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ABSTRACT

Photonic integrated circuits play an increasingly important role in several emerging technologies. Their functionality arises from a
combination of integrated components, e.g., couplers, splitters, polarization rotators, and wavelength selective filters. Efficient and accurate
simulation of these components is crucial for circuit design and optimization. In dielectric systems, design procedures typically rely on
coupled-mode theory (CMT) methods, which then guide subsequent refined full-wave calculations. Miniaturization to deep sub-wavelength
scales requires the inclusion of lossy plasmonic (metal) components, making optimization more complicated by the interplay between cou-
pling and absorption. Even though CMT is well developed, there is no consensus as to how to rigorously and quantitatively implement it for
lossy systems. Here we present an intuitive coupled-mode theory framework for quantitative analysis of dielectric–plasmonic directional and
adiabatic couplers, whose large-scale implementation in 3D is prohibitively slow with full-wave methods. This framework relies on adapting
existing coupled mode theory approaches by including loss as a perturbation. This approach will be useful in designing dielectric–plasmonic
circuits, providing a first reference point for anyone using techniques such as inverse design and deep learning optimization methods.
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I. INTRODUCTION

Photonic integrated circuits (PICs) and related technologies are
rapidly moving from proof-of-concept prototypes to consumer prod-
ucts, driven by telecommunications,1 quantum,2 smart,3,4 and sensing5

applications, complemented by the growing number of accessible pho-
tonic manufacturing foundries. PICs support many different materials,
e.g., including silicon,6 lithium niobate,7 glasses,8 nitrides,9 polymers,10

and III-V semiconductors,11 and hybrid configurations thereof.12 Each
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have their own particular set of advantages and disadvantages, but are
nevertheless starting to appear in commercially available products.6

Typical PICs rely on the guidance of light inside a high-index
dielectric waveguide, where the degree of lateral confinement is typi-
cally on the order of 200nm at NIR wavelengths due to diffraction,
which thereby imposes a fundamental limit on minimum footprint of
each individual PIC building block. Further miniaturization can only
be achieved using metals which support surface plasmon polaritons,13

which can give rise to lateral confinement down to the few-nanometer
scale.14 The resulting sub-wavelength confinement is not achievable
with dielectric waveguides and enables ultra-compact photonic devices
with significantly enhanced field intensities resulting in strong light-
matter interactions. The integration of such plasmonic elements into
PICs is also being pursued both fundamentally15 and commercially,16

with the value proposition that they can operate at a lower power and
smaller footprint to achieve large optical nonlinearities17 and can inter-
face with ultrafast electronics.18 One of the fundamental problems
with plasmonic waveguides, however, is the large mode losses per unit
wavelength—orders of magnitude larger than their all-dielectric coun-
terparts.13 Because fields can be enhanced by many orders of magni-
tude, long waveguides are often not needed, and losses can be
managed with appropriate device designs.

One of the most important elements in PICs is the photonic cou-
pler, whose role is to transfer light between adjacent waveguides via
evanescent coupling, relying on accurate models in order to design the
correct waveguide dimensions. One of the earliest and most important
stages of the PIC circuit design flow6 is circuit simulation, which is typ-
ically performed by calculating propagation through the geometry via
finite difference time domain (FDTD),19 eigenmode expansion (EM
expansion),20 finite element method (FEM),21 or beam-propagation
method (BPM).22 Although these remain the preferred methods when
refining a specific geometry, one oft-overlooked method that under-
pins the available parameter space from the outset, and which
describes photonic couplers in their most fundamental form, is cou-
pled mode theory (CMT),23 which forms the focus of this work.

In the context of PIC design, several issues make the integration
of plasmonic elements challenging using any of the above methods.
First, metallic losses imply that trade-offs between coupling lengths
and absorption lengths need to be appropriately accounted for: while
all-dielectric PICs can support centimeters of propagation and incur
only modest losses, plasmonic couplers must be kept to as short as

possible because losses can hinder coupler performance before any
power transfer occurs. Furthermore, plasmonic models using full-wave
methods typically require a fine mesh—of the order of a fraction of the
nanoscale mode volume—making full 3D simulations computationally
demanding. Although coupled mode theory can, in principle, provide
fundamental insight, there is no generally accepted procedure as to
how it should be implemented.

Here, we present a simplified coupled mode theory model
(CMTs), which considers plasmonic couplers in the simplest and most
abstract form. Our model assumes that dielectric–plasmonic coupling
is a perturbation to the lossless case,24 and enables us to construct an
“explorer’s map” of the maximum coupling efficiency and its associ-
ated optimal device length as a function of modal parameters. This
map will likely be useful in the first design steps of any dielectric–plas-
monic PIC. As we will show, this abstract model is widely applicable to
several realistic designs, including resource-intensive 3D couplers,
whose embodiment can take many different forms. Figure 1 shows a
non-exhaustive schematic summary of the plasmonic–dielectric cou-
plers that could benefit from our formalism. The device function is
summarized in Fig. 1(a), which shows a dielectric waveguide (blue)
adjacent to a lossy nano-plasmonic waveguide (yellow), so that the
fundamental mode of a dielectric waveguide couples to the plasmonic
mode. Because CMT is agnostic to the underlying waveguides that
support the modes, our approach can be applied to a variety of wave-
guide systems that include (but are not limited to) nanowires,25,26 gap
plasmonic systems,27 hybrid plasmonic waveguides,28 and cylindrical
waveguides29 (e.g., for fiber-based plasmonic applications30), each
shown in Fig. 1(b).

The remainder of the paper is structured as follows. Section II is a
historical overview of coupled mode theory, including lossless and
lossy implementations. Section III presents the fundamental theory
underpinning coupled mode theory and eigenmode theory, as well as
the simplified coupled mode theory for plasmonic waveguides. Section
IV reviews the methods for calculating coupled mode parameters,
using exact and perturbative approaches. Section V provides an over-
view on the various expressions which can be used for calculating the
power in each waveguide. Sections VI and VII quantitatively present
each methods’ accuracy, using 2D directional and adiabatic couplers,
discussing the practical limits of the simplified CMT theory. This, in
turn, allows us to present a map of the minimum transfer length and
maximum transfer power for any plasmonic directional coupler as a

FIG. 1. (a) Concept schematic of the pre-
sent study. A photonic-plasmonic coupler,
forming the compact building block of a PIC,
is formed by a wavelength-scale dielectric
waveguide (dark blue) adjacent to a plas-
monic element (yellow) of sub-wavelength
transverse dimensions. Light is injected in
the dielectric waveguide, and ideally effi-
ciently couples into the plasmonic element,
which provides subwavelength guidance at
output. (b) The formalism presented can be
readily applied to a family of structures
which includes (i) planar nanowires, (ii) gap
plasmonic systems, (iii) hybrid plasmonic
waveguides, and (iv) cylindrical waveguides.
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function of modal parameters. In Sec. VIII, we discuss how our
method applies to realistic 3D waveguides, including planar and fiber
structures. Then in Sec. IX, we compare the results of our method to a
recent set of experiments, whereas in Sec. X we compare the required
computational resources of our method to that of conventional meth-
ods. We then conclude in Sec. XI.

II. HISTORICAL OVERVIEW

Coupled-mode theory has a long and rich history, and continues
to be widely employed. It is often used as a first pedagogical introduc-
tion to waveguide coupling, due to its ability to intuitively elucidate the
physics and accurately predict the performance of practical devices
with minimal computational effort, and which distinguishes it from
computationally intensive full-wave numerical simulations. In turn,
CMT can be broadly classified into two types: the coupling of modes
in time, a.k.a. temporal coupled mode theory, and the coupling of
modes in space, a.k.a. spatial coupled mode theory.

Temporal CMT holds broad applicability across various wave
phenomena such as electromagnetics, resonating modes in electronic
circuits, and mechanical waves. It deals with the evolution of a system
in time, where the system typically comprises several resonator modes
possibly with input and output channels. A pedagogical introduction
to temporal CMT can be found in a number of references such as Ref.
31. For a rigorous exposition of temporal CMT for generic multi-
mode multi-channel optical systems featuring nonorthogonal modes,
please refer to Ref. 32.

In contrast, spatial CMT addresses the evolution of waves in
space, typically along coupled waveguide systems. As we will show in
Sec. III, a typical form of CMT equations for two waveguide modes
can be written as follows:

�i
d
dz

w1 ¼ c1w1 þ j12w2

�i
d
dz

w2 ¼ c2w2 þ j21w1;
(1)

where indices 1 and 2 can represent two parallel waveguides separated
by a finite distance, and w1 and w2 are z-dependent amplitudes that
multiply the stand-alone eigenmodes of each waveguide. Here, c1;2 are
the propagation constants of these two modes, and j12 and j21 are
their coupling constants. Each waveguide may support multiple
modes, which form a complete basis, yet in many cases the high-order
modes are ignored as an approximation. j12 and j21 can be intuitively
understood as the evanescent coupling between the modes. The sim-
plest form of the coupling constants can be written as31

j12 ¼ x
4

ð
de~E

�
1 �~E2 dx; (2)

where x is the wave frequency, and E1 and E2 are the electric field dis-
tributions of the two eigenmodes, each in one standalone waveguide,
respectively. Here, deðxÞ is a change in the permittivity in space by
introducing waveguide 1 to the space where originally only waveguide
2 exists, and j21 can be defined similarly. Although (2) can be rigor-
ously derived from a variational principle,31 it can also be intuitively
interpreted as a perturbation, i.e., �ixdeE1 is the extra polarization
current generated by mode 1 with the introduction of waveguide 1, so
that the coupling parameter j12 is simply the transfer of energy from
this current to mode 2. However, such a simple expression only gives

correct results when the propagation constants of the two modes are
identical – in more rigorous formulations the definitions of c1, c2, j12,
and j21 become more complicated, as we will discuss in Sec. III.

Spatial CMT emerged in the broad context of waveguides in the
1950s,33,34 and was later adapted to optical waveguides (e.g., optical
fibers) in the 1970s.35–38 Early spatial CMT approaches relied on heu-
ristic and physically intuitive pictures, and were often derived by
inspection. Over the years, significant efforts were dedicated toward
enhancing the rigor and accuracy of spatial CMT, such as a derivation
based on the variational principle,31 expansion onto known complete
bases,39 formulations based on nonorthogonal modes in the 1980s,40–44

and a derivation starting from reciprocity.45 Interested readers are
directed to Sec. II of Ref. 23 for a detailed historical perspective of spa-
tial CMT, in conjunction with other reviews and books.31,46–50 It is
worth noting that the term “spatial CMT” is also commonly used in
other scenarios involving the coupling of two modes due to a perturba-
tion in the permittivity. This context often involves overlap integrals of
the type Eq. (2), where E1;2 represents modes of an unperturbed system,
and de represents a perturbation in space. These two modes can be
waveguide modes, resonator modes, or any unguided modes. However,
such calculations are, in general, mathematically rigorous only to first
order.51 The scope of these applications of spatial CMT is beyond the
focus of the current paper.

