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a b s t r a c t

We address the problem of spatial prediction for Hilbert data,
when their spatial domain of observation is a river network.
The reticular nature of the domain requires to use geostatistical
methods based on the concept of Stream Distance, which cap-
tures the spatial connectivity of the points in the river induced by
the network branching. Within the framework of Object Oriented
Spatial Statistics (O2S2), where the data are considered as points
of an appropriate (functional) embedding space, we develop a
class of functional moving average models based on the Stream
Distance. Both the geometry of the data and that of the spatial
domain are thus taken into account. A consistent definition of
covariance structure is developed, and associated estimators are
studied. Through the analysis of the summer water temperature
profiles in the Middle Fork River (Idaho, USA), our methodology
proved to be effective, both in terms of covariance structure
characterization and forecasting performance.

© 2023 The Author(s). Published by Elsevier B.V. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The need to analyse and extract useful information from extremely complex and varied data
as certainly been a central challenge for the statistical community in recent years. The statistical
ethods formulated for scalar data are not useable in those – increasingly frequent – contexts in
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which the data are featured by a high complexity (such as curves, surfaces or images). For this
reason, Functional Data Analysis (FDA, Ramsay and Silverman (2005)) and Object Oriented Data
Analysis (OODA, Marron and Alonso (2014)) have attracted great interest among researchers and
extensive effort has been made in developing functional versions for a wide range of classical
statistical methods. Whenever data are georeferenced, however, the complexity of the data is
compounded by the need to take into account the dependence between observations induced by
their spatial proximity. A relatively large body of literature has recently focused on developing
methods of spatial statistics for general types of data objects, including functional data, distributions
and data belonging to Riemannian manifolds. These efforts lie within the domain of Object Oriented
Spatial Statistics (O2S2, Menafoglio and Secchi (2017)), a recent system of ideas for the analysis of
spatial complex data, founded on a strong geometrical approach to the data analysis. The methods
developed so far allow one to model the dependence among data, perform dimensionality reduction,
as well as perform prediction at unsampled locations within the domain Horváth and Kokoszka
(2012), Menafoglio and Secchi (2017), Mateu and Giraldo (2021). However, all these methods are
focused on Euclidean spatial domains, or on mildly non-Euclidean spatial regions that, locally, admit
a Euclidean representation (see Menafoglio et al. (2018, 2021)). As a matter of fact, vast areas of
geosciences study random processes which naturally develop over non-Euclidean settings, where
the closeness between data locations is naturally expressed through the shortest path (i.e., the
geodesic) induced by the physics of the phenomenon. For instance, when studying aquatic variables
in a stream network system, the proximity among sites is better represented by the water distance
hich separates the locations, rather than by the Euclidean shortest path, which does not account

or the topology and connectivity of the network. Aiming to enrich that branch of the environmental
nd ecological research that deals with the characterization of freshwater stream environments,
e will analyse the maximum daily water temperatures of the Middle Fork river, a 104-mile-long
167 km) river in central Idaho, USA. Indeed, concerns about climate change and its consequences
n terms of habitat alteration, have led to extensive stream temperature monitoring by dozens of
atural resources agencies throughout North America and Europe. The development of methods for
nalysing these data is therefore of great topicality. The data under analysis consist of the maximum
aily water temperatures recorded for 47 days at 157 locations of the Middle Fork river, depicted
n Fig. 1a together with the observation sites. The temperature profiles for each location are shown
n Figs. 1b and 1c.

Although relevant for an increasing number of industrial and environmental applications (see,
.g., Menafoglio and Secchi (2019)), working with non-Euclidean spatial domains poses challenges,
ecause the usual parametric families (e.g., spherical, Matérn) for the covariance among obser-
ations may be no longer positive semi-definite under a non-Euclidean metric (Curriero, 2006).
onetheless, in a few cases, it is possible to derive ad-hoc parametric families, which are well-suited
o the topology of the domain under study. This is the case of the models for stream networks
roposed and extensively studied by Ver Hoef et al. (2006), Cressie et al. (2006), Peterson et al.
2007), Ver Hoef and Peterson (2010), Peterson and Ver Hoef (2010). These models are built upon
moving average construction of Yaglom (1987), and precisely account for the dependence among
bservations induced by their water distance (named stream distance). This approach yields valid
ovariance models and proper estimation procedures for spatial data, which can be used whenever
heir domain of reference can be represented as a binary tree — the water flowing from its root
o its leafs. Although these innovative models exhibit an incredible potential, their range of action
s still limited to scalar data. As a matter of fact, while sensors typically record relevant variables
ontinuously along time, previous works need to compress this rich set of information into scalar
ummaries (e.g., the monthly average temperature, the average weekly dissolved oxygen), inevitably
eading to a loss of information. The aim of this work is to overcome these limitations, extending
he theory of Ver Hoef et al. (2006), Cressie et al. (2006) to general object data, provided that these
an be embedded in a (separable) Hilbert space. This setting includes, e.g., the case of functional
ata (which are typically embedded in the space L2 of square-integrable functions) as well as that
f distributional data (for which the embedding in a Bayes Hilbert space can be used, Van Den
oogaart et al. (2014)). To the authors’ knowledge, the only existing work enabling the analysis of
unctional data over a stream network is that by Haggarty et al. (2014). Motivated by the clustering
2
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Fig. 1. (a) Middle Fork river. Points indicate the locations of observed data. (b) Water temperatures at the 157 locations
of the Middle Fork River from 15 July 2005 to 31 August 2005. (c) Smoothed functional data.

analysis of temporal profiles of nitrate concentrations along the River Tweed (Scotland), these
authors propose to model the spatial covariance among observations through the valid models
of Ver Hoef et al. (2006), by grounding on integral summaries of the functional data. However,
even though the framework of Haggarty et al. (2014) uses typical concepts of FDA, it does not
provide a characterization of the infinite-dimensional random field generating the data (being the
covariance actually based on scalar summaries), and thus only allows for unsupervised (explorative)
analyses. As a key element of innovation with respect to existing literature, we here provide a direct
construction of a functional moving average process distributed over a stream network, that creates
a solid foundation upon which developing a strategy for variographic analysis and estimation of the
spatial covariance structure, which can ultimately be used for the scope of spatial prediction. The
remaining part of this work is organized as follows. Section 2 presents a review of the models
of Ver Hoef et al. (2006), which is instrumental to the extension of the construction to Hilbert data
presented in Section 3. Section 4 proposes estimators for the spatial dependence of the field under
stationary and non-stationary assumptions, and presents the associated Kriging predictors. Section 5
discusses two illustrative simulated examples and in Section 6 the proposed methods are employed
in the analysis of the water temperature profiles along the Middle Fork river.

