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A B S T R A C T   

The debonding process of an FRCM reinforcing system from the substrate is studied in a semi-analytical fashion. 
FRCM is modeled considering independently the central elastic fiber grid and the two thick upper and lower 
matrix layers, assumed elasto-fragile; matrix and fiber are considered in a monoaxial state of stress; they 
mutually exchange shear stresses at the interface, this latter characterized by a softening stress-slip relationship; 
the reinforcement system is then bonded with a rigid substrate by means of a further elastic interface. Under such 
hypotheses, a simple system of first order non-linear and coupled differential equations is derived and solved by 
means of a semi-analytical approach. Independent variables are the axial displacements of the three layers (upper 
and lower matrix, central fiber) and the corresponding axial stresses. The approach is successfully validated 
against two experimental datasets available in the literature, relying into different FRCM strengthening systems 
bonded to rigid substrates and subjected to single lap shear tests. The model is able to capture not only the global 
debonding behavior but also the local one, with a precise prediction along the bond length of the shape of the 
axial stresses into the different layers, of the interface shear stresses and of the location of the cracks inside the 
matrix.   

1. Introduction 

Existing reinforced concrete and masonry structural elements quite 
frequently need upgrading, for instance because their load carrying 
capacity is insufficient in seismic zone or to deal in general with extreme 
events. In order to cope with such a need, all around the world it is 
gathering momentum the application of external strengthening systems 
[1–5], which are characterized by rapid execution, low invasiveness and 
do not require a partial or total inhibition of use of the structure during 
the installation. FRCM is an acronym that stands for Fabric Reinforced 
Cementitious Matrix; also known as TRM (Textile Reinforced Mortar), it 
relies into a grid of highly resistant dry fiber (carbon, glass, PBO, basalt 
are four of the most popular materials used) embedded into two layers of 
mortar typically characterized by very good strength [5]. Instead of fi-
bers, steel cords formed by interwoven steel wires can be used; in this 
case, more properly, the strengthening system is called Steel Reinforced 
Grout (SRG). 

FRCM is nowadays considered much more suitable than a more 
traditional strengthening obtained with Fiber Reinforced Polymer (FRP) 
strips glued with epoxy resins to the substrate, especially in the appli-
cation on masonry structures; in fact, it is now known that FRPs exhibit a 
too high stiffness, very low vapor permeability -which over time is 
responsible for plaster and substrate degradation-, a huge decrease of 

the performance at high temperature and, most important, it is an 
intervention considered irreversible, and hence generally not admitted 
for listed historical buildings. 

From a mechanical point of view -an observation confirmed experi-
mentally [6–14]- the increase of the load bearing capacity obtained 
applying both FRPs and FRCMs substantially occurs for the transfer of 
tangential stresses from the substrate to the reinforcement; this latter, 
working in tension, allows to improve considerably the ultimate loads 
when applied to materials -like masonry- basically unable to withstand 
tensile stresses. 

Consequently, the determination of the debonding properties of a 
reinforcement is a crucial preliminary step to carry out in a second phase 
sufficiently predictive simulations on real scale structural elements, 
where the role played by FRCM in increasing strength and ductility is 
taken into account in a realistic manner. Undoubtably, the main appli-
cation of such externally mounted composite systems may involve also 
bending [15] and out-of-plane deformations, especially near the 
damaged regions, where the stress state at the reinforcement-support 
interface is characterized by considerable complexity, mainly because 
normal internal actions are coupled with shear, as also confirmed by the 
recent experimental literature available [16–18]. To achieve such goal, 
it is first necessary to have an insight into the expected behavior under 
standardized prescribed conditions, where mode II and mode I failures 
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are decoupled. According to many experimental works nowadays 
available, the single lap shear test carried out on flat reinforced speci-
mens is one of the crucial tests -along with the coupon and the peeling 
test- to characterize with a certain level of reliability the expected 
behavior under more complex loading and geometric conditions. 
Focusing on the debonding test, the experimental characterization of the 
interface between substrate and FRCM is not as easy as for FRPs and 
innovative techniques are needed, as those proposed for instance in 
Ref. [19,20], but still some major problems are far to be overcome. 

Remaining to deal with mechanical matters and leaving apart 
experimental issues, it appears crucial to figure out how much the 
transfer of internal actions is effective. For FRPs, there is a well- 
documented literature showing that a key role is played by the 

interface between reinforcement and substrate. The interpretation of the 
mechanical behavior is simpler and the standard approach to investigate 
quantitatively the efficacy of the reinforcement is without any doubt the 
delamination test, where a strip with a certain length is glued to the 
support and then axially loaded at one edge with the counter-lateral left 
free, up to the complete detachment. 

By its very nature, an FRCM reinforcement is more complex, because 
constituted by many different elements that can behave non-linearly, 
typically the two inorganic matrix layers and more than one interface, 
the most important being those between fiber and matrix. 

It is not a case, indeed, that the observed modes of failure are various, 
depending on the mechanical properties of the different materials 
constituting the reinforcement. According to the Italian Guidelines CNR- 

Fig. 1. Modes of failure observed experimentally in a standard debonding test (left) and mechanical properties to assume for the different components of the 
reinforcement to properly simulate them (right). 

Fig. 2. Mechanical model adopted to study numerically the bond behavior of an FRCM applied to an infinitely stiff substrate.  
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DT-2015 (2018), see Fig. 1, they are 6, namely the debonding with a 
cohesive failure inside the support (A), the debonding at the interface 
between support and inner matrix layer (B), the debonding at the 
interface between fiber textile and inner matrix (C), the slippage of the 
textile inside the mortar layers respectively without (D) and with 
external matrix cracking (E) and the tensile failure of the interface (F). 

