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Abstract: Survival signature can be useful for the reliability assessment of critical infrastructures. 

However, analytical calculation and Monte Carlo Simulation (MCS) are not feasible for 

approximating the survival signature of large infrastructures, because of the complexity and 

computational demand due to the large number of components. In this case, efficient and accurate 

approximations are sought. In this paper we formulate the survival signature approximation problem 

as a missing data problem. An ensemble of Artificial Neural Networks (ANNs) are trained on a set 

of survival signatures obtained by MCS. The ensemble of trained ANNs is, then, used to retrieve the 

missing values of the survival signature. A numerical example is worked out and recommendations 

are given to design the ensemble of ANNs for large-scale, real-world infrastructures. The electricity 

grid of Great Britain, the New England power grid (IEEE 39-Bus Case), the reduced Berlin metro 

system and the approximated American Power System (IEEE 118-Bus Case) are, then, eventually, 

analyzed as particular case studies. 
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1. INTRODUCTION 

Water and gas distribution systems, energy transmission systems, transportation and telecommunication 

systems are critical infrastructures (CIs) [1], [2]. The reliability assessment of CIs is fundamental [3], 

[4], but, given their complexity [5], it cannot be carried out with classical methods. 

Recently, the survival signature has been introduced in reliability assessment [6] for modelling 

dependencies [4], [7], [8], handling imprecise probabilities in a Bayesian scheme [9]–[11] and dealing 

with the complexity of the CIs [12]–[15]. The survival signature allows decoupling the structural 

information of the system from the probabilistic one [6], [16], which can be a major advantage for the 

reliability assessment of large systems. On the other hand, its analytical definition for systems of 

realistic size is difficult, due to the combinatorial nature of the problem [17]. Monte Carlo Simulation 

(MCS) combined with percolation theory [18] has been used to obtain an approximation of the survival 

signature for large systems. Entropy has been used to guide MCS in a way to efficiently allocate the 

simulation efforts over the whole survival signature [12]. Nonetheless, the search for every combination 

of functioning components of a large system makes the approximation of the survival signature 

computationally prohibitive. 

In this paper, we formulate the survival signature approximation problem as a missing data problem 

and present a novel method that does not require the estimation of every survival signature entry (i.e., 

every path set of functioning components that render the system functioning). Once percolation [19] is 

used to determine the trivial entries of the survival signature, i.e., those corresponding to non-

functioning network system configurations, MCS [20] is used to estimate only a limited number of 

survival signature entries, thus obtaining sparse information on the survival signature. The survival 

signature entries that have not been estimated by MCS, are the missing data to be retrieved. For this, an 

ensemble of Artificial Neural Networks (ANNs) [21] are trained on the available, incomplete data of 

the sparse survival signature [22], which forms the training dataset. The ANN has been selected to 

approximate the survival signature because it is a well-known, widely spread tool in ML method. It is 

here used to demonstrate the validity of the methodology proposed with no claim of being the best ML 

method. The survival signature can, then, be completed by the estimates provided by the trained 
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ensemble, with a reasonable computational effort. To quantify the accuracy of the ANN-based 

approximation, the confidence intervals of the estimates, the average confidence interval width and the 

coverage value are calculated as synthetic metrics [23], [24]. This allows quantifying the uncertainty 

on the survival signature estimate. 

The proposed ANN-based method is developed with reference to a numerical example, which allows 

giving some guiding recommendations for the definition of the ensemble of ANNs. A set of realistic 

large scale CIs, i.e., the electricity grid of Great Britain [25],  the New England power grid (IEEE 39-

Bus Case) [26], the Berlin metro system [20] and the American Electric Power System (IEEE 118-Bus 

Case) [27] are, then, processed with the proposed method. Indeed, the MCS approximation of the 

survival signature has proven quite time consuming [12], [20] and the results obtained with the proposed 

method are benchmarked with those of a MCS method available in literature [18], confirming the 

superiority in reducing the computational time, while providing good coverage and accurate reliability 

assessment. 

The remainder of the paper is organized as follows. In Section 2, a brief recall of the concept of the 

survival signature is provided for completeness. In Section 3, the novel method combining percolation, 

MCS and the ensemble of ANNs for its approximation is presented. The feasibility of the method is 

proven in Section 4 by means of a numerical example followed by the application to complex, real 

world infrastructures in Section 5, where a comparative study with MCS is also conducted. Finally, in 

Section 6 some conclusions are drawn. 

 

2. SURVIVAL SIGNATURE 

Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚) ∈ {0,1}𝑚 be a Boolean vector describing the state of a system of m components, 

so that the generic element 𝑥𝑖 = 1 if the i-th component functions or 𝑥𝑖 = 0 if not. When the m 

components are partitioned into 𝐾 ≥ 2 different types, with 𝑚𝑘 components of the specific type k, so 

that ∑ 𝑚𝑘
𝐾
𝑘=1 = 𝑚, the state vector can be revised as 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝐾), with 𝑥𝑘 = (𝑥1

𝑘 , 𝑥2
𝑘 , … , 𝑥𝑚𝑘

𝑘 ) 

representing the states of the components of type k. Let 𝜑 ∶ {0,1}𝑚  → {0,1} be the system reliability 

structure function, defined for all 2𝑚 possible 𝑥, such that 𝜑(𝑥) = 1 if the system functions and 𝜑(𝑥) =
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0 if the system does not function. We assume that the system is coherent, i.e., the structure function is 

not decreasing if the number of functioning components increases.  

Then, the survival signature for the system Φ(𝑙1, 𝑙2, … , 𝑙𝐾) is given in Eq. (1), with 𝑙𝑘 = 0, 1, … , 𝑚𝑘 for 

𝑘 = 1, 2, … , 𝐾, and it is defined as the probability that the system functions given that 𝑙𝑘 out of 𝑚𝑘 

components of type k function, for each 𝑘 = 1, 2, … , 𝐾 [6]: 

Φ(𝑙1, 𝑙2, … , 𝑙𝐾) =  [∏ (
𝑚𝑘

𝑙𝑘
)

𝐾

𝑘=1

]

−1

× ∑ 𝜑(𝑥)

𝑥 ∈ 𝑆𝑙1,𝑙2,…,𝑙𝐾

 (1) 

This results from the fact that the state vectors 𝑥𝑘 with exactly 𝑙𝑘 components functioning are (𝑚𝑘
𝑙𝑘

) and 

that, consequently, the set of all the allowed combinations of all components,  denoted as 𝑆𝑙1,𝑙2,…,𝑙𝐾
, has 

magnitude  ∏ (𝑚𝑘
𝑙𝑘

)𝐾
𝑘=1 . Also, all the state vectors 𝑥𝑘 ∈ 𝑆𝑙𝑘

 are equally likely to occur, under the 

assumption that the failure times of the 𝑚𝑘 components of type k are iid. Eq. (1) implies that the 

analytical calculation of the survival signature for the entry (𝑙1, 𝑙2, … , 𝑙𝐾) requires evaluating (𝑚1
𝑙1