Following the above developments, spatial CMT can yield accurate
results for coupled waveguides with a large separation, i.e., in a weakly
coupled scenario. Nevertheless, in recent years, spatial CMT has been
applied to new structures featuring closely spaced dielectric and plas-
monic waveguides, albeit without comprehensive validation. However,
in such a strongly coupled scenario, previous formulations of spatial
CMT, which do not involve calculations of the true eigenmodes of the
actual coupled waveguides, fail to provide precise results. This is under-
standable, as the proximity of the waveguides transcends the realm of
perturbation and the removal of high-order modes from the complete
basis is an unregulated approximation. This can be effectively addressed
through the utilization of the true eigenmodes of the whole coupled sys-
tem, as initially presented in Appendix F of Ref. 42. Yet, this formula-
tion still entails cumbersome spatial overlap integrals. To the best of our
knowledge, this formulation has not gained widespread adoption.

We will turn our attention to reviewing the aforementioned spa-
tial CMT formulations in the context of dielectric–plasmonic couplers,
leading into a simplified and streamlined CMT formulation utilizing
the true eigenmodes of the actual coupled waveguide system, showing
that the simplified method yields remarkably accurate predictions,
even for waveguides that are quite strongly coupled. This approach is
motivated by recent developments in numerical algorithms and com-
puting hardware, where solving for the eigenmodes in 2D, i.e., the
modal profiles in the cross section of coupled waveguides, poses almost
no significant challenge.

III. THEORY
A. Coupled mode picture

Waveguides such as those shown schematically in Fig. 1 are
described by several parameters (refractive indices and dimensions of
each waveguide, spacing of the waveguides, refractive index of the
region between and outside the waveguides), all of which are most gen-
erally functions of propagation length. To help guide the reader, we
ground our discussion using the particular one-dimensional slab device
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shown in Fig. 2, and which constitutes our leitmotif for the first half of
this work. Fig. 2(a) shows the individual waveguides. We take the dielec-
tric waveguide (dark blue) to be a silicon slab (width: d ¼ 220 nm,
refractive index: 3.5); the metal waveguide (yellow) is taken to be a gold
thin film (thickness: t ¼ 7:5 nm), and its permittivity is given by a
Drude model.52 The waveguide width and metal thickness are taken to
be z-independent for now. The background is silica.53 Figure 2(b) shows
the coupled waveguides, which are separated by a distance d. In first
instance and for illustrative purposes, we assume the gold to be lossless
(i.e., its permittivity is taken to be the real part of its actual value52); we
discuss the effect of losses in detail, starting in Sec. IV.

We take each individual waveguide to support only one guided
mode, so that the total transverse electric and magnetic fields of the
coupled system are, respectively,

Eðx; y; zÞ ¼ w1ðzÞE1ðx; yÞ þ w2ðzÞE2ðx; yÞ; (3)

Hðx; y; zÞ ¼ w1ðzÞH1ðx; yÞ þ w2ðzÞH2ðx; yÞ; (4)

where we have neglected the residual fields42 for simplicity. Modes are
normalized such that C11 ¼ C22 ¼ 1, where

Cij ¼ ẑ �
ð ð

1
2
Ej �Hi½ � dx dy: (5)

With this definition, wi is the mode amplitude defined such that jwij2
corresponds to the normalized power carried by the mode (provided
that the mode is lossless, as discussed in Sec. V).

We start by considering each individual guide separately, corre-
sponding to the case where the two waveguides are infinitely far apart,
and illustrated schematically in Fig. 2(a). In this case, each waveguide’s
z-dependent amplitude is wiðzÞ ¼ exp ðibizÞ. The propagation in a uni-
form, isolated waveguide i is thus described by �idwi=dz ¼ biwi. For
the isolated waveguides, the index “1” and “2” refer to the dielectric and
plasmonic modes, respectively. The dashed lines in Fig. 3(a) show the
effective index bi=k0 as a function of wavelength for each mode and our
choice of parameters, where k0 ¼ 2p=k. Our choice of parameters is
such that the two waveguides are phase-matched at k ¼ 1:55 lm (i.e.,
b1 ¼ b2).

When the two different waveguides 1 and 2 are brought together
and allowed to interact linearly, two important consequences follow. The

dominant effect is that the waveguides couple via the coupling parame-
ters j12 and j21, and the secondary effect is that their respective propaga-
tion constants change as well, as shown in the Fig. 2(b) schematic. Their
mode amplitudes are then governed by the coupled mode equations

�i
dw1

dz
¼ c1w1 þ j12w2;

�i
dw2

dz
¼ j21w1 þ c2w2;

(6)

where jij represents coupling between waveguides, and cj 6¼ bj due to
the presence of the neighboring waveguide. Both jij and the ci;j are
generally functions of z (e.g., if the waveguide profiles vary).

The supermodes and propagation constants in the coupled mode
picture can be obtained by determining the eigenvectors and eigenval-
ues of Eqs. (6). The eigenmodes take the form wj ¼ ~wj exp ði ~bj zÞ,
which have propagation constants

~bj ¼ �c6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j12j21 þ D2

c

q
; (7)

where we have defined

�c ¼ c1 þ c2ð Þ=2; (8)

Dc ¼ c1 � c2ð Þ=2: (9)

The mode fields of the supermodes associated with ~bj , shown in
Fig. 2(c), are nominally sum and difference superpositions of the mode
fields associated with the isolated (uncoupled) waveguides,54 provided
that the isolated modes are orthogonal to each other (i.e.,
C12 � C21 � 0). This representation of the supermodes in terms of
superposition of individual waveguides modes is not valid when the
waveguides are very close to each other.

B. Eigenmode picture

An alternate picture of the two-waveguide configuration is that it
supports two orthogonal eigenmodes (or “supermodes”), which form a
complete basis for the current problem, as shown in the schematic of
Fig. 2(c). The electric field inside the device under steady-state condi-
tions can then be written as

FIG. 2. Schematic summary of different physical pictures, modes, and parameters used for calculating the power exchanged by dielectric and plasmonic waveguides, using 1D
waveguides (infinite in y) with propagation along the z axis as an illustrative example. (a) The isolated modes are formed either by a dielectric waveguide of width s or a metal
film of thickness t surrounded by a low-index material. These waveguides support modes with propagation constants bi and electric field profiles Ei. (b) When the waveguides
are brought together separated by a distance d, they couple via jij, and their respective propagation constant is ci because of the neighboring waveguide. (c) The two-
waveguide system supports supermodes with propagation constants ~b i and electric field profiles ~E i .
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Eðx;y;zÞ ¼ a1~E1ðx;yÞexp ði~b1zÞþ a2~E2ðx;yÞexp ði~b2zÞ;
Hðx;y;zÞ ¼ a1 ~H1ðx;yÞexp ði~b1zÞþ a2 ~H2ðx;yÞexp ði~b2zÞ;

(10)

where ~E i and ~Hi are the normalized transverse electric- and magnetic-
field profiles of the eigenmodes, ~b i is the eigenmode propagation con-
stant, and ai are amplitudes to be determined. The eigenmode picture
of (10) contains the exact supermodes of the full system, while the cou-
pled mode picture of (6) describes how two isolated modes couple
when the waveguides are brought closer together.

In the EM picture, modes are also normalized such that that
~C11 ¼ ~C22 ¼ 1, where

~Cij ¼ ẑ �
ð ð

1
2

~Ej � ~Hi

h i
dx dy: (11)

For the coupled waveguide system, the index “1” and “2” simply refer
to two supported supermodes in descending order of propagation con-
stant magnitude. For the 1D modes considered in Fig. 2(a), bj and the
associated isolated modes’ electric and magnetic fields can be obtained
by numerically solving a transcendental equation55 to arbitrary numer-
ical precision, and which can thus be considered as the “exact” solu-
tion. The same holds for the supermodes of the system of Fig. 2(c),
and the solid lines in Fig. 3(c) show the exact eigenmodes of the cou-
pled waveguides when the edge-to-edge separation is d ¼ 400 nm
(leaving all other parameters unchanged from the previous analysis),
all showing a characteristic anticrossing, or splitting, at the phase
matching point.

IV. THE COUPLED MODE PARAMETERS

We now discuss how to explicitly obtain the parameters jij and
ci. Three methods can be used: (i) a perturbative approach which
assumes the neighboring waveguide as a perturbation to each isolated
waveguide;45 (ii) an exact approach that uses only exact fields and
propagation constants;42 (iii) a simplified approach that uses heuristic
approximations that guide physical insight.54 We now consider and
compare each case in detail for the plasmonic waveguide couplers.

Note that perturbative and exact approaches, as presented below, can
be used for both lossless and lossy systems. Simplified approaches
require instead that lossless and lossy systems be considered one at
time, as we will show.

A. Perturbative approach

Perturbative approaches in coupled mode theory have many
incarnations—see Refs. 23 and 46 for comprehensive reviews in the
context of lossless waveguides. In the limit of weak coupling, an early
and frequently used perturbative treatment47 yields

jij ¼ xe0
4

ð ð
eðx; yÞ � ejðx; yÞ
� �ðEt

i � Et
j � Ez

i E
z
j Þ dx dy; (12)

where eðx; yÞ is the permittivity distribution of the full (coupled) sys-
tem, ejðx; yÞ is the permittivity distribution for the isolated waveguide
j, and Ei ¼ Et

i þ ẑEz
i is the electric field associated with bi. We note

that (12) suggests that j21 6¼ j12 unless the guides are identical. The
diagonal elements are given by

c1 ¼ b1 þ j11 (13)

c2 ¼ b2 þ j22: (14)

Note that (12) immediately suggests that the diagonal elements of the
matrix jij matrix (being proportional to the square of the evanescent
tails) are much smaller than the off diagonal elements (being linearly
proportional to the evanescent tail). The dotted lines in Fig. 3(a) show
the calculated c1 and c2 as a function of wavelength using the perturba-
tive approach. The dotted lines in Fig. 3(b) show j12 and j21 using the
same approach, revealing that j12 ¼ j21 when the waveguides phase-
match. These results can now be used to evaluate the accuracy of the
perturbative CMT model in predicting the eigenvalues of the coupled
system, shown in the dash-dotted lines in Fig. 3(c). The exact eigenval-
ues (solid lines) and the eigenvalues predicted by CMT are within
�1% over the entire bandwidth. Note that (12) for kij is the simplest
available expression. Further corrections to ci and jij require more

FIG. 3. Summary of the propagation constants and coupling parameters for the lossless case. (a) Effective index neff ¼ b=k0 as a function of wavelength for the isolated modes
of the geometry shown in Fig. 2(a) in the absence of losses. The blue and orange dashed lines refer to the isolated plasmonic and dielectric modes, respectively. Note the phase
matching point at 1:55lm. The dotted lines and dashed lines, respectively, show ci=k0 using the perturbative CMT approach and the “exact” CMT approach. (b) Associated cou-
pling coefficients. The dotted lines and dashed lines, respectively, show the results obtained from the perturbative approach using the overlap integrals in (12) and the “exact”
approach by solving (15). The black dash-dotted line is obtained from the simple expression in (25). All lines cross at the phase matching point. (c) Calculated effective indices of
the supermodes. The solid, dash-dotted, and dotted lines refer to the corresponding hybrid eigenmodes calculated either exactly, or via (7), or via (21), respectively.
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advanced perturbative treatments, leading to increasingly complicated
equations,45 in extreme cases even requiring iterative algorithms.56

The common tendency at this stage is to improve the perturbative
CMT model further,45,56 via a series of increasingly complicated over-
lap integrals akin Eq. (12). We have performed such calculations to
find that, at least for plasmonic waveguides, improvements are negligi-
ble, and not worth the effort—such results are not shown here to avoid
further clutter to Fig. 3.