In order to predict the global behavior, from a numerical point of 
view, following what already presented in the literature for FRPs 
[21–35], a relatively straightforward strategy is to lump the 
non-linearity at the reinforcement-support interface (i.e. adapting the 
approach used for FRPs [36–43]). The latter- is a quite standard and 
generalist strategy which proved to be predictive in terms of results, at 
least looking at the global force-displacement curves obtained experi-
mentally. In particular, there are models that, assuming multi-linear or 
exponential-softening constitutive laws for the interface, allow to derive 
closed form mathematical expressions for the internal variables (static 
and kinematic); in alternative, some other approaches are at disposal, 
where the field equations have been solved numerically as classic 
Boundary Value Problem BVP or transformed into problems with initial 
conditions imposed (Cauchy’s Problem), which are characterized by the 
great advantage of being fully explicit. However, an insight into the 
actual distribution of stresses inside the different layers constituting the 
reinforcement system turns out to be almost totally lost, and the local 
redistribution of stresses during the loading process -for instance when 
one of the matrix layers cracks-cannot be either predicted or reproduced 

as it occurs in reality during an experimental test. 
In few recent literature, see e.g. Refs. [44–48], relatively novel 

models that take into account separately the elastic reinforcing grid, the 
brittle mortar layers and the interface between them have been pro-
posed; typically, for FRCM, a non-linear system of differential equations 
governs the problem, which is hard to be solved by means of conven-
tional numerical methods and typically requires some simplifications to 
boost stability of the algorithms. For instance, in Ref. [46], the external 
matrix layer is not considered and a specifically crafted method based on 
a shooting technique to transform the BVP into one at initial conditions 
imposed has been proposed. In any case, all the previous models appear 
more advanced than those based on lumping the non-linearity exclu-
sively at the interface, because able to give locally much more infor-
mation on the debonding phenomenon. A straightforward alternative 
-which has been originally used for FRPs [49–52]- is to discretize each 
component of the reinforcement system into FEs, see e.g. Refs. [53–56], 
then adopting for matrix and interfaces the non-linear material models 
already available in the specific commercial code used; such way of 
proceeding is however characterized by many drawbacks: for instance, 
to predict the behavior of a different specimen subjected to single or 
double lap shear tests would require a completely new calibration in 
terms of discretization and material properties to assign and the user 
would be forced to adapt such calibration considering what is actually 
available in the software, which obviously is not conceived to deal only 
with such a specific, highly complex mechanical problem. Anyway, 

Fig. 3. Elastic solutions for a case of technical relevance (L = 450 mm, tA = tC = 4 mm, tB = 0.054 mm, KIAB = KIBC = 0.28 N
mm3, Ks = 100KIAB, EM = 7000 N

mm2, 
EF = 206000 N

mm2 and UBL = 1 mm). -a: σMA and σMC stresses along the bonded length x. -b: stress in the fiber σFB. -c: UA, UB and UC. -d: tangential stresses τI,AB and 
τI,BC acting on AB and BC interfaces. 
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what is clear from a thorough review of the existing literature is that 
there is still a need for a sound interpretation of the experimental data 
observed, at least as far as the local behavior is concerned. 

The model proposed here is a semi-analytical one: an FRCM 
strengthening system is assumed characterized by three different layers 
(upper and lower matrix with central fiber grid embedded), exchanging 
at the interface shear stresses. Mortar matrix is assumed elasto-fragile 
and the fiber grid linear elastic. The interfaces between the layers are 
assumed characterized by an elasto-fragile shear stress-slip relationship. 
The reinforcing system is finally bonded to the substrate by means of an 
elastic interface. Consistently with such modeling strategy, modes of 
failure labeled in Fig. 1 as C, D and E are correctly reproduced. At least in 
principle, modes B and F can be also simulated, if it is imposed respec-
tively a non-linear behavior of the interface between support and inner 
matrix layer and an elastic-perfectly fragile constitutive law for textile. 
Mode A is more difficult to take into consideration, but suitably modi-
fying the tau-slip relation of the support-to-matrix interface, there is the 

possibility to reproduce -albeit in an approximate way-the damage 
spreading in the bulk. No matter about the particular stress-strain re-
lationships assumed for the different components of the FRCM rein-
forcement, independent variables are the axial displacements of the 
three layers (upper and lower matrix, central fiber) and the corre-
sponding axial stresses. Under such assumptions, a simple system of first 
order non-linear and coupled differential equations is derived and 
solved by means of a semi-analytical approach. The mathematical model 
is successfully validated against two experimental datasets available in 
the literature, consisting of different FRCM strengthening systems 
bonded to bricks and masonry substrates and subjected to single lap 
shear tests. The model is able to capture not only the global debonding 
behavior but also the local one, with a precise prediction along the bond 
length of the shape of the axial stresses into the different layers, of the 
interface shear stresses and of the location of the cracks inside the 
matrix. 

Fig. 4. Reformulation of the problem with non-linear materials. Subdivision into elements with lumped non-linearity on mortar layers and updating strategy of the 
elastic properties at time step k+ 1. 
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2. The mathematical model in brief 

The model proposed is aimed at reproducing FRCM debonding in a 
single lap shear test, Fig. 2. FRCM is assumed constituted by three layers, 
denoted as A (external mortar), B (fiber net) and C (internal mortar). 
Layer C is glued to the support. The model is mono-dimensional and 
kinematic variables are the axial displacements of the layers, named 
from the extrados to the intrados with UA, UB and UC respectively. L is 
the bonded length and the thickness of the layers is tA, tB and tC. The out- 
of-plane width is assumed unitary. Between layers A and B a tangential 
stress τI,AB is exchanged at the interface; similarly, τI,BC is exchanged 
between layers B and C. 

2.1. Solution with linear elastic materials 

Mortar is assumed to behave in tension in a linearly brittle way, the 
fiber is elastic whereas a linear softening law is adopted for the in-
terfaces between mortar and fiber, see Fig. 2. The support is assumed 

linear elastic and its effect on the global deformability of the reinforcing 
pack is taken into account with the stiffness constant Ks. The model is 
multilinear, i.e. mortar and interfaces non-linear behavior is approxi-
mated with sawtooth functions. First, it is therefore crucial to formulate 
the mechanical properties assuming all materials linear elastic. In this 
regard, let denote the elastic modulus of mortar with EM, that of the fiber 
with EF and with KIAB (KIBC) the elastic stiffness of the interface between 
A and B (B and C), respectively. 

Within the mono-axial behavior assumption for fiber and mortar 
layers, provided that interfaces, mortar and support are linear elastic, it 
is possible to write the following equilibrium and constitutive relation-
ships: 

σMA = EM
dUA

dx

σFB = EF
dUB

dx

σMC = EM
dUC

dx
dσMA

dx
=

KIAB(UA − UB)

tA

dσFB

dx
=

KIBC(UB − UC) − KIAB(UA − UB)

tB

dσMC

dx
= −

KIBC(UB − UC)

tC
+

KsUC

tC

(1)  

Where σMA, σFB and σMC are the tensile stresses acting on layer A, B and C 
respectively and all the other symbols have been already introduced. Eq. 

Fig. 5. Benchmark 0. Mechanical properties assumed for the mortar layers A & C and for the interface between mortar and fiber.  

Table 1 
Benchmark 0. Geometric properties of the reinforcement system.  