2. Stream network models for scalar observations

In this section, a brief review of the models proposed by Ver Hoef et al. (2006) for scalar data
istributed over a stream network is given. The reader is referred to Ver Hoef et al. (2006), Peterson
t al. (2007), Ver Hoef and Peterson (2010), Peterson and Ver Hoef (2010) for further details. The
tream networks considered in this work are topologically modelled as dendritic networks made
p of a finite number of stream segments, indexed by i = 1, 2, . . . . Each segment, which is a set

of point locations lying on a straight line, and is associated with a unique direction, that is the
direction of the water flow. Having assumed the network to be dendritic, there will always be a
single most-downstream point, to which from now on we will refer to as the outlet. It is therefore
possible to define the ‘‘upstream distance’’ for each point in a network as the length of the path
(on the network) that connects the point with the outlet. To set the notation, let D be the stream
network domain, s a generic spatial location (i.e., a point) in D, and let I be the whole set of stream
segment indices. For i ∈ I , the most downstream location in the ith segment is denoted as l , whereas
i

3
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Fig. 2. Representation of flow-connected (a, c) and flow-unconnected (b, d) locations, and moving average functions for
ail-up (a, b) and tail-down (c, d) models. Locations on the stream network are indicated as circles; stream-distances
etween locations are indicated as dashed lines in (a) and (b).
ource: Modified from (Peterson and Ver Hoef, 2010).

he most upstream location is ui. The index set of stream segments upstream of a point si belonging
o i ∈ I , will be Usi ⊆ I; segment i is excluded from Usi . Analogously, Dsi ⊆ I is the index set of all
stream segments downstream of si, including the segment i containing si. Using these definitions, we
an say that two locations, si and sj, on a stream network are ‘‘flow-connected’’ (FC) if Dsi ∩Dsj = Dsi
or Dsi ∩ Dsj = Dsj . In other words, water must flow from one site to another in order for the pair
to be considered flow connected (see Fig. 2a and 2c). In the following, we denote by Bsi,sj the set
of stream segments between two locations si, sj, including the segment for the upstream location
but excluding the segment for the downstream location. The same definition holds if we want to
identify the segments between location si and segment j, for which we will use the notation Bsi,[j].
Finally, it is possible to define the stream distance as the shortest distance between two locations,
with the constrain that all displacements are taken along the network.

d(si, sj) =

{
|si − sj| if si and sj are flow-connected,
(si − u) + (sj − u) otherwise.

(1)

Here u is the nearest junction downstream which is common to both flow-unconnected locations.
Consider now two flow-unconnected locations. Conventionally, we will use a to indicate the shortest
distance to u while b indicates the largest one. We use h for the distance between two FC locations
(see Fig. 2b).

We are now able to enter the core of the models proposed by Ver Hoef et al. (2006). To build
the random process {Z(s), s ∈ D} on the stream network domain D, these authors generalize the
moving-average construction of Yaglom (1987), originally designed on R1, to the topology of D.
Yaglom (1987) defines the element Z(s) of a random process on R1 as

Z(s) =

∫
+∞

−∞

g(x − s|θ)dW (x) (2)

where W (x) is a white noise process and g(x|θ) is called the moving-average (MA) function, which is
defined on R1 and assumed to be squared integrable. To account for the topology of the domain, Ver
4
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Hoef et al. (2006) use the same construction, but compute the integral in (2) piece-wise, summing
up the contribution from each segment of the network associated with non-null values of the MA
function g(x|θ). The key idea is that the overlap between the MA function of one random variable
and that of another give rise to a partial correlation between these two variables. Notice that the
moving average function could go in both directions, up and down the stream with respect to flow,
and this choice will discriminate whether the final model will be a tail-up or tail-down, respectively.
rom the moving average construction (2) it is possible to obtain the autocovariance between two
lements of the field Z(s) and Z(s + h) as

Ct (h|θ) =

{∫
+∞

−∞
(g(x|θ))2dx + η h = 0∫

+∞

−∞
g(x|θ)g(x − h|θ)dx h > 0,

(3)

here η is the nugget effect. From this construction, when D ⊂ R1, several classes of models
an be obtained (e.g., spherical, exponential, Mariah; see Yaglom (1987)). Analogously, parametric
lasses are obtained by Ver Hoef et al. (2006) by computing the integrals in (3) piece-wise
long the stream network. Table 1 reports examples of tail-up and tail-down models, which
re further specified below. For clarity of notation, recall that, as in classical geostatistics, the
practical) range parameter θr represents the minimum separating distance for two observations to
e (approximately) uncorrelated, whereas the sill parameter θv defines the variance of the process.

.1. Tail-up models

In the tail-up models (TU), the support of the moving average functions is not null only moving
n the upstream direction (Fig. 2a and 2b). Obviously, if two locations are not flow connected, the
orresponding tail up moving average will never overlap (Fig. 2b). Hence, null covariance is asso-
iated to two flow unconnected random variables, making tail-up models particularly appropriate
hen the variable of interest is dominated by flow (e.g. organisms or materials that move passively
ownstream like pollutants, waterborne chemicals and so on). The way that g(x|θ) gets split as we
o upstream plays a crucial role to ensure the stationarity of the spatial process. Segment weights
k are used to proportionally split the function between upstream segments when the MA function
eaches a confluence in the network, eventually obtaining the following expression for the element
(si)

Z(si) =

∫ ui

si

g(x − si|θ)dW (x) +

∑
j∈Usi

( ∏
k∈Bsi,[j]

√
ωk

)∫ uj

lj

g(x − si|θ)dW (x). (4)

In (4), for each segment i in the network, the weights associated to the two segments j and k
in which segment i splits are such that 0 ≤ ωj, ωk ≤ 1 and ωj + ωk = 1. Note that the
weights ωk may be chosen as to reflect specific hydrological characteristics of each segment, such
as discharge, watershed area or flow volume (Ver Hoef et al., 2006). The covariance between two
random elements Z(si), Z(sj) defined by (4) is then given by

C(si, sj|θ) =

⎧⎪⎨⎪⎩
0 if si and sj are not flow connected
Ct (0|θ) if si = sj
πi,jCt (h|θ) otherwise,

(5)

where πi,j =
∏

k∈Bsi,sj

√
ωk, h is the stream distance between the two flow connected locations

on the stream network, and the (unweighted) covariance functions Ct (0|θ) are obtained by using
oving average functions in one dimension given in (3).

.2. Tail-down models

In contrast to the tail-up models, tail-down (TD) models arise when the MA function is non-zero
nly downstream of a location. This means that the ‘‘tail’’ of the moving average functions points
5
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in the flow direction (Fig. 2c and 2d). Therefore, the tail-down random variable has the following
expression:

Z(s) =

∫ s

−∞

g(s − x|θ)dW (x). (6)

As shown in Fig. 2c and 2d and by direct computations, autocorrelation in tail-down models is
allowed both for flow-connected and flow-unconnected locations. Moreover, since the MA functions
do not split at the junctions, introducing a weighting procedure is not needed anymore. Some
examples of the tail-down covariance structures are given in Table 1. Due to their characteristic
of allowing correlation for both connected and not connected pairs of sites, tail-down models are
particularly indicated for modelling variables, such as fish or aquatic insects, that can move both
upstream and downstream.

3. Functional random fields over stream networks

Let (Ω,F,P) be a probability space and H a separable Hilbert space, equipped with operations
(+, ·) and inner product ⟨·, ·⟩, inducing the norm ∥ · ∥. Following (Menafoglio et al., 2013), we
consider the case of real-valued functional observations and assume that each element of H is a
function X : τ → R, τ being a compact subset of R. Denote by D the spatial domain, and let

{Xs, s ∈ D ⊆ Rd
} (7)

be a functional random field valued in H . The theory of random processes on Hilbert spaces is
well established when D is a subset of Rd (see, e.g., Bosq, 2000); in the following, we elaborate
on the case of D being a stream network domain, defining the field (7) by direct construction. In
this work, we will always assume the square-integrability of the process, i.e., that each element
Xs, s ∈ D, of the random field is such E[∥Xs∥

2
] < ∞; we denote this as Xs ∈ L2(Ω;H). As in the

sual setting of geostatistics, we consider that a partial observation of the field is available at given
non-random) spatial locations s1, . . . , sn in D, and denote the functional dataset as Xs1 , . . . ,Xsn .
Following (Bosq, 2000), for any s1, s2 in D, we define the cross-covariance operator between the
elements Xs1 and Xs2 of (7) as the operator Cs1,s2 : H → H acting on the (non-random) element
x ∈ H as Cs1,s2x = E[⟨Xs1 − ms1 , x⟩(Xs2 − ms2 )], with ms1 (ms2 ) the mean of the process in s1 (s2).
The family of cross-covariance operators {Cs1,s2 , s1, s2 ∈ D} fully defines the second-order properties
of the field (Bosq, 2000; Horváth and Kokoszka, 2012). A (global) measure of dependence for the
process (7) is instead provided by the so-called trace-covariogram (Caballero et al., 2013; Menafoglio
et al., 2013). This is defined as the (real-valued) function C : D × D → R:

C(s1, s2) = E
[
⟨Xs1 − ms1 ,Xs2 − ms2⟩

]
. (8)

Note that C(s1, s2) defines a scalar product on L2(Ω;H) and it is positive definite. Moreover, C(s1, s2)
coincides with the trace of the cross-covariance operator Cs1,s2 (Menafoglio et al., 2013). Recall also
that the field (7) is second-order stationary if (i) the mean is spatially constant (E[Xs] = m for all
s ∈ D), and (ii) the family of cross-covariance operators is stationary, i.e., if there exist a family of
operators {Ch, h ∈ Rd

} such that Cs1,s2 = Ch for all s1, s2 satisfying s1 − s2 = h. The assumption of
lobal second-order stationarity requires, instead of condition (ii), that (ii′) the trace-covariogram
s stationary, i.e., that there exist a function C̃ such that C̃(h) = C(s1, s2) for all s1, s2 satisfying
1 − s2 = h.

Hörmann and Kokoszka (2011) show that every functional random process (7) with constant
ean can be expressed through the following basis expansion

Xs = m +

∑
k≥1

ξk(s)ek. (9)

ere {ek, k ≥ 1} is an orthonormal basis of H and the random coefficients ξk(s) = ⟨Xs − m, ek⟩ are
he projections of the functional random variable Xs on the orthonormal basis. These coefficients
etermine both the stationarity and the covariance structure of the functional process. To ease the
otation, we hereafter assume the process to be zero mean.
6
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Table 1
Covariograms and Semivariograms for tail-up and tail-down models. θr , θv ∈ R+ are respectively the range and the sill parameters. The notation FC and FU is used to denote
respectively that si and sj are flow-connected or flow-unconnected.

ogram

=

⎧⎪⎪⎨⎪⎪⎩
0 if si = sj

θv − πi,jθv

(
1 −

h
θr

)
if FC and h ≤ θr

θv if h > θr or if FU.

=

⎧⎪⎪⎨⎪⎪⎩
0 if h = 0

θv − πi,jθv

(
1 −

3
2

h
θr

+
1
2

h3

(θr )3

)
if FC and h ≤ θr

θv if h > θr or if FU.

=

⎧⎪⎨⎪⎩
0 if h = 0
θv − πi,jθv

(
exp(−h/θr )

)
if FC

θv if FU.

=

⎧⎪⎪⎨⎪⎪⎩
0 if h = 0

θv − πi,jθv

(
log(h/θr+1)

h/θr

)
if si and sj are FC

θv if si and sj are FU.

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if h = 0
θv

h
θr

if FC and h ≤ θr

θv
b
θr

if b < θr and if FU
θv otherwise.

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if h = 0

θv

(
3
2

h
θr

−
1
2

h3

(θr )3

)
if FC and h ≤ θr

θv − θv

(
1 −

3
2

a
θr

+
1
2

b
θr

)(
1 −

b
θr

)2
if FU and b < θr

θv otherwise.

=

⎧⎪⎨⎪⎩
0 if h = 0
θv

(
1 − exp(−h/θr )

)
if FC

θv

(
1 − exp(−(a + b)/θr )

)
if FU.

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if h = 0

θv

(
1 −

log(h/θr+1)
h/θr

)
if FC, h > 0

θv

(
1 −

log(a/θr+1)−log(b/θr+1)
(a−b)/θr

)
if FU, a ̸= b

θv

(
1 −

1
a/θr+1

)
if FU, a = b.

7

Name Covariogram Semivari

Tail-up Linear with Sill C(si, sj|θ) =

⎧⎪⎨⎪⎩
θv if si = sj
πi,jθv

(
1 −

h
θr

)
1( h

θr ≤1) if FC

0 if FU.

γ (si, sj|θ)

Tail-up Spherical C(si, sj|θ) =

⎧⎪⎨⎪⎩
θv if si = sj
πi,jθv

(
1 −

3
2

h
θr

+
1
2

h3

(θr )3

)
1( h

θr ≤1) if FC

0 if FU.

γ (si, sj|θ)

Tail-up Exponential C(si, sj|θ) =

⎧⎪⎨⎪⎩
θv if si = sj
πi,jθvexp(−h/θr ) if FC
0 if FU.

γ (si, sj|θ)

Tail-up Mariah C(si, sj|θ) =

⎧⎪⎨⎪⎩
θv if si = sj
πi,jθv

(
log(h/θr+1)

h/θr

)
1(h>0) if FC

0 if FU.

γ (si, sj|θ)

Tail-down Linear with Sill Cd(si, sj|θ) =

⎧⎨⎩θv

(
1 −

h
θr

)
1( h

θr ≤1) if FC

θv

(
1 −

b
θr

)
1( b

θr ≤1) if FU.
γ (si, sj|θ)

Tail-down Spherical Cd(si, sj|θ) =

⎧⎨⎩θv

(
1 −

3
2

h
θr

+
1
2

h3

(θr )3

)
1( h

θr ≤1) if FC

θv

(
1 −

3
2

a
θr

+
1
2

b
θr

)(
1 −

b
θr

)2
1( b

θr ≤1) if FU
γ (si, sj|θ)

Tail-down Exponential Cd(si, sj|θ) =

{
θvexp(−h/θr ) if FC
θvexp(−(a + b)/θr ) if FU

γ (si, sj|θ)

Tail-down Mariah Cd(si, sj|θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
θv

(
log(h/θr+1)

h/θr

)
if FC, h > 0

θv if FC, h = 0

θv

(
log(a/θr+1)−log(b/θr+1)

(a−b)/θr

)
if FU, a ̸= b

θv

(
1

a/θr+1

)
if FU, a = b

γ (si, sj|θ)
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3.1. Functional moving-average models on the real line

We now use the direct construction (9) to show the existence of a functional version of the MA
andom variables defined in (2). We set D = R1, and consider N independent, zero mean, second-
rder stationary and isotropic scalar random fields, {ξk(s), s ∈ D} for k = 1, . . . ,N . We further
ssume that each scalar random field is defined through a MA model

ξk(s) =

∫
+∞

−∞

g (k)(x − s|θ)dWk(x), (10)

In (10), each g (k)(x− s|θ) needs to be square integrable for the stochastic integral to be well defined,
i.e.,

∫
+∞

−∞
|g (k)(x − s|θ)|2dx < +∞. Let us now focus on a truncated version of (9), obtained as

X (N)
s =

N∑
k=1

ξk(s)ek, (11)

where {ek, k ≥ 1} is an orthonormal basis of H . In this case, each Xs is valued in H (N), where
H (N)

= span{e1, . . . , eN} is the finite-dimensional Hilbert space generated by the N orthonormal
vectors e1, . . . , eN . Moreover, Xs is square-integrable (i.e., Xs ∈ L2(Ω;H (N))) as

E
[X (N)

s

2
]

= E
[ N∑

k=1

(∫
+∞

−∞

g (k)(x − s|θ)dWk(x)
)2]

=

N∑
k=1

∫
+∞

−∞

(
g (k)(x − s|θ)

)2dx < +∞, (12)

thanks to the Ito isometry and to the fact that each g is deterministic and square integrable. Hence,
the variable X (N)

s has finite second moment, which guarantees the existence of the family of cross-
covariance operators for the process {X (N)

s , s ∈ D}. It is worth highlighting that the boundedness of
the last sum in (12) is due to the finiteness of the orthonormal basis being considered. Letting N →