B. Exact CMT approach (CMTe)

We now present the “exact” approach in coupled mode theory
(labeled as CMTe), and discuss briefly why all such perturbative treat-
ments fail in the context of plasmonic waveguides, even in the lossless
case. Indeed, knowledge of the exact transverse fields of the isolated
modes and supermodes can be used to calculate the coupling parame-
ters exactly. This approach, reported in 1985 by Hardy and Streifer in
the Appendix F of Ref. 42 has had, to our knowledge, no significant
uptake in the community. Nevertheless, we believe it to be extremely
useful in a contemporary setting given the ubiquity of numerical solv-
ers. Explicitly, jij and cj can be obtained by solving

u1 v1 0 0

0 0 u1 v1

u2 v2 0 0

0 0 u2 v2

0
BBBB@

1
CCCCA

c1
j12

j21

c2

0
BBBB@

1
CCCCA ¼

~b1u1
~b1v1
~b2u2
~b2v1

0
BBBBB@

1
CCCCCA
; (15)

where

vm ¼ ðIm2 � C21Im1Þ=ð1� C12C21Þ; (16)

um ¼ ðIm1 � C12Im2Þ=ð1� C12C21Þ; (17)

and where Im1; Im2 are overlap integrals between individual modes
and supermodes

Im1 ¼ ẑ � 1
2

ð ð
~Em �H1 dx dy; (18)

Im2 ¼ ẑ � 1
2

ð ð
~Em �H2 dx dy; (19)

having normalized each mode such that C11 ¼ C22 ¼ ~C11 ¼ ~C22 ¼ 1,
and ignoring any residue field terms as per Ref. 42.

The solid blue and orange lines in Fig. 3(b), respectively, show
j12 and j21. We notice good agreement with the perturbative treat-
ment for j21 over the entire frequency range, but not so for j12, espe-
cially at longer wavelengths. The reason for this is immediately clear
by inspecting the perturbative integral for j12 in (12) and recalling that
the permittivity of gold is nearly 50 times greater than that of the silica
background: the treatment here fails because metals give rise to a
strong perturbation. This effect is worse at longer wavelengths where
the evanescent field of the dielectric mode has a higher overlap with
the metal region and the gold permittivity increases in modulus. We
conclude that perturbative treatments for obtaining the matrix ele-
ments of (6) for plasmonic waveguides in most practical settings
should thus always be used with great caution. We will avoid them
entirely for the remainder of this paper.

C. Simplified CMT approach (CMTs)

The benefit of using increasingly accurate expressions in predict-
ing how realistic PICs perform by using CMT approaches is not imme-
diately obvious: in a realistic device, besides the inherent failure of the
perturbative approach that we have just described, other issues such as
edge reflections, coupling to radiation modes, or similar, might also
render the CMT approach inappropriate. Furthermore, performing
overlap integrals using field distributions that are confined to deep
subwavelength spatial regions, as is often the case in plasmonic wave-
guide scenarios, is a somewhat tedious and time-consuming task.
Given that advanced numerical software tools exist (e.g., COMSOL,
Lumerical, CST) and that multi-core, high-performance computers
with hundreds of GB of RAM are readily available to many research-
ers, it might be more practical to model waveguides using full numeri-
cal methods instead of going through the tedious task of implementing
(12) (or more complicated versions thereof45,56), especially when deal-
ing with 3D devices supporting 2D modes. However, such approaches
are still computationally demanding, and would ideally be preceded by
an intuitive framework to pinpoint the salient characteristics of a given
device within the available parameter space.

While overlap integrals are widely used in CMT, they are funda-
mentally an uncontrolled approximation which serve a specific pur-
pose: to find key parameters that define the full system’s behavior,
determining the correct coupling constants in order to predict how
waveguides interact and how power is exchanged between them.
Driven by the above practical considerations, we therefore ask the
question: can we instead simplify the two-waveguide system to its
essence, via a heuristic model that requires no overlap integrals at all,
and still obtain quantitatively meaningful information that can be use-
ful as first steps in various device designs?

D. Lossless case

We begin by considering the lossless case, which “switches off”
the imaginary part of all propagation constants, so that bi ¼ <eðbiÞ.
The first assumption of the simplified approach is that diagonal ele-
ments of jij are zero, corresponding to the assumption that neighbor-
ing waveguide has a negligible effect on the other waveguide’s
propagation constant, so that ci ¼ bi. Next, it uses the fact that in the
lossless case power conservation leads to j12 ¼ j�21

31—recalling that
for longitudinally invariant waveguides and in the absence of loss, the
phase can be adjusted to make them both real, so that j12 ¼ j21 ¼ j.
Finally, it takes these two criteria to hold independently of the wave-
guide characteristics, so that the coupled mode equations simplify to

d
dz

w1
w2

� �
¼ i

b1 j
j b2

� �
w1
w2

� �
; (20)

and the eigenvalues of the coupled supermodes are

~bj ¼ �b6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ D2

p
; (21)

where

�b ¼ b1 þ b2ð Þ=2; (22)

D ¼ b1 � b2ð Þ=2: (23)

Equation (21) now immediately provides a pathway for estimat-
ing j after calculating the exact isolated and hybrid modes b1;2 and
~b1;2, e.g., with any reduced-dimension mode solver, by re-writing it as
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j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~D2 � D2

p
; (24)

where we have defined

~D ¼ ð ~b1 � ~b2Þ=2: (25)

Following this approach, the need for overlap integrals disappears
completely, since it only relies on the exact propagation constants of
the isolated and coupled modes. The black dash-dotted line in
Fig. 3(b) shows j obtained from (24) using the exact ~b1;2 and b1;2
shown in Figs. 3(c) and 3(a), respectively. We notice that j lies
between j12 and j21, with j12 ¼ j21 ¼ j at the phase-matching point.
The associated ~bi , obtained via the simplified equation (21), is compa-
rable to that obtained via (7), which uses overlap integrals. This
approach thus reduces a directional coupler to its essence, needing
only two propagation constants and one coupling coefficient, all with-
out overlap integrals. Previous work in the case of a lossless adiabatic
couplers54 has already shown that the simplifying assumption that
j12 ¼ j21 ¼ j provides excellent estimates of the coupling perfor-
mance, even in complicated systems, when compared with full field
calculations. We now continue with that approach, presenting its
properties in the context of plasmonic waveguide couplers. In order to
do so, we must first introduce the effects of losses due to the metal.

E. Lossy case

Following an earlier approach,57 we introduce loss in the simpli-
fied model by “switching on” the imaginary part of the gold permittiv-
ity. This modifies the propagation constant of b2 to be complex, while
all other parameters remain the same. In other words, we take the
imaginary part of b2 ¼ bR2 þ ibI2 to be the dominant perturbation,
with all other parameters unchanged from the lossless case. Equation
(20) then takes the form

d
dz

w1
w2

� �
¼ i

b1 j
j bR2 þ ibI2

� �
w1
w2

� �
; (26)

where j has the same value as in the lossless case, previously obtained
via (24). The eigenvalues of the lossy system are still given by (21),

replacing b2 ! bR2 þ ibI2. In the case where the dielectric waveguide is
lossy, b1 is also complex and b1 ! bR1 þ ibI1. Note that because the loss
of dielectric is orders of magnitude lower than metal, the inclusion of
dielectric losses in the model has limited effect for most applications.

Figure 4(a) shows the real part of the effective index of each
mode of this lossy system, and Fig. 4(b) shows the corresponding
imaginary parts. The isolated (uncoupled) eigenmodes are again
shown as dashed curves: with respect to Fig. 3(a), <eðb2Þ is slightly
shifted due to the perturbation introduced by loss, and =mðb2Þ is
non-zero, as expected. The dash-dotted lines in Fig. 4 shows ~b j
obtained from (21) using the lossy uncoupled modes bi (dashed lines),
and the previously obtained values of j [Fig. 3(b)]. The propagation
constants of the two “exact” supermodes are overlayed as dark solid
curves. We find that the eigenmodes obtained with the CMTs model
are in good agreement with the exact solutions.

The discrepancy between the exact eigenmodes and those pre-
dicted by the CMTs model is expected to increase as the coupling
between the waveguides increases which, for example, occurs when the
waveguides are brought closer together. To quantify the discrepancy,
in Fig. 5(a) we plot the exact supermodes ~b1 (blue line) and ~b2 (orange
line) at k ¼ 1:55 lm as a function of separation s and normalized to
the free space wavenumber in the lossless case. The normalized propa-
gation constant of the phase matched uncoupled modes bPM is shown
as a gray line. The corresponding eigenmodes predicted by the CMTs

model are shown as dashed lines: we note that the difference start to be
significant only at s < 200 nm. To quantify the associated coupling
strength relative to the propagation constant, Fig. 5(b) shows j=bPM as
a function of s, showing that the CMTs model is valid in regions
j=bPM < 0:1. We repeat the same analysis for the modes of lossy cou-
pler (Fig. 4), showing the corresponding real and imaginary propaga-
tion constants in Figs. 5(c) and 5(d), respectively. We observe the same
overall behavior, namely, that the eigenmodes emerging from the lossy
CMTs model of Eq. (26) deviate from the exact solution for
s < 200 nm, i.e., j=bPM > 0:1. This suggests that any CMT models
should not be relied upon for accurate quantitative analyses of device
performance if j=k0 > 0:1.

It is also worth considering how losses impact the predictions
from Eq. (26). To illustrate this, we consider the lossy 1D waveguide

FIG. 4. Summary of the lossy case. (a) Real part of the effective index <eðneffÞ ¼ <eðb=k0) as a function of wavelength for modes of the geometry shown in Fig. 2 including
loss. The blue and orange dashed lines show the isolated plasmonic and dielectric modes, respectively. The solid and dash-dotted lines, respectively, show the corresponding
hybrid eigenmodes calculated exactly and via (7) using j from Fig. 3(b) and taking b2 ¼ bR2 þ ibI2. (b) Corresponding imaginary part of the effective index
=mðneffÞ ¼ =mðb=k0).
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system discussed so far at k ¼ 1550 nm, taking s ¼ 200 nm where
coupling is strong but the CMTs model is applicable. The permittivity
of gold is eAu ¼ �93þ 11i52 corresponding to jemj ¼ 94 and a loss
tangent tan d ¼ =mðemÞ=<eðemÞ ¼ �0:12. We now show how the
CMTs model is affected by increasing the loss leaving all other parame-
ters unchanged. The dash-dotted lines in Fig. 6 show the calculated bi
for the isolated modes as a function of h ¼ p� d, so that h¼ 0 corre-
sponds to the lossless case and increasing h appropriately rotates the
metal permittivity em in the complex plane. Note that <eðb2Þ
decreases and =mðb2Þ increases, while b1 is unchanged. The dashed
lines show ~bi using the CMTs model for a constant j ¼ 0:1 [dashed
line in Fig. 5(b)], which agree with the exact solutions (solid lines) up
to approximately h ¼ 0:3, corresponding to tan d � �0:3. This is a
loss value well above that of gold (black dotted line), consistently with
our analysis so far. Furthermore, we notice that the model appears to
work remarkably well even for very large values of the loss tangent.
This is due to the fact that the short-range surface plasmon mode has a
relatively low fraction of the field in the metal. Our approach can
therefore be used for other commonly used metals, such as silver (tan d
� �0:08), aluminum (tan d � �0:18), and copper (tan d � �0:08),
by including metal dispersion52 in the mode calculations as needed.

