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In this paper, we consider a general system whose reliability can be characterized with respect to a periodic time-
dependent utility function related to the system performance in time. When an anomaly occurs in the system
operation, a loss of utility is incurred that depends on the instance of the anomaly’s occurrence and its duration.
Under exponential anomalies’ inter-arrival times and general distributions of maintenance time duration, we analyze
the long-term average utility loss and we show that the expected utility loss can be written in a simple form. This
allows us to evaluate the expected utility loss of the system in a relatively simple way, which is quite useful for the
dimensioning of the system at the design stage. To validate our results, we consider as a use case scenario a cellular
network consisting of 660 base stations. Using data provided by the network operator, we validate the periodic nature
of users’ traffic and the exponential distribution of the anomalies inter-arrival times, thus allowing us to leverage our
results and provide reliability scores to the aforementioned network.
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1. Introduction

The evaluation of reliability in large-scale sys-
tems, such as electric power grids and cellular
networks, is necessary for the planning, designing
and operation of these systems. The objective of
such an evaluation is to derive measures of the ser-
vice provision capability by these systems, con-
sidering the various hazardous events and anoma-
lous conditions that may occur and impair the
functioning of the various interconnected compo-
nents of the system Al-Shaalan (2020); Benidris
et al. (2015). Events such as component failures,
system outages, and eventually maintenance ac-
tions are all to be accounted for in the evaluation
of the system-wide reliability and the assessment
of the efficacy of proposed reliability improve-
ments to the system. Among these measures, we
cite the loss of load probability (LOLP), expected
frequency of load curtailment (EFLC), expected
duration of load curtailment (EDLC), expected
duration of curtailment (EDC), and expected de-
mand not satisfied (EDNS), and many others Al-
Shaalan (2020); Benidris et al. (2015); Bellani
et al. (2020); Medjoud;j et al. (2017).

Computing these measures is challenging due
to the complexity of the systems and randomness
of the failure and outage events, as well as the
maintenance duration. In this paper, we focus on
quantitatively characterizing the expected utility
not satisfied as a reliability measure of a system.
In other words, we analyze systems whose relia-
bility can be characterized with respect to a time-
dependent utility function U (¢) related to the sys-
tem performance in time. The utility function U (¢)
can represent, for example, the electricity demand
of customers, data traffic in cellular networks, or
other quantities alike. The goal, then, becomes to
derive the expected utility loss £ of the system
considering the failures that may occur at its com-
ponents. A challenging aspect of such a derivation
originates from the dependence of U(t) on time
in relation to external factors which influence it.
For example, if we consider a cellular network,
an anomaly occurring at 2 AM when user activity
is low would lead to a lower utility loss than an
anomaly taking place at peak users’ activity hour.

Given this dependence on time, the analysis of £
requires careful attention.

Commonly, the theoretical evaluation of L ne-
cessitates the formulation of the stochastic dif-
ferential equations governing its evolution. Then,
tools such as stochastic hybrid systems and
Dynkin’s formula are leveraged to analyze L
Hespanha (2004); Yates and Kaul (2019); Maa-
touk et al. (2020). However, obtaining a closed-
form expression of £ is heavily contingent on the
complexity of the differential equations involved.
Generally, only approximations can be obtained
by such analytical frameworks Fan et al. (2018);
Maatouk et al. (2021). Another approach to char-
acterize £ consists of running Monte Carlo simu-
lations of the system Bouissou et al. (2014); Zio
(2013). However, Monte Carlo simulations can be
computationally costly, especially when a large
number of system components interact with one
another. Additionally, the absence of closed-form
expressions reduces the interpretability of £ and
hinders the optimization process of the system’s
parameters in the design stage. The goal of our
paper is to address these challenges and provide a
theoretical framework to obtain an expression of
L under a periodicity assumption on U (). To that
end, the following are the key contributions of this

paper:

e We first start our stochastic analysis by
formulating the expected utility not sat-
isfied £ as function of various elements
such as the inter-arrival times of anoma-
lies and their repair times. Then, we show
by Fourier analysis of the anomalies’
inter-arrival times distribution that a key
stochastic process of interest converges
to a uniform distribution. This conver-
gence is, then, leveraged to provide limit-
ing distributions of several quantities that
dictate the system’s performance.

e Afterward, the above results and the pe-
riodicity of the utility function are com-
bined to show that the expected utility
not satisfied can be written in a sim-
ple intuitive form. Additionally, links be-
tween the resulting expression and stan-
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dard availability metrics are established.

e Lastly, we consider a large-scale cellu-
lar network consisting of 660 cells and
serving over 20,000 users. Using data
provided by the network operator, we
showcase the validity of the periodicity
assumption on user traffic and the ex-
ponential distribution of anomalies inter-
arrival times. We, then, leverage our the-
oretical results to characterize the ex-
pected data traffic not satisfied and the
expected users affected by the anomalies
in the network.

The rest of the paper is organized as follows.
Section 2 introduces the system model adopted
in the paper. In Section 3, we present the math-
ematical analysis of our system, and we provide
our main theoretical findings. Then, a use case
scenario consisting of a large-scale cellular net-
work is considered, and our theoretical findings
are then corroborated. Lastly, Section 5 concludes
the paper.

2. System model

Without loss of generality, we consider a system
consisting of one component and operating in its
useful-life phase, where anomalies occur with a
Poisson rate \. In other words, the inter-arrival
time X; between anomalies j — 1 and j is expo-
nentially distributed with rate A

Pr(X; <t)=1-—e . (1)

After an anomaly takes place, the system opera-
tor triggers a maintenance procedure. We let Y;
denote the maintenance time of anomaly j. We
suppose that Y} is independent of X; and has an
arbitrary distribution characterized by the follow-
ing cumulative distribution function

Fy (t),

0, otherwise.

fort > 0,
(2)

Pr(Y; <t) = {
We consider that when an anomaly takes place at
time tg and the issue is addressed at time 1, a
utility loss |, ;;1 U (t)dt is incurred. Therefore, by
letting TV (¢) be a binary random variable that is
equal to 1 when the system is suffering from an
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anomaly, we can define the expected utility not
satisfied as follows

In practice, T" being large translates to the system
being operated long enough before the expected
utility loss assessment. An illustration of the evo-
lution of the utility loss can be found in Fig. 1.

U(t)W(t)

Q
\
N

\
N\
NN

X; Y, X, Y,

Fig. 1. Illustration of the loss function evolution.

Note that the function U () can represent a large
variety of system quantities depending on the sys-
tem’s operator priorities. For example:

e U(t) can denote the customer demand
(e.g., electricity, communication traffic)
served by the system at time ¢. In this sce-
nario, the expected loss score coincides
with the notion of Expected Demand Not
Satisfied (EDNS) Medjoudj et al. (2017).

e U(t) can represent the number of users
served by the system at time ¢. Thus, the
expected utility loss in this case repre-
sents the expected number of users af-
fected by the anomalies.

Additionally, one can also define U(t) as a com-
bination of multiple system quantities. Given the
various quantities U (t) can represent, the gener-
ality of our framework and its flexibility can be
therefore showcased.

In the next section, we will provide a mathemat-
ical framework to characterize £. We show that

when U (t) is a periodic function of period p, £
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ends up having a relatively simple form, thus alle-
viating the difficulties reported in the introduction
with respect to the quantitative characterization
of the reliability of complex systems. It is worth
noting that the periodicity of the system utility has
been observed in various applications due to the
nature of human behavior with respect to service
demand. For example, in cellular networks, it is
shown that user traffic exhibits a periodical pattern
on the scale of a week, where Sunday’s traffic is
less than weekday’s traffic Xu et al. (2017). Sim-
ilar trends have been found in the data® gathered
from a cellular network operator, as seen in Fig. 2.
Specifically, both the LTE (Long Term Evolution)
traffic demand and the number of connected users
exhibit a periodic behavior similar to what has
been reported in Xu et al. (2017). It is worth
noting that such trends are not exclusive to cellular
networks. For instance, this periodic behavior has
been witnessed in electricity demands in power
grid networks Yukseltan et al. (2017).

3. Mathematical Analysis

To proceed with our mathematical analysis, we
first decompose the time horizon 7' reported in
eq. (3) into multiple stages. Specifically, we let
D, = 375 ,(X; +Y;) and we rewrite the ex-
pected utility loss of the system as

fPn U)W (t)dt

n—-+oo -Dn

“

Next, by multiplying by % both the numerator and
denominator, we end up with

n D;
Loy mimUdnl UOW@d
= 11m T
nortee % D i (X +Y5)

Afterward, we note that W (t) is equal to 0 by def-
inition in every interval [D;, D; + X;]. Therefore,
we can rewrite the expected loss as
n D;
% Z;:l (Xj + YJ)
As one can see, the challenging part about evalu-
ating the expected loss originates from the numer-

L= lim

n—-+oo

2All the data used in our paper have been scaled when neces-
sary for confidentiality reasons.
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Fig. 2. Illustration of the LTE traffic demand and the
number of users connected to the base station.

ator. To deal with this, we leverage the periodicity
of the function U (t).

Lemma 3.1. [f U(t) is a periodic function of
period p, then the expected loss L can be rewritten
as
[p]
1y P
EZJ'=1 Dj[;l_yj U(t)dt
F (X +Y)

where Dgp I = Dj mod p is the remainder of the
Euclidean division of D; by p.

L= lim

n——+oo

)

Proof. The proof consists of leveraging the defi-
nition of the modulo function and the periodicity
of the utility function U(¢). For conciseness, the
details of the proof are omitted in the paper, but
will be presented at the conference. O

As we can see, the next fundamental step in our
analysis consists of finding the distribution of

Dj[-p ]. To do so, we first rewrite D}p ] as follows

] _ [p] (]
D = (X" + Y;") mod p, (8)

3035



3036

where

j
xW = () Xi) mod p,
k=1

J
Yj[p] = (Z Y}) mod p. 9)
k=1

Next, we investigate the distribution of X J[p | more
closely.

Theorem 3.1. The random variable

xPl = lim

j—+oo

X (10)
is uniformly distributed on [0, p).

Proof. Our proof revolves around a Fourier anal-
ysis of the distribution of X[?!. In essence, we first
analyze the behavior of the Fourier coefficients
of the random variables making up X!, Then,
by leveraging theorems such as the dominated
convergence theorem Bartle (2014) and Benford’s
law for the product of random variables Miller
and Nigrini (2008), we can derive the desired
results. For conciseness, the details of the proof
are omitted in the paper, but will be presented at
the conference. O

In the theorem above, we have shown that X J[p ]
converges to a uniform distribution when j gets
large. However, to characterize the distribution of
D][-p ], we need to take into account the distribution

of Yj[p ], which can be quite general as we impose
no restriction on Fy (t). To that end, we provide
in the following a theorem that alleviates this
difficulty.

Theorem 3.2. Let A be a uniformly distributed
RV on [0,p] and B a RV of arbitrary distribution
defined on [0, p|, independent of A. Then, the sum
A + B mod p is uniformly distributed on [0, p].

Proof. Given the independence between A and
B, the proof revolves around the notion of prob-
ability distributions’ convolution. Then, by lever-
aging the particularity of the uniform distribution
along with the definition of the modulo function,
we can derive the desired results. For conciseness,
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the details of the proof are omitted in the paper,
but will be presented at the conference. O

Given the above, we can conclude that the RV

DIl = (X 4 yIPl) mod p (11)
is uniformly distributed on [0, p] where
DF = lim DY,
Jj—+oo
YW = gim v/ (12)
J—+oo
In other words, as j gets larger, Dj[-p ] approaches

the uniform distribution. With this in mind, we
provide below the main results of our mathemati-
cal analysis.

Theorem 3.3. If U(t) is a periodic function of
period p, then the expected loss L can be rewritten
as

E[Y|U

L= E[X] + E[Y]’

13)

where U =
period p.

% fop U (t)dt is the average utility in a

Proof. To prove our theorem, we first show the
ergodicity of the stochastic processes found in
the expression of £ reported in eq. (7). Next,
we leverage the results of Theorems 3.1 and 3.2,
along with the law of large numbers to simplify
further the expression. Afterward, by making use
of the periodicity of U(t), we can obtain the de-
sired results. Again, for conciseness, the details
of the proof are omitted in the paper, but will be
presented at the conference. O

As can be seen above, the expression of L turns
out to have a relatively simple formulation thanks
to the periodicity of the function U(t). Addi-
tionally, the expression has an intuitive meaning
and relationships with well-established metrics.
In fact, let us define the system’s availability as
follows
MTBF

MTBF + MTTR’

where MTBF= E[X] = 1 and MTTR= E[Y]
denote the Mean Time Between Failure and Mean

Availability = (14)
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Time To Repair respectively Medjoudj et al.
(2017). By examining the expression of £, we can
deduce that

L = (1 — Availability) x U . (15)
(A) (B)

The term (A) can be seen as the probability that
the system will be suffering from an anomaly.
On the other hand, the term (B) is the average
utility that the system delivers in a period p. Con-
sequently, one can see how the periodicity of the
utility U (), the exponential nature of anomalies
inter-arrival times and the mathematical analysis
provided in the paper lead to the intuitive form of
L. In the next section, we will consider a particular
application of interest and showcase the useful-
ness of the analytical results derived.

4. Use case: Cellular Networks

To showcase the usefulness of our analysis, we
consider a large LTE cellular network consisting
of 660 cellular base stations and serving approxi-
mately 22k users. As previously stated and seen
in Fig. 2, the users’ traffic data in this network
exhibits a periodical pattern on the scale of a
week, where Sunday’s traffic is less than week-
day’s traffic. Next, our goal is to verify whether
or not the inter-arrival times of anomalies are
exponentially distributed. To do so, we leverage
the trouble tickets data provided by the operator
of the network. Specifically, when an anomaly
takes place at any base station in the network,
a trouble ticket is issued by the operator. This
ticket contains details about the anomaly (e.g.,
anomaly ID), its location, and its occurrence and
resolution times. As seen in Fig 3, the distribution
of the anomalies inter-arrival times in the network
is very close to an exponential distribution of rate
A = 12.6 anomalies/hour, in this case. Suppos-
ing that the base stations are all identical, and
given the splitting property of Poisson processes
Bertsekas and Tsitsiklis (2008), we can conclude
that the anomalies rate for each base station is
A = 0.019 anomalies/hour. With the above re-
sults in mind, along with the periodic nature of
users’ traffic, we can conclude that the results of
Theorem 3.3 can be leveraged to find the expected

utility not satisfied in the network.
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Fig. 3. Illustration of the anomalies inter-arrival times
distribution.

On another note, we report in Fig. 4 an ex-
tract of the anomalies maintenance time distribu-
tion. As one can see, this distribution is far from
straightforward. Specifically, we can see that a
part of the anomalies are resolved almost instanta-
neously by the network itself. On the other hand,
other anomalies require either remote or on-site
interventions that take longer time (hours, days,
and sometimes weeks). Modeling such a distri-
bution is a challenging task, differently from the
anomalies inter-arrival times. However, we recall
that the results reported in Section 3 hold for
any general maintenance time distribution. In fact,
all we need to characterize the expected utility
not satisfied is the average maintenance duration,
which puts into perspective the generality of our
results and their usefulness. To that end, using the
trouble tickets data, we can conclude that the av-
erage maintenance time is 2 hours and 8 minutes.

Given all the above, and knowing that the aver-
age traffic per hour for each base station is U =
3.1 GBs/hour, the operator can, then, conclude
that the expected data traffic not satisfied in the
entire network is

— 2.13
Liata = 660 X —————— x 3.1 =~ 80 GBs/hour

oot 213
(16)
Similarly, knowing that the average connected
users to each base station is N = 33.07, we

can conclude that the expected number of users
affected by anomalies at each hour is Ly =
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Fig. 4. Extracts of the maintenance time distribution.

854 users/hour. All in all, we can conclude that

the network loses on average around — 213 ~
0.019 +2 13

3.8% of its traffic due to the various anomalies that
may occur. This reliability score can be used by
the operator to assess the network performance,
with respect to its objective. Further planning and
network upgrades can, then, take place if neces-
sary, and a reevaluation of the score can be done
to conclude the efficacy of the proposed upgrades.

5. Conclusions and Future Work

In this paper, we have studied a general system
whose reliability can be formulated with respect to
a periodic time-dependent utility function related
to the system’s performance in time. Under ex-
ponential anomalies’ inter-arrival times and gen-
eral distributions of maintenance time duration,
we have leveraged the periodicity of the utility
function to derive the expected utility loss due to
the system’s anomalies. In these settings, we have
shown that the expected utility loss has a simple
form. A cellular network use case scenario was,
then, considered where the usefulness of the pre-
sented analysis was highlighted. Future research
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directions include the extension of the analysis to
a more general family of distributions, the investi-
gation of partial utility loss, and a deeper examina-
tion of the probability distributions convergence.
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