+∞, the square-integrability of Xs is only obtained if the sequence {ξk(s)}k≥1 belongs to l2(Ω;R)
(i.e., if

∑
k≥1 E[ξk(s)2] < ∞). This can be guaranteed including additional assumptions on each mov-

ing average function g(x|θ) (see Appendix A). In this case, the MA random field (9) has a well-defined
family of cross-covariance operators. Note that the covariance functions Ck(s1, s2) = E[ξk(s2)ξk(s2)]
of the scalar random fields appearing in (9) completely characterize the family of cross-covariance
operators of the field {Xs, s ∈ D}, thus also its trace-covariogram (see, e.g., Hörmann and Kokoszka,
2011; Menafoglio et al., 2013). In particular, the trace-covariogram of the process (9), obtained

from the moving average construction, is C(si, sj) =
∑N

k=1 E
[
ξk(si)ξk(sj)

]
=

∑N
k=1 C

(k)
t (h|θ), where

C (k)
t (h|θ) is the autocovariance function of the kth scalar random field {ξk(s), s ∈ D} (defined as in

(3)). Since the family of valid covariograms is a convex cone and each C (k)
t (h|θ) is a valid covariogram

or the kth random field, C(si, sj) is clearly a valid covariance function. On the other hand, any of
he valid covariance models available in D can be used to provide a valid covariance model for the
ield {Xs, s ∈ D}.

.2. Functional tail-up and tail-down models

The approach just introduced can be extended to a stream network domain D. Indeed, the
revious arguments still hold true if we assume that each scalar random field is represented as
tail-up model, i.e., as (see also Eq. (4))

ξk(s) =

∫ ui

s
g (k)(x − s|θ)dW (x) +

∑( ∏ √
ωn

)∫ uj

l
g (k)(x − s|θ)dW (x).
j∈Us n∈Bs,[j] j

8
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In this case, when the functional random process is built by direct construction as in (9), the
covariance function associated with each random field ξk is a combination of the covariance
functions of the scalar field defined in (5). The trace-covariogram of the functional process is then
easily obtained by linearity as

C(si, sj) =

⎧⎪⎪⎨⎪⎪⎩
0 if si and sj are not flow connected∑

k≥1 C
(k)
t (0|θ) if si = sj

πi,j

(∑
k≥1 C

(k)
t (h|θ)

)
otherwise.

(13)

Concerning the tail-down models, the procedure is even simpler, since in this case the weights
are not needed. Each scalar random field is obtained as (see (6))

ξk(s) =

∫ s

−∞

g (k)(s − x|θ)dW (x) (14)

where g (k)(s − x|θ) is a unilateral tail-down function with nonzero values only on the negative
(i.e., downstream) side of s as in the tail-down model introduced in Section 2.2. Similarly as in the
tail-up case, the trace-covariogram function for the functional tail-down process is straightforwardly
obtained as

C(si, sj) =

∑
k≥1

C (k)
d (si, sj|θ), (15)

where C (k)
d (si, sj|θ) is the covariance function associated to the kth scalar tail-down random field,

whose expression may be of the kind presented in Table 1. In the light of expressions (13) and
(15), one may wonder whether (and under which conditions) the families C (k)

t (h|θ) and C (k)
d (si, sj|θ)

are closed under conic combinations, i.e., if (and when) linear combinations, with positive weights,
of valid covariance functions in the same parametric family still belong to the same family. If this
was the case, the trace-covariogram of the functional process built in (9) would belong to the same
family as those of the 1D processes {ξk(s), s ∈ D}, k = 1, . . . ,N . Concerning C (k)

t (h|θ), it is well-
nown from scalar geostatistics that finite conic combinations of valid models are closed if and
nly if they belong to the same family and share the same range parameter. The same applies to
(k)
d (si, sj|θ), as can be straightforwardly derived from the expressions in Table 1. As such, if the
calar fields {ξk(s), s ∈ D}, k = 1, . . . ,N , share the same valid model and the same range parameter,
he trace-covariogram of the functional process (9) will belong to the same family and share the
ame range as the scalar fields, but will have a sill equal to the sum of the sills of the scalar fields.

. Model estimation and spatial prediction

.1. Estimation of the spatial covariance under stationarity

In this work, we will estimate the parameters of the covariance models proposed in Section 3
y estimating the trace-semivariogram of the field, which is defined, under global second-order
tationarity as γ (s1, s2) =

1
2E[∥Xs1 − Xs2∥

2
] and is related with the trace-covariogram through

the well-known relation γ (s1, s2) = C(s1, s1) − C(s1, s2) (see, e.g., Menafoglio et al., 2013). As in
scalar geostatistics, estimation of the trace-semivariogram can be performed by first determining an
empirical estimator and then fitting a valid model. As discussed in Section 3, all the valid models in
use in the scalar case can be adopted in the functional case too; for convenience, the semivariogram
models derived by Ver Hoef et al. (2006) are reported in Table 1. The semivariograms in Table 1
are defined piecewise, depending on the connectedness of the pair being considered. From now on,
the portion of a semivariogram associated to flow-connected (flow-unconnected) locations will be

denoted as ‘‘the flow-connected (flow-unconnected) portion of the semivariogram’’.

9
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4.1.1. Empirical semivariograms for stream networks
From Section 2 and the expressions in Table 1, it should be clear that, for both tail-up and tail-

own models, the covariance structure among observations does not depend only on the stream
istance but also on other characteristics such as flow connectedness, weights attributed to the
tream segments, and/or distances to a common junction. This dependence – which motivates the
se of the notation γ (si, sj|θ) instead of γ (si − sj|θ) – highlights the inadequacy in this context of
he empirical semivariogram proposed in the functional Euclidean setting (see,e.g. Caballero et al.,
013; Menafoglio et al., 2013). In the scalar setting, Zimmerman and Ver Hoef (2017) propose
nd discuss modifications of the (scalar) empirical estimator to deal with stream networks and
tream distances. They thus derive the flow-unconnected stream-distance (FUSD) semivariogram
and the flow-connected stream-distance (FCSD) semivariogram, able to deal both with the peculiar
topology of a stream network and with the stream distance. We here study functional counterparts
of these estimators, eventually aiming to fit the parameters of a valid model to the most appropriate
empirical estimator.

4.2. Flow-Unconnected Stream-Distance (FUSD) trace-semivariogram

The FUSD empirical trace-semivariogram is computed only from those site-pairs that are flow-
unconnected and, for such pairs, it is a function of the stream distance only. The FUSD trace-
semivariogram is thus defined as

γ̂FUSD(hk) =
1

2|N(Uk)|

∑
(si,sj)∈N(Uk)

Xsi − Xsj

2
, k = 1, . . . , KU , (16)

where N(Uk) = {(si, sj) : d(si, sj) ≈ hk,Usi ∩ Usj = ∅} is the set of flow-unconnected pairs
separated by a stream-distance approximately equal to hk, and |N(Uk)| is its cardinality. Note that,
if {Xs, s ∈ D} follows a pure tail-up model, the flow-unconnected portion of its semivariogram is
constant and corresponds to the sill (see Table 1). In this case, γ̂FUSD is an unbiased estimator for
the flow-unconnected portion of the trace-semivariogram and an estimate of the sill is obtained as

γ̄FUSD =

∑KU
k=1|N(Uk)|γ̂FUSD(hk)∑KU

k=1|N(Uk)|
, (17)

with KU the number of bins in which the set of stream distances is partitioned. On the other hand,
if {Xs, s ∈ D} follows a pure tail-down model, the flow-unconnected portion of its semivariogram
in general does not depend on the total stream distance (i.e., h = a + b, see Fig. 2) but on the two
stream distances from the sites within a site-pair to their common junction (i.e., a and b, see Fig. 2).
Therefore, in this case, the FUSD empirical semivariogram is not enough to characterize the spatial
dependence of flow-unconnected sites. It is worth noticing that an exception occurs if the tail-down
component has an exponential semivariogram; indeed, in this case the flow-unconnected part of
the semivariogram is a function of the total stream distance only; consequently, γ̂FUSD(·) remains
unbiased for it.