To confirm this, we repeat the above calculation assuming a loss-
less metal (em ¼ �94) but increasing the loss tangent of the dielectric
such that ed ¼ 3:52 exp ðidÞ, so that b1 ! bR1 þ ibI1 in Eq. (20). The
results are shown in Fig. 6(b): here, the real part of the exact eigenmo-
des agree with those predicted by CMTs up to d � 0:1, whereas their
imaginary parts agree only for extremely modest losses. This is because
more of the field is in the dielectric core, and the eigenmodes are thus
more susceptible to perturbations. Our perturbative approach of taking

loss as the eigenvalue perturbation is thus ideally suited for plasmonic
modes, where the field is predominantly located outside of the lossy
metal region.

V. EXPRESSION FOR THE POWER IN EACH MODE

All approaches presented so far reveal that the real parts of the
supermodes anti-cross, as shown in Figs. 3(c) and 4, so that their
phases advance at different rates. This is a necessary condition for
achieving a large extinction in the dielectric mode due to destructive
interference between the supermodes in the dielectric region, and a
large fraction of power in the plasmonic mode.57,58 However, in the
lossy case, the device length at which each of these effects takes place is
not immediately obvious, because of the complicated loss profile that
emerges from each eigenmode as per Fig. 4(b). We must therefore
now consider the issue of coupler performance in detail. There are sev-
eral pathways for quantitatively calculating the power in each wave-
guide as a function of z,24,25 and one of the goals of this work is to
quantitatively compare each method. In order to do so, we first review
some expressions that have been used to estimate the amount of power
in each waveguide. Since in most plasmonic waveguide couplers light
originates in the dielectric waveguide, we take all the power to be in
the dielectric waveguide at z¼ 0, although this can be adapted as
needed.

A. Coupled mode theory approaches

In the coupled mode picture, the longitudinal power flow for
each mode j in (4) can be immediately obtained from the z-component
of the Poynting vector, yielding

FIG. 5. (a) Comparison between the effective index of the exact eigenmodes (solid lines) and the CMTs model (dashed lines), for the lossless case, as a function of the edge-
to-edge separation s. (b) Corresponding j, normalized to the phase-matched propagation bPM (grey line). Note that the CMTs model starts to break down for j=bPM > 0:1
(black dashed lines). Corresponding calculations for the real and imaginary parts of the normalized eigenmodes in the lossy case are shown in (c) and (d), respectively, display-
ing the same overall behavior observed for the lossless case. Note in particular, the good accuracy of CMTs for the imaginary ~b, unless the coupling is very strong.
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PjðzÞ ¼ jwjðzÞj2 ẑ �
ð ð

1
2
Re Ejðx; yÞ �H�

j ðx; yÞ
h i

dx dy ¼ jwjðzÞj2Sj;
(27)

where Sj is the power contained in each isolated mode following the
normalization of (5). In the lossless case the normalization leads to
Sj¼ 1, and P1ðzÞ ¼ jw1ðzÞj2. Remarkably, we find that in the lossy
case, the power contained in the plasmonic mode is S2 ¼ 1 to
within 0.6% over the entire wavelength range considered, so that
P2ðzÞ ¼ jw2ðzÞj2 to good approximation. Therefore, we simply
need to solve the coupled mode Eqs. (6). We take the input to be
w1ð0Þ ¼ 1 and w2ð0Þ ¼ 0, so that w1ðzÞ and w2ðzÞ are given by31

w1ðzÞ ¼ cos ðc0zÞ � i
Dc

c0
sin ðc0zÞ

� �
exp ði�czÞ; (28)

w2ðzÞ ¼
j21
c0

sin ðc0zÞ exp ði�czÞ; (29)

where we have defined c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j12j21 þ D2

c

q
. For completeness and

clarity, we include the solutions to the simplified coupled mode equa-
tions of (26), which are

w1ðzÞ ¼ cos ðb0zÞ � i
D
b0

sin ðb0zÞ
� �

exp ði �bzÞ; (30)

w2ðzÞ ¼
j
b0

sin ðb0zÞ exp ði �bzÞ; (31)

where b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ D2

p
. In the lossless case and at the phase matching

point, D¼ 0 so that jw1ðzÞj2 ¼ cos2ðjzÞ and jw2ðzÞj2 ¼ sin2ðjzÞ, as
expected for a perfectly balanced coupler. Note that all parameters in
(28) and (29) are generally complex numbers if one of the waveguides
is lossy, but j is always real. For more complicated cases which con-
sider z-dependent waveguide profiles, numerical approaches are
necessary.

B. Eigenmode approaches

Another option, used in the case of longitudinally invariant wave-
guides,59 is to use the fields and propagation constants of the exact
eigenmodes.25,59 To show this explicitly, it is worth re-introducing the
electric and magnetic fields Ei; ~Ei and Hi; ~H i associated with a given
mode, schematically shown in Fig. 2. For example, in the case of 1D
modes propagating along z, the total electric and magnetic fields are
written as

FIG. 6. Effect of the loss on the CMTs model. (a) Comparison between the coupled eigenmodes as a function of h ¼ p� d at the phase matching point predicted by the exact
model (solid lines) and CMTs model (dashed lines) from the isolated modes (dash-dotted lines) and j obtained from the lossless case, modifying the complex metal permittivity.
Here the dielectric core is lossless and the metal is lossy. (b) Analogous calculations for a lossy dielectric core and lossless metal as a function of d. See main text for model
details.
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Eðx; zÞ ¼ a1~E1ðxÞ exp ði ~b1zÞ þ a2~E2ðxÞ exp ði ~b2zÞ;
Hðx; zÞ ¼ a1 ~H1ðxÞ exp ði ~b1zÞ þ a2 ~H2ðxÞ exp ði ~b2zÞ;

(32)

where ai are the modal amplitudes which determine the contribution
of the respective EMs to the total field. The complex modal amplitudes
are given by59,60

ai ¼ 1
2

ð
~EiðxÞ �H0ðxÞ
� �

dx; (33)

where H0ðxÞ is the magnetic field of the isolated dielectric mode, cor-
responding to the field at z¼ 0.

Since the EM approach calculates the total field along the entire
device, two methods can be used to calculate the power in each wave-
guide: (i) calculate the total power by integrating the z-component of
the Poynting vector in the half-space comprising each individual wave-
guide (this method is labeled as EMi); (ii) project the total field onto
the isolated eigenmode of interest, and calculate its power (this method
is labeled as EMp).

Power integration. The EMi approach is conceptually straightfor-
ward: the total power in each waveguide can be calculated by splitting
the simulation space vertically into two regions, using an artificial
boundary halfway between the two waveguides at xb ¼ d þ s=2, and
defining

P1ðzÞ ¼
ðdþs=2

�1
Szðx; yÞ dx;

P2ðzÞ ¼
ð1
dþs=2

Szðx; yÞ dx;
(34)

where P1ðzÞ and P2ðzÞ are the total powers (per unit length) in
the dielectric and plasmonic regions, respectively, and where Sz is the
z-component of the Poynting vector of the total field. This choice of xb
then allows to estimate the fraction of power in the dielectric and
gold regions,25 p1 and p2, respectively, as a function of the propagation
length

p1ðzÞ ¼ P1ðzÞ= P1ð0Þ þ P2ð0Þ½ �;
p2ðzÞ ¼ P2ðzÞ= P1ð0Þ þ P2ð0Þ½ �; (35)

so that p1ð0Þ þ p2ð0Þ ¼ 1.
Mode projection. The EMp relies on calculating the transmitted

amplitude by projecting this field onto the modes of each isolated
waveguide via

tiðzÞ ¼ 1
2

ð
EiðxÞ �Htotðx; zÞ½ � dx; (36)

where Ei is the electric field distributions of each isolated eigenmode,
and where the power in the isolated waveguide mode i is taken to be
jtij2, which is given by59

jtij2 ¼ Ai exp �=mð ~b1Þz
	 


þ Bi exp �=mð ~b2Þz
	 


þ fCi cos 2<eð~DÞz
h i

þ Di sin 2<eð~DÞz
h i

g
� exp ð�=mð �bÞzÞ; (37)

where the Ai;Bi;Ci;Di coefficients contain only overlap integrals
between the isolated- and coupled- eigenmodes [see Eq. (6) in Ref. 59

for their explicit expressions]. Equation (37) explicitly indicates that
the energy exchange between waveguides is only related to the real
parts of ~D, i.e., to the dephasing of the eigenmodes ~bi , whereas the
imaginary parts of ~bi influence the overall loss. Equation (37) quantita-
tively predicts the coupling efficiency as a function of z, provided that
the overlap coefficients in (33) are known. For example, in the lossless
case and at the phase matching point =mðbiÞ ¼ 0 and <eð~DÞ ¼ j. If
all power at z¼ 0 is in the dielectric mode, then (37) implies that the
power in the plasmonic mode takes the familiar form jt2j2 � ð1
�cos ð2jzÞÞ=2 ¼ sin2ðjzÞ45 and complete power transfer occurs at
Lc ¼ p=2j, since numerical integrals yield A2 þ B2 � 1=2; C2

� �1=2, and D2 ¼ 0.
The advantage of the EM approaches is that they rely on the exact

eigenmodes and propagation constant, and are thus more accurate
than CMT approaches.24,57 It should be noted that this method is
most suitable to longitudinally invariant waveguides, but any trans-
verse modifications to the waveguide upon propagation—e.g., in adia-
batic couplers54—requires transfer matrix approaches (i.e., splitting the
domain in smaller slices along z20,61), which can increase the computa-
tional cost via additional overlap integrals.62 While the eigenvalues
obtained from the CMT model have the disadvantage of deviating
slightly from the exact solutions, as shown in Figs. 3 and 4, they have
the remarkable advantage of providing an immediate pathway for cal-
culating the power in devices whose spatial profile varies along z, sim-
ply by calculating z-dependent parameters jðzÞ and biðzÞ which, as
we have shown, can be obtained easily from reduced-mode calcula-
tions and no overlap integrals.

C. Finite element approaches

In order to evaluate the accuracy of the above approaches, we
compare the power in each waveguide with that predicted by finite ele-
ment method (FEM) calculations using the commercially available
software COMSOL,63 which allows the user to excite a desired mode at
input, and which in turn allows for two different approaches. On the
one hand, it is simply possible to integrate the calculated power in each
half-space, as per Eq. (34). We label this approach as FEMi. On the
other hand, COMSOL has a built-in port function63 that allows the
user to project the output of the calculation on a desired isolated mode
and obtain its power, which is conceptually equivalent to the mode
projection method in Eq. (33). We label this approach FEMp. A sum-
mary of each method presented so far, and the notation used in subse-
quent figures, is presented in Table I.

We are now interested in comparing the simplified coupled mode
theory approach with the eigenmode and finite element method for
longitudinally invariant directional couplers and plasmonic sensors in
the case of 1D modes propagating in 2D, before using CMT in more
complicated and computationally demanding 2D modes propagating
in 3D and with arbitrary z-dependent profiles. Since our focus is on
understanding how well CMTs performs, we will be avoiding the
“exact” coupled mode theory approach, since it uses the same overlap
integrals as the eigenmode method (which also uses exact modes), and
is therefore redundant.

