activities besides the RES consumers. The RES users
exhibit a great variance of LPs that depends on several exogenous
factors (i.e. household size, the number of persons living in a
household, net income and employment status, level of education,
etc.) [1, 5, 7]. Thus, models that associate the same day profile to
a category of customers are inaccurate, particularly if the category
is the RES one. Hiding single customers behind the average
behaviour of a large and non-homogeneous group leads to
significant errors in distribution studies. One typical example is
represented by the time coincidence of the demand in RES
neighbours that is considerably smaller than the one that can be
achieved by superimposing the same LP several times.

Nowadays, new and more accurate measurements can be gathered
from the advanced metering infrastructure (AMI) that uses
second-generation smart meters. New LPs of both active and
reactive power, more realistic than in the past, can be produced.
These models should be capable to capture the different behaviour
of customers by using further information, that cannot be
necessarily too detailed or do not adversely affect the privacy
rights of the customers by exploiting ad hoc techniques able to
deal with a huge amount of data [2, 4, 5]. As an example, new
LPs can be obtained for a better representation of the typical
behaviour of specified classes of users by filtering field data with
geographic information to find correlations with the climate
conditions (the use of electricity is different in the northern,
colder, areas than in the southern ones), with socio-demographic
characteristics (e.g. income, education level, social status, etc.),
etc. For producing an accurate forecast of the demand, the models
for network planning generally use a probabilistic approach, by
exploiting probabilistic load flow (PLF) calculation algorithms,
Monte Carlo methods or analytical methods [7, 8]. The PLF input
variables (load and generation) are normally represented by
suitable probability density functions (PDFs). However, it is not
straightforward representing each load and generator with a proper
PDF. The dynamic nature of consumer behaviour is heavy time
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dependent and to ensure a good characterisation of load and
generation correlations and time dependencies should be
considered simultaneously [8]. Other studies devoted, for instance,
to elaborate market balancing mechanism in competitive
frameworks, or devising marketing strategies, exploit predictive
analyses, as the multi-linear regression analysis in order to avoid
the huge investment of putting half-hourly metering into every
market customer and to calculate the profile coefficients of several
customer classes [9]. In this case, the accurate profiling of the
customer behaviour can be used as an effective tool for tariff rate
formulation.

Bottom-up methods can be performed for (smart) home energy
systems design. They aim at building LPs or PDFs of specific
electrical devices or specific households, by using detailed
information on devices’ usage, and elaborate and combine these
profiles for building profiles that aspire to be representative of
other households and areas [1, 5, 8]. Obviously, the use of any
probabilistic or predictive method, by seeking a compromise
between computational burden and accuracy, produces results
affected by a certain, sometimes measurable, level of uncertainty.

In this paper, a recent and updated LP set is used for the specific
task of evaluating the power peak that flows across the medium
voltage (MV)/low voltage (LV) transformers that supply many
Italian secondary substations (SSs). The calculation is compared
with the real measures of the consumptions of the users, derived
from a recent yearly measurement campaign, and with an
estimation of the same quantity calculated according to a unified
procedure currently adopted by the biggest Italian DSO.
Table 1 Coefficients assumed for the average customer

PMi, kW mi li PMi, kW mi li

1.5 0.13 0.87 31÷ 40 0.22 0.78
3.0 0.15 0.85 41÷ 50 0.24 0.76
4.5 0.16 0.84 51÷ 75 0.25 0.75
6.0 0.17 0.83 76÷ 125 0.30 0.70
7 ÷ 20 0.18 0.82 126÷ 250 0.34 0.66
21÷ 30 0.20 0.80 — — —
2 DSO’ approach: the Italian case

A standardised procedure of load modelling has been used currently
used by the biggest Italian DSO for planning purposes since 1980
[10–12]. The procedure aims at facilitating the statistical
composition of the demand for sizing MV/LV transformers in SSs
or to verify the exploitation of the transformer that supplies an
existing network. The main interesting quantities to be taken into
account are the maximum power (peak) and the annual energy
delivered.

Given a network section r that supplies a number N of users u,
each of them (the ith) characterised by a rated power PMi, the
power Pr flowing through this section can be modelled with the
relevant PDF. The relevant peak power Prp is a value that can be
exceeded with a low probability. Similarly, the power absorbed by
the ith customer supplied by r has a low probability to exceed his
rated power PMi.