4.3. Flow-Connected Stream-Distance (FCSD) trace-semivariogram

The FCSD trace-semivariogram differs from the FUSD trace-semivariogram by being computed
from site-pairs that are flow-connected rather than flow-unconnected. Thus, it is defined as

γ̂FCSD(hk) =
1

2|N(Ck)|

∑
(si,sj)∈N(Ck)

Xsi − Xsj

2
, k = 1, . . . , KC, (18)

where N(Ck) = {(si, sj) : d(si, sj) ≈ hk,Usi ∩ Usj ̸= ∅}, is the set of flow-connected pairs separated

by a stream distance approximately hk, and |N(Ck)| is its cardinality.

10
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Note that now, if {Xs, s ∈ D} follows a pure tail-down model, the flow connected portion of
ts semivariogram is a function of the stream distance h between locations. In this case, the well-
nown valid models in use in scalar geostatistics can be used for parametric modelling (see Table 1).
oreover, similarly as for the scalar case, γ̂FCSD(·) is an unbiased estimator for the flow-connected
ortion of the trace-semivariogram of the process. On the other hand, if {Xs, s ∈ D} is a pure tail-up

process, γ̂FCSD(·) is not fully appropriate to estimate its covariance structure, because in those cases
the flow-connected portion of the trace-semivariogram is a function of the stream distance and of
the spatial weights (see Table 1). In Section 4.3.1 we will further expand on this point.

4.3.1. Parameters estimation
In this section we outline the steps to estimate a parametric model for the trace-semivariogram

whenever the underlying process that generated the data is assumed to follow either a pure tail-
up or a pure tail-down model. However, note that, in general, mixtures of tail-up and tail-down
models may arise and these are, in principle, more flexible to describe the spatial dependence. The
extension of the proposed procedure to the case of mixture models will be discussed in Section 7.
The identification of the underlying process – based on empirical trace-semivariograms – is a rather
hard task. Inspired by the strategy for fluvial variography developed in Zimmerman and Ver Hoef
(2017), we propose the following procedure to estimate a valid trace-semivariogram model γ (·, ·|θ),
and the associated trace-covariogram C(·, ·|θ).

(i) Estimate the empirical FCSD trace-semivariogram γ̂FCSD(hk), k = 1, . . . , KC . from the observa-
tions xs1 , . . . , xsn using (18).

(ii) Estimate the empirical FUSD trace-semivariogram γ̂FUSD(hk), k = 1, . . . , KU . from the obser-
vations xs1 , . . . , xsn using (16).

a. If γ̂FUSD(hk), k = 1, . . . , KU , is compatible with a pure nugget model, assume the process
to be pure tail-up.

b. If γ̂FUSD(hk), k = 1, . . . , KU , is not compatible with a pure nugget model, assume the
process to be pure tail-down.

(iii) Fit a valid model γ (·, ·|θ) to the empirical FCSD trace-semivariogram γ̂FCSD(hk) and get θ̂.
(iv) Obtain the trace-covariogram as C(·, ·|θ̂) plugging θ̂ in the stream-network trace-covariograms

expressions in Table 1.

Whenever the underlying process can be assumed to follow a pure tail-down model (see point (ii)
above) the outlined procedure can be applied without hindrance. This follows from the fact that
the flow-connected portion of the tail-down trace-semivariograms in Table 1 has exactly the same
expression as the classical models. In case of a pure tail-up model, instead, the approach presents
limitations, because the FCSD trace-semivariogram does not account for the spatial weights πi,j
in (13). Note that step (iii) consists of fitting a standard valid model, and neglects the weights
πi,j within the variograms of Table 1. These classical geostatistical models are recovered when
including weights πi,j = 1 in the expressions of the theoretical semivariogram in Table 1; in
the following, the semivariogram associated with weights πi,j = 1 will be denoted as unweighted
flow-connected semivariogram. In fact, the empirical trace-semivariogram (18) is used in step (iii)
precisely as an estimator of the unweighted flow-connected semivariogram. Nevertheless, the
FCSD semivariogram is a biased estimator for the unweighted flow-connected semivariogram (see
Appendix B). As shown in the simulation study presented in the Supplementary Material, this bias
may adversely affect the analyst’s ability to correctly determine the range of spatial dependence
among flow connected sites (i.e., the range estimates tend to be negatively biased). A similar
problem is discussed by Zimmerman and Ver Hoef (2017), who eventually proposed an adjusted
empirical estimator (FCWA), which accounts for the weights and is unbiased for the unweighted
flow-connected semivariogram. A modification of the empirical trace-semivariogram (18) that
follows the same line of Zimmerman and Ver Hoef (2017) (named FCWA2), is developed and studied
via simulation in the Supplementary Material. These developments are not reported in the outlined
procedure because, despite their unbiasedness, the adjusted estimators proved to be characterized
11
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Fig. 3. (a) Simulated stream network. Points indicate the locations of observed data. (b) Simulated functional data for the
tail-down model. (c) Simulated functional data for the tail-up model.

by extremely high variance, hindering their use in practice. The same simulations show that the
range underestimation does not heavily affect the Kriging performances, thus suggesting that the
use of FCSD trace-semivariogram should be anyway preferred to its adjusted (unbiased) version.

4.4. Estimating the spatial dependence in the non-stationary case

The methods developed so far assume second-order stationarity. If stationarity does not hold, we
propose to use the non-stationary model of Menafoglio et al. (2013), which decouples the elements
of the random field {Xs : s ∈ D} in a non-stationary mean term ms (the drift) and a zero-mean
stationary residual component δs, i.e., Xs = ms + δs. In the following, we use for the stochastic
residual δs the models built in Section 3, and denote by C(s1, s2|θ), γ (s1, s2|θ) the trace-covariogram
nd trace-semivariogram of δs, respectively. A model for the drift term is needed to allow for the
stimate of C(·, ·|θ), γ (·, ·|θ), as these are assessed from the (estimated) residuals. We consider a
inear model, i.e.,

Xs =

L∑
l=0

alfl(s) + δs s ∈ D, (19)

here f0(s) = 1 for all s ∈ D, fl(·), l = 1, . . . , L, are known functions of the spatial variable s ∈ D and
l(·) ∈ H, l = 0, . . . , L, are functional coefficients independent of the spatial location. Estimation of
he linear model (19) can follow the very same lines as in the case of a Euclidean spatial domain,
roadly discussed by Menafoglio et al. (2013). These authors propose a generalized least-squares
GLS) estimator for the coefficients al, based on the covariance matrix of the residuals δs1 , . . . , δsn .
he very same procedure can be used in our setting, provided that the covariance matrix Σ is
nterpreted in terms of the stream-network trace-covariogram C(·, ·|θ), i.e., Σi,j = C(si, sj|θ). The
terative algorithm for estimating the model parameters in the non-stationary case is deferred to
ppendix C.