VI. DIRECTIONAL COUPLING

We begin by considering the power exchanged between the two
waveguides of the lossless directional coupler shown in the Fig. 2 sche-
matic. We use the same materials and refractive index distribution,
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including the material dispersion for silica53 and gold (Drude model in
Ref. 52), setting the imaginary part of the permittivity to be zero every-
where. The dispersion of its relevant modes is shown in Fig. 2. A color-
map of the power in the coupler at k ¼ 1550 nm, obtained from 2D
FEMi calculations, is shown in Fig. 7(a). As expected, a complete trans-
fer of power between each waveguide occurs with a period of p=2j
obtained from Fig. 2(b), corresponding to approximately 6 lm. The
circles in Fig. 7(b) show the associated power in the plasmonic mode
(orange) and dielectric mode (blue), using FEMi. A comparison with
the CMTs, EMi, and EMp approaches are shown as dashed, solid, and
dash-dotted lines, respectively, keeping the same color coding. The
best overall agreement occurs for the EMp approach, which projects
the total field on the exact eigenmodes. The other methods show excel-
lent agreement in terms of power transfer length, but small discrepan-
cies (<5%) in terms of coupling efficiency, as seen in Fig. 7. We now
move away from the lossless directional coupler, since it has been con-
sidered extensively,43,46 and discuss only the lossy case.

Figure 7(c) shows a colormap of the power obtained from FEMi

calculations of the corresponding lossy coupler, whose complex modes’
dispersions are plotted in Fig. 4. Figure 7(d) compares the power in
each waveguide, following the same naming convention as in Fig. 7(b).
Introducing loss has two effects: (i) it changes the eigenmode splitting
at the phase matching point [c.f. Fig. 2(c) and Fig. 4(a)]; (ii) it leads to
a plateau in the amount of power that is transferred from the dielectric
mode to the plasmonic mode, as a result of a net overall absorption.
Each of these effects depend on the specific device parameters, making
it challenging to quantify the maximum coupling efficiency into the
plasmonic mode gmax and the associated length Lmax at which it
occurs. This is in contrast to the lossless case, where j is the only
parameter needed to estimate the minimum power transfer length,
and where the maximum transfer efficiency is always unity.

To quantitatively investigate the effect that bringing the wave-
guides together has on Lmax and gmax, we repeat the above calculations
for the lossy directional coupler as a function of separation s,

TABLE I. Summary of the methods used, their associated labels, equations, and salient features.

Method name Method label Relevant equations Comment

“Exact” coupled mode theory CMTe (28) and (29) Uses exact modes and overlap integrals.
Simplified coupled mode theory CMTs (30) and (31) j obtained from lossless modes, no integrals.
Eigenmode method þ projection EMp (36) and (37) Uses exact modes and overlap integrals.
Eigenmode method þ integration EMi (34) and (35) Integrates power at halfway boundary.
Finite element method þ projection FEMp N.A. See Ref. 63 for details.
Finite element method þ integration FEMi N.A. Integrates power at halfway boundary.

FIG. 7. (a) Colormap of the spatial distribution of Poynting vector component in the z direction in the lossless directional coupler from Fig. 2 at k ¼ 1:55 lm. (b) Associated
power in the dielectric waveguide 1 (blue) and plasmonic waveguide 2 (orange) using different methods described in the text. Circles: FEMi calculations; solid lines: EMp

method; dash-dotted lines: EMi method; dashed lines: CMTs method. Note that the transfer length from the dielectric mode to the plasmonic mode is trivially p=2j. For compar-
ison, (c) and (d), respectively, show the same results as (a) and (b), but for the lossy directional coupler presented in Fig. 4. Here, the maximum transfer efficiency gmax and
the associated transfer length Lmax are non-trivial because the eigenvalues are complex. The total power at z¼ 0 is normalized to unity. Window size in (a) and (c):
20 lm� 4lm.
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identifying the value of Lmax, and gmax in each case and for each
method. Figure 8(a) plots the coupling length as a function of separa-
tion, showing remarkably excellent agreement between all methods.
Figure 8(b) plots the associated efficiency gmax: all methods agree well
if the separation between waveguides is greater than 200nm, which is
the region where the eigenvalues predicted by CMTs deviate from the
exact solution. The EMp method gives the best overall agreement,
whereas the EMi method does not work for small separations because,
in this scenario, the power in each dielectric and plasmonic half-space
becomes less representative of the mode power of the corresponding
uncoupled waveguide. This can easily be overcome, for example, by
slowly increasing the mutual separation between waveguides (but at
the cost of increasing the overall loss), as per an adiabatic device.64

Finally, for strong coupling the CMTs method overestimates the cou-
pling efficiency by a significant margin, due to the breakdown of the
perturbative assumptions, and should be used with caution. From an
experimental viewpoint, this is still a valuable result: the lossy CMTs

approach predicts the desired device length with remarkable accuracy,
which is already very important for device design prototyping.
However, in the strong coupling regime where j=b > 0:1, a compari-
son with full wave calculation indicates the associated coupling effi-
ciency is inaccurate. The lack of accuracy cannot be mitigated without
making the simple model more complicated. Improving the model
would require, for example, the incorporation of additional modes
(e.g., higher order and radiative modes), which would make the system
larger, but also require a case-by-case dependent study—at which
point, a full numerical solver would be the more convenient approach.

A. An explorer’s map

With this knowledge in hand, we are now in the unique position to
provide a universal “explorer’s map” of Lmax and gmax as a function of
parameters that can be easily obtained from exact mode calculations via
the CMTs model, and which is agnostic to details of the waveguide cross
section used. This map can be considered as universal and accurate, pro-
vided that: (a) we are at the phase matching point, i.e.,
<eðb1Þ � <eðb2Þ ¼ bPM, so that j ¼ ~D and (b) coupling between
waveguides is not too strong, i.e., j=b < 0:1. Under these conditions, fol-
lowing (31), the expression for the power in the plasmonic waveguide is

jw2ðzÞj2 ¼
~D2

~D2 � jbI2j2=4
sin2 z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~D2 � jbI2j2=4

q� �
exp ð�jbI2jzÞ:

(38)

This expression only depends on two “exact”mode parameters: (a) the
supermode splitting, here given by ~D ¼ ð ~b1 � ~b2Þ=2 (obtained from
lossless waveguides) and (b) the imaginary part of the isolated plas-
monic waveguide bI2. We consider jw2ðzÞj2 in Eq. (38) for various
combinations of ~D and bI2 to obtain the power in the plasmonic wave-
guide as a function of z [as per the orange line in Fig. 7(d)] and com-
puting the associated Lmax and gmax. The associated contour maps
showing Lmax=k and gmax are shown in Figs. 9(a) and 9(b), respec-
tively. As expected, the most compact and efficient devices (low Lmax,
high gmax) occur when the eigenmode splitting is large and the losses
are low (top left in the colormap). Vice versa, increased losses and
small splittings lead to undesirably long devices (Lmax 	 k) that are
inefficient (gmax < 0:1). Note that for small ~D, even modest losses lead
to inefficient devices, as can be seen in the bottom region of Fig. 9; in
contrast, regions of strong coupling are the most efficient, even when
the losses are large, as can be seen in the top region of Fig. 9.

B. Wavelength dependence

We now consider the wavelength dependence of the CMTs

model. Once again, our approach is to consider j to be constant at
each wavelength, and calculate it from “exact” modes via Eq. (24). To
show how the model performs at the limit of its applicability, we con-
sider s ¼ 200 nm, which is where the eigenmodes predicted by CMTs

start to deviate significantly from the exact case (dashed line in Fig. 5).
Figure 10(a) shows Lmax and gmax in blue (left axis) and orange (right
axis), respectively. The circles and solid lines show the total power con-
tained in the plasmonic waveguide region according to FEMi and EMi

methods. The CMTs method is overlayed as a dashed line: we observe
that, despite its simplicity, this method faithfully reproduces all salient
quantitative trends. Note that gmax increases and Lmax decreases at lon-
ger wavelengths because the loss of the plasmonic mode goes down [as
evident from Fig. 4(b)], and because mode coupling is stronger.
Furthermore, we find that the discrepancies increase at longer wave-
lengths, and decrease for shorter wavelengths, despite the fact that

FIG. 8. Calculated (a) transfer length Lmax and (b) plasmonic coupling efficiency gmax as a function of edge-to-edge separation s between the lossy waveguides shown in
Fig. 7(c). Circles: FEMi method; solid lines: EMp method; EMi; dashed lines: CMTs method.
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neither regions are at the phase matching wavelength of k ¼ 1550 nm,
where j12 ¼ j21 ¼ j. A plot of j=bi as a function of wavelength is
shown in Fig. 10(b), confirming that the modes at longer wavelengths
are more strongly coupled than those at shorter wavelengths (i.e.,
j=bi > 0:1 when k > 1550 nm, and vice versa). All things being
equal, this result indicates that weaker coupling improves the quantita-
tive accuracy of CMTs models.

C. Plasmonic sensing

Waveguide sensors which use surface plasmon polariton (SPP)
resonances are particularly attractive for bio-sensing at the nanoscale,65

because they exploit the subwavelength lateral confinement of SPPs to
characterize small modifications to the environment via changes in the
propagating field’s phase or loss. Originally implemented using free-
space bulk optics,66,67 SPP sensors are ideal for integration with chip-

scale68 and fiber-based30 platforms, providing a monolithic and conve-
nient way of detecting small changes near the metal surface.69–71

Figure 11(a) shows a schematic of a typical chip-scale hybrid plas-
monic waveguide coupler, which is a modified version of the device
shown in Fig. 2: the only difference is that the external region adjacent to
the metal is now covered by an analyte (refractive index: na). Light is
injected into the dielectric core and couples to the plasmonic mode, yield-
ing an overall transmission spectrum given by the power emerging from
the dielectric waveguide, which of course depends on many parameters,
including the wavelength k, length L, and refractive index na.

Changes in the dielectric transmission spectra TðkÞ are often sen-
sitive to any changes in the refractive index above the metal film. It is
therefore important to be able to calculate them accurately and for
realistic experimental conditions. Recent works have shown that the
overall transmission spectra for different values of na, calculated in

FIG. 9. Colormap of (a) transfer length (in units of wavelength) Lmax=k and (b) plasmonic coupling efficiency gmax as a function of the imaginary part of the effective index
=mðnð2Þeff Þ ¼ bI2=k0 and D~neff ¼ 2 ~D=k0 using CMTs via (38).

FIG. 10. Directional coupler bandwidth calculations. (a) FEM (circles), EMi method (solid lines) and CMTs (dashed lines) for the maximum transfer efficiency gmax (orange, right
axis) and the coupling length Lmax at which it occurs (blue, left axis), as defined in Fig. 4(d). (b) Associated j=bi for considering the isolated dielectric (blue) and plasmonic
(modes).
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Fig. 11(b) using FEMp can be well reproduced by the EMp method,57

as shown in Fig. 11(c). The CMTs method [Eq. (30)] reproduces the
salient properties of the coupled supermodes, but the resulting trans-
mission spectra are systematically shifted in terms na, as discussed in
detail in Ref. 24, and shown in the corresponding calculations of Figs.
11(d) and 11(e). This is most likely because the sharp resonances rely
on destructive interference, which are sensitive to small perturbations
in each eigenmode’s effective index. Although the CMTs approach can
still provide ballpark figures of a sensor’s performance—and is cer-
tainly more appropriate than any other method that uses mode disper-
sion curves alone—accurate calculations of plasmonic sensor
transmission spectra necessarily require “exact” approaches, either via
the EMp method, or via the CMTe method [Eq. (28)].