) ∙

(𝑚2
𝑙2

) ∙ … ∙  (𝑚𝐾
𝑙𝐾

) times the system structure function 𝜑(𝑥), which results in a combinatorial explosion 

when large systems are considered. Eventually, the generalized survival signature is a multidimensional 

array with dimension (𝑚1 + 1) ×  (𝑚2 + 1) ×  ⋯ × (𝑚𝐾 + 1) (including the case 𝑙𝑘 = 0 in which 

none of the components of type k are working), so that the total number of entries 𝑙 = (𝑙1, 𝑙2, … , 𝑙𝐾), 

with 𝑙𝑘 = 0, 1, … , 𝑚𝑘 for each 𝑘 = 1, 2, … , 𝐾, to be considered is 𝑀 =  (𝑚1 + 1) ∙  (𝑚2 + 1) ∙  ⋯ ∙

(𝑚𝐾 + 1).      

The survival signature of Eq. (1) allows to compute the survival function, that gives the reliability of 

the system. This can be calculated as in Eq. (2) [6]: 

𝑃(𝑇𝑠 > 𝑡) =  ∑ ∑ …

𝑚2

𝑙2=0

 

𝑚1

𝑙1=0

∑ Φ(𝑙1, 𝑙2, … , 𝑙𝐾)

𝑚𝐾

𝑙𝐾=0

𝑃 (⋂{𝐶𝑡
𝑘 =  𝑙𝑘}

𝐾

𝑘=1

) (2) 

where 𝑃(𝐶𝑡
𝑘) describes the probability that the number of components of type k that function at time 

𝑡 > 0 is 𝐶𝑡
𝑘 ∈ {0, 1, … , 𝑚𝑘}. Eq. (2) shows that in the reliability calculation the system structure can be 

analyzed separately from the probabilistic information (e.g., the failure time distributions of the 

components), which is the main advantage of using the survival signature. Furthermore, when the 
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cumulative distribution function  𝐹𝑘(𝑡) for components of type k is known, and the failure times of the 

different component types are independent, the evaluation of the probabilistic part is straightforward, 

Eq. (3): 

 

𝑃 (⋂{𝐶𝑡
𝑘 =  𝑙𝑘}

𝐾

𝑘=1

) =  ∏ 𝑃(𝐶𝑡
𝑘 =  𝑙𝑘)

𝐾

𝑘=1

= ⋯ =  ∏ ((
𝑚𝑘

𝑙𝑘
) 𝐹𝑘(𝑡) 𝑚𝑘−𝑙𝑘[1 − 𝐹𝑘(𝑡) ]𝑙𝑘)

𝐾

𝑘=1

 (3) 

 

3. THE ANN-BASED METHOD 

Fig. 1 shows an overview of the proposed method, which comprises of the sequential application of: i) 

percolation theory, ii) MCS and iii) an ensemble of ANNs.  
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Figure 1 - Flowchart of the novel ANN-based method for the survival signature approximation. 

 

Let us consider a critical infrastructure, i.e., a network system with 𝐾 component types,  𝑚𝑘 components 

of the type 𝑘, 𝑘 = 1, … , 𝐾: its survival signature is a 𝐾 dimensional array with 𝑀 entries in total, 𝑀 =

(𝑚1 + 1) ∙ (𝑚2 + 1) ∙ ⋯ ∙ (𝑚𝐾 + 1). All such entries 𝑙 = (𝑙1, 𝑙2, … , 𝑙𝐾) are grouped in the set {𝑙𝑗} with 

𝑗 = 1, … , 𝑀. Assume that among this set of entries, a subset {𝑙𝑗}
𝑃

 with 𝑃 < 𝑀 is solved by percolation, 

i.e., {𝑙𝑗}
𝑃

 is the subset of trivial entries (see Section 3.1 for more details) whose dimension is 𝑃. Then, 

randomly select a number 𝑄 among the remaining entries of the survival signature (as low as possible, 

for reasons that will become clear in what follows) to be approximated by MCS (see Section 3.2 for 
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more details). Then, 𝑄 is the dimension of the subset comprising the entries {𝑙𝑗}
𝑄

, and {𝑙𝑗}
𝑃

∩ {𝑙𝑗}
𝑄

=

0. The entries {𝑙𝑗}
𝑇

= {𝑙𝑗}
𝑃

∪ {𝑙𝑗}
𝑄

  sparsely populate the survival signature, and, together with the 

survival signature values {Φ(𝑙𝑗)}
𝑇

, form the training dataset of dimension 𝑇. Fig. 2 shows a sparse and 

incomplete survival signature array for a generic system with 𝐾 = 2 components: in black, the 𝑇 entries 

making up the training dataset and in white, the missing entries to be approximated by the ensemble of 

ANNs.  

 
Figure 2 – Sparse survival signature for a network system with K=2 component types: 10 components of type 1 and 10 

components of type 2. In black the T available entries, and in white the S missing entries. 

 

After training (see Section 3.3 for more details), the ensemble of ANNs is used to estimate the missing 

data, i.e., the subset of entries {𝑙𝑗}
𝑆
 with dimension  𝑆 = 𝑀 − 𝑇, so that {𝑙𝑗}

𝑇
∩ {𝑙𝑗}

𝑆
= 0 and {𝑙𝑗}

𝑇
∪

{𝑙𝑗}
𝑆

=  {𝑙𝑗}
𝑀

. 

 

3.1. Step 1: Percolation theory  

Percolation theory is used to calculate the trivial solutions of Eq. (1) with respect to the failure of the 

network system [19]. The trivial entries of the survival signature, forming the subset {𝑙𝑗}
𝑃

 of dimension 

𝑃, are those configurations containing a set of non-functioning components sufficient to render non-

functioning the network system [28]. The percolation process consists in: 
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• computing the critical fraction of non-functioning components 𝑓𝑐, which guarantees 

(conservatively) that the non-functioning probability of the network is negligible, by means of 

the Molloy-Reed Criterion [29]: 

𝑓𝑐 = 1 −  
1

〈𝑑2〉/〈𝑑〉 − 1
 (4) 

where 𝑑 is the node degree, 〈𝑑〉 and 〈𝑑2〉 are the first and second moments of the degree 

distribution for the network system, respectively, which are obtained from the network 

adjacency matrix (see Eq. 6 below),  

• finding the trivial entries of the survival signature, that are those for which there is no network 

system connectivity and whose survival signature can be set to zero, i.e., those for which the 

fraction of functioning components is lower than 1 − 𝑓𝑐, as shown in Eq. (5) [18]: 

∑ 𝑙𝑘

𝐾

𝑘=1

< (1 − 𝑓𝑐) ∙ ∑ 𝑚𝑘

𝐾

𝑘=1

    ⟹    Φ(𝑙) ≈ 0 (5) 

For a network system with 𝑁 nodes, the adjacency matrix is a 𝑁 × 𝑁 matrix {𝑎𝑖𝑗} whose entries are: 

𝑎𝑖𝑗  

 

=  1 if there is a connection between node i and j 

=  0 otherwise 
(6) 

In Fig. 3, the survival signature array for a generic network system with 𝐾 = 2 components is shown 

after percolation is performed: in black, the 𝑃 trivial entries found by percolation, and in white, the 

remaining entries to be approximated. 
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Figure 3 - Survival signature for a generic network system with K=2 component types, 10 components of type 1 and 10 

components of type 2. In black the P trivial entries solved by percolation and in white the remaining entries. 

 

3.2. Step 2: Monte Carlo simulation (MCS)  

Let us consider the entry 𝑙 =  (𝑙1, 𝑙2, … , 𝑙𝐾) ∈ {𝑙𝑗}
𝑄

, that is the subset of dimension 𝑄 containing the 

entries to be approximated by MCS. For the MCS approximation of the entry 𝑙 =  (𝑙1, 𝑙2, … , 𝑙𝐾), random 

network system configurations 𝑥𝑙 ∈ 𝑆𝑙1,𝑙2,…,𝑙𝐾
 are generated and evaluated by the structure function, 

𝜑(𝑥𝑙), with respect to the fact that the system is functioning or non-functioning in such configurations.  

For this, the efficiency metric 𝐸(𝐺) of network system 𝐺 with 𝑁 nodes is used [30]: 

𝐸(𝐺) =
1

𝑁(𝑁 − 1)
∑

1

𝑟𝑖𝑗
𝑖≠𝑗∈𝐺

 (8) 

where {𝑟𝑖𝑗} is the matrix of the shortest path lengths, whose entry 𝑟𝑖𝑗 gives the length of the shortest 

path between nodes 𝑖 and 𝑗, calculated using the Floyd-Warshall algorithm [31].  

Indeed, for large network systems the structure function is usually not available and so it is assumed 

that, if the loss of efficiency in a given configuration 𝑥𝑙 exceeds 50%, the network system is non-

functioning and the structure function 𝜑(𝑥𝑙) is set to 0: 

𝑖𝑓 
E (𝐺(𝑥𝑙))

E(𝐺)
< 0.5 ⇒ 𝜑(𝑥𝑙) = 0 (7) 
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whereas the network system is functioning, i.e., 𝜑(𝑥𝑙) = 1, otherwise. This threshold value has been 

adopted from [18], where it has proven to provide good results.  

The algorithm for the MCS approximation of a survival signature entry is given in Fig. 4. 

 

Figure 4 – Algorithm for the approximation of a survival signature entry, 𝛷(𝑙1, 𝑙2, … , 𝑙𝐾). 

 

The procedure for generating a random network system configuration 𝑥𝑙 for the entry 𝑙 =  (𝑙1, 𝑙2, … , 𝑙𝐾)  

consists in randomly permuting the components order in each state vector 𝑥𝑘 of the components of type 

𝑘 and set as functioning (𝑥𝑖
𝑘 = 1) the first 𝑙𝑘 elements of the vector, for each component type 𝑘 ∈

{1,2, … , 𝐾} [18]. For the sake of clarity, consider a network system made up of 𝑚1 = 6 components of 

type 𝑘 = 1, so that the state vector for component type 𝑘 = 1 is 𝑥1 = (𝑥1
1, 𝑥2

1, 𝑥3
1, 𝑥4

1, 𝑥5
1, 𝑥6

1), and that 

a random system configuration with 𝑙1 = 4 components functioning has to be sampled. Then, given a 

random permutation for 𝑥1, e.g., 𝑥1
𝑝𝑒𝑟𝑚

= (𝑥1
1, 𝑥5

1, 𝑥6
1, 𝑥3

1, 𝑥2
1, 𝑥4

1), set the first 𝑙1 = 4 elements of the 

permuted vector as functioning, i.e., {𝑥1
1, 𝑥5

1, 𝑥6
1, 𝑥3

1} = 1, and the remaining as non-functioning, i.e., 

{𝑥2
1, 𝑥4

1} = 0. Eventually, the sampled state vector is 𝑥1
𝑠𝑎𝑚𝑝𝑙𝑒

= (1, 0, 1, 0, 1, 1). The same procedure 

is repeated for the other component types. The number of random samples 𝑛, defined in the algorithm 
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of Fig. 4, is selected by the analyst, and it is related to the magnitude of the set 𝑆𝑙1,𝑙2,…,𝑙𝐾
, that is (𝑚1

𝑙1
) ∙

(𝑚2
𝑙2

) ∙ … ∙  (𝑚𝐾
𝑙𝐾

). In fact, this influences the accuracy of the survival signature approximation, since the 

larger the sampling space the larger the sample size 𝑛 required to obtain an accurate approximation. 

 

3.3. Step 3: Ensemble of Artificial Neural Networks  

In this sub-Section, the ensemble of ANNs approach for estimating the missing entries of the survival 

signature of a network system is described. A typical ensemble for the survival signature approximation 

is given in Fig. 5.  

 

Figure 5 – Scheme of the ensemble of ANNs models used for the approximation of the survival signature of network systems. 

 

The ensemble comprises of 𝐻 alternative ANN models. In particular, Feedforward Neural Networks 

(FNNs) are considered with different architectures, i.e., numbers of neurons, 𝑛𝑛𝑒𝑢𝑟𝑜𝑛, and/or numbers 

of layers, 𝑛𝑙𝑎𝑦𝑒𝑟. A training dataset 𝑿𝑻𝑹𝑨𝑰𝑵 = [{𝑙𝑗}
𝑇

, {Φ(𝑙𝑗)}
𝑇

], where the survival signature entries in 

the subset {𝑙𝑗}
𝑇

 are the inputs to be mapped into the output {Φ(𝑙𝑗)}
𝑇

, with 𝑗 = 1, … , 𝑀, is used to train 

the ensemble. In our application this is performed, without loss of generality, using the Levenberg-

Marquardt algorithm available in the Deep Learning Toolbox in Matlab.  
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Once the ANNs in the ensemble are trained, they are used to provide the output estimate {Φ̂(𝑙𝑗)}
𝑆
 of 

the missing entries in the subset {𝑙𝑗}
𝑆
. For each entry 𝑙 = (𝑙1, 𝑙2, … , 𝑙𝐾), the aggregated Φ̂(𝑙) is 

computed as the average value of Φ̂(𝑙)ℎ:  

 

Φ̂(𝑙) =  
1

𝐻
∑ Φ̂(𝑙)ℎ

𝐻

ℎ=1

 (9) 

where Φ̂(𝑙)ℎ, with ℎ = 1, … , 𝐻, is the output of the single, generic ℎ-th model, i.e., the survival 

signature estimate of such single model. Each estimate Φ̂(𝑙) comes with an associated error 𝜎𝑙
2, which 

is the ensemble model error due to the random initialization of the ANNs parameters and to the 

uncertainty related to the limited training dataset (i.e., the uncertainty of the MCS approximation) [21]. 

Hence, for an entry 𝑙, a confidence interval, defined as the interval [Φ̂(𝑙)𝑙𝑜𝑤 , Φ̂(𝑙)𝑢𝑝 ] such that the 

probability is equal to 𝛼 that the true survival signature Φ(𝑙) falls within the interval, can be computed 

as follows [24]: 

[Φ̂(𝑙)𝑙𝑜𝑤, Φ̂(𝑙)𝑢𝑝 ] = Φ̂(𝑙)  ±  𝐶𝑑𝑜𝑓
𝛼 √𝜎𝑙

2   (10) 

where 𝐶𝑑𝑜𝑓
𝛼  is the (1 − 𝛼)/2 quantile of the Student t-distribution with number of degrees of freedom 

equal to the number of the ensemble models, i.e., 𝐻. 

In what follows, for evaluating the accuracy of the estimated survival signature, two metrics are 

considered [23]: 

• the average confidence interval width, and 

• the coverage, i.e., the fraction of true vs estimated survival signature entries which fall within 

the constructed confidence intervals.  

 

4. NUMERICAL EXAMPLE 

In Fig. 6, we plot a 21 × 21 matrix representing the survival signature of a generic network system with 

𝐾 = 2 component types, with 𝑚 = 40 components in total, 𝑚1 = 20 of type 1 and 𝑚2 = 20 of type 2, 
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respectively, which has to be approximated by the ANN-based method presented in the previous 

Section. To proceed with the analysis, one needs to set the dimensions 𝑃, 𝑄 and 𝑆 of the subsets {𝑙𝑗}
𝑃

, 

{𝑙𝑗}
𝑄

 and {𝑙𝑗}
𝑆
, with 𝑗 = 1, … , 𝑀, the type of ANNs composing the ensemble and their architecture, 

specifically the number of layers, 𝑛𝑙𝑎𝑦𝑒𝑟, and number of neurons per layer, 𝑛𝑛𝑒𝑢𝑟𝑜𝑛. 

 
Figure 6 – Survival signature of a generic network system with 20 components of type 1 and 20 components of type 2. 

 

The survival signature in Fig. 6 has 𝑀 = 441 entries in total. 𝑃 is the dimension of the subset of survival 

signature entries estimated by percolation, {𝑙𝑗}
𝑃

= {(𝑙1, 𝑙2)𝑗}
𝑃

, which is fixed once the percolation 

threshold 𝑓
𝑐
 for the network system is set. The subset {𝑙𝑗}

𝑄
= {(𝑙1, 𝑙2)𝑗}

𝑄
 comprises the survival 

signature entries to be approximated by MCS with dimension 𝑄. {(𝑙1, 𝑙2)𝑗}
𝑇

= {(𝑙1, 𝑙2)𝑗}
𝑃

∪

{(𝑙1, 𝑙2)𝑗}
𝑄

 is the subset of survival signature entries which, together with the corresponding survival 
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signature values {Φ(𝑙1, 𝑙2)𝑗}
𝑇

, has been used as training dataset for the ANNs in the ensemble: 

𝑿𝑻𝑹𝑨𝑰𝑵 = [{(𝑙1, 𝑙2)𝑗}
𝑇

, {Φ(𝑙1, 𝑙2)𝑗}
𝑇

], where 𝑇 is the size of the dataset.  

As explained earlier, the ANNs used in the ensemble are FNNs, which differ in the number of neurons, 

𝑛𝑛𝑒𝑢𝑟𝑜𝑛, and/or layers, 𝑛𝑙𝑎𝑦𝑒𝑟, and have been trained with the Levenberg-Marquardt algorithm 

available in the Deep Learning Toolbox in Matlab. Once the ensemble has been trained, given the 

missing entries in input, i.e., those in the subset {𝑙𝑗}
𝑆

= {(𝑙1, 𝑙2)𝑗}
𝑆
, it provides in output the estimates 

{Φ̂(𝑙1, 𝑙2)𝑗}
𝑆
 of the survival signature {Φ(𝑙1, 𝑙2)𝑗}

𝑆
, and the corresponding confidence intervals 

(computed with a confidence level 𝛼 = 90%) and coverage. 

Since examining different values of 𝑄 is equivalent to examining different values of 𝑇, being 𝑃 fixed 

and 𝑇 = 𝑃 + 𝑄, the optimal dimension of the subset {𝑙𝑗}
𝑄

 is searched by training the FNNs of the 

ensemble for different 𝑇. The results are given in Table 1, where the MSE, the average confidence 

interval width and the coverage are listed.  

 

Table 1 –  MSE, average confidence interval width and coverage of the estimated survival signature for different dataset 

dimensions T (Ensemble of ANNs: 1 layer FNNs, 15 to 25 neurons). 

T MSE 
Average confidence 

interval width 
Coverage [%] 

221 8.35E-03 1.47E-01 86.4 

265 3.15E-03 1.23E-01 88.7 

309 4.35E-03 1.17E-01 90.2 

353 2.85E-03 1.05E-01 85.8 

397 4.28E-03 1.07E-01 79.6 

 

The MSE is small for all scenarios considered, which indicates that the method is capable of estimating 

the survival signature, and the small confidence interval widths show that the ensemble of ANNs 

provides accurate results [23]. However, the ensemble trained with the dataset corresponding to 𝑇 =

309 is the only one for which the coverage is larger than the confidence level: this means that 𝑇 = 309 

is the optimal size for the training dataset (i.e., 
𝑇

𝑀
∙ 100 ≅ 70% of the survival signature entries). Then, 
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as said, 𝑄 is determined as 𝑄 = 𝑇 − 𝑃 and 𝑆 = 𝑀 − 𝑇 = 132 (i.e., 𝑆/𝑀 ≅ 30%). These dimensions 

of the subsets of entries will be adopted also in Section 5 for the approximation of the survival signature 

of real-world CIs. 

To optimize the architecture of the FNNs in the ensemble, a grid optimization approach is adopted: 

single layers FNNs, with 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 ranging from 1 to 40, are trained. The performance of each FNN is 

evaluated by means of the average mean squared error (MSE), as shown in Fig. 7. 

 
Figure 7 – MSE vs 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 for 1 layer FNNs, for the approximation of the survival signature in Fig. 6. 

 

It can be seen that single layer FNNs with 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 ≥ 10 provide survival signature estimates with MSE 

≅ 3.5 × 10−3 ÷ 4.5 × 10−3. Nonetheless, an ensemble of ANNs has been selected here to capture the 

uncertainty in the estimates. As a general constraint, to limit the number of hyperparameters to be 

estimated (and the corresponding computational time) when training the FNNs, the number of hidden 

neurons should be kept small [32]. Then, the following ensembles of FNNs are selected, trained and 

their performances compared:  

a) 11 FNNs: 1 layer FNNs, 15 to 25 neurons (𝑛𝑙𝑎𝑦𝑒𝑟 = 1, 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 = [15 , 25]); 

b) 36 FNNs: 2 layers FNNs, 15 to 20 neurons (𝑛𝑙𝑎𝑦𝑒𝑟 = 2, 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 = [15 , 20]); 

c) 47 FNNs: 1 layer FNNs, 15 to 25 neurons (𝑛𝑙𝑎𝑦𝑒𝑟 = 1, 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 = [15 , 25]); 2 layers FNNs, 

15 to 20 neurons (𝑛𝑙𝑎𝑦𝑒𝑟 = 2, 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 = [15 , 20]); 
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d) 132 FNNs: 1 layer FNNs, 15 to 25 neurons (𝑛𝑙𝑎𝑦𝑒𝑟 = 1, 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 = [15 , 25]); 2 layers FNNs, 

15 to 25 neurons (𝑛𝑙𝑎𝑦𝑒𝑟 = 2, 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 = [15 , 25]); 

In Table 2, the different ensembles are compared with respect to the following metrics: i) MSE, ii) 

average confidence interval width, iii) coverage probability and iv) ensemble training time.  

 

Table 2 –   MSE, average confidence interval width, coverage and training time for the ensembles a), b), c), d).  

Ensemble MSE 
Average confidence 

interval width 
Coverage [%] 

Training time 

[s] 

a) 2.71E-03 1.06E-01 90.2 3.5 

b) 2.91E-03 1.17E-01 90.9 15.2 

c) 1.98E-03 1.07E-01 93.4 18.1 

d) 2.11E-03 1.21E-01 94.1 33.3 

 

 

The MSE is in the order of 10−3 for every ensemble, which is small enough for our purposes, and lower 

than the MSE of the best single FNN, provided in Fig.7. The average confidence interval width confirms 

that all the four ensembles provide estimates with high, but similar, accuracy, which is also verified by 

the coverage value, that is larger than the fixed confidence level (𝛼 = 90%). Concerning the 

computational time, the ensemble of ANNs with the smallest training time, i.e., ensemble a), made up 

of 𝐻 = 11 FNNs with 𝑛𝑙𝑎𝑦𝑒𝑟 = 1 and 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 = [15 , 25], is selected as the optimal architecture for a 

network system with 𝑚 = 40 components.  

The survival signature used in this numerical example is a toy example representative of the survival 

signature of a generic system with 𝑚 = 40 components and 𝑘 = 2 component types, as described at 

the beginning. With similar reasoning, starting from generic survival signatures of network systems, we 

can, then, draft general recommendations for defining the optimal FNNs architecture in the ensemble. 

As we shall see in the next Section, these will be confirmed by other network systems considered as 

case studies. From a trial-and-error procedure on survival signatures of network systems of different 

topology, size and complexity, the following recommendations for a network system with 𝑚 

components were deducted: 
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• Number of layers 𝑛𝑙𝑎𝑦𝑒𝑟 = 𝑘, with 10𝑘 ≤ 𝑚 < 10𝑘+1 (for the network system analyzed: 𝑚 =

40 components, so that 𝑘 = 1 and 𝑛𝑙𝑎𝑦𝑒𝑟 = 1 is used). For example, if 10 ≤ 𝑚 < 100 set 

𝑛𝑙𝑎𝑦𝑒𝑟 = 1, if 100 ≤ 𝑚 < 1000 set 𝑛𝑙𝑎𝑦𝑒𝑟 = 2, and so on; 

• Number of neurons per layer 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 = [
𝑚

2∙𝑛𝑙𝑎𝑦𝑒𝑟
2 − 5,

𝑚

2∙𝑛𝑙𝑎𝑦𝑒𝑟
2 + 5] (for the network system 

analyzed: 
𝑚

2∙𝑛𝑙𝑎𝑦𝑒𝑟
2 = 20 and 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 = [20 − 5, 20 + 5] = [15, 25] is used). 

For practical purposes, the complete workflow for estimating the survival signature of Fig. 6 using the 

ANN-based method is summarized: 

Step 1. Compute the total number of survival signature entries, 𝑀 = 441. Set the percolation 

threshold, 𝑓𝑐 = 0.6, which leads to 𝑃 = 136 survival signature entries solved by percolation; 

Step 2. Compute the dimension 𝑇 of the training dataset for optimal training: 𝑇 = 𝑀 ∙ 70% ≅ 309. 

Randomly select 𝑄 = 𝑇 − 𝑃 = 173 entries to be approximated by means of MCS (𝑁 = 1000 

samples are used); 

Step 3. Build the training dataset with the sparse survival signature available and train the ensemble 

of ANNs. The ensemble comprises FNNs with 𝑛𝑙𝑎𝑦𝑒𝑟 = 1 (10 ≤ 𝑚 < 100) and 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 =

[15 , 25] (
𝑚

2∙𝑛𝑙𝑎𝑦𝑒𝑟
2 = 20). The missing entries, 𝑆 = 𝑀 − 𝑇 = 132, are estimated and the 

corresponding confidence intervals are computed.  

The resulting survival signature is presented in Fig. 8, with the corresponding confidence intervals.  
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Figure 8 – 3D plot of the survival signature of Fig. 6 approximated with the ANN-based method: in blue the Q survival 

signature entries estimated using MCS and in red the S survival signature entries estimated with the ensemble of FNNs, both 

with the corresponding confidence intervals (the entries solved by percolation are neglected). The exact survival signature is 

given in black. 

 

It is worth noting that the confidence intervals of the estimates provided by the ensemble (red dots), 

which have been computed by means of Eq. (10), are not constant in width: these are small for low 

values of 𝑙1 or 𝑙2, and increase for larger values of the parameters, due to the large variability (i.e., 

steepness) of the survival signature that might be difficult to be interpreted. On the other hand, the width 

of the confidence intervals for the MCS estimates (blue dots) is constant (except for the estimates close 

to 0 and 1), since related only to the number of samples used, and it is smaller than the one for the 

ensemble estimates: the average width for the former results is  8.40𝐸 − 02, whereas for the latter it is 

1.20𝐸 − 01, and, on average, the coverage is 90.2%. Overall, these values are small and confirm that 

the method is suitable and provides accurate approximation of the survival signature. 

 

5. APPLICATIONS 
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In what follows, the ANN-based method is used for approximating the survival signature of real-world, 

large-scale CIs: the electricity grid of Great Britain [25],  the New England power grid (IEEE 39-Bus 

Case) [26], the Berlin metro system [20] and the American Electric Power System (IEEE 118-Bus Case) 

[27]. Eventually, the results are benchmarked with those provided by the MCS method [18]. 

 

5.1. The electricity transmission network of Great Britain 

We consider the electricity transmission network of Great Britain [25], whose topological model is 

shown in Fig. 9. The network system comprises of  𝑚 = 29  components which have been separated in 

𝐾 = 2 types, according to their bus type: load-controlled buses are grouped in component type 1, 

whereas voltage-controlled buses are grouped in component type 2, resulting in 𝑚1 = 5 and 𝑚2 = 24. 

We assume that the failure times of components of type 1 follow an exponential distribution with 𝜆 =

1, in arbitrary units of inverse time, and the failure times of components of type 2 follow a Weibull 

distribution with parameters 𝑎 = 1 and 𝑏 = 2. 

 
Figure 9 – Topology of the electricity transmission network of Great Britain. Components of type 1 (load-controlled buses) 

are shown in white, components of type 2 (generator-controlled buses) are shown in black (adapted from [18]). 

 
The network system survival signature is an array with dimension 6 × 25. The ANN-based method is 

used to obtain an approximation of the survival signature. First, the percolation threshold is computed 

to be 𝑓𝑐 = 0.64; this results in 𝑃 = 51 of the 𝑀 = 150 entries of the survival signature being solved. 

Subsequently, 𝑄 = 54  of the remaining entries are randomly selected and approximated by means of 

MCS, so that a sparse survival signature array comprising 70% of the entire survival signature is 

available. The ensemble of ANNs is defined using the setting in Section 4: it consists of FNNs with 
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𝑛𝑙𝑎𝑦𝑒𝑟 = 1 and 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 = [10 , 20], 𝐻 = 11 FNNs in total. The ensemble is trained with the available 

data and used to estimate the missing 𝑆 = 45 entries of the survival signature. The confidence intervals 

for the survival signature estimates are built setting a confidence level 𝛼 = 90%: the average 

confidence interval width is 2.31E-01, the coverage is 96.6%. 

This result is compared with that of the crude MCS method. In particular, as an indication of the 

computational cost, the time needed to approximate the survival signature using the MCS method is 

compared to the time needed with the ANN-based method: the former results in 22.6 s, the latter in 12.4 

s, with 45.2% time saving. The training time for the ensemble of ANNs is 3.48 s. 

The complete survival signature, estimated with the ANN-based method, is used to compute the 

reliability of the network system (see Eq. (2)) for a mission time 𝑇𝑚 = 1, in arbitrary units of time. In 

Fig. 10, this is benchmarked with the reliability obtained using the survival signature approximated with 

MCS [18]. For illustrative purposes, the plot of the error bounds for the two alternative methods is also 

given, computed using the 5𝑡ℎ and the 95𝑡ℎ percentiles of the survival signature estimates. 

 
Figure 10 – Survival function of the system in Fig. 9 computed with the survival signature approximated by the crude MCS 

method (blue dashed line), with corresponding error bounds in red, and approximated by the ANN-based method (light blue), 

with corresponding error bounds in black.  
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The two reliability curves have very similar behavior. For the crude MCS the error bounds are smaller 

than the ones provided by the ANN-based method, as expected. Overall, on an absolute scale, the result 

provided by the novel method is accurate, which is also confirmed by the Kullback-Leibler divergence 

𝐷𝐾𝐿 between the two reliability functions: 𝐷𝐾𝐿(𝑟𝑒𝑙(𝑡)𝑀𝐶𝑆 ∥ 𝑟𝑒𝑙(𝑡)𝐴𝑁𝑁) = 2.51𝐸 − 02. 𝐷𝐾𝐿 gives a 

measure of the error between the network system reliability estimated with the ANN-based method, 

𝑟𝑒𝑙(𝑡)𝐴𝑁𝑁 and that estimated by MCS [18], 𝑟𝑒𝑙(𝑡)𝑀𝐶𝑆.  

 

5.2. IEEE 39-Bus System: New England power system  

The IEEE 39-bus power system test case (Fig. 11) represents a simplified model of the New England 

power grid [26]. The network system has 𝑚 = 39 nodes in total, which can be separated in 𝐾 = 2 types, 

specifically load buses, assigned to component type 1, and generator buses, assigned to component type 

2. This results in 𝑚1 = 29 nodes of type 1, whose failure times follow an exponential distribution with 

𝜆 = 1, in arbitrary units of inverse time, and 𝑚2 = 10 nodes of type 2, whose failure times follow a 

Weibull distribution with parameters 𝑎 = 1 and 𝑏 = 2. 

 

Figure 11 – Topology of the IEEE 39-Bus power system. Components of type 1 (load buses) are shown in white, components 

of type 2 (generator buses) are shown in black (adapted from [25]). 
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The network system survival signature is an array of dimension 30 × 11 and the ANN-based method 

is used for its approximation. The percolation threshold for this network system is 𝑓𝑐 = 0.4461, which 

allows solving 𝑃 = 187 of the 𝑀 = 330 entries of the survival signature. To obtain a sparse survival 

signature matrix describing 70% of the entire survival signature, 𝑄 = 44 entries among the remaining 

entries are randomly selected and approximated by means of MCS. The ensemble of ANNs used to 

estimate the missing 𝑆 = 99 entries consists of FNNs with 𝑛𝑙𝑎𝑦𝑒𝑟 = 1 and 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 = [15 , 25], on the 

basis of the analysis in Section 4. The confidence intervals for the survival signature estimates are built 

with a level 𝛼 = 90%: the average confidence interval width results in 6.38E-02 and the coverage value 

is 94.5%. 

A comparative study with the crude MCS method [18] is presented. The time needed to approximate 

the survival signature using MCS is 65.6 s, against 26.8 s for the ANN-based method, for a 59.2% time 

saving. The training time for the ensemble of ANNs is 3.44 s.  

The network system reliability is computed by means of the survival signature estimated with the ANN-

based method, for a mission time 𝑇𝑚 = 1 in arbitrary units of time, and it is benchmarked with the 

reliability computed using the survival signature approximated by MCS (Fig. 12). The error bounds are 

plotted for both methods. 
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Figure 12 – Survival function of the system in Fig. 11 computed with the survival signature approximated by the crude MCS 

method (blue dashed line), with corresponding error bounds in red, and approximated by the ANN-based method (light blue), 

with corresponding error bounds in black.  

 
Fig. 12 clearly shows that the two reliability curves match well. A more detailed analysis outlines that 

the error bounds of the ANN-based method are larger than the MCS ones, but such difference is 

negligible on the overall reliability estimation and this is confirmed by the Kullback-Leibler divergence 

for the two reliability functions, 𝐷𝐾𝐿(𝑟𝑒𝑙(𝑡)𝑀𝐶𝑆 ∥ 𝑟𝑒𝑙(𝑡)𝐴𝑁𝑁) = 1.46 E-03. 

 

5.3. Reduced Berlin metro network 

We consider the simplified representation of the Berlin metro system [20] given in Fig. 13. The network 

system comprises of 𝑚 = 50 stations, which have been divided in 𝐾 = 2 types, based on their number 

of connections: stations with a maximum of three connections are grouped in type 1,  𝑚1 = 22, and 

stations with more than three connections are grouped in type 2, 𝑚2 = 28. We assume that stations of 

type 1 have disservice failure times following an exponential distribution with 𝜆 = 1 in arbitrary units 
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of inverse time, whereas stations of type 2 have disservice failure times following a Weibull distribution 

with parameters 𝑎 = 1 and 𝑏 = 2.    

 

Figure 13 – Simplified representation of the Berlin metro system with 50 stations: those of type 1 are in white, those of type 2 

are in black  (adapted from [20]). 

 
The network system survival signature is an array with dimension 23 × 29 and it is approximated using 

the ANN-based method presented in Section 3. The percolation threshold for the network system is 

𝑓𝑐 = 0.6642, which is used to solve 𝑃 = 153 of the 𝑀 = 667 entries of the survival signature. Among 

the remaining entries, 𝑄 = 314 are randomly selected and approximated by MCS. The ensemble of 

ANNs, comprising FNNs with 𝑛𝑙𝑎𝑦𝑒𝑟 = 1 and 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 = [20 , 30], is trained and used to retrieve the 

missing 𝑆 = 200 entries. The confidence intervals for the survival signature estimates are built with 

𝛼 = 90%, with a resulting average width of 1.58E-02 and a coverage value of 96.5%. 

For completeness, a comparative study with the crude MCS method is given. The time needed to 

approximate the survival signature using MCS is compared with the time needed using the ANN-based 

method: the former is 652.71 s, the latter is 351.92 s, with 46.1% time saving. The training time for the 

ensemble of ANNs is 5.56 s. 

The survival signature estimated with the ANN-based method is used to compute the network system 

reliability (Eq. (2)) for a mission time 𝑇𝑚 = 1 in arbitrary units of time. In Fig. 14, this is benchmarked 

to the reliability obtained using the survival signature approximated by MCS, and, for illustrative 
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purposes, the error bounds, in terms of 5th and 95th percentiles of the survival signature, are given for 

the two methods. 

    

Figure 14 – Survival function of the system in Fig. 13 computed with the survival signature approximated by the crude MCS 

method (blue dashed line), with corresponding error bounds in red, and approximated by the ANN-based method (light blue), 

with corresponding error bounds in black. 

 
There is a clear agreement between the two reliability functions, and the difference in the error bounds 

width is not discernible on the overall reliability evaluation. The accuracy of the ANN-based method in 

approximating the survival signature, and, eventually, the network system reliability, is also confirmed 

by the value of the Kullback-Leibler for the two functions, 𝐷𝐾𝐿(𝑟𝑒𝑙(𝑡)𝑀𝐶𝑆 ∥ 𝑟𝑒𝑙(𝑡)𝐴𝑁𝑁) = 6.43E-04.  

 

5.4. IEEE 118-Bus Case: American Electric Power System 

We consider the network system in Fig. 15, which represents a portion of the American Electric Power 

System (IEEE 118-Bus System) as presented in [27] (2003 version). The network system comprises of 

𝑚 = 118 buses, which have been divided in 𝐾 = 2 types according to their bus type. In detail, 𝑚1 =

64 nodes are load-controlled buses and 𝑚2 = 54 nodes are voltage-controlled buses (i.e., the buses 
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which generators are connected to). For the purpose of this work, we assume that components of type 

1 have failure times following an exponential distribution with 𝜆 = 1 in arbitrary units of inverse time, 

whereas components of type 2 have failure times following a Weibull distribution with parameters 𝑎 =

1 and 𝑏 = 2.   

 

Figure 15 – IEEE 118-Bus System Case [27] (2003 version). Generators denoted by the symbol “G”. 

 

The network system survival signature is an array of dimension 65 × 45 and it is here approximated 

with the ANN-based method. The percolation threshold is 𝑓𝑐 = 0.6500, which is used to solve 𝑃 =

903 of the 𝑀 = 3575 entries of the survival signature. 𝑄 = 1600 among the remaining entries are 

randomly selected and approximated by MCS, so that a sparse survival signature array comprising 70% 

of the entire survival signature is available. The ensemble of ANNs consisting of FNNs with 𝑛𝑙𝑎𝑦𝑒𝑟 =

2 and 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 = [10 , 20], 𝐻 = 121 FNNs in total, is trained and used to estimate the missing 30% of 

the survival signature entries, i.e., 𝑆 = 1072 entries. The confidence intervals for the survival signature 

estimates are built with a confidence level 𝛼 = 90%: the average confidence interval width is 3.7E-03 

and the coverage is 91.6%.  
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The result provided by the ANN-based method is compared to that of the crude MCS. The time needed 

to approximate the survival signature using MCS is 34779.5 s, whereas that using the ANN-based 

method is 17149.7 s, with 50.7% time saving. The training time for the ensemble is 64.2 s.  

Eventually, the survival signature estimated with the ANN-based method is used to compute the 

reliability of the network system for a mission time 𝑇𝑚 = 1 in arbitrary units of time, and this is 

benchmarked with the reliability obtained using the survival signature approximated by MCS (Fig. 16). 

The error bounds computed using the 5th and 95th percentiles of the survival signature estimates are 

provided. 

 

Figure 16 – Survival function of the system in Fig. 15 computed with the survival signature approximated by the crude MCS 

method (blue dashed line), with corresponding error bounds in red, and approximated by the ANN-based method (light blue), 

with corresponding error bounds in black. 

Fig. 16 shows the good agreement between the two reliability functions. The error bounds for the MCS 

method are smaller than for the ANN-based method, but such difference is not influencing the overall 

accuracy, and this is confirmed by the Kullback-Leibler divergence of the two reliability functions, 

𝐷𝐾𝐿(𝑟𝑒𝑙(𝑡)𝑀𝐶𝑆 ∥ 𝑟𝑒𝑙(𝑡)𝐴𝑁𝑁) = 2.32 E-04. 
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6. CONCLUSION 

In this work, the reliability assessment of CIs has been considered. To cope with the complexity of these 

systems, the survival signature is used for rendering feasible the reliability calculation. However, the 

computation of the survival signature suffers from the curse of dimensionality and its calculation is 

unacceptably demanding for large-scale CIs. To circumvent the issue, the estimation of the survival 

signature has been formulated as a missing data problem and a novel method for its efficient 

approximation has been developed, based on the combination of percolation theory, MCS and ensemble 

of ANNs. The ANNs of the ensemble have different number of layers and of neurons, and are trained 

on partial survival signature information obtained with a limited number of MCS; they are trained to 

retrieve the missing data, i.e., for estimating the missing entries of the survival signature. The original 

contribution of the work lies in that it allows avoiding the full exploration of the network system state 

space for approximating the survival signature, either analytically or by means of simulations. Instead, 

the survival signature is estimated by an ensemble of ANNs which is trained on a limited set of survival 

signatures obtained by MCS, implying a significant reduction of the computational cost, which is of 

major importance when large and complex network systems are analyzed.  

The feasibility of the method proposed has been shown on a numerical example, which has also allowed 

to indicate general guidance for selecting the architecture and elements of the ensemble of ANNs. The 

practical applicability of the method has been shown on four real-world CIs models, i.e., the electricity 

transmission network of Great Britain, the New England power system (IEEE 39-Bus Case), the Berlin 

metro network and the American electric power system (IEEE 118-Bus Case). In all cases, relevant 

time savings have been achieved, without compromising the accuracy on the estimates. The value of 

the Kullback-Leibler divergence between the reliability calculated with MCS and the ANN-based 

method is listed in Table 3, for all the network systems analyzed. 

 

 

 

Table 3 –   Kullback-Leibler divergence 𝐷𝐾𝐿  for the network systems presented in Section 5.  
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Case Study 𝐷𝐾𝐿(𝑟𝑒𝑙(𝑡)𝑀𝐶𝑆 ∥ 𝑟𝑒𝑙(𝑡)𝐴𝑁𝑁) 

1 2.51E-02 

2 1.46 E-03 

3 6.43E-04 

4 2.32 E-04 

 

The bottleneck of the method from the point of view of the computational effort remains the MCS, and 

future work will be devoted to address this issue. 

 

 

Acronyms  

 

ANNs Artificial Neural Networks 

CIs Critical Infrastructures 

FNNs Feedforward Neural Networks 

MCS Monte Carlo Simulation 

MSE Mean Squared Error 

 

Symbols 

 

𝑥  System Boolean state vector 

𝑥𝑖  Boolean state of the i-th component of the system (system of one component type)  

𝑥𝑘  Boolean state vector of components of type 𝑘 of the system 

𝑥𝑖
𝑘  Boolean state of the i-th component of type 𝑘 of the system 

𝑚  Total number of components of the system 

𝑚𝑘  Number of components of type 𝑘 of the system 

𝑘  Index of component types, 𝑘 = 1, … 𝐾 

𝐾  Number of component types in the system 

𝜑  Structure function of the system 

𝑙𝑘  Number of functioning components of type 𝑘 
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𝑙  Vector of the number of functioning components of each type 

𝑆𝑙1,𝑙2,…,𝑙𝐾
  Set of all the Boolean state vector satisfying 𝑙 = 𝑙1, 𝑙2, … , 𝑙𝐾 

Φ  Survival signature 

𝑀  Total number of survival signature entries 

𝑃(𝑇𝑠 > 𝑡)  System survival function at time 𝑡 

𝐶𝑡
𝑘  Number of components of type 𝑘 functioning at time 𝑡 

𝐹𝑘(𝑡)  Cumulative distribution function for the failure time of components of type 𝑘 

j Index of survival signature entry, 𝑗 = 1, … , 𝑀 

{𝑙𝑗}   Set of all the survival signature entries 

{𝑙𝑗}
𝑃

  Subset of the survival signature entries solved by percolation 

𝑃  Magnitude of the subset of the survival signature entries solved by percolation 

{𝑙𝑗}
𝑄

  Subset of the survival signature entries solved by MCS 

𝑄  Magnitude of the subset of the survival signature entries solved by MCS 

{𝑙𝑗}
𝑇

    Subset of the survival signature entries in the training dataset 

𝑇  Magnitude of the subset of the survival signature entries in the training dataset 

{𝑙𝑗}
𝑆
  Subset of the survival signature entries solved by the ensemble of ANNs 

𝑆  Magnitude of the subset of the survival signature entries solved by the ensemble of ANNs 

𝑓𝑐  Percolation threshold 

𝑑  Network system node degree  

〈𝑑〉  First momentum of the node degree distribution over the network system 

〈𝑑2〉  Second momentum of the node degree distribution over the network system 

𝑁  Number of nodes in the network system 

{𝑎𝑖𝑗}  Adjacency matrix 

𝐸(𝐺)  Efficiency of the network system 𝐺 

𝑟𝑖𝑗  Shortest path length between node 𝑖 and 𝑗 

𝑥𝑙   Generic system Boolean state vector for a system with 𝑙 components functioning 

𝑛  Number of samples for MCS 
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𝑋𝑇𝑅𝐴𝐼𝑁  Training dataset for the ensemble of ANNs 

Φ̂(𝑙)ℎ   Estimated survival signature for entry 𝑙 obtained by the ℎ-th model of the ensemble  

ℎ  Index of ensemble models, ℎ = 1, … , 𝐻 

𝐻  Number of single models in the ensemble 

Φ̂(𝑙)  Estimated survival signature for entry 𝑙 obtained by the ensemble  

𝜎𝑙
2  Estimate error variance 

Φ̂(𝑙)𝑙𝑜𝑤  Lower estimate of the survival signature for entry 𝑙 

Φ̂(𝑙)𝑢𝑝  Upper estimate of the survival signature for entry 𝑙 

𝛼  Predefined confidence level 

𝐶𝑑𝑜𝑓
𝛼   (1 − 𝛼)/2 quantile of a Student t-distribution with a number of degree of freedom 

𝑛𝑙𝑎𝑦𝑒𝑟  Number of layers of the FNNs in the ensemble 

𝑛𝑛𝑒𝑢𝑟𝑜𝑛  Number of neurons in a layer of the FNNs in the ensemble 

𝜆  Parameter of the exponential distribution of the components failure time 

𝑎  Shape parameter of the Weibull distribution of components failure time 

𝑏  Scale parameter of the Weibull distribution of components failure time 

𝑇𝑚  System mission time 

𝐷𝐾𝐿  Kullback-Leibler divergence 

𝑟𝑒𝑙(𝑡)𝑀𝐶𝑆  Reliability estimated with MCS 

𝑟𝑒𝑙(𝑡)𝐴𝑁𝑁  Reliability estimated with the ensemble of ANNs 
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