.5. Kriging prediction

Having estimated the model, spatial prediction at a target site s0 in D can be performed by using
he theory of object-oriented kriging presented in Menafoglio et al. (2013) (see also (Menafoglio
12



C. Barbi, A. Menafoglio and P. Secchi Spatial Statistics 58 (2023) 100784
and Secchi, 2017) for a recent review). In this setting, the kriging predictor is defined via a linear
combination of the data that have been observed: X ∗

s0 =
∑n

i=1 λ∗

i Xsi . The weights λ∗

1, . . . λ
∗
n ∈ R are

found as to minimize the global variance of the prediction error under the unbiasedness constraint,
i.e.,

(λ∗

1, . . . λ
∗

n) = argmin
λ1,...λn∈R:

Xλ
s0

=
∑n

i=1 λiXsi

Var(X λ
s0 − Xs0 ) subject to E[X λ

s0 ] = ms0 . (20)

Using the general model (19) – which clearly reduces to the stationary case when L = 0 – the global
optimum of problem (20) is obtained by solving the following linear system(

Σ F
FT 0

)(
λ
µ

)
=

(
σ0
f 0

)
(21)

where F is the design matrix of the linear model (19), λ is the vector of weights, µ the vector of
Lagrange multipliers, σ0 the vector containing the cross-covariances between observations and the
target (σ (i)

0 = C(si, s0|θ)), f 0 the design vector at the target site (f (l)0 = fl(s0)).

5. Two simulated examples

The procedure outlined in Section 4.3.1 is here applied to two simulated examples, one for the
tail-up case and one for the tail-down case. In both examples, we consider the stream network
domain D represented in Fig. 3a, characterized by 250 segments and n = 200 observation points;
this was generated using the SNN package (Ver Hoef et al., 2014) in R (R Core Team, 2020). Zero
mean functional random processes are simulated by exploiting the construction

Xs =

N∑
k=1

ξk(s)ek, (22)

which is analogous to (9), with m = 0. Here, {ek, k ≥ 1} denotes the Fourier orthonormal basis of
H = L2([0, 1]), and N is set to N = 7. Parameters for the generation of the scalar fields {ξk(s), s ∈ D},
k = 1, . . . ,N , are specific of the examples, and are detailed below. The fields {ξk(s), s ∈ D},
{ξj(s), s ∈ D} are assumed to be independent for j ̸= k; each {ξk(s), s ∈ D} is finally assumed to
be Gaussian.

5.1. Estimating the trace-covariogram in a pure tail-down model

In this example, for each field {ξk(s), s ∈ D} appearing (22), a tail-down exponential model
is used with sill θ (k)

v , range θ
(k)
r and nugget η(k) parameters set to (θ (k)

v , θ
(k)
r , η(k)) = (5, 6.5, 0), re-

spectively. Therefore the theoretical model for the functional process (22) is a tail-down exponential
model with parameters (θv, θr , η) = (35, 6.5, 0) (see the final remarks in Section 3.2). The functional
dataset in Fig. 3b was obtained by combining the realizations of the N = 7 scalar random fields
sampled at the n = 200 locations displayed in Fig. 3a. Fig. 4a displays the FCSD and FUSD empirical
estimators (see Eq. (18) and (16)), which share – as expected – the same non-trivial structure of
spatial dependence. Both trace-semivariograms were obtained considering 15 lags and a maximum
distance equal to half the maximum distance in the stream network.

Although, in general, the flow-connected portion of the trace-semivariogram (blue circles) is the
only one that should be considered to retrieve the parameter estimates (see the strategy outlined
in Section 4.3.1), we may here consider also the FUSD for the purpose, since – for the special
case of an exponential tail-down model – it is unbiased for the flow-unconnected portion of the
trace-semivariogram (see Section 4.1.1 and Table 1). Fitting the trace-semivariogram parameters
to the FCSD yields accurate estimates, (θ̂v, θ̂r ) = (34.57, 6.73), very close to the reference values
(θv = 35 and θr = 6.5). Nevertheless, the estimates obtained via FUSD are affected by a slight
overestimation of both the sill and the range (θ̂v, θ̂r ) = (38.16, 8.26). This overestimation may be
due to the variability of the FUSD estimator.
13
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Fig. 4. (a) Empirical FCSD trace-semivariogram (blue) and FUSD trace-semivariogram (yellow). The dot’s sizes are
proportional to the number of pairs for each binned distance class. (b) Empirical and fitted FUSD trace-semivariograms.
(c) Empirical and fitted FCSD trace-semivariograms. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

5.2. Estimating the trace-covariogram in a pure tail-up model

We here consider a functional tail-up model, built as in (22), and assuming for each field
{ξk(s), s ∈ D} a tail-up spherical model with sill θ (k)

v , range θ
(k)
r and nugget η(k) parameters set

o (θ (k)
v , θ

(k)
r , η(k)) = (10, 8.5, 0), respectively. Therefore, the resulting functional process (22) is

gain a tail-up spherical model, but characterized by the parameters (θv, θr , η) = (70, 8.5, 0). The
unctional dataset in Fig. 3c was obtained by combining the N = 7 independent realizations of the
calar random fields at the n = 200 sampling locations in D, with the first N = 7 elements of the
ourier basis {ek, k = 1, . . . , 7}. The empirical FUSD trace-semivariogram (16) and the empirical
CSD trace-semivariogram (18) are displayed in Fig. 5a. The FUSD semivariogram appears to be flat,
s expected in a pure tail-up model, and it can be used to unbiasedly estimate the variogram sill
ia expression (17). On the contrary, the flow connected pairs are featured by a non-trivial spatial
ependence. Indeed, the FCSD semivariogram exhibit a clear downward concavity near the origin,
ettling towards a sill not far from the value of the FUSD semivariogram. To retrieve estimated
arameters, we fit a spherical model to the FCSD, as shown in Fig. 5b. This leads to the following
arameters estimates: (θ̂v, θ̂r ) = (67.87, 5.53). Note that, while the estimated sill is close to the
eference value θv = 70, the range is underestimated, the reference value being θr = 8.5. This
endency is confirmed by the results of the simulation study in the Supplementary Material, and
t is due to the fact that FCSD trace-semivariogram neglects the weights πij appearing in (13), but
he simulation process clearly accounts for them. Finally, the sill estimated from the average of the
USD trace-semivariogram (see Eq. (17)) is θ̂v = 68.35, again rather close to the reference value.
e broadly explored, by simulation, the performance of FCSD trace-semivariogram to estimate the
patial dependence of the field; we also assessed the effect of its bias on the results of Kriging
rediction, which appears to be negligible. The results are deferred to the Supplementary Material
or brevity of exposition.

. Analysis of Middle Fork river water temperatures

.1. Middle Fork river and dataset

In this section, the proposed methods are employed in the analysis of the water temperature
rofiles of the Middle Fork river. The data consist of the maximum daily water temperatures
ecorded between 15 July 2005 and 31 August 2005 at several locations of the Middle Fork river,
104-mile-long (167 km) river in central Idaho, USA (Fig. 1). The data, which can be found and
ownloaded at https://www.fs.fed.us/rm/boise/AWAE/projects/SSN_STARS/software_data.html, has
een pre-processed and created as part of an NCEAS Workshop in April 2011 (National Center
or Ecological Analysis and Synthesis). The daily maximum water temperature (in ◦ C) have been
ecorded at each of the 157 locations for 47 days in the aforementioned summer period (15 July
14
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Fig. 5. (a) Empirical FCSD trace semivariogram and FUSD trace semivariogram. The dots sizes are proportional to the
number of pairs for each class of distances. (b) Empirical FCSD and fitted trace-semivariogram.

Fig. 6. Trace-semivariograms for the Middle Fork temperatures. Empirical estimates of the flow-connected and flow-
unconnected trace-semivariograms; the empirical variance is reported as a dashed red line. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

2005–31 August 2005). We embed the data in the Hilbert Space H = L2 of the square integrable
unctions endowed with the usual scalar product. The raw data (Fig. 1b) were smoothed via spline
moothing with a roughness penality (Fig. 1c). The number of basis functions (nb = 49) and the
moothing parameter (λ = 5) were chosen through a leave-one-out cross validation approach to
void overfitting. The watershed area accumulated downstream (km2), was used to compute the
eights for the tail up models, as a proxy variable for flow volume (see Ver Hoef and Peterson
2010)). Two covariates, namely the elevation of the upper stream segment node on which a
emperature sensor was located (m) and the upstream distance between the stream outlet and
he site (m), were used to model the drift term.