Figure 11(f) shows the transmission spectrum calculated using
the CMTe approach for z ¼ L ¼ 10lm, showing good agreement
with the FEMp and EMp methods—aside from predicting slightly
sharper resonances at na ¼ 1:43. The CMTs model might still find
uses for first estimate of parameter regions where sharp resonances are
expected for different choices of na, but methods that consider exact
modes are necessary for accurate comparisons with experiments.

D. The exceptional point

The plasmonic couplers discussed so far all rely on a transfer of
power between the dielectric and plasmonic waveguides near the phase
matching point, which is due to an anti-crossing of the coupled
eigenmodes. However, in lossy systems, when j is too small then the
real parts of the supermodes cross24—resulting in an infinite beat
length, which precludes both destructive interference and sharp reso-
nances. The boundary between regions where <eð ~biÞ cross and anti-
cross—and which thus separates regions where plasmonic couplers
can be most efficient—corresponds to the exceptional point (EP),
where the complex supermode propagation constants are degenerate,
which by definition corresponds to the condition

~b1 � ~b2 ¼ 0: (39)

According to CMTs (24), this condition corresponds to
j2 þ D2 ¼ 0,58,72 wherein the following conditions simultaneously
need to be met:

b1 � bR2 ¼ 0;
j� bI2=2 ¼ 0:

�
(40)

The exceptional point is thus an important parameter for plas-
monic directional couplers and plasmonic sensors, because it defines
the point beyond which resonant coupling is not supported. The
CMTs model immediately provides a rapid way of identifying it, in
terms of intuitive coupling- and loss-parameters: using this method, it
is possible to verify a priori that the condition j > bI2=2 at the phase
matching point is met, and then estimate the associated coupling effi-
ciency and coupling length.

VII. ADIABATIC COUPLER

Directional couplers can provide high coupling efficiencies over
wavelength-scale distances, but because they rely on interference
effects, they tend to have a narrow bandwidth and their performance is
sensitive to any fabrication imperfections. In contrast, adiabatic cou-
plers64 are relatively robust devices that can have a large band-
width.54,73 In the present context, the type of adiabatic coupling under
consideration is illustrated in Fig. 12(a). To understand its operation,
we consider the fundamental supermode of the device. Although each
supermode can be thought of as a superposition of the fundamental
modes of the isolated waveguides 1 and 2, the device is designed such
that at z¼ 0 and z¼ L the fundamental supermodes ~w1;2 closely
match the modes of the individual waveguides, because they are not
phase matched and therefore detuned: for the device in Fig. 12(a), the
fundamental supermode at z¼ 0 corresponds nominally to the isolated
mode of waveguide 1, whereas at z¼ L it corresponds to that of the
plasmonic waveguide 2. For the device in the schematic this is achieved

FIG. 11. Schematic of the plasmonic sen-
sor. The only difference with respect to
Fig. 2 is that the external region in contact
with the gold film is now an analyte with
refractive index na (green). The length L
refers to the length of device in the propa-
gation direction z. Here, we consider L
¼ 10 lm. Calculated transmission spectra
for na ¼ 1:40 (green), na ¼ 1:43 (orange)
and na ¼ 1:46 (blue) are also shown,
as obtained using (b) FEMp, (c) EMp, (d)
CMTs approaches. (e) CMTs approach with
na ¼ 1:39 (red), na ¼ 1:42 (purple) and
na ¼ 1:45 (brown) using CMTs. FEMp and
EMp, and exact CMTe approaches show
good agreement, however using CMTs
there is a small shift in the analyte index
where the sharpest resonance dip occurs.24
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by varying the width of the plasmonic waveguides, a common
approach.27 Alternatively, the width of the dielectric waveguide can
also vary while keeping the plasmonic waveguide constant.29 In a per-
fectly adiabatic process, light that is coupled into the fundamental
supermode enters through waveguide 1, remains in the fundamental
supermode, and exits via waveguide 2 with 100% efficiency. A conse-
quence of adiabaticity is that, provided that the supermodes coincide
with each of the individual waveguides at z¼ 0 and z¼ L, the device
performance is relatively insensitive to perturbations, wavelength, or
even to the details of the device design.54,73

Adiabatic devices are therefore typically advantageous over direc-
tional couplers due to their robustness to fabrication imperfections
and broad bandwidth; however, because of the requirement of

adiabaticity, they tend to achieve unity coupling efficiency over quite
long lengths. This requirement can be relaxed to some degree, and
many techniques have been developed that promise to minimize this
length while maintaining performance.74 However, such techniques
are only applicable to the lossless case, where increasing the device
length does not impact the overall absorption.54 As a variation to our
leitmotif, we now consider the case where the plasmonic waveguide
profile varies as a function of the propagation distance, as illustrated in
the schematic of Fig. 12(a). Even though s can be a function of z, we
choose it to be constant such that sðzÞ ¼ 200 nm and only vary t, while
also keeping dðzÞ ¼ 220 nm constant. Recall that the dielectric wave-
guide mode phase matches with the short range plasmonic mode at
t ¼ 7:5 nm. We now harness the fact that, for SRSPPs, thinner films

FIG. 12. (a) Schematic of a plasmonic adiabatic coupler. Light starts in waveguide 1, corresponding to a supermode at z¼ 0, and remains in this mode, which at the end of the
device corresponds to all the power being in waveguide 2. (b) Calculated z-component of the Poynting vector for the adiabatic waveguide described in the text when
L ¼ 2:7lm. (c) Real part of the effective index as a function of z/L for the lossless supermodes (solid lines) and isolated modes (dashed lines). The dash-dotted line shows
the lossy isolated plasmonic mode. Mode nomenclature and color coding is analogous to Fig. 2. (d) Associated j (black line) imaginary part of the isolated plasmonic mode
(orange). (e) Power at the device output (i.e., at z¼ L), in the dielectric (blue) and plasmonic waveguide (orange), as a function of device length L, calculated using FEMi

(circles) and CMTs (solid lines). (f) Corresponding z-dependent power inside each waveguide for a fixed L ¼ 2:7lm.
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yield larger propagation constants, accompanied by large group velocity
and high localized field intensity on the gold surface.55,75 We take t(z) to
decrease linearly between 10 and 5nm over the device length, so that
the plasmonic mode crosses with the dielectric mode in the middle of
the device.

We now briefly discuss how to set up and solve adiabatic plas-
monic couplers using the CMTs approach. The reason for this is that
the power exchange properties in plasmonic couplers are non-trivial,
so that design needs may vary from case to case. For example, one
might want to know how long the device should be to ensure that
most power goes into the plasmonic waveguide, but for this length
some power may remain in the dielectric waveguide (crosstalk).64,73

Alternatively, one might want a device length such that no power is in
the dielectric waveguide, harnessing all the power which happens to be
in the plasmonic mode.27 How long would that device have to be?
How much power would be in the plasmonic mode? In the present
case, time-consuming finite element calculations shown in Fig. 12(b),
suggest that this occurs at a length of L ¼ 2:7 lm, and that the associ-
ated g ¼ 20%. We now consider whether this result can be quantita-
tively obtained with the CMTs approach.

In essence, we must now solve (26) with all parameters being
z-dependent. Recall that the diagonal elements of (26) are the isolated
modes of the lossy device, and that jðzÞ is obtained from (24) at con-
stant k using equivalent lossless modes. We also neglect all reflections,
and consider only forward-propagating modes. Figures 12(c) and
12(d) show all parameters needed for this calculation. Dashed and
solid lines show the propagation constant of the lossless isolated modes
and supermodes, respectively, as a function of z/L, which result in jðzÞ
as per (24), which is plotted as a black line in Fig. 12(c). Finally, the
real and imaginary parts of the complex isolated lossy mode b2 are
shown as a dash-dotted lines in Figs. 12(c) and 12(d).

These parameters are then used to solve (26) numerically for dif-
ferent physical device lengths L, taking w1ð0Þ ¼ 1 and w2ð0Þ ¼ 0, and
calculating the power jwiðLÞj2 in each waveguide i at z¼ L. The solid
lines in Fig. 12 shows the resulting jw1ðLÞj2 (blue line) and jw2ðLÞj2
(orange line) using the CMTs model. The exchange of power between
waveguides is quite complicated, but in good agreement with the full
finite element calculations (circles). Note in particular, that this model
predicts that the maximum coupling efficiency is approximately 0.4 at
L ¼ 1:5 lm, with a residual power fraction of 0.2 in the dielectric
waveguide. Increasing the device length further produces a reduction
in the power in the plasmonic waveguide due to losses. At z ¼ 2:7 lm,
the power in the dielectric waveguide is at a local minimum, and the
fraction of transmitted power in the plasmonic waveguide is 0.2. Our
simple model also provides useful insight into how the power is dis-
tributed within the device for a given L. Figure 12(f) shows the power
in each waveguide mode as a function of z for L ¼ 2:7 lm predicted
by the CMTs model (solid lines) and by FEMi (circles), both showing
that in this configuration the highest power inside a device of this
length occurs at z ¼ 1:6 lm.

One important advantage of the CMTs approach is that it pro-
vides physical insight as to why a given coupler is performing in a cer-
tain way. Here, the near-constant j [black line in Fig. 12(d)] shows
that this particular choice of waveguide parameters leads to an adia-
batic device that is similar to a directional coupler. Indeed, there are
infinitely many choices for s(z), t(z), and d(z), each of which will yield
different results, and a systematic study of the study of how different

coupler profiles and (and associated losses) might affect the perfor-
mance – as has been done in the lossless case54—might be warranted.
Recent work has also shown that physics-informed neural networks
provide a pathway for even more rapid device optimization.76 We
anticipate that the present formalism, and generalizations thereof, will
be very useful in that context.

VIII. APPLICATION TO 3D WAVEGUIDES

So far, we have considered 2D waveguides supporting 1D modes,
as a means of verifying the validity and limitations of CMTs for calcu-
lating the power transfer properties of plasmonic couplers. We expect
our formalism and intuitive framework to be more practical for realis-
tic 3D waveguides supporting 2D modes, which are generally quite
computationally demanding to model using vector field approaches.
Furthermore, field overlap integrals used in the EM and CMTe

approaches are also somewhat tedious and time consuming to imple-
ment in this scenario, due to the fine mesh sizes and high spatial reso-
lution required for accuracy. The CMTs approach, which uses
eigenvalue calculations alone, is thus particularly valuable in navigating
the first design steps to obtain the desired performance, especially in
terms of footprint and coupling efficiency. We now discuss two canon-
ical plasmonic geometries often used for plasmonic directional and
adiabatic coupling, comparing the simplified coupled mode theory
with full finite element calculations.