Symbol Description  UoM 

tA = tC Layer A & C thickness 4 mm 
tB Layer B thickness 0.054 mm 
EB Fiber elastic modulus 206000 MPa 
L Bond length 450 mm  
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(1) can be rearranged in the following matrix form: 

dY
dx

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dUA

dx
dUB

dx
dUC

dx
dσMA

dx
dσFB

dx
dσMC

dx

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
1

EM
0 0

0 0 0 0
1

EF
0

0 0 0 0 0
1

EM

KIAB

tA
−

KIAB

tA
0 0 0 0

−
KIAB

tB

KIBC+KIAB

tB
−

KIBC

tB
0 0 0

0 −
KIBC

tC

KIBC+Ks

tC
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

UA
UB
UC
σMA
σFB
σMC

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=KY

(2) 

Eq. (2) is a first order ODE system whose solution can be found 
analytically evaluating the eigenvectors and eigenvalues of K. Let 
indicate with EV and diag(E)={λ1 λ2 λ3 λ4 λ5 λ6} the eigenvector and 
eigenvalue matrix, respectively. For the problem at hand, it is interesting 
to notice that eigenvalues are real and that the solution vector is the 
following: 

Y=C1EV1eλ1x + C2EV2eλ2x+C3EV3eλ3x + C4EV4eλ4x + C5EV5eλ5x

+ C6EV6eλ6x (3)  

Where EVi is the i-th column of the eigenvectors matrix and Ci are 
integration constants that can be determined imposing suitable bound-

Fig. 6. Benchmark 0. From the top-left in clockwise order. Stress σFB(L) - displacements UBL, UB0 curves; UA,UB,UC,UB − UC,UB − UA behavior along the bond 
length (the color of the curves corresponds to the particular instants investigated during the loading process and match those of the points represented in the top-left 
sub-figure). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. Sensitivity analysis varying the stiffness of the support-to-inner- 
matrix interface. 
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ary conditions. In such kind of Boundary Value Problem BVP, they are 
the following: 

σMA(0) = 0
σMC(0) = 0
σMC(0) = 0
σMA(L) = 0
σMC(L) = 0
UB(L) = UBL

(4)  

Where UBL is the displacement applied at the loaded edge (a displace-
ment control experimental test is considered). 

In Fig. 3 it is represented a solution of the elastic problem (taken from 
the literature [41,46] and discussed further in the following sections in 
the non-linear range) assuming the following geometric and mechanical 

properties: L = 450 mm, tA = tC = 4 mm, tB = 0.054 mm, KIAB = KIBC =

0.28 N
mm3, Ks = 100KIAB, EM = 7000 N

mm2, EF = 206000 N
mm2 and UBL = 1 

mm. In particular, subfigure -a depicts σMA and σMC stresses along the 
bonded length x, subfigure -b the normal stress in the fiber (layer B, σFB), 
subfigure -c the displacements UA, UB and UC, subfigure -d the 
tangential stresses τI,AB and τI,BC. 

It is finally interesting to point out one of the major limitations of the 
mechanical model adopted -clearly evident from the results depicted in 
Fig. 3-d and typical of any kind of schematization by means of interfaces- 
, namely the inability to impose extra-boundary conditions of zero shear 
at the free edges (x = 0, x = L) for the interface AB and BC. In fact, by 
reductio ad absurdum, imposing a zero shear at the free edges would 
result into the introduction of the following 4 additional equality 
constraints: 

Fig. 8. Benchmark 0. From the top-left in clockwise order. σMA, τI,AB, τI,BC,KsUC, σMC, σFBtB behavior along the bond length (the color of the curves corresponds to the 
particular instants investigated during the loading process and match those of the points represented in the previous sub-figure). (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of this article.) 
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UA(0) = UB(0)
UB(0) = UC(0)
UA(L) = UB(L)
UB(L) = UC(L)

(5) 

The linear system to solve would be therefore characterized -at least 
mathematically-by an over-constraintment, being 6 the unknowns and 
10 the linear equations to impose according to the BCs. The system 
would be therefore impossible. 

2.2. Non-linear materials 

In the present Section, the numerical procedure adopted to deal with 
the non-linear behavior of mortar and mortar-fiber interfaces is 
discussed. 

When the materials are assumed non-linear, a discretization with ne 

elements of length Le and ne − 1 small elements of length Li where all 
mortar nonlinearity is lumped is assumed. A generic discretization is 
shown in Fig. 4. Layers A and C remain linear for all the elements with 

Fig. 9. Benchmark 0. Propagation of damage inside mortar layers and interfaces at the different instants investigated during the loading process. White circles and 
blue/red crosses represent mortar and interface damage, respectively. Their dimension is proportional to the amount of damage. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of this article.) 
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length Le. Layer B is always assumed elastic. The strategy adopted to 
model mortar non-linearity aims at avoiding any issue related to 
deformation concentration and mesh dependence in softening materials. 
To concentrate mortar non-linearity exclusively on small interfaces with 
finite (small) thickness reduces the problem to a discrete mechanical 
system constituted by elastic elements connected by non-linear in-
terfaces. The interfaces between mortar and fiber, on the contrary, are 
assumed non-linear everywhere. 

The introduction of the periodically distributed damaging elements 
aims at representing numerically cracking of the brittle mortar under 
tension in a straightforward and simple manner. 

However, from a physical point of view, it should be noted that 
typically cracks in mortar layer are associated with a material separation 
between the left and right part in correspondence of the crack. Conse-
quently, in all those positions where cracks are open, the concept of 
introducing an interface between mortar layer and fiber textile loses 
physical meaning. This implies that the stiffness of the relevant interface 
should drop to zero in those regions as well. Such coupling is not 
reproducible with the model proposed, albeit it could provide a better 
representation of the physical phenomenon. 

Returning back to the general treatment of the non-linearity, it is 
tackled by means of a sequence of linear problems, in agreement with 
the strategy proposed in a family of recent papers [57–61] dealing with 
quasi brittle materials and structures in general, where the stiffness of 
the elements is progressively reduced in the softening branch, see Fig. 4. 

Consistently with such strategy, mortar uniaxial stress-strain and 
fiber/mortar interface shear stress-slip constitutive relationships are 
assumed non-linear and approximated with saw tooth laws, as depicted 
in Fig. 2. The sawtooth laws are not assigned at the beginning of the 
computations, but the elastic modulus (or stiffness) is progressively 
reduced at each load step k, according to a specific algorithm that is 
detailed in what follows. Any nonlinear stress-strain (or shear stress-slip) 

behavior can be approximated, but here for the sake of simplicity a 
linear softening is adopted. For mortar, in compression, it is reasonable 
to assume an infinitely linear response, since the material used for FRCM 
reinforcement is usually characterized by a quite good compressive 
strength. 