.2. Geostatistical analysis

The stationarity of the random field is evaluated from the empirical trace-semivariograms,
omputed by considering 13 distance classes with bins of equal size up to a maximum distance
f 63.11 km (Fig. 6). Visual inspection of the trace-semivariograms suggest that a non-stationarity
ssumption is appropriate for the random field, since the FCSD trace-semivariogram (blue dots in
ig. 6) seems to increase without bound, beside crossing the flow unconnected trace semivariogram
yellow dots in Fig. 6), indicating a trend contamination aligned with flow. This behaviour (crossing
omponents and unbounded growth) is indeed evidence of an unmodelled drift in upstream
istance (Zimmerman and Ver Hoef, 2017). Following the approach devised in Section 4.4, a drift
erm is thus included in the model. We here consider as covariate for the drift term the variables
x, y} ={elevation, distance upstream}, which are appropriate to describe a drift term aligned with
15
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Fig. 7. (a) Empirical trace semivariogram of the residuals obtained with an OLS estimate of the drift. (b) Empirical and
itted trace-semivariograms of the residuals obtained with WLS.

low (see Zimmerman and Ver Hoef (2017) for the scalar case). For the selection of the functional
orm for the drift, we follow the approach of Menafoglio et al. (2013), who suggest to consider
olynomial forms for the drift term, and select the optimal one through cross-validation. Here,
ach candidate model is evaluated in terms of kriging performances, quantified through the sum of
quared errors

SSEi = ∥Xsi − X ∗

si∥
2, i = 1, . . . , n, (23)

where X ∗
si stands for the kriging prediction of Xsi when this is left out of the sample. At this stage,

a simplified version of the Universal Kriging predictor with a covariance structure of pure nugget
is employed, thus providing the prediction which would have been obtained via FDA linear models
(indeed in this case the UK predictor reduces to the drift estimate). We thus considered as candidate
models the 31 polynomials of order lower than 2 (excluding the case of the sole intercept as drift).
For each candidate drift, the empirical trace-semivariograms of the residuals are computed to verify
that the optimal drift model selected according to the introduced criterion gives rise to a stationary
residual. The best model is the following:

m(s, t) = a0(t) + a1(t)x + a2(t)y + a3(t)x2 + a4(t)y2 + a5(t)xy, t ∈ τ = [1, 47]. (24)

Fig. 7a reports the empirical FCSD and FUSD trace-semivariogram of the residuals of model (24),
hen these are estimated via OLS. The shape of the flow connected trace-semivariogram is not
hat of a pure nugget, suggesting that the residuals are spatially correlated. On the other hand, the
low unconnected empirical semivariogram is compatible with a pure nugget model, suggesting the
se of a tail-up model for the field (see Section 4.3.1). In the following, we shall thus consider an
xponential tail-up model with sill θv , range θr and nugget η (see Table 1).
Having chosen the drift and the covariance models, the model parameters are estimated by

eans of the generalized least square criterion outlined in Section 4.4 and in Appendix C. Fig. 7b
isplays the FCSD empirical trace-semivariogram together with the fitted variogram model, char-
cterized by estimated parameters: (θ̂v, θ̂r , η̂) = (68.83, 25885.44, 93.59). Note that, as broadly
iscussed in Section 4.3.1, interpretation of θ̂r requires particular care, as it could be affected by a

negative bias. Kriging is eventually performed at a grid of new locations along the stream network,
by plugging-in the estimated parameters θ̂ = (θ̂v, θ̂r , η̂)′ in the linear system (21). To evaluate the
performance of the Kriging predictor, a leave-one-out cross validation (LOOCV) procedure is applied,
considering as measure of discrepancy between the true value and the predicted one the SSE defined
in (23) and the relative SSE performance index, given by SSE(rel.)

i =
SSEi

∥Xsi ∥
2 . The statistics shown in

Table 2 prove the satisfactory forecasting performance of the method. Fig. 8a displays with colours
the SSEi for each location on the river; a part for a few locations associated with a high estimation
error (SSE > 700, red dots), which possibly mark influential/outlying data, the kriging predictor
works properly. Fig. 9 shows the original data (Fig. 9a) together with the UK estimates (Fig. 9b) and
the corresponding kriging residuals (Fig. 9c). Note that the significant reduction of the total SSE,
16



C. Barbi, A. Menafoglio and P. Secchi Spatial Statistics 58 (2023) 100784

p

p

Fig. 8. SSE leave-one-out error for each location on the Middle Fork River.

Table 2
Summary indices of the distribution of SSE and SSE(rel) .

SSE SSE(rel)

Min 0.574 3.44 · 10−5

Median 43.346 4.19 · 10−3

Mean 132.897 1.6 · 10−2

Sum 20864.89 2.52

Fig. 9. Cross-validation analysis. (a) Original data and relative sample mean (bold). (b) Data predicted via Universal Kriging
and their mean (bold). (c) Difference between original and predicted data, their mean m̂r (in black) and the (approximate)
oint-wise confidence band mr (z) + 2σ̂r (z)(dashed), where σ̂r (z) is the (point-wise) standard deviation estimated from

the cross-validation residual.

SSE =
∑n

i=1 SSEi, attained with a tail-up covariance structure (SSE = 20864.89) as opposed to a
ure nugget (SSE = 29485.93), confirms the ability of the former to capture in a greater extent

the stochastic variability of the residual process. Finally, Fig. 10 provides a representation of the
observed (Fig. 10a) and predicted (via LOOCV, Fig. 10b) average temperatures (the average being
taken over the summer period) together with the corresponding marginal distributions (Fig. 10c).
Cross-validation results exhibit a narrower range of values than the data and this is a sign of the
Kriging smoothing effect. Comparison between Fig. 10a and b confirms the validity of the proposed
method, which is able to reproduce the main spatial patterns in the data.
17
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Fig. 10. (a): Observed average temperatures for the locations on the Middle Fork River. (b): Estimated average
temperatures via leave-one-out Universal Kriging for the Middle Fork data. (c): Distributions of the observed average
temperatures together with the cross-validation average temperatures.

7. Conclusion

In this work new geostatistical methods for complex data distributed over a stream network
have been proposed. First of all, the theoretical construction presented in Section 3 allows one to
develop a strategy for variographic analysis and estimation of the spatial covariance structure, which
proved to be effective in terms of prediction performance for both tail-up and tail-down models.
When tested on real data, the methodology achieved a good prediction performance. However,
further research should be carried out for tail-up models, aiming at a better empirical estimator
of the semivariogram that takes into account the weights characterizing the river topology. This
could potentially allow one to achieve better estimates for the range of correlation of the field. In
addition, extension to mixed models should certainly be the object of future works. To this end, an
adaptation of the procedure proposed in this work is envisioned as a nested structure for the fitting
of the FCSD trace-semivariogram. Further research may also be devoted to relax the hypothesis
of homogeneous covariance structure when dealing with large stream networks. In fact, allowing
varying dependence structures on different sub-networks could lead to interesting developments in
the direction of modelling strong spatial non-stationarities. Concerning the topological description
of the stream network, one should note that the current work, as well as the literature focused on
the scalar case, only enables one to analyse data over one-dimensional stream segments. However,
allowing the representation of stream segments to be also equipped with information about their
depth and thickness, might notably enrich the geostatistical analysis, especially in cases where the
stream network includes large sub-streams and lakes. The application of the developed models to
contexts other than those of a river network is possible, and would be extremely topical in contexts
like electricity grids, traffic and transportation systems, and road networks. Indeed, whenever it
is advisable to define the stream distance with respect to the topology of a network featured by
the presence of a flow rather than based on a Euclidean distance, the proposed approach should
be considered. Here, extensions of the considered class of models will deserve further research to
allow for the analysis of data distributed over non-binary trees and general networks for which
valid covariance models are yet to be studied.

Finally, an alternative viewpoint to the prediction problem faced in this work could consist of
understanding the data as a time series of tree-structured data objects. In this setting, predicting the
space–time (temperature) field would consist of reconstructing the target variable within each tree
(e.g., through scalar methods), and then building a time-dependent (predictive) model for the tree-
structured objects, properly accounting for their temporal dependence. To the authors’ knowledge,
this latter goal would need a significant methodological effort to be attained. While for the particular
case study which stimulated our research the approach pursued in this work seems natural, this
alternative viewpoint certainly deserves to be further investigated, and might open new venues in
the context of object oriented time-series modelling.
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Appendix A. Infinite dimensional functional process

We here discuss the conditions that allows one to consider an infinite-dimensional construction
or the functional process, i.e., to represent the element Xs as the limit as N → ∞ of (11) and obtain
a well-defined global covariance function. Therefore, we formally define the functional random field
as

Xs =

∞∑
k=1

ξk(s)ek, (A.1)

where {ek} is an orthonormal basis of H and {ξk(s), s ∈ D}, k ≥ 1, denote independent, zero-mean,
second-order stationary and isotropic scalar random fields, defined through the moving average
construction described in Section 2.

A minimal assumption for the existence of the cross covariance operators Csi,sj is that the random
variables Xs have finite second moments, i.e., E[∥X 2

s ∥] < ∞, for all s in D. For the functional random
process (A.1) this is equivalent to the following condition

∞∑
k=1

E[ξk(s)2] =

∞∑
k=1

∫
+∞

−∞

(
g (k)(x − s|θ)

)2dx < ∞, for all s ∈ D. (A.2)

In this context, the dependence of g(·|θ) on the parameters θ plays an important role since one
should impose conditions on θ to ensure the finiteness of the series. It is worth highlighting that
the autocovariance function of each scalar random field {ξk(s), s ∈ D} admits a compact form

E[ξk(s)ξk(s + h)] = C (k)(h|θ) = θ (k)
v ρk(h/θ (k)

r ), (A.3)

where ρk(·) is a positive correlation function that depends on the type of moving average function
of the kth random field. Plugging-in (A.3) in (A.2), we get

∞∑
k=1

E[ξk(s)2] =

∞∑
k=1

∫
+∞

−∞

(
g (k)(x − s|θ)

)2dx =

∞∑
k=1

C (k)(0|θ) =

∞∑
k=1

θ (k)
v

Therefore Xs belongs to L2(Ω;H) provided that we assume the summability of the series of θ (k)
v ,

i.e.,
∞∑
k=1

θ (k)
v < ∞. (A.4)

Under condition (A.4), one can prove by direct computations that θ (k)
v are the eigenvalues

of the covariance operator Cs,s. Moreover, under the square integrability assumption, the cross-
covariance operator Csi,sj exists and it is a symmetric trace-class Hilbert–Schmidt operator (Bosq,
2000). Finally, its trace is well defined by

∑
∞

k=1⟨Csi,sjek, ek⟩, as the series converges absolutely for
every orthonormal basis in H and the sum does not depend on the choice of the basis (Zhu, 2007).
The identity

C(si, sj) =

∞∑
k=1

⟨Csi,sjek, ek⟩

can be proved as in Menafoglio et al. (2013), by exploiting the Parseval identity and the Lebesgue’s
dominated convergence theorem for series. Note that to apply the latter theorem, the requirement
E[∥X ∥

2
] < ∞ is crucial.
s
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Appendix B. Bias of the FCSD empirical estimator

We here discuss on the bias of the FCSD empirical estimator proposed in Section 4.1.1 when
Xs, s ∈ D} is represented by a tail-up model. Recall that the expression of the trace-semivariogram
xpression for tail-up models is

γ (si, sj) =

⎧⎨⎩
0 if si = sj (i.e if h = 0)
θv if si and sj are not flow connected
θv − πi,jCt (h|θ) otherwise.

(B.1)

Here, Ct (h|θ) is the trace-covariogram for the moving average functional process on the real line,
which is related to the unweighted flow-connected trace-semivariogram γ (h) by the relation

Ct (h|θ) = Ct (0) − γ (h) = θv − γ (h). (B.2)

Plugging-in (B.2) in (B.1) we get

γ (si, sj) =

⎧⎨⎩
0 if si = sj (i.e if h = 0)
θv if si and sj are not flow connected
θv − πi,j

(
θv − γ (h)

)
otherwise.

(B.3)

From this expression we can easily see that, in the absence of weights (i.e., setting πi,j = 1)
γ (si, sj) effectively would correspond to γ (h), which is targeted by FCSD. Concerning the flow-
connected portion of expression (B.3), i.e., focusing on locations flow-connected si, sj, one has

1
2
VarH (Xsi − Xsj )H = θv − πi,jθv + πi,jγ (h), (B.4)

hat, rearranging the terms, reads

γ (h) = θv +
1

2πi,j
VarH (Xsi − Xsj ) −

1
πi,j

θv.

Given that the FCSD empirical estimator (18) is an unbiased estimator for 1
2 VarH (Xsi − Xsj ), it

traightforwardly follow that it is biased for the unweighted flow-connected semivariogram γ (h),
nless πi,j = 1 for all i, j. Unbiased estimators named FCWA and FCWA2 are derived and studies in
he Supplementary Material, adjusting for the bias of the FCSD according to Eq. (B.4).

ppendix C. Drift estimation

We here briefly recall the procedure which can be used to estimate the linear model in (19). The
odel for the vector of observations X = (Xs1 , . . . ,Xsn )

T can be expressed as

X = Fa + δ, (C.1)

where a = (a0, . . . , aL)T is the vector of (functional) coefficients, δ = (δs1 , . . . , δsn )
T is the

random vector of spatially-correlated residuals and F ∈ Rn×(L+1) is the design matrix, i.e., Fi,l =

(fl(si)). Menafoglio et al. (2013) propose to estimate the functional coefficients a given X based on
a generalized least square criterion (GLS) with weighting matrix Σ−1, i.e., the inverse of the n × n
covariance matrix Σ of X . Since âGLS depends itself on Σ , which is usually unknown, the following
iterative algorithm, can be used for its actual computation.

Algorithm 1 (Menafoglio et al., 2013). Given a realization x = (xs1 , . . . , xsn ) of X , represented as
in (19):

1. Estimate the drift vector m through the OLS method and set m̂ = m̂OLS , with m̂OLS
=

F(FTF)−1FTx.
2. Compute the residual estimate δ̂ = (δ̂ , . . . , δ̂ ) by difference: δ̂ = x − m̂.
s1 sn

20
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3. Estimate the trace-semivariogram γ (·, ·) of the residual process {δs, s ∈ D} from δ̂ first with
the FCSD empirical estimator (18) and then fitting to this a valid model γ (·; θ), obtaining
θ̂. Plug-in θ̂ in the stream-network trace-covariogram expression of Σ (see Table 1, Σi,j =

C(si, sj|θ)) yielding Σ̂ (with Σ̂i,j = C(si, sj|θ̂)).
4. Estimate the drift vector m with m̂GLS , obtained from x using: m̂GLS

= F(FTΣ−1F)−1FTΣ−1x.
5. Repeat 2.-4. until convergence.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.
spasta.2023.100784.
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