A. Chip-based plasmonic coupler

We start our discussion with a metal–dielectric–metal (MDM)
plasmonic waveguide coupled to a silicon-on-insulator (SOI) wave-
guide,77 frequently used in the context of wavelength-scale cou-
plers,78,79 nonlinear light generation,27 and Raman spectroscopy.80,81

Figures 13(a)(i)–(ii) show a cross-sectional schematic of the device and
supported mode at k ¼ 1:55 lm: a rectangular dielectric silicon wave-
guide (n¼ 3.5) of width w ¼ 300 nm and height h ¼ 220 nm couples
to a gap plasmonic waveguide mode supported by a gold film
(n ¼ 0:6þ 9:7i) of thickness t with a gap of width g. The silicon wave-
guide is embedded in buried silica oxide (n¼ 1.45), and the region
above gold is air (n¼ 1). This structure supports hybrid supermodes
~bi, one of which is shown in Fig. 13(a)(ii). The isolated dielectric or
plasmonic modes bi are obtained by either removing the silicon or
gold, respectively. For the purpose of illustrating the applicability of
our model, we fix all parameters except g and the device length L. A
fixed g at the phase matching point along the device length results in
a directional coupler, schematically shown in Fig. 13(a)(iii). An adia-
batic coupler can be achieved by varying g across L, as shown in
Fig. 13(a)(iv). We now consider each case separately.

1. Directional coupler

To utilize our directional coupler “explorer’s map”, we first iden-
tify the value of g at which phase matching occurs. The orange dashed
lines in Fig. 13(b) show the propagation constant of the lossless iso-
lated plasmonic mode as a function of g, which intersects the dielectric
mode at g ¼ 15:8 nm. The associated lossless coupled modes for a sep-
aration s ¼ 200 nm are shown as solid lines. We calculate jðzÞ from
(24), and plot it as a black line in Fig. 13(d). Finally, we consider the
real and imaginary parts of the complex isolated lossy mode effective
index, shown as dash-dotted lines in Figs. 13(b) and 13(c), respectively.
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This calculation results in a D ~neff ¼ 0:18 and =mðnð2Þeff Þ ¼ 0:058 [dia-
mond marker in Fig. 13(c)], which according to Fig. 9 predicts a cou-
pling length Lmax ¼ 2:2k ¼ 3:53lm, with a maximum coupling
efficiency of gmax ¼ 0:41. Figure 13(d) shows the calculated power in
each waveguide as a function of L for the directional coupler, as pre-
dicted by the CMTs model (solid lines) and by FEMi calculations
(circles), confirming the prediction.

2. Adiabatic coupler

We now consider a 3D adiabatic coupler, wherein the gap width
g decreases linearly across the device length, between 60 and 10nm
along z for different values of L, as per the upper x axis in Figs. 13(b)

and 13(c). We repeat the procedure previously used for waveguides
whose profile varies, solving (26) numerically for different physical
device lengths L, using the z-dependent parameters in Fig. 13. The
solid lines in Fig. 13(e) shows the resulting jw1ðLÞj2 (blue line) and
jw2ðLÞj2 (orange line) using CMTs, which is once again in good agree-
ment with the FEMi calculations (circles). Compared to the directional
coupler, these results show that this adiabatic coupler has two signifi-
cant drawbacks: the peak coupling efficiency is lower, and the device
length at which it occurs is longer. This is a consequence of the fact
that the adiabaticity requirement (i.e., the need for a long device) is
adversely affected by the overall loss for this particular design choice,
which warrants a further exploration of the design parameters for fur-
ther improvement—a task that could readily be tackled using CMTs.

FIG. 13. (a) Summary of the chip-scale geometries considered. (i) Cross section: a silicon waveguide (height: h ¼ 220 nm; width: w ¼ 350 nm) buried in a silicon substrate is
coated with two metal nanofilms forming a plasmonic slot waveguide with gap width g on top of the waveguide with edge-to-edge separation s. (ii) Example supermode profile
colormap, showing hybridization between gap plasmon mode and dielectric mode. Top view shows (iii) a directional coupler of length L where all geometric parameters remain
constant, and (iv) an adiabatic coupler, where we take g to be the only varying parameter. Vertical dashed lines in (iii) and (iv) represent the boundary of the silicon waveguide.
(b) Real part of the effective index for s ¼ 200 nm vs the gap width g for the lossless supermodes (solid lines) and isolated modes (dashed lines) at k ¼ 1550 nm. The dash-
dotted line shows the lossy isolated plasmonic mode. Mode nomenclature and color for dielectric and plasmonic modes coding is analogous to Fig. 2. Vertical black dotted line
highlights g ¼ 15:8 nm where the system is a balanced directional coupler. (c) Associated j (black line) and imaginary part of the isolated plasmonic mode (orange). (d) Power
in each region of the directional coupler and (e) adiabatic coupler at the device output (i.e., at z¼ L) as a function of a device of length L. Inset shows the power in each wave-
guide inside the device for L ¼ 13:8lm calculated using 3D FEMi calculations (circles) and CMTs (solid lines).
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The inset of Fig. 13(e), which shows that the power inside the device
for a fixed length (here: L ¼ 13:8 lm), is also well reproduced by our
model. Note that, as a result of the small plasmonic gap and long
lengths considered, the 3D simulation runs out of memory for L >
14 lm long device on a high-performance computer, where memory is
capped at 256 GB RAM in accordance with reasonable user
capabilities.

B. Fiber-based plasmonic coupler

To show the flexibility of our CMTs approach, we now consider
fiber-based plasmonic couplers,76 frequently used in the context of
nanofocussing,30 e.g., with applications in lens-free high resolution

Raman microscopy.29 Figure 14(a)(i)–(ii) shows a cross-sectional sche-
matic of the device and supported mode at k ¼ 0:8 lm: the funda-
mental mode of a cylindrical dielectric silica waveguide (n¼ 1.45) of
radius R hybridized with a radially polarized short-range surface plas-
monic waveguide mode supported by a gold nanowire
(n ¼ 0:23þ 4:51i) of radius r ¼ 100 nm with edge-to-edge separation
s ¼ 200 nm. The silicon waveguide is surrounded by air (n¼ 1). This
structure supports hybrid supermodes ~bi, one of which is shown in
Fig. 14(a)(ii). The isolated dielectric or plasmonic modes bi are
obtained by either removing the silica or gold nanowire, respectively.
Once again, we fix all parameters except R and the device length L. A
fixed R at the phase matching point along the device length results in a
directional coupler, schematically shown in Fig. 14(a)(iii). An adiabatic

FIG. 14. (a) Summary of the fiber-based geometries considered. (i) A cylindrical silica waveguide (radius: R) is adjacent to a gold nanowire (radius: r ¼ 100 nm) in air with
edge-to-edge separation s ¼ 200 nm. (ii) Example supermode profile colormap, showing hybridization between radially polarized short-range plasmonic mode and linearly
polarized fundamental dielectric waveguide mode. Top view shows (iii) a directional coupler of length L where all geometric parameters remain constant, and (iv) an adiabatic
coupler, where we take R to be the only varying parameter. (b) Real part of the effective index for s ¼ 200 nm and r ¼ 100 nm as a function of R for the lossless supermodes
(solid lines) and isolated modes (dashed lines) at k ¼ 800 nm. The dash-dotted line shows the lossy isolated plasmonic mode (R ¼ 224 nm). Mode nomenclature and color
for dielectric and plasmonic modes coding is analogous to Fig. 2. Vertical black dotted line highlights R ¼ 124nm where the device forms a balanced directional coupler.
(c) Associated j (black line) and imaginary part of the isolated plasmonic mode (orange). (d) Power in each region of the directional coupler and (e) adiabatic coupler at the out-
put (i.e., at z¼ L) as a function of a device of length L calculated using 3D FEMi (circles) and CMTs (solid lines).
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coupler can be achieved by varying R across L, as shown in Fig. 14(a)
(iv). In practice, this is achieved by tapering the fiber tip, and placing it
next to a gold nanowire, which is a common approach for adiabatic
plasmonic focusing.30

1. Directional coupler

Following our earlier procedure, we identify the value of R at
which phase matching occurs. The orange dashed lines in Fig. 14(b)
show the propagation constant of the lossless isolated plasmonic mode
as a function of R, which intersects the dielectric mode at R ¼ 224 nm.
The associated lossless coupled modes for a separation s ¼ 200 nm are
shown as solid lines. We calculate jðzÞ using (24) [black line in
Fig. 14(c)] and the real and imaginary parts of the complex isolated
lossy modes’ effective index [dash-dotted lines in Figs. 14(b) and
14(c)]. This calculation results in a D~neff ¼ 0:066 and =mðnð2Þeff Þ ¼
0:011 [diamond marker in Fig. 14(c)], which according to Fig. 9 pre-
dicts a coupling length Lmax ¼ 6:8k ¼ 5:5 lm, with a maximum cou-
pling efficiency of gmax ¼ 0:62. Figure 14(d) shows the calculated
power in each waveguide as a function of L for the directional coupler,
as predicted by the CMTs model (solid lines) and by FEMi calculations,
showing good agreement with the CMTmodel.

2. Adiabatic coupler

Here, we consider an adiabatic coupler formed by a decreasing
dielectric fiber radius R along the device length, i.e., between 300 and
200nm along z for different values of L, as per the upper x axis in Figs.
14(b) and 14(c). Using these parameters, we repeat the procedure pre-
viously used for adiabatic couplers. The solid lines in Fig. 14(e) shows
the resulting power in the dielectric (blue line) plasmonic (orange line)
regions using CMTs, which exhibit good agreement with FEMi

(circles). In this case, we find a maximum coupling efficiency and min-
imum device length that is comparable to that of the directional cou-
pler. However, one advantage of this particular adiabatic coupler is
that the coupling efficiency is relatively insensitive to the length of the
total device, with only small fluctuations in intensity, accompanied by
a gradual increase in the overall loss.

IX. COMPARISON WITH EXPERIMENTS

We now compare CMTs directly with plasmonic directional cou-
pler experiments, using published data for the waveguide mode disper-
sions and transmitted power. Numerous experimental reports of
plasmonic directional coupling have been reported.28,82,83 Here, we
analyze the notable and influential work of Degiron et al.,25 whose
analysis relied on the eigenmode expansion method using field overlap
integrals as per Sec. V “Eigenmode Approaches”. We now compare
their experiments, summarized in Fig. 5 of Ref. 25 and in Figs. 15(d)
and 15(e) with our simplified coupled mode theory where only each
modes’ effective index is needed.

A schematic of the waveguide cross section considered by
Degiron et al. is shown in the inset of Fig. 15(a). A SU-8 polymer
dielectric waveguide is adjacent to gold nano-strip supporting long-
range surface plasmons, both embedded in a layer of
benzocyclobutene-based polymer (BCB) on top of a SiO2 substrate.
The gold stripe has a width of 4:6 lm and its thickness is 36 nm, sepa-
rated from the SU-8 waveguide by a gap of 2:5 lm. In this configura-
tion, the effective indices of the fundamental mode of the dielectric

waveguide and the long-range surface plasmon are adjusted by chang-
ing the height of the BCB cladding thickness t, here obtained by thin-
ning the sample from the top using reactive ion etching. The real and
imaginary parts of the effective indices as a function of t for
k ¼ 1:55 lm, calculated using the finite element method,25 are shown
in Figs. 15(a) and 15(b), respectively. For large values of t, there is a
mode mismatch between the isolated dielectric mode (dark gray line;
propagation constant: b1) and the plasmonic mode (light gray line;
propagation constant: b2). For t < 10lm the effective indices both
drop becausemuch of the field lies in BCB. However, the dielectric wave-
guide effective index drops more sharply, leading to phase matching
when t � 5:6 lm. When the waveguides are placed side by side, the
modes hybridize so that the real parts of the supermode eigenvalues anti-
cross, as shown as red and blue curves in Fig. 15(a). The corresponding
imaginary parts are shown in Fig. 15(b). Note that all modes’ imaginary
parts are four orders of magnitude smaller than their real parts, so that
they constitute a small perturbation as appropriate for CMTs.