By hypothesising that the power of the ith customer Pui and the Pr

can be represented by a Gaussian PDF and that the peak power of all
coincident and, as a consequence, simultaneous with the peak of the
network section r, if PMi and Prp have the same probability to be
exceeded, the peak power PMi and Prp can be written as in (1) and
(2), respectively.

PMi = mi Pui

( )+ a · si Pui

( )
(1)

Prp = mr Pr

( )+ a · sr Pr

( )
(2)

where mi Pui

( )
and mr Pr

( )
are the mean values and

si Pui

( )
and sr Pr

( )
are the standard deviations of the Gaussian

PDF Pui and Pr, respectively; a is the probability (the risk) that
PMi and Prp could be exceeded. By considering the N users
supplied by the network section r, Prp can be expressed as
function of the mean values and standard deviations of the N
users, as mentioned below

Prp =
∑N
i=1

mi Pui

( )+ a ·
�������������∑N
i=1

s2
i Pui

( )
√√√√ (3)
2 This is an open
As N goes to infinite, the second term of (3) becomes negligible
and (3) can be re-written as mentioned below

P1p =
∑1
i=1

mi Pui

( )
(4)

Disregarding the power losses, the energy Er supplied by the
network section r is the sum of the energies Ei (i= 1 … N )
delivered to the users. Such energies can be expressed as function
of the relevant equivalent hours, Hr and hi, calculated as ratio
between the annual energy and the maximum power, as mentioned
below

Er =
∑N
i=1

Ei; Er = Prp · Hr; Ei = PMi · hi (5)

By considering (4) and (5) the balance between the total energy
delivered and the energy measured in an upstream section is
defined as below:

P1p · H1 =
∑1
i=1

mi Pui

( ) · H1 =
∑1
i=1

PMi · hi (6)

Thus, by assuming Mi = mi Pui

( )
and because (6) has to be valid for

any group of customers (7) can be written as

mi Pui

( ) · H1 = PMi · hi; Mi = mi Pui

( ) = hi
H1

· PMi (7)

By substituting (7) in (1), it can be obtained the quantity Li
defined as.

Li = a · si Pui

( ) = PMi · 1− hi
H1

( )
(8)

and, again, by considering (8) in (1), (1) and (4) we obtain

PMi = Mi + Li (9)

Prp =
∑N
i=1

Mi +
�������∑N
i=1

L2i

√√√√ (10)

Equation (10) represents the general formulation of the load
composition for calculating the peak power of a network section r.
Since the equivalent hours hi of each single user are usually
unknown, the standardised procedure provides an average value,
derived by a specific study conducted on a given group of
customers [12]. Obviously, Mi can be underestimated by using
average values if the real equivalent hours of the users are greater
than the estimated value.

In Table 1 the values of mj and lj coefficients for calculating Mj

and Lj by the formula (11) are provided.

Mi = mi · PMi; Li = li · PMi (11)
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All the above formulas are valid for modelling three-phase users.
They become acceptable for balanced single-phase users provided
that (10) is adjusted as

Prp =
∑N
i=1

Mi +
�����������
3 ·

∑N
i=1

L2i

√√√√ (12)

For a homogeneous group of nj customer with rated power PMj, (12)
can be rewritten as in (13).

Prp = nj ·Mj +
����������
3 · nj · L2i

√

= nj · mj · PMj +
���������������
3 · nj · l2i · P2

Mj

√ (13)

By calculating (13) the Prp of any network section r can be assessed
starting from Table 1.
3 Load profiling

In this paper, a set of typical load profiles (TLPs), recently produced
by the Authors through a bottom-up approach that identifies
similarity in consumption patterns by exploiting clustering
algorithms applied on a large dataset of time domain data, has
been used. The details of the approach can be found in [4, 5]. The
TLPs, patterns of 96 samples per day (i.e. every 15 min), are
subdivided into customer category [i.e. domestic resident or not,
commercial (COM), industrial and agricultural] and in 12 typical
days (i.e. working days, Saturdays and Sundays and holidays).
Each category of customers is represented by more than one TLPs,
the number of which corresponds to the resulting number of
clusters identified by the clustering algorithms. This permits to
highlight the differences of customer behaviour even within the
same consumer category.

In Fig. 1 the TLPs of COM and RES customers during the summer
working days are shown as an example. The profile shapes are pretty
different within the same category of customers. Both domestic and
COM customers exhibit evident differences in terms of peak hour,
valley depth, etc.
4 Case study and results

The database (DB) is constituted by 3.260 real LV networks supplied
by SS that deliver electrical energy to over 55,000 end users.

The number of customers served, their rated powers and contract,
their type of connection (three-phase or single phase), and the annual
active power profiles with 15 min sample rate is known for each
substation with reference to 2017. Unfortunately, other interesting
data as the size of the MV/LV transformer, the phase of
connection of the single-phase customers, and the topology of the
Fig. 1 TLPs of the three resulting clusters of COM and RES customers
during the summer working days
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network supplied by each SS are unknown. Furthermore, the DB
is constituted predominantly by SS that supply less than ten
customers and many of them supply only one customer (i.e. about
1400 SS). Since the unified procedure described in Section 2 is
meaningless for network sections that supply only one customer
(the estimated peak is exactly the rated power of that customer),
and, furthermore, it is not very reliable also for SS that deliver
energy to less than ten customers, the available DB has been
reduced to the SS that deliver energy to more than ten customers
(about 450 LV networks).

The following methods have been applied to the reduced DB:

M1. The calculation of the peak power of each SS is performed by
using the measured profiles of the customers; the result of this
calculation gives the ‘true’ or ‘real’ peaks, as they are assessed by
starting with accurate data provided by the AMI.
M2. The peak power Prp_est of each network section (i.e. the SS) is
estimated by adopting the standardised procedure described in
Section 2. These estimated values are the ones currently used by
the DSO for estimating the exploitation of existing transformers.
M3. For evaluating the effectiveness of the theory of the statistical
composition of the demand, the estimation of the peak power has
been repeated by hypothesising a gaussian PDF for the power Pr

that flows through the network section and using the mean value
and standard deviation calculated by starting from the real power
profiles. The calculated values Prp_cal are the values that,
according to the probability theory, have a scarce percentage to be
exceeded (i.e. by assuming a = 3 in (2) the 99.7% are smaller
than Prp_cal).
M4. The peak power of each network section is performed by
assigning to the customers their TLPs, derived from the load
profiling method described in Section 3.

In Fig. 2 the peak powers calculated with the four methods listed
above are shown. The SS are sorted in ascending order starting from
the one that exhibits the smallest real peak. From the results, it
clearly arises that the standardised procedure adopted by the DSO
overestimates the power peaks in the majority of the cases, but the
computational effort is small. The absolute errors vary from a
minimum of 4% to a maximum of over 2300%. M2
underestimates the real peak only in one case with an error of
about −4%. M3 performances seem much better than those of M2
and the errors, in this case, vary in a smaller range (i.e.
0%÷ 100%). In M4 the forecasted peaks have a trend similar to
M3 with an increased range of errors (i.e. 1%÷ 186%), but only
12% of the SS have peaks underestimated. However, it is worth
noticing that M4 does not require the knowledge of the real
profiles but needs only few high-level information about the
customers. In particular, M4 uses only the category/contract of the
customers and the annual energy consumption of the customers
served by the given SS and only one information about the
Fig. 2 Peak powers of SS of the reduced DB calculated with the methods
M1–M4
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location of the SS (i.e. its zone that corresponds to a very high-level
subdivision of the Italian territory). On the contrary, for calculating
mean values and standard deviations the M3 needs the knowledge of
the whole customers load profiles, and, as consequence, with such
deep information it could be possible assessing the real peaks.
5 Conclusion

In this paper, the comparison of different methods for composing the
consumption profiles of groups of customers supplied by the same
SS has been proposed. The evaluation of the power peak in MV/
LV transformers has been performed by using the measured
profiles obtained with a recent measurement campaign. Real
values have been compared with the results of a profile
composition method, currently used by the biggest Italian DSO.
Furthermore, TLPs that aimed at accurately representing the
diversity of the customer behaviours are used for the same goal.
The results demonstrate that both the unified procedure and the
use of TLPs need only a few information relevant to the
customers. The methodology based on the use of TLP obtained
with data analysis applied to real measurements outperforms
traditional methodologies derived by the application of
probabilistic laws on old data.
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