Under such assumptions, each element j of length Lj is elastic at a 
certain load step k and an analytical solution can be found according to 
the approach discussed in the previous section. Six integration constants 
per element should be determined, say Cj,k

q , according to the imposition 
of suitable boundary conditions that are discussed hereafter. 

Let us indicate with Ej,k
Me, E

j,k
Mi, K

j,k
IAB and Kj,k

IBC respectively the extrados 
mortar layer elastic modulus, the intrados mortar layer elastic modulus, 
the stiffness of the AB interface and the stiffness of the BC interface at the 
load step k. The matrix Kj,k of the coefficients in Eq. (2) is therefore the 
following: 

Kj,k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
1

Ej,k
Me

0 0

0 0 0 0
1

EF
0

0 0 0 0 0
1

Ej,k
Mi

Kj,k
IAB

tA
−

Kj,k
IAB

tA
0 0 0 0

−
Kj,k

IAB

tB

Kj,k
IBC + K

j,k
IAB

tB
−

Kj,k
IBC

tB
0 0 0

0 −
Kj,k

IBC

tC

Kj,k
IBC + Ks

tC
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6) 

The solution of the system of first order differential equations 

Fig. 10. Benchmark 0. Deformed shapes of the reinforcement system. Snapshots taken at nine values of the displacement UBL applied at the loaded edge.  
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Fig. 11. Benchmark 0. Sensitivity of the results obtained (global response) changing mesh size (-a) and load steps used (-b).  

Table 2 
Ascione et al. (2015) experimental data. Reinforcement and matrix properties.  

Label reinforcement matrix 

type EF [MPa] tB [mm] L [mm] type EM [MPa] ftM [MPa] tA = tC [mm] 

Ascione et al. (2015) steel 183900 0.084 200 mineral-natural hydraulic lime 11400 5.4 5  
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representing the field problem for a single element j is formally identical 
to the fully elastic case, i.e.: 

Yj,k
(

Cj,k
q ,x

)
=Cj,k

1 Ej,k
V1eλj,k

1 x +Cj,k
2 Ej,k

V2eλj,k
2 x+Cj,k

3 Ej,k
V3eλj,k

3 x +Cj,k
4 Ej,k

V4eλj,k
4 x

+Cj,k
5 Ej,k

V5eλj,k
5 x +Cj,k

6 Ej,k
V6eλj,k

6 x
(7)  

Where, apart the symbols already introduced, Yj,k, Ej,k
Vq and λj,k

q with q =

1,…,6 are respectively the solution vector, the eigenvectors and the 
eigenvalues pertaining to element j at the load step k. 

For all elements except the first one located at the free edge, the 
continuity of the stresses and displacements between elements j − 1/j 
should be imposed. Therefore, the following 6 equations are written in 
the 12 unknowns Cj,k

q and Cj− 1,k
q : 

− Yj− 1,k
(

Cj− 1,k
q , xi

)
+ Y

j,k(
Cj,k

q , xi

)
= 06×1 (8)  

Where 06×1 is a 6 × 1 vector of all zeros and the position of the node i is 
univocally identified by the abscissa xi, see Fig. 4. 

Eq. (8) should be written for all nodes, excluding the first node 
located at the free edge and the last one at the loaded edge, therefore 
12ne − 12 equalities are derived. 

For the free edge node, the following 3 equations are written, 
imposing that the normal stress on the three layers A-C is equal to zero: 

diag( 0 0 0 1 1 1 )Y1,k
(

C1,k
q , 0

)
= 06×1 (9) 

Fig. 12. Ascione et al. (2015) data. Monoaxial stress-strain behavior assumed for mortar layers A & C (left) and shear stress-slip relationship of the interfaces 
between layers AB & BC (right). 

Fig. 13. Ascione et al. (2015) data. Global behavior. Comparison among pre-
sent model, numerical curve obtained by Grande & Milani [45] and experi-
mental data envelope. 
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For the loaded edge, other three equations are written: 

diag( 0 1 0 1 0 1 )Y2ne − 1,k
(

C2ne − 1,k
q ,L

)

=
[

0 U2ne − 1,k
BL 0 0 0 0

]T
=U2ne − 1,k

BL (10)  

Where U2ne − 1,k
BL is the displacement applied on the loaded edge of layer B 

at the time step k. 
Leaving out in Eq. (9)(10) the identity equations and considering 

Eqs. (8)–(10) contemporarily, they constitute a linear system of 12ne− 6 
equations into 12ne − 6 unknowns, the latter being the Cj,k

q (from j = 1 to 
j = 2ne − 1) integration constants of all the elements. 

Suitably assembling the previously introduced equations, the prob-
lem is reformulated as follows: 

CkKk = Uk
BL (11)  

Where Ck, Kk and Uk
BL are respectively the assembled vector of the 

integration constants of all the elements, the assembled square matrix of 
the coefficients of Eqs. (8)–(10) and the vector of external loads applied 
at the time step k. It is interesting to notice that Uk

BL is a vector of all zeros 
exception made for the third last component which is equal to the 
displacement U2ne − 1,k

BL , imposed at the loaded edge on layer B. 
The model proposed, in its current form, works under displacement 

control (see for instance Eqs. (10) and (11)). Consequently, it can cap-
ture only a softening behavior. On the contrary, to reproduce snap back, 
an arc-length algorithm should be generally used. However, it is worth 
mentioning that there is a particular case where a displacement control 

may allow to see a snap-back of the loaded edge, namely when the 
displacement is monotonically increased at the free edge. 

In this latter case, different boundary conditions should be written, 
for instance assuming that the displacement imposed is that of layer B at 
the free edge, U1,k

B0 . In such a case, Eqs. (9) and (10) rewrite as follows: 

diag( 0 1 0 1 1 1 )Y1,k
(

C1,k
q , 0

)
=

[
0 U1,k

BL 0 0 0 0
]T

diag( 0 0 0 1 0 1 )Y2ne − 1,k
(

C2ne − 1,k
q ,L

)
= 06×1

(12) 

By means of the imposition of the BCs written in Eq. (12), it is 
possible to simulate the snap back observed after the attainment of the 
peak load, which is documented in the literature [39–41]. 

By the inversion of matrix Kk, Ck vector is computed through Eq. 
(11) and finally Yj,k is derived for each element j via Eq. (8). 

The non-linearity of the materials (mortar and interfaces) is dealt 
with a fully explicit strategy of updating for the elastic moduli/interface 
stiffness, as schematically represented in Fig. 4. 

We distinguish between interfaces on mortar layers and interfaces 
between mortar and fiber net. In the first case, indeed, σMA (σMC) are 
responsible for strain localization, whereas τI,AB (τI,CD) are not. 

In all those elements (or interfaces between superimposed layers 
within one element) where the non-linearity can activate, at the end of 
the load step k (which is always elastic), the dependent variables on each 
node i of the discretization are known solving Eq. (11) and substituting 
into Eq. (8), namely σi,k

MA, σi,k
MC, σi,k

FB, Ui,k
A , Ui,k

B , σi,k
C , where the superscript i 

indicates the node and k the load step. 
It is necessary to specify that τI,AB (τI,CD) are discontinuous on node i 

Fig. 14. Ascione et al. (2015) data. From the top-left in clockwise order. Stress σFB(L) - displacements UBL, UB0 curves; UA,UB,UC,UB − UC,UB − UA behavior along 
the bond length (the color of the curves corresponds to the particular instants investigated during the loading process and match those of the points represented in the 
top-left sub-figure). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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passing from element j − 1 to the neighbor element j if the interface 
stiffness KI is different between the two elements. The stiffness update of 
the interface is performed element by element, so considering for the 
sake of example an interface between layers A & B, an element j and a 
node i, the shear stress at the end of the load step k is the following: 

τi,j,k
I,AB = Kj,k

IAB
(
Ui,k

A − Ui,k
B
)

(13)  

Where Kj,k
IAB (see Fig. 4) is the stiffness of the interface between A & B 

within the element j at the load step k. 
Let us consider for the sake of simplicity, as already mentioned, a 

linear softening behavior for the interfaces, characterized by a peak 
tangential strength equal to c0, an initial stiffness equal to KI (so that the 
slip at the elastic limit is ΔIe = c0/KI) and an ultimate slip equal to ΔIu. 

τI,AB varies inside the element according to an exponential law; the 

stiffness update for the element can be performed according to a certain 
arbitrary rule that introduces an approximation error which clearly 
tends to vanish reducing the length of the element. The most straight-
forward assumption made here is to consider the average stress between 
the extremes of the element, namely: 

τj,k
I,AB =

τi,j,k
I,AB + τi+1,j,k

I,AB

2
(14)  

τj,k
I,AB is then projected on the softening stage by means of the following 

formula: 

τ′j,k
I,AB =

ΔIu −
τj,k

I,AB

Kj,k
IAB

ΔIu − ΔIe
c0

(15) 

Fig. 15. Ascione et al. (2015) data. From the top-left in clockwise order. σMA, τI,AB, τI,BC,KsUC, σMC, σFBtB behavior along the bond length (the color of the curves 
corresponds to the particular instants investigated during the loading process and match those of the points represented in the previous sub-figure); in the simu-
lations, it is assumed Ks = 10KI . (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Where τ′j,k
I,AB indicates the tangential stress projected on the softening 

branch at fixed slip τj,k
I,AB/Kj,k

IAB and all the other symbols have been 

already introduced. Having defined τ′j,k
I,AB as per Eq. (15), the stiffness of 

the interface at the k + 1 load step is computed as follows: 

Kj,k+1
IAB =

τ′j,k
I,AB

τj,k
I,AB

Kj,k
IAB (16) 

For mortar layers, the procedure is formally identical, so that the 
elastic modulus of a mortar layer, say A, in the element j is updated in a 
new load step as follows: 

Fig. 16. Ascione et al. (2015) data. Propagation of damage inside mortar layers and interfaces at the different instants investigated during the loading process. White 
circles and blue/red crosses represent mortar and interface damage, respectively. Their dimension is proportional to the amount of damage. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Ej,k+1
MA =

σ′j,k
MA

σj,k
MA

Ej,k
MA (17)  

Where σj,k
MA is the average mortar axial stress on element j at the end of 

step k, Ej,k
MA is the mortar elastic modulus and σ′j,k

MA is the projection of σj,k
MA 

on the softening branch at fixed axial strain. 
The algorithm implemented to solve the non-linear problem (namely 

the progressive degradation of the elastic properties, see Eqs. (16) and 
(17)) has the advantage that is fully explicit, but in principle sub- 
iterations should be used at the end of each iteration to avoid an 
inconsistency between updated stresses calculated at the end of the 
application of the load step and the displacements found considering 
Eqs. (11) and (7). However, if the imposed load step is sufficiently small, 
the error tends rapidly to zero and to embed a sub-iteration strategy is 
not strictly necessary to improve the numerical accuracy. The compu-
tational burden remains in any case extremely reduced even using very 
small load steps, because only a matrix factorization is needed. 

Another interesting aspect of the algorithm used that deserves a short 
discussion is related to the activation of the last phase of the trilinear 
curves. In practice, when the materials reach the third and last phase, 
Eqs (16) and (17) would return back null values respectively for the 
matrix elastic modulus and the interface stiffness. Such values, then 
inserted in Eq. (6) may be responsible for potential numerical issues, 
because some elements of the matrix would become indefinite. In 
particular, problems may arise exclusively as far as the matrix Young’s 
modulus is concerned. Consequently, the update of the elastic modulus 
when the matrix reaches the last phase of the tri-linear curve is carried 
out in the current implementation imposing a value not exactly null, but 
very small (10− 6 MPa). 

A preliminary example to test the performance of the model pro-
posed is hereafter discussed and called Benchmark 0 for the sake of 

clearness. Data assumed are realistic and represent a slight modification 
of those used by Milani & Grande in Ref. [46]. In turn, Milani & Grande 
refer to experimental data provided by Carloni and co-workers in 
Ref. [7], who carried out single-lap direct-shear tests on a FRCM rein-
forced concrete block, where the reinforcement system was constituted 
by one layer of fiber net embedded into two layers of mortar. The failure 
mode observed was essentially at the matrix-fiber interface; taking 
inspiration from such observation, Zou et al. [41] had the idea to 
simplify the complexity of the stress transfer between mortar and fiber 
and proposed a predicting mortar-fiber interface tri-linear model with 
softening that in general permits to derive in-closed form the global 
response in terms of force applied-displacement in rc/masonry elements 
reinforced with FRCM and subjected to single lap shear tests. Such 
assumption -by definition and contrarily to the model here 
proposed-does not allow to have any local insight into what happens in 
the different components of the reinforcing system, where many ele-
ments may behave contemporarily in a non-linear manner. 

Here it is worth noting that a comprehensive validation against 
experimental data available in the literature is postponed to the 
following Section on purpose, because the present aim is to focus mainly 
on the numerical aspects of the procedure, which are worthy of deep 
investigation prior the application on real case-studies. The mechanical 
properties adopted for mortar and mortar/fiber interface can be 
retrieved considering Fig. 5, whereas the geometry of the FRCM rein-
forcement and the elastic modulus of the fiber are provided in Table 1. 
When comparing with data assumed by Milani & Grande [46], the only 
parameter that turns out to be different is the mortar tensile strength, 
here kept equal to 1.5 MPa (i.e. less than that assumed by Milani & 
Grande in Ref. [46] and equal to 3.5 MPa) because the aim is to show the 
diffusion of mortar damage in different positions of the bonded length, 
which in this case occurs contemporarily with the damage of the 
interface between layers B & C. 

Fig. 17. Ascione et al. (2015) data. Deformed shapes of the reinforcement system. Snapshots taken at nine values of the displacement UBL applied at the loaded edge.  
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Speaking about the modelling parameters, a discretization with ne =

70 is adopted, with length of the mortar elements considered non linear 
(Li) set equal to 1 mm. A progressively increased displacement of the 
fiber net at the loaded edge UBL is imposed in 200 load steps. It is also 
imposed that Ks = 100 KIAB, a value of stiffness much higher than that of 
the interfaces. In this way, any possible elastic sliding between layer C 
and substrate is a-priori excluded, but it will be shown in the following 
Section that, also decreasing Ks, the sensitivity of the obtained results is 
in practice very low. 

The global response obtained with the aforementioned parameters is 
depicted in Fig. 6, where on the horizontal and vertical axes, respec-
tively, layer B displacement and fiber stress at the loaded edge are 
represented. When the substrate is assumed less rigid (Ks = 10 KIAB), see 
Fig. 7, the global response observed is essentially the same, whereas an 
unrealistically too low vale (Ks = 1 KIAB) is associated to a more 
deformable response and a different shape of the force-displacement 
curve, which typically is a consequence of the triggering of a dissimi-
lar failure mechanism. 

Returning back to Fig. 6, it shows also how the kinematic variables 

relevant for layers A-C (displacements) and interface between them 
(slips) vary along the FRCM length during the numerical analyses. Nine 
instants are analyzed in detail, identifying them with square markers 
filled with different colors. Marker colors correspond to those of the 
curves representing the internal variables. 

Looking also at the trend of static variables (normal stresses acting 
inside the layers and shear stresses at the interface between them) rep-
resented in Fig. 8, it can be deduced that the debonding proceeds for the 
progressive damage of the interface between fiber and inner mortar 
layer, with the formation of three localized cracks in layer A. 

The numerical results shown in Fig. 8 suggest also that (a) the normal 
stresses in the central layer B could attain quite high values, which could 
approach the yield/rupture stress, and (b) at least at some levels of 
prescribed displacement, the inner mortar layer passes from compres-
sion to tension along the bonded length, implying flexure of the 
strengthening system. Whilst the first issue can be easily managed 
removing the linear elastic hypothesis for layer B, the latter is outside 
the possibilities of the model proposed, because a fully 2D approach 
should be used. 

Fig. 18. De Santis et al. (2018) data. Monoaxial stress-strain behavior assumed for mortar layers A & C (left) and shear stress-slip relationship of the interfaces 
between layers AB & BC (right). 

Table 3 
De Santis et al. (2018) experimental data. Reinforcement and matrix properties.  

Label reinforcement matrix 

type EF [MPa] tB [mm] L [mm] Type EM [MPa] ftM [MPa] tA = tC [mm] 

De Santis et al. (2018) Carbon 242000 0.047 260 Fiber-reinforced polymer modified cementitious mortar 13300 11.1 6.5  
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As it can be deduced from Fig. 9, outer mortar cracks first at about 
175 mm from the loaded edge and far before the interface between 
layers B & C enters in the non-linear stage. The crack band -about 70 mm 
long-remains stable until the end of the simulations. Between Points 3 

and 6, at the interface BC damage propagates with a front moving from 
the right to the left up to the mortar cracked band. Then other two bands 
of crack appear in the upper mortar layer, one at 160 mm from the free 
edge and the other near the loaded edge, where the interface is already 
almost fully debonded. Contemporarily, the BC interface damage front 
continues to move towards the free edge. A further interesting insight 
into the previously mentioned features of the evolution of damage is also 
provided in Fig. 10, where the deformed shapes obtained at the different 
instants are depicted magnifying suitably the displacements for the sake 
of clearness. 

In general, considering together Figs. 9 and 10, it can be deduced 
that the zones where cracks tend to form and localize may be detected 
only in an approximate way, in the sense that only relatively large re-
gions of the outer layer undergoing damages are identified. The exact 
location of the cracks, on the contrary, depends numerically on the 
refinement of the mesh used. Experiments show macroscopically a 
promising agreement with the numerical prediction, but a further 
insight would be necessary to propose a model more powerful in this 
regard. Typically, the crack spacing, localization, or distribution are 
commonly attributed to the bond characteristics, which reflect in the 
model through the properties assigned to the interfaces. Such investi-
gation would require first of all a sound experimental base, which is 
quite difficult to carry out for FRCM using standard techniques effective 
in other cases, because the interfaces playing a major role in the phe-
nomenon are located deep inside the thickness of the reinforcing system. 

Having an insight into the role played by the space and time dis-
cretization, further numerical analyses are carried out, keeping first the 
time discretization constant (200 step) and assuming ne = 35 (inter-

Fig. 19. De Santis et al. (2018) data. Global behavior. Comparison among 
present model, numerical curve obtained by Grande & Milani [45] and exper-
imental data envelope. 

Fig. 20. De Santis et al. (2018) data. From the top-left in clockwise order. Stress σFB(L) - displacements UBL, UB0 curves; UA,UB,UC,UB − UC,UB − UA behavior 
along the bond length (the color of the curves corresponds to the particular instants investigated during the loading process and match those of the points represented 
in the top-left sub-figure). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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mediate mesh) and ne = 7 (rough mesh). The results obtained (global 
response) are depicted in Fig. 11-a. As it is possible to notice, even with a 
very unrefined mesh, converged results are obtained. Obviously if the 
aim is to have a precise insight into the local behavior of the different 
parts of the reinforcement, the utilization of a reasonably large number 
of elements is recommended. Similar considerations can be repeated 
decreasing the load steps, as shown in Fig. 11-b, where, keeping ne =

35, results obtained with 100 and 50 steps are reported. 

3. Applications and comparison with experimental evidence 

The present section applies the numerical model proposed on two 
experimentally tested case studies collected from the literature. They 
rely in shear-lap bond tests carried out on Textile Reinforced Mortar 

TRM specimens manufactured with different materials (reinforcement 
and matrix), geometrical configuration and applied on masonry/brick 
substrates. The same experimental data (among others) were considered 
by Grande & Milani to investigate the accuracy of their interface model, 
see Ref. [45] for details. 

3.1. Validation against experimental data by Ascione et al. (2015) 

The first validation is carried out against some experimental results 
provided in Ref. [8] by Ascione and co-workers. Hereafter, the consid-
ered experimental data are labeled as Ascione et al. (2015) for the sake 
of clarity. Single lap shear tests were carried out on a Steel Reinforced 
Grout SRG strengthening system applied on a tuff block substrate. The 
SRG is constituted by a unidirectional textile made by galvanized Ultra 

Fig. 21. De Santis et al. (2018) data. From the top-left in clockwise order. σMA, τI,AB, τI,BC,KsUC, σMC, σFBtB behavior along the bond length (the color of the curves 
corresponds to the particular instants investigated during the loading process and match those of the points represented in the previous sub-figure); in the simu-
lations, it is assumed Ks = 10KI . (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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High Tensile Strength Steel UHTSS cords embedded into a double layer 
of a mineral/natural hydraulic lime mortar. Table 2 summarizes the 
main characteristics (geometrical and mechanical) of the reinforcement 
system, provided in Ref. [8]. For this type of specimens, the authors 
mainly observed a failure mode characterized by the debonding at the 
textile/matrix interface. 

No information is provided for the interface properties, because a 
complex experimental equipment -for instance based on fiber optic 

wires, as proposed in Ref. [20], would be required. In the present sim-
ulations, the properties adopted by Grande & Milani [45] are slightly 
modified to fit better experimental data. In particular, it is worth 
mentioning that Grande & Milani [45] used different properties of the 
upper and lower interface, strictly connected to the specificity of their 
model rather than based on experimental data, which in any case are 
impossible to achieve contemporarily. 

The uniaxial stress-strain behavior adopted for the mortar layers and 

Fig. 22. De Santis et al. (2018) data. Propagation of damage inside mortar layers and interfaces at the different instants investigated during the loading process. 
White circles and blue/red crosses represent mortar and interface damage, respectively. Their dimension is proportional to the amount of damage. (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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the shear stress-slip relationship used for the interfaces are reported in 
Fig. 12. Ks is assumed ten times higher than the value assumed for 
KIAB = KIBC. 

Using a discretization with ne = 200, assuming Li = 10− 4L and 600 
load steps (under a displacement based control strategy with an applied 
fiber displacement UBL at the loaded edge), the global response depicted 
in Fig. 13 is obtained, where also the envelope of the experimental re-
sults and the curve obtained by Grande & Milani [45] are reported. With 
reference to Fig. 13, on the horizontal axis the fiber displacement at the 
loaded edge is represented, whereas the vertical axis corresponds to the 
fiber stress, again calculated at the loaded edge. 

As it can be noted, the agreement with Grande & Milani [45] nu-
merical results can be considered in any case satisfactory. When 
compared with Grande & Milani [45] model, the present approach has 
the advantage of providing a precise local information regarding the 
propagation of the non-linearity in the different layers. 

The numerically obtained results are also in very good agreement 
with experimental data, falling within the experimental envelope almost 
everywhere and with a global and local predictivity of the physical 
phenomena progressively occurring in the reinforcing system much 
better than that exhibited by the state of the art in the field. 

Figs. 14 and 15 show how the internal variables (kinematic and static 
respectively) vary along the bond length, at different meaningful in-
stants of the loading process; such instants are identified in the global 
load-displacement curves with square symbols filled with different 
colors. The curves representing the internal variables are plotted with 
the same colors to facilitate the reading of the results obtained. 

The first two instants represented (Point 1 and Point 2) are elastic, 
whereas in Point 3 the upper and lower interfaces start to behave 
inelastically in a short portion near the loaded edge. Noticeable is the 
damage of the upper interface (blue crosses). Immediately before Point 

3, a drop of the load carrying capacity is visible in the global curve, see 
Fig. 14, because the upper mortar layer starts to crack. The front of 
damage in the inner interface, see Fig. 16, continues to move towards 
the free edge, the normal stress distribution in the upper mortar layer 
changes for the formation of another crack band (Point 4) and the stress 
in the fiber continues to grow, because the reinforcement still has 
additional resources to spend in all that portion between the free edge 
and the cracked sections of the upper mortar layer. Obviously, the 
stiffness decreases if compared with that of the elastic stage, but still 
remains considerably high. Two major drops of the load carrying ca-
pacity are visible in the global load-displacement curve of Fig. 14, cor-
responding to the aforementioned physical phenomenon, i.e. the 
formation of new cracks in the external mortar layer. The location of the 
second crack is obviously shifted towards the free edge. 

Such conclusions can be easily verified looking either at the map of 
damages present at the different instants investigated and represented in 
Fig. 16, or by considering contemporarily the distribution of normal 
stresses in the upper mortar layer and the shear stress at the lower/upper 
interfaces. The jumps visible in the mortar upper layer displacement 
provided in Fig. 14 gives a precise information of the actual position of 
the cracks forming. Point 7 corresponds roughly to the specimen failure. 
The inner interface is almost completely in the inelastic stage and the 
upper mortar layer exhibits two concentrated crack bands along the 
bond length. The deformed shapes of the reinforcement system, depicted 
at nine different instants of the loading process, are provided in Fig. 17. 
The snapshots reported in Fig. 17 furnish an immediate idea of the 
progression of damage in the different layers. The mode of failure 
observed experimentally (i.e. a slippage of the steel grid from the inner 
mortar) is clearly visible also in the numerical model; interestingly to 
notice, the approach proposed is able to reproduce the contemporary 
cracking of the outer mortar layer and also the limited damage of the 

Fig. 23. De Santis et al. (2018) data. Deformed shapes of the reinforcement system. Snapshots taken at nine values of the displacement UBL applied at the 
loaded edge. 
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interface between layer A and B. Fig. 17 shows also that the assumed 
value of the stiffness between layer C and substrate Ks has little influ-
ence, but a perceivable elastic sliding is present. 

3.2. Validation against experimental data by De Santis et al. (2018) 

The last validation of the model is done with reference to some 
experimental data provided by De Santis et al. in Ref. [12]. In particular, 
among the variety of experimental results presented, those relative to a 
set of FRCM-to-substrate shear bond tests characterized by a FRCM 
reinforcement made of a balanced carbon fabric embedded into a 
cementitious polymer modified mortar reinforced with short fiber 
whiskers is considered. The substrate is constituted by a masonry pillar 
with 5 standard Italian bricks (heigh: 55 mm) and 10 mm thick mortar 
joints. 

The mechanical properties of the matrix, of the fiber and of the in-
terfaces with the geometric characteristics of the different layers are 
shown in Fig. 18 and collected in Table 3. 

Numerical simulations are carried out using a discretization with 
ne = 200, imposing Li = 10− 4L and progressively applying a displace-
ment UBL to the fiber layer at the loaded edge. 

The predictivity of the model is shown in Fig. 19, where the stress- 
displacement curves at the loaded fiber edge are compared with both 
the experimental envelope and the numerical response provided by 
Grande & Milani [45]. As it is possible to notice, the model is almost 
always inside the experimental envelope, showing particularly prom-
ising stability also in presence of strong softening of the specimen. 

Investigating the local behavior in Figs. 20–23, it can be seen that the 
mode of failure involves almost exclusively the inner interface between 
layers B & C. Little damage is visible in the outer interface near the 

loaded edge. This is not surprising, because the mortar used for the 
matrix exhibits a particularly high strength. Such feature is the main 
reason that gives to the global curve a particularly smooth appearance. 
Differently from the previous cases, no steps of the load carrying ca-
pacity are visible, which are always a consequence of the formation of 
cracks inside mortar layers. 

Using the same model proposed, an interesting additional insight can 
be gained investigating the role played by the values of stiffness Ks 

imposed at the interface between the substrate and the inner matrix 
layer. In particular, the present comparison deals with small, reinforced 
masonry pillars built stacking 5 bricks with 4 mortar joints, whose actual 
reduced stiffness may reflect into a modification of the internal state of 
stress. 

The deformability of the substrate can be simulated assuming for the 
stiffness Ks values that are directly deducible from the elastic properties 
of the bricks and the joints. If both materials behave elastically (the 
study of the non-linearity of the substrate is postponed to a future 
dedicated research, see a similar investigation for FRP already available 
in Ref. [50]), the substrate actual stiffness can be lumped at the S 
interface making the hypothesis that bricks and mortar are subjected to 
pure shear. Consequently, under such hypothesis, Ks assumes distinct 
values in correspondence of mortar joints and bricks. 

In particular, it is reasonable to assume for both joints (j) and blocks 
(b) Ksj,b = Gj,b/Hb, where Gj,b is the shear modulus, Hb is the effective 
pillar height and the subscripts j and b refer respectively to joints and 
blocks. Making the very simplistic hypothesis that Hb = 250 mm, and 
for the sake of comparison with previous results that Ks,b = 10KIBC =

14 MPa/mm, the shear modulus of the blocks would be Gb =

3500 MPa, and the elastic modulus (assuming a Poisson’s ratio equal to 
0.2) Eb = 8400 MPa, which is a numerical value fully realistic for 

Fig. 24. De Santis et al. (2018) data, investigation in presence of realistic values of stiffness for the substrate (masonry). From the top-left in clockwise order. Stress 
σFB(L) - displacements UBL, UB0 curves; UA,UB,UC,UB − UC,UB − UA behavior along the bond length (the color of the curves corresponds to the particular instants 
investigated during the loading process and match those of the points represented in the top-left sub-figure). (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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common clay bricks. Imposing that Ej = 1
10Eb, it is possible to have a 

preliminary insight into the role played by a substrate where the joints 
are weak. 

Again, the elastic modulus of the joint appears quite realistic, espe-
cially because mortar may start to crack early under such kind of tests 
and also because typically the Young’s modulus of the joints is sensibly 
lower than that of the blocks. 

The results obtained are shown in Figs. 24 and 25. Such figures 
should be compared respectively with Figs. 20 and 21. The global 
behavior, compare Figs. 24 and 20, does not show perceivable differ-
ences, whereas as far as the local behavior is concerned, layer C exhibits 
clear stress jumps (due to the deformable joints, see Fig. 21 where the 
position of the joints is clearly indicated) and a non-smooth layout for 
the displacement field UC, see Fig. 25. 

4. Conclusions 

A quasi-analytical model to analyze the local behavior of FRCM-to 
substrate shear bond tests has been proposed. The strengthening 

system has been considered constituted by three separate and super-
imposed layers, namely the fiber grid embedded into an upper and lower 
matrix. Fiber has been assumed elastic, whereas the inorganic matrix 
layers have been modeled taking into account a linear elastic relation-
ship followed by a softening phase. The three components of the rein-
forcing system (matrix upper and lower layers and fiber) have been 
assumed in a monoaxial state of stress, interacting mutually by means of 
interfaces subjected exclusively to shear stresses and characterized by a 
tri-linear with softening shear stress-slip relationship. The kinematic and 
static internal variables are the axial displacements and the normal 
stresses of the layers, respectively. The lower matrix has been finally 
connected to the substrate with a further elastic interface. Under such 
assumptions, a system of first order non linear differential equations has 
been derived and subsequently solved in quasi-closed form. Two 
experimental datasets from the literature have been taken into account 
to estimate the accuracy of the model proposed, which showed an 
excellent preductivity in reproducing both the global and local behavior. 

Future developments of the model discussed should move towards 
the analysis of curved masonry elements reinforced with FRCM, still a 
topic largely under investigated. A direct implementation of a novel FE 

Fig. 25. De Santis et al. (2018) data, inves-
tigation in presence of realistic values of 
stiffness for the substrate (masonry). From 
the top-left in clockwise order. σMA, τI,AB,

τI,BC,KsUC, σMC, σFBtB behavior along the 
bond length (the color of the curves corre-
sponds to the particular instants investigated 
during the loading process and match those 
of the points represented in the previous sub- 
figure); in the simulations, it is assumed Ks =

10KI . (For interpretation of the references to 
color in this figure legend, the reader is 
referred to the Web version of this article.)   

G. Milani                                                                                                                                                                                                                                         



Composites Part B 266 (2023) 110983

23

is expected straightforward and could represent a valid alternative to the 
utilization of standard approaches nowadays available in the literature 
to study entire reinforced structural elements, with particular regard to 
masonry arches and vaults. In such cases, indeed, a crucial coupling 
between normal and shear internal actions at the interface between 
strengthening system and support could be responsible for a mechanical 
behavior quite different from that predicted in a standard debonding test 
carried out on flat supports. Finally, a straightforward -albeit simplified- 
evolution of the proposed model can be achieved through the intro-
duction of induced strain in the substrate as external stimulus for 
debonding. 
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