In their analysis, Degiron et al. used the EMi eigenmode method
to successfully compare the power in each waveguide as a function of
the plasmonic waveguide length. As discussed, this approach relies on
overlap integrals between the hybrid and coupled modes, requiring
finely meshed field data for each mode involved, which can be resource
intensive for large parameter sweeps. We show that the simplified cou-
pled mode theory (CMTs) successfully quantitatively reproduces the
experiments, by only using the data shown in Figs. 15(a) and 15(b).

As a first step for implementing CMTs, we calculate j via Eq.
(24), as a function of t. Because the imaginary part is small, following
our earlier analysis we take D ¼ <e½ðb1 � b2Þ=2� and ~D ¼ <e½ð ~b1
� ~b2Þ=2�, from the data shown in Fig. 15(a). The result is shown in
Fig. 15(c), where we find that j is nominally independent of t, which is
expected given that the positions and dimensions of the gold stripe
and the SU-8 waveguide remain unchanged as t is varied.
Furthermore, we find that j 
 b1;2, implying that CMTs will provide
accurate quantitative predictions as per Fig. 5. Therefore, we obtain the
power in the dielectric and plasmonic waveguide, by computing w1ðzÞ
and w2ðzÞ from Eqs. (30) and (31), respectively, using the complex bi
shown in Figs. 15(a) and 15(b) and the real j shown in Fig. 15(c).
jw1j2 and jw2j2 yield the power in each waveguide as a function of
device length, which are shown as red and black dash-dotted lines in
Figs. 15(d) and 15(e) for t ¼ 6:6 lm and t ¼ 5:4 lm, respectively.

In the experiment, the authors couple light (k ¼ 1:55 lm) to sev-
eral dielectric waveguides, each of which is adjacent to a gold strip
waveguide of varying length. By measuring the output field profile for
each strip length, and integrating the intensity in dielectric and plas-
monic regions, the authors retrieve the power transfer properties of the
directional coupler, which can be directly compared with our calcula-
tions. The inset of Fig. 15(d) shows a typical experimental measure-
ment, showing a double spot intensity pattern due to the field in both
the plasmonic and dielectric waveguide regions. The red and black
circles in Fig. 15(d) show the associated normalized power emerging
from plasmonic and dielectric waveguides, respectively, for
t ¼ 6:6 lm. Figure 15(e) shows the same results for t ¼ 5:4 lm. The
agreement with CMTs is excellent. In each case, a periodic exchange of
energy occurs between waveguides, which is incomplete due to losses
and the fact that in both cases phase matching is not achieved. Note
that the CMTs model captures the nominal coupling efficiency to the
plasmonic mode, which is slightly higher when compared to the phase

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 021309 (2024); doi: 10.1063/5.0182361 11, 021309-19

Published under an exclusive license by AIP Publishing

 18 April 2024 13:02:07

pubs.aip.org/aip/are


matching point at t ¼ 5:4 lm. Due to metallic losses however, how
well the waveguides couple is best inferred from the extinction in the
dielectric waveguide, which goes down at the half beat length when the
coupler arms approach the phase matching condition—a feature that
is also captured by the simplified theory. This analysis confirms the
quantitative appropriateness of CMTs for designing realistic three-
dimensional devices.

X. COMPUTATIONAL RESOURCE COMPARISON

To highlight the value and advantages of the simplified coupled
mode theory with respect to other methods, which all rely on a wave-
length-by-wavelength calculation for a fixed device length, we now dis-
cuss and compare the nominal resources necessary for the key
calculations presented in this paper, which we performed using a 32
Core 2.4 GHz processor and 256 GB RAM.

Table II(a) shows the typical calculation time and maximum
RAM utilized when calculating the power in the plasmonic and dielec-
tric waveguide shown in Fig. 7, i.e., considering 1D modes propagating

in 2D with uniform waveguides. In this case, CMTs relies on just prop-
agation constants, which for 1D modes require only 0.05 s per mode
and less than 1MB of RAM, using modified publicly available code84,85

and a single processor core. See Ref. 84 and Ref. 85 for code and infor-
mation on EM method and CMTs method, respectively. The power in
each waveguide is then given by Eqs. (30) and (31). Both CMTs and
EM approaches require, in addition, that fields and overlap integrals
be calculated, which increases the time and computational resources
by approximately an order of magnitude due to the fine 1D mesh
required by the gold nanofilm. By contrast, the finite 2D element
methods typically needs several minutes and 11 GB of RAM to com-
plete a single calculation, even for this simple device and when using
all 32 processor cores. Clearly, CMTs and FEM methods are, respec-
tively, the least and most resource intensive. CMTe and EM
approaches which use “exact” mode information in the lossy case are
less demanding than FEM, but still require the use of cumbersome
overlap integrals and vector fields. Their computational cost will
always lie somewhere in between CMTs and FEM, and increases

FIG. 15. Comparison of plasmonic directional coupler experiments for the geometry presented in Ref. 25 with our calculations using the CMTs presented here. A cross section
of the waveguide system is shown in the inset of (a). Also shown is the real part of the effective index for the long-range surface plasmon of the isolated gold stripe (light grey),
the guided mode of the isolated SU-8 waveguide (dark grey), the symmetric coupled eigenmode (red), and the antisymmetric eigenmode (blue), as a function of BCB thickness
t, for k ¼ 1:55 lm. (b) Associated imaginary part of the effective index. (c) j obtained from Eq. (24), using the values plotted in (a) and neglecting loss. (d) Measured intensity
transmitted by the dielectric waveguide (black circles) and the Au stripe (red circles) as a function of the waveguide length for a BCB thickness of t ¼ 6:6 lm and
(e) t ¼ 5:4lm, in good agreement with CMTs (dash-dotted lines). Inset in (d) shows the intensity pattern emitted by the directional coupler for a waveguide length of 296lm
(blue circle), and associated integration regions for obtaining the power in the plasmonic and dielectric regions (red and black, respectively), respectively, to left and right of the
vertical dashed line. Adapted with permission from A. Degiron et al., New Journal of Physics 11, 015002 (2009).25 Copyright 2009 The Deutsche Physikalische Gesellschaft.
Reproduced from IOP Publishing. CC BY-NC-SA, https://creativecommons.org/licenses/by-nc-sa/3.0/.
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significantly when propagating in 3D, particularly when fine meshes
are required or the device profile varies upon propagation.

Table II(b) shows the resources needed for the CMTs and FEM
calculations for the 2D adiabatic coupler of Fig. 12. In this case, CMTs

requires calculating the propagation constants as a function of z as per
Fig. 12(b), and Eq. (26) needs to be integrated numerically using a
complex partial differential equation solver (e.g., scipy in python, or
ode45 in MATLAB), slightly increasing the overall computational cost
relative to the directional coupler.

Finally, Table II(c) and II(d) show the 3D directional and adia-
batic coupler calculations shown in Figs. 13(d) and 13(e), respectively.
Inevitably, CMTs requires the use of 2D mode solvers to obtain the
propagation constants, which increases the resources needed. Note,
however, that the overall time per mode calculation is still only 5 s,
using 300MB of RAM. Full 3D calculations, however, require up to
several hundred GB of RAM, and many hours to complete, making
CMTs particularly advantageous in these scenarios.

Overall, the simplified coupled mode theory method therefore
requires resources which are several orders of magnitude less than the

finite element method, and at least one order of magnitude less than
eigenmode or other exact methods requiring cumbersome overlap
integrals, with the added bonus of providing an essential description of
the underlying physics.

XI. CONCLUSION

In conclusion, we have presented a simplified CMT technique for
the rapid and intuitive modeling of compact plasmonic couplers, eluci-
dating where it is quantitatively accurate, and where full methods are
required. Although we have presented a two-mode device, we expect
that the underlying methodology to be straightforwardly extended
when more modes are supported. This method is most suitable at the
earliest possible design stage: when starting from scratch, our approach
can provide users with estimates of the nominal device length needed,
and its associated plasmonic coupling efficiency, using easy-to-calcu-
late mode parameters before embarking on more detailed designs. One
particularly important aspect is that the CMTs model accurately pre-
dicts the coupling length at which the maximum power occurs,
although it overestimates the coupling efficiency itself. Although we

TABLE II. Summary of the computational resources (time and RAM) for performing the calculations presented here.

(a) 2D Directional Coupler, Fig. 7(d)

Method Mode (1D) Propagation (2D) Total time Max. RAM Comments

CMTs 0.01 s Negligible 0.05 s <1MB 5 modes
No fields needed

No overlap integrals
CMTe or EMp,i 0.2 s 0.02 s 0.6 s 10MB 3 modes

Fields needed
1D mesh: 50k pts.

FEM (COMSOL) N.A. 85 s 85 s 11GB 2D mesh: 300k

(b) 2D Adiabatic Coupler, Fig. 12(e)

Method Mode (1D) Propagation (2D) Total time Max. RAM Comments

CMTs 0.01 s (average) 0.1 s (average) 10 s <1MB 100 calcs., Fig. 12(b)
50 calcs., Fig. 12(e)

FEM (COMSOL) N.A. 160 s (average) 4000 s 11GB 25 calcs., Fig. 12(e)
2D mesh: 380k

(c) 3D Directional Coupler, Fig. 13(d)

Method Mode (2D) Propagation (3D) Total time Max. RAM Comments

CMTs 5s Negligible 25 s 300MB 2D mesh: 11k
FEM (COMSOL) N.A. 1000 s 1000 s 110GB 3D mesh: 500k

(d) 3D Adiabatic Coupler, Fig. 13(e)

Method Mode (2D) Propagation (3D) Total time Max. RAM Comments

CMTs 5 s (average) 1 s (average) 1650 s 300MB 50 calcs., Fig. 13(b); 400 calcs.,
Fig. 13(e); 2D mesh: 11k

FEM (COMSOL) N.A. 1500 s 22 500 s 256GB (capped) 15 calcs., Fig. 13(e);
3D mesh: 3M
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have primarily focused on 2D waveguides for ease of comparison with
full simulations, the advantages of our method are even more pro-
nounced in otherwise resource-intensive 3D geometries. Our method
is well suited to a wide variety of unidirectional coupler structures,
whose power distribution can be obtained from closed form equations
containing mode parameters that can be immediately calculated. The
associated complex propagation constants contain all the information
needed to gain first insights into the basic functioning of photonic inte-
grated circuits with plasmonic elements,86 which will help designers
understand the underlying physical mechanisms and provide path-
ways to optimizing and refining a plasmonic coupler component, e.g.,
in the context of deep neural networks76 and inverse